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1. INTRODUCTION. 

Many transport externalities depend strongly on the transport mode used, so 
that modal shift is perceived as a priority to diminish the social, economic and 
environmental impacts of freight transport. The relative lack of success of 
modal shift transport policies meet in practice indicates that mode choice may 
be partially misunderstood. Why do shippers use a given transport mode? 
Why is it difficult to induce them to modify their choices? These are central 
questions of freight transport economics and modeling. 

The classic modeling approach to the question of modal choice is based on a 
representation of the transport modes by their characteristics, in the tradition 
of the consumer theory of Lancaster (1966). These characteristics are 
typically the transport price and the travel duration. This approach yields the 
well-known value of time, or value of travel time savings, the marginal 
substitution rate between time and price (Quinet and Vickermann, 2004), 
which is a key parameter of spatialised transport models in general (Small and 
Verhoef, 2006). This approach generally proves econometrically insufficient, 
so that other variables are introduced: mode specific constants in many cases, 
attempts to introduce some other characteristics, such as reliability (Fowkes et 
al., 2004). However, it has two main shortcomings: first, there is no notion of 
shipment size, yet a crucial decision variable in freight transport, closely 
related to the choice of vehicle, and to the logistic imperatives of the shipper. 
Second, it is difficult to give a precise theoretical explanation to the value of 
time in freight transport - in other words, there are no microeconomic model 
deriving the value of time of a shipper endogenously. 

The objective of this paper is to address - at least partially - these two 
shortcomings. To do so, we will follow the direction taken by Baumol and 
Vinod, i.e. importing in the field of microeconomics a model initially belonging 
to the field of inventory theory. We will do so with a model representing a very 
simple supply chain: the single commodity periodic review model with 
backlogging. This model is analysed in detail in Arrow et al. (1958). Its basic 
idea is that the shipper has to decide how many commodities to send from a 
plant to a retail center, in order to fulfill the requests of its customers. These 
requests are not known in advance, so that the shipper has to predict the 
demand in order to take decisions. 

Despite the simplicity of the model, it proves possible to investigate the 
relationship between the choice of shipment size and that of transport mode, 
and to derive endogenously the value of time of the shipper, on the basis of 
exogenous cost parameters. In particular, the transport time plays an 
important role: a longer transport time implies the need for the shipper to take 
decisions further in advance. In other words, the shipper loses reactivity, and 



this loss comes with all kinds of increased logistic costs. As a matter of fact, 
the model illustrates how the preferences of shippers with respect to transport 
modes stem from their own logistic imperatives. Furthermore, this model takes 
into account the influence of the preferences of the shippers' customers on 
the own preferences of the shippers1.  

The paper proceeds as follows: the framework of the model is presented in 
Section 2. Then, Section 3 derives the optimal logistic policy of the shipper. 
Both Section 2 and Section 3 present, in a simplified manner, results from 
Arrow et al. (2004). Section 4 analyses this optimal policy from a transport 
economics perspective, then some numerical applications are provided 
Section 5. The paper is concluded in Section 6. 

2. MODEL FRAMEWORK 

Consider a firm, thereafter called the shipper, owning a production unit in A , 
and a retail center in B . This shipper produces commodities of many distinct 
types in A , and sells them to its customers in B . There is only one transport 
mode available to carry all these commodities. This mode is used with a given 
frequency, say, without loss of generality, once per day, to carry all these 
commodities. The transport lead-time2 is denoted l . 

As a profit maximizer, whatever the market structure, the shipper minimizes its 
costs (including, if any, the user's costs3; Mohring, 1985). The analysis is 
focused here on the supply chain associated to a unique commodity type. By 
supply chain, we mean the commodity flow and stocks, from production to 
delivery. 

Customers order each day a given amount of this commodity type. If they are 
not served straightaway, they wait. However, they regard waiting as a 
discomfort; in other words, they are willing to pay to reduce or avoid waiting 
time. As a consequence, pending orders incur a cost the shipper takes into 
account. The shipper can decrease the number of customers waiting by 
increasing the inventory level. 

However, a high inventory implies two types of costs. First, warehousing 
requires space, buildings, monitoring, and handling, which are costly. Second, 
commodities owned by the shipper imply a capital opportunity cost as well as, 
depending on the commodity type, a depreciation cost. 

The problem for the shipper is to decide the amount of commodities to ship 
each day, so as to minimize the related transport and inventory costs.  

2.1. Demand distribution 

During each time period 0t , the customers order a amount tD  of the 

considered commodity at the retail center. The demands  
0ttD  are assumed 

stochastic, independent and identically distributed. The expected value of tD  

is d , and its variance is  . Its cumulative distribution function is denoted DF . 



2.2. System dynamics 

The framework is modeled as a single-product single-location inventory 
system under periodic review, where excess demand is kept and the 
replenishment lead time is positive.  

The destination inventory at time t  is denoted tI . Note that this variable can 

be negative. In that case, it stands for the amount of orders pending or, 
equivalently, the number of customers waiting. The shipment sent at time t is 

denoted ts . The pipeline inventory (i.e. the amount of commodities being 

carried at time t ) is denoted p

tI . 

The destination inventory dynamics are simple: at the beginning of period 1t , 

the destination inventory is the destination at time t  plus the shipment sent at 

time lt   minus the demand ordered during period t : 

 tlttt DsII  1  (1) 

The pipeline inventory dynamics are even simpler: 

 ltt

p

t

p

t ssII  1  (2) 

For analytical convenience, the following conventions are taken: 0t , 

dDt  , and dst  . 

2.3. Costs 

In this framework, four types of costs are distinguished. Each of them is 
thereafter defined and calculated over period t . 

The first cost is the direct transport cost tC , i.e. the amount paid by the 

shipper to the carrier for the commodities to be actually moved. In the 
framework considered, the transport system is designed for a large number of 
commodity types. With respect to the structure of costs, this means that a 

higher shipment size ts  means more vehicle capacity, but no change in the 

shipment frequency, for example, and a negligible change in the loading and 
unloading times. As a consequence, the daily transport cost is assumed 
proportional to the shipment size: 

 tscC    (3) 

Second, the pipeline inventory cost pC , the inventory cost due to the time the 

commodities wait while being transported. This cost is assumed proportional 

to the time spent by the commodities during transport, up to a coefficient ca  

standing for the amount the shipper would be ready to pay to decrease by 1 

day the time waited by one ton of commodity in the shipper's inventory ( ca  

encompasses the capital opportunity cost and the depreciation cost, but not 
the warehousing cost).  



During period t , this cost is equal to the amount of commodities currently 

being carried (it thus depends on the transport lead-time l ) times the unit 

commodity value of time. 

 





1t

lti

icp saC  (4) 

Third, the destination inventory cost: proportional to the time the commodities 
wait in the retail center, before they are sold, this cost consists of the capital 

and depreciation cost ca , and of the warehousing cost, assumed proportional 

to the amount of commodities being stocked, up to a coefficient denoted wa : 

   twcd IaaC )(  (5) 

where (.)  denotes the positive value. 

Fourth, the customer cost: it is assumed proportional to the number of 

customers waiting for their orders at time t , equal to tI  if 0tI , times the unit 

customer value of time (the amount the customers would be ready to pay to 
reduce their waiting time of one day), denoted by a . 

   td IaC  (6) 

The shipper's objective is to minimise the sum of these four costs4. The sum 
of these costs is thereafter called the full logistic cost C : 

 cdp CCCCC    (7) 

From Equations (3) to (6), Equation (7) becomes: 
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1

  (8) 

The objective of the shipper is to determine at each period t  the shipment 

size ts  which minimizes the logistic cost C  under the system dynamics given 

by Equations (1) and (2). 

The detailed approach will not be reported here. We will take for granted that 
in this framework, the optimal logistic policy is an order-up-to policy. In other 
words, the amount sent in each period from the production unit to the retail 
center exactly compensates the quantity ordered at the retail center. As a 
consequence, the destination inventory plus the pipeline inventory, i.e. the 
overall inventory, remains constant. The level of the overall inventory is 
chosen so as to minimize the expected cost for any time t . See Arrow et al. 

(1958) for a formal analysis. 

3. THE OPTIMAL LOGISTIC POLICY 

In this framework, the difficulty for the shipper stems from the demand 
uncertainty and the transport lead-time: the system's state at time t  derives 



from decisions the shipper has taken at least l  days earlier. The objective of 

the shipper is to address this uncertainty optimally with respect to the costs 
introduced earlier. 

The best way to do so is to follow an optimal order-up-to policy. In this section, 
we show how this result stems intuitively from the problem's structure. Then, 
the optimal inventory level is derived. 

3.1. Description of the optimal logistic policy 

Given the regularity of the problem, one can expect the optimal logistic policy 
to be such that the destination inventory's expected value is equal to a given 

target. Let sI  denote this target, called the safety stock. In other words, the 

objective is: 

 st IIE )(   

Now consider the information available to the shipper at time t : the shipper 

knows the inventory tI  and the shipments sent over the l  previous periods. 

The shipper decides at time t  the size of the shipment ts  which will arrive at 

lt  . 

By combining Equation (1) 1l  times we obtain: 
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



 
lt

ti

t

lti
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1  (9) 

where tI  and  
1,...,  tltiis  are given, ts  to be decided,  

lttiiD
 ,...,

 yet 

unobserved. 

By taking the expected value of Equation (9): 

   t

t
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1 )1(   

so that to obtain   slt IIE  1 , ts  must be equal to: 
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If this policy is applied, then, by replacing ts  from the equation above in (9) 

and translating 1l  periods backwards, the destination inventory at time t  is: 

  





1

1

t

lti

ist DdII  (11) 

 (Note that this is true only for lt  . We will assume that in the following.) 

This equation is of central importance. First, it says that under the optimal 

logistic policy, the destination inventory is a random variable centered on sI , 



and of which the variance is directly related to the variance of tD  and to the 

transport lead time. Second, the distribution of tI  is identical for all lt  . Third, 

as it will be explained in more detail later, the expected full logistic cost 
depends almost entirely on this equation. 

Let us introduce right away the following notations: 

 
 

 







tI

tI

IV

IE




 (12) 

From Equation (11): 

 sI I  (13) 

and: 

  1 lI  (14) 

The policy described by Equation (10) is clearly an order-up-to policy: if the 
predicted demand minus the already present inventory plus the already sent 
shipments is below the safety stock level, the shipment sent at period t  is 

sized to exactly compensate this gap. In fact, by calculating tt II 1  from 

Equation (1), then from Equation (11), and comparing the results, one easily 
deduces that: 

 1 tt Ds  (15) 

The shipment sent at time t  exactly compensates the demand during period 

1t . Incidentally, this also implies:  

   dsE t   (16) 

3.2. The optimal safety stock 

The choice of a target value for the safety stock remains to be done. It relies 
solely on Equations (8), (11) and  (15).  

Let us first consider the transport and pipeline inventory costs. Both of them 

only depend on the shipment size ts . From Equation (15), the expected value 

is d , so that these two costs do not depend on sI . 

As a consequence, denote: 

          KICEICEICE scsds    

where K  is a constant. The sI  variable is omitted from now on, unless 

necessary. 

From Equations (5) and (11), the expected destination inventory cost is: 
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and from Equation (6), the expected customer cost is: 

    





























1

1

t

lti

isd DdIaECE   

These two equations reveal the role of sI : a large safety stock means fewer 

customers waiting, but a higher inventory cost, and conversely. Note that sI  

can be negative: the shipper decides that the consumers usually wait, its only 
objective is that they do not wait too long. 

Let r

tD  denote the sum of the orders placed over  1,...,1  tlt , so that 

Equation (11) becomes: 

 r

tst DdlII  )1(   

The r

tD  are identically distributed, but not independent. Due to the central limit 

theorem, whatever the distribution of tD , the distribution of r

tD  is almost 

Gaussian, provided the travel time l  is not too short. As a consequence, in 

order to avoid tedious considerations, which would bring little to the analysis, 
r

tD  is considered normally distributed. 

In that case, then tI  is also normally distributed, of mean I  and variance 
2

I . 

The c.d.f. of tI , denoted IF , is thus approximately: 
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and its distribution density, denoted If , is: 

 






 


I

I

I

I

x
f








1
  

where   and   are the c.d.f. and density of the centered unit normal 

distribution, respectively. It is now possible to determine how  dCE  varies 

with sI . Indeed: 

    

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so that, by variable substitution: 
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From a few simple transformations (the detail is available in Combes, 2009) 
we obtain that: 
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and similarly that: 
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so that the behaviour of  CE  with respect to sI  is given by: 
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which, given Equations (13) and (14), is equivalent to: 
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Therefore, the expected full logistic cost is a convex function of sI , minimized 

when the derivatives of the expected destination inventory cost and the 
expected customer cost are equal except for the sign. The optimal safety 
stock is derived straightforwardly from Equation (19): 
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The role of the safety stock is clearly illustrated by this result: *

sI  does not 

depend on d , and is proportional to  . Apart from the pure transport cost, all 

the logistic costs considered in this framework stem from the demand's 
uncertainty, which plays a crucial role. Indeed, if the demand were certain, 
there would be no need for a safety stock; in fact, there would be neither 
inventory nor customer costs: the shipper would send each day the exact 
amount which would fulfill the needs of his customers. 

However, the demand uncertainty is not the only source of the need for a 
safety stock: the safety stock is made necessary by the positive transport lead 
time. A greater transport lead time means a less reactive system, and the 
need for a greater safety stock. As a consequence, the transport lead time is a 
central parameter for the shipper. 

Up to this point, we have just provided very classical elements of inventory 
theory. The remaining paragraphs of this section aim at analyzing these 
results from a microeconomic, freight transport modeling perspective. 



4.  TRANSPORT DEMAND ANALYSIS: THE VALUE OF TIME 

Now that the shipper's logistic policy has been introduced, it is analyzed from 
a microeconomic standpoint. This section is focused on how the safety stock 
and the full logistic cost depend on the model parameters. In particular, we 
examine how the preferences of the shippers with respect to freight transport 
can be derived from its full logistic cost function. 

The transport mode used by the shipper is described by two of its 

characteristics: its unit cost c  and its lead time l . The roles these two 

parameters play are not symmetric. 

Indeed, from Equation (20), the cost parameter c  has no influence on the 

safety stock level. Provided the shipper does not change from transport mode, 

an increase in c  does not impact the shipper's transport demand. The only 

consequence is a change in the full logistic cost. Under the optimal policy (as 
it is assumed from now on): 

 d
dc
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On the contrary, the transport lead-time has a non-trivial impact both on the 
shipper's logistic policy and full cost. First, it appears straightforwardly from 
Equation (20) that the safety stock increases with l . Consistently with what 

was explained at the end of Section 3, the safety stock addresses the demand 
uncertainty and the system's lack of reactivity. An increase in the transport 
lead time means a loss of reactivity, which comes at a cost which is not limited 
to an increase in the pipeline inventory cost. 

To calculate the derivative of the full logistic cost with respect to l , first note 

that *

sI  is a function of l . 

However, from the envelop theorem: 
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As a consequence, I  can be considered fixed in Equation (17), and we have: 
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Given that )()(' vvv   , and from the symmetry of )(v : 
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The same result is obtained for  tI . As a consequence, and from Equation 

(14) and (20): 
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In order to clarify notations, the following function is introduced: 
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It can be easily demonstrated (Combes, 2010) that   is positive, increasing in 

x  and y , and that ),(),( xyyx   . In the following, ),( wc aaa   is simply 

written  . 

Now, using these notations, the derivative of the full logistic cost with respect 
to the transport lead time can be written: 
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When the transport lead time increases, the full logistic cost increases 
because the time the commodities spend in the transport operation increases, 
but not only. The second reason why the full logistic cost increases if the 
transport lead time is one day longer is that the sizes of shipments must be 
decided one day earlier, which means the variability of the destination 
inventory is greater. This greater variability implies a change in the safety 
stock, which is not a problem in itself since, due to the envelop theorem, such 

a shift leaves the full logistic cost unchanged, but it also means that   tIE  

and   tIE  and, as a direct consequence, the inventory and customer costs, 

increase. Note that   can be interpreted the marginal cost of variability. From 

the properties of  , and as expected, it is an increasing function of each of its 

parameters. 

The shipper's value of time can then be calculated, as the cost increase the 
shipper would be ready to accept for the travel time to be decreased by one 
unit. Denote it  . 
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As expected,   encompasses the commodity value of time, but it also 
encompasses another term, which can be interpreted as the value of speed in 
the frame of a supply chain.  

It is of great importance to note that this value of time actually depends on the 
speed of the considered transport mode. As a consequence, a shipper cannot 
be characterized by a fixed, unique value of time helping discrimination 
between transport modes. On the contrary, a shipper which chooses a slow 
transport mode will present a lower value of time than if he had chosen a fast 
one, all other things equal. This suggests there might be some endogeneity in 
the relationship between observed values of time and mode choices. 



Note that this value of time is not necessarily closely related to the carrier's 
value of time as it is observed in classic roadside surveys for example. Indeed, 
the transport lead time offered by the carrier can rely on a complex 
organization, so that the linkage between the transport lead time and the 
actual transport operation durations is not trivial. 

5. NUMERICAL APPLICATIONS 

The model presented here is not intended to be used in an operational 
context, and has not been the object of econometric investigations. However, 
some numerical applications are presented here, to illustrate the model's 
behavior and to provide orders of magnitude. The values given to the various 
parameters are purely indicative. Two parts of supply chains are considered: 
laptop computers, and cars. 

5.1. Laptop computers 

Consider a shipper producing laptop computers in China and selling them in 
Europe5. 

Since a laptop weights by and large 2 kg and is sold by and large 1000€, its 
value density is about 500 k€ per ton of commodity. Assume an opportunity 

cost of capital of about 20% and a depreciation cost of 20%; ca  is then about 

200 k€ per ton per year, or 550 € per ton and per day. 

The warehousing cost can be roughly estimated on the basis of average 
warehouse rents, about 50€ per year and m² in France. On the hypothesis 

that it is possible to stock about 3 tons of commodities per m², wa  is estimated 

at 0.05€ per ton and per day. 

The customer cost is much trickier to estimate. According to many industry 
studies, 8% of retail items are out of stock at any one time (Su and Zhang, 

2009). In our model, if the probability that tI  is negative is 8%, then 

 aaaa wc /  is 0.92, so that a  is approximately  wc aa 11 . In the absence 

of more accurate data, the following value is retained: a  = 6000€ per day and 

per ton, which stands, in this case, for 12€ per laptop per day. 

Estimates of the daily demand expected value and variance are unavailable. 
The following assumption is made: 5d  units, or 0.01 ton, and 3  units, or 

0.006 ton. Given that the example is focused on a single computer brand, in a 
given retail center, small numbers are reasonable. 

Now assume the computers are transported by plane and by truck for the 
pickup and delivery movements, in 5 days, at a cost of 2000€ per ton. 

Given these parameters, the safety stock is (in units) 1.10sI  units. As a  is 

much larger than wc aa  , we find as expected that the average amount of 

computers actually stocked at a given time,    4.10


tIE , is much larger than 

the average number of customers waiting at a given time    3.0tIE . The 

per day cost components are: 
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The direct transport costs constitute less than half of the full logistic cost, but 
the generalised transport cost (including the pipeline inventory cost) more 
than 75% of the full logistic cost. Finally, the shipper's value of time is 

day/€7.673  or h/€1.28 . 

Now assume the computers are transported by sea. The transport rate is 
assumed to be approximately 100€ per ton, and the transport lead time 
approximately 45 days. The safety stock is then of 28.1 units. There are on 
average 28.8 computers stocked, and 0.8 customers waiting. The cost 
elements are: 
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so that the full logistic cost is 289.6€ per day, for 62.3€ per day in the previous 
case, so that air transport is more competitive in this example, due to the 
pipeline inventory cost. Note that in this case, the value of time is 594.7€ per 
day, not very different from the previous one. The elements are summarized 
in Table 1. 

Table 2: Laptop supply chain example 

Variable Air Sea 

*

sI  10.1 28.1 

  tIE  10.4 28.8 

  tIE  0.3 0.8 

  673.7 594.7 

C  20.0 1.0 

pC  27.5 247.5 

dC  11.4 31.7 

cC  3.4 9.4 

C  62.3 289.6 

 

 



5.2. Cars 

Consider now a shipper sending cars from a producing unit located in Europe 
to a central distribution platform also located in Europe, at about, from which 
the cars are then sent to the car dealers. Car dealers will be considered as the 
customers of the model, which is justified by the fact that they have no stock: 
if they wait for their deliveries, so do the final customers. We focus on a 
particular car model. 

The following assumptions are taken. The cars are worth 25 000€. Their 
weight is one ton (for simplicity). The capital cost is 15%, and the depreciation 

cost 15%, so that dayac /€20 . The warehousing cost is dayac /€05.0 . We 

assume:   1608  wc aaa (the decision to buy a car is taken in a wider time 

scale, and other parameters such as the attachment to a particular brand, or 
the need of a particular car type, can mitigate the importance of the waiting 
time to the customer; anyway, all these assumptions are of course very 
coarse). The daily demand of the considered car model is 10d , and the 

variance 6 . 

Two transport modes will be compared. First, motor carriers: the lead time is 2 
days, and the rate about 200€ per ton. Second, railroad transport: the lead 
time is 5 days, and the rate about 50€ per ton.  

The model variables in the two cases are compared in Table 2. It appears 
again that the higher lead time of rail transport implies higher pipeline 
inventory costs, and higher costs due to the destination inventory variability. 
These effects do not compensate the price decrease, so that rail transport is 
competitive. 

Table 2: Car supply chain example 

Variable Road Rail 

*

sI  12.7 20.7 

  tIE  13.2 21.6 

  tIE  0.6 0.91 

  25.9 23.6 

C  2000.0 500.0 

pC  400.0 1400.0 

dC  265.3 433.2 

cC  89.6 146.4 

C  2755.0 2479.6 

 

6.  CONCLUSION 

This paper is based on a very classic inventory theory model. No innovative 
results are presented from the perspective of inventory theory. However, 



examining such a model from the microeconomic perspective of freight 
transport demand analysis yields new highlights on the behavior of shippers. 

The model indeed allows to make explicit the transport and other logistic costs 
of a shipper for a given commodity type. The way the full logistic cost depends 
on the model parameters illustrates the linkage between the logistic 
constraints of the shipper and its preferences with respect to freight transport. 
In particular, it illustrates the particular role of the preferences of the shipper's 
customers (both the willingness to pay to avoid stock shortages, and the 
general variability of the demand.) 

The model shows how the shipper's value of time derives from its logistic 
imperatives. The shipper is ready to pay to reduce the transport lead time not 
only because it reduces the time commodities spend in the transport operation, 
but also, and in certain cases mainly, because it improves the system's 
reactivity: a lower transport lead time allows the inventory to stick more closely 
to the demand, so that both the inventory and the customer costs are 
decreased. The amount of costs which are thus avoided can be very large, as 
suggests the general orientation of many industries toward any direction that 
might improve their reactivity (also referred to as 'time-to-market') and 
reducing their inventories). Besides, this trend is all the more necessary as the 
number of brands, and commodity variants which are available to customers 
increases very fast. 

However, the limitation of the model used here limits the generality of the 
results. In particular, the model assumes there are no fixed transport costs 
(the transport cost is indeed assumed strictly proportional to shipment size; 
this hypothesis is not very realistic). Introducing fixed transport costs in the 
model would improve its generality, as well as that of the results presented in 
this paper. Econometric investigations of the various parameters the model 
involves would also be fruitful advances of this work. 
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NOTES 

                                            
1 This particular feature generally absent from other models. For example, in 
Baumol and Vinod, the decisions of shippers derive from their decision that 
the probability of  stock shortage (i.e. the inability of the shipper to fulfill the 
requests of its customers at a given time) must be equal to a certain, 
exogenous value. They do not explain how this value is chosen, on the basis 
of other parameters such as inventory costs and stock shortage costs (which 
consist mainly of the disappointment of the customers facing the shortages). 

2 The model presented in this paper is built from the standpoint of the shipper. 
As a consequence, apart from some aspects such as the vehicle type (the 
shipper needs berths to load and unload trucks quickly, railway sidings to 
have access to rail transport) the way the transport operation is practically 
realized is not relevant. In particular, if the carrier combines several vehicle 
movements in addition to break-bulk operations (e.g. for a motor carrier 
carrying LTL shipments) or moves railcars through marshalling yards (for a rail 
carrier), the actual time the commodities spend moving can be much smaller 
than the whole transport operation duration. This is why we prefer to speak 
about transport lead time rather than about travel time. 

3 Mohring’s statement is based on the following intuition: if it costs the shipper 
less than 1 to reduce by 1 the total cost for customers, the shipper may 
proceed to this reduction, increase its price by 1, have the same number of 
customers and increase its own profit, even though the shipper’s cost function 
does not encompass all the elements of the customers’ cost function, such as 
waiting time. 

4 Strictly speaking, there is a cost component for each period of time. Typically, 
the objective for the shipper would then be to minimize an actualized sum of 
these costs. However, this simple analysis will be limited to the minimization 
of the expected cost per time period. 

5 In the framework presented above, the shipper produces the commodities 
and sells them in the retail center. However, the producer and the retailer of a 
given commodity are often distinct firms. In a perfectly competitive 
environment, and provided the firms communicate each other all the 
information they have, the results previously presented still hold. Of course, 
this is generally not the case, thus the strategic dimension of supply chain 
management. 

 


