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ON PRO-p-IWAHORI INVARIANTS OF R-REPRESENTATIONS

IRl

OF REDUCTIVE p-ADIC GROUPS

N. ABE, G. HENNIART, AND M.-F. VIGNERAS

ABSTRACT. Let F be a locally compact field with residue characteristic p, and
let G be a connected reductive F-group. Let U be a pro-p Iwahori subgroup of
G = G(F). Fix a commutative ring R. If 7 is a smooth R[G]-representation,
the space of invariants 7 is a right module over the Hecke algebra H of U in
G.

Let P be a parabolic subgroup of G with a Levi decomposition P = M N
adapted to Y. We complement a previous investigation of Ollivier-Vignéras
on the relation between taking U-invariants and various functor like Ind}GD and
right and left adjoints. More precisely the authors’ previous work with Herzig
introduced representations I (P, o, Q) where o is a smooth representation of
M extending, trivially on N, to a larger parabolic subgroup P(c), and Q
is a parabolic subgroup between P and P(c). Here we relate Ig(P, o, Q)Y
to an analogously defined H-module Iy (P, oM, Q), where Upy = U N M
and o¥M is seen as a module over the Hecke algebra Hjys of Uy in M. In
the reverse direction, if V is a right Hp/-module, we relate I (P, V,Q) ®
C—Indg 1 to Ig(P,V @y, C—Ind%w 1,Q). As an application we prove that if
R is an algebraically closed field of characteristic p, and = is an irreducible
admissible representation of G, then the contragredient of 7 is 0 unless 7 has
finite dimension.
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1.1. The present paper is a companion to [AHV] and is similarly inspired by the
classification results of [AHHV17]; however it can be read independently. We recall
the setting. We have a non-archimedean locally compact field F' of residue charac-
teristic p and a connected reductive F-group G. We fix a commutative ring R and

study the smooth R-representations of G = G(F).
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In [AHHV17] the irreducible admissible R-representations of G are classified in
terms of supersingular ones when R is an algebraically closed field of characteristic
p. That classification is expressed in terms of representations I (P, o, Q), which
make sense for any R. In that notation, P is a parabolic subgroup of G with a Levi
decomposition P = M N and ¢ a smooth R-representation of the Levi subgroup M;
there is a maximal parabolic subgroup P(c) of G containing P to which o inflated
to P extends to a representation ep(,(0), and Q is a parabolic subgroup of G with
P c @ cC P(0). Then

Ig(P,0,Q) = Indg(a)(ep(a)(g) ® Stg(")L

where Ind stands for parabolic induction and Stg(”> = Indg(”) R/ Indgsﬂ) R, the
sum being over parabolic subgroups @’ of G with Q C Q' C P(o). Alternatively,
Ig(P,0,Q) is the quotient of Indg(eQ(a)) by Zlndg, eq/ (o) with @' as above,
where eq(0) is the restriction of ep(,(0) to Q, similarly for Q.

In [AHV] we mainly studied what happens to Ig(P, o, Q) when we apply to it,
for a parabolic subgroup P; of G, the left adjoint of Indg17 or its right adjoint. Here
we tackle a different question. We fix a pro-p Iwahori subgroup U of G in good
position with respect to P, so that in particular Uy, = U N M is a pro-p Iwahori
subgroup of M. One of our main goals is to identify the R-module Ig(P,0o, Q)Y
of U-invariants, as a right module over the Hecke algebra H = Hg of U in G -
the convolution algebra on the double coset space U\G /U - in terms of the module
oM over the Hecke algebra H s of Uas in M. That goal is achieved in section 4,
Theorem 4.17.

1.2. The initial work has been done in [OV17, §4] where (Ind$ o) is identified. Pre-
cisely, writing M+ for the monoid of elements m € M with m(UNN)m™' CcUNN,
the subalgebra H,,+ of Har with support in M T, has a natural algebra embedding
0 into H and [OV17, Proposition 4.4] identifies (Ind% o) with IndzM (gUnm) =
oUm ®%,,, H. So in a sense, this paper is a sequel to [OV17] although some of our
results here are used in [OV17, §5].

As I (P, 0,Q) is only a subquotient of IndJG; o and taking U-invariants is only left
exact, it is not straightforward to describe Ig(P, o, Q)Y from the previous result.
However, that takes care of the parabolic induction step, so in a first approach
we may assume P(0) = G so that I¢(P,0,Q) = eq(o) ® Stg. The crucial case
is when moreover o is e-minimal, that is, not an extension ep;(7) of a smooth R-
representation 7 of a proper Levi subgroup of M. That case is treated first and the
general case in section 4 only.

1.3. To explain our results, we need more notation. We choose a maximal F-split
torus 7" in G and a minimal parabolic subgroup B = ZU with Levi component
Z the G-centralizer of T. We assume that P = M N contains B and M contains
Z, and that U corresponds to an alcove in the apartment associated to 7' in the
adjoint building of G. It turns out that when o is e-minimal and P(o) = G, the
set Ay of simple roots of T in Lie(M NU) is orthogonal to its complement in the
set A of simple roots of T in LieU. We assume until the end of this section that
Apr and Ay = A\ Ay are orthogonal. If My is the Levi subgroup - containing
Z - corresponding to As, both M and M, are normal in G, M N My = Z and
G = M M;. Moreover the normal subgroup M/ of G generated by N is included in
M, and G = M Mj,.



We say that a right Hj-module V is extensible to H if TM acts trivially on V
for z € ZN M} (section 3.3). In this case, we show that there is a natural structure
of right H-module ey (V) on V such that Ty € H corresponding to Ugld for g € M}
acts as in the trivial character of G (section 3.4). We call ey (V) the extension of
V to ‘H though H,s is not a subalgebra of H. That notion is already present in
[Abe] in the case where R has characteristic p. Here we extend the construction to
any R and prove some more properties. In particular we produce an H-equivariant
embedding ey (V) into IndgM V (Lemma 3.10). If @ is a parabolic subgroup of G
containing P, we go further and put on ey (V) ®r (Indg R and ey (V) ®r (St5)4
structures of H-modules (Proposition 3.15 and Corollary 3.17) - note that H is not
a group algebra and there is no obvious notion of tensor product of H-modules.

If o is an R-representation of M extensible to G, then its extension eg(o) is
simply obtained by letting M} act trivially on the space of o; moreover it is clear
that o¥™ is extensible to #, and one shows easily that eq(0)¥ = ey (™) as an H-
module (section 3.5). Moreover, the natural inclusion of e¢(c) into Ind$ o induces
on taking pro-p Iwahori invariants an embedding ey (6¥*) — (Ind$ o) which, via
the isomorphism of [OV17], yields exactly the above embedding of H-modules of
ey (oY) into Ind% L, (gt

Then we show the H-modules (eq(0) ®r Indg R and ey (oY) ®p (Indg R
are equal, and similarly (eg(0) ®g Stg)uand en (oY) @p (Stg)“ are equal (The-
orem 4.9).

1.4. We turn back to the general case where we do not assume that Ay and A\ Ay
are orthogonal. Nevertheless, given a right Hj;-module V, there exists a largest
Levi subgroup M (V) of G - containing Z - corresponding to Ay UA; where Aj is a
subset of A\ Aps orthogonal to Ay, such that V extends to a right Hys(y)-module
en vy (V) with the notation of section 1.3. For any parabolic subgroup @ between
P and P(V) = M(V)U we put (Definition 4.12)

Lu(P,V, Q) = Ind%, (earn) (V) @r (Stigon) 1),

We refer to Theorem 4.17 for the description of the right H-module I (P, o, Q)Y
for any smooth R-representation o of U. As a special case, it says that when o is e-
minimal then P(c) D P(c“™) and if moreover P(c) = P(c¥™), then Ig(P, o, Q)"
is isomorphic to Iy, (P, o¥™, Q).

Remark 1.1. In [Abe] are attached similar H-modules to (P, V, Q); here we write
them as Cly(P,V, Q) because their definition uses, instead of Ind;[" @ different
kind of induction, which we call coinduction. In [Abe] those modules are used
to give, when R is an algebraically closed field of characteristic p, a classifica-
tion of simple H-modules in terms of supersingular modules - that classification
is similar to the classification of irreducible admissible R-representations of G in
[AHHV17]. Using the comparison between induced and coinduced modules estab-
lished in [Vigl5sb, 4.3] for any R, our Corollary 4.24 expresses Cly(P,V,Q) as a
module Iy (P1, V1, @1); consequently we show in section 4.5 that the classification
of [Abe] can also be expressed in terms of modules Iy (P, V, Q).

1.5. In a reverse direction one can associate to a right H-module V a smooth
R-representation V ®y RIU\G] of G (seeing H as the endomorphism ring of the
R[G]-module R[U\G]).



If V is a right H p-module, we construct, again using [OV17], a natural R[G]-map
MV
Ly(P,V, Q) @y RIUNG] = TdZ ) (earv) (Y @3,y RIUM\M]) @1 Sty 1)),

with the notation of section 1.4. We show in section 5 that it is an isomorphism
under a mild assumption on the Z-torsion in V; in particular it is an isomorphism
if p=0in R.

1.6. In the final section 6, we turn back to the case where R is an algebraically
closed field of characteristic p. We prove that the smooth dual of an irreducible
admissible R-representation V' of G is 0 unless V' is finite dimensional - that result
is new if F has positive characteristic, a case where the proof of Kohlhaase [Koh]
for char(F) = 0 does not apply. Our proof first reduces to the case where V is
supercuspidal (by [AHHV17]) then uses again the H-module V¥,

2. NOTATION, USEFUL FACTS, AND PRELIMINARIES

2.1. The group G and its standard parabolic subgroups P = M N. In all
that follows, p is a prime number and F' is a local field with finite residue field &
of characteristic p. We denote an algebraic group over F' by a bold letter, like H,
and use the same ordinary letter for the group of F-points, H = H(F). We fix a
connected reductive F-group G. We fix a maximal F-split subtorus T and write
Z for its G-centralizer; we also fix a minimal parabolic subgroup B of G with Levi
component Z, so that B = ZU where U is the unipotent radical of B. Let X*(T)
be the group of F-rational characters of T and let ® be the subset of roots of T in
the Lie algebra of G. Then B determines a subset &1 of positive roots - the roots
of T in the Lie algebra of U- and a subset of simple roots A. The G-normalizer
Ng of T acts on X*(T) and through that action, Ng/Z identifies with the Weyl
group of the root system ®. Set N := Ng(F) and note that Ng/Z ~ N /Z; we
write W for N'/Z.

A standard parabolic subgroup of G is a parabolic F-subgroup containing B.
Such a parabolic subgroup P has a unique Levi subgroup M containing Z, so that
P = MN where N is the unipotent radical of P - we also call M standard. By a
common abuse of language to describe the preceding situation, we simply say “let
P = MN be a standard parabolic subgroup of G”; we sometimes write Np for NV
and Mp for M. The parabolic subgroup of G opposite to P will be written P and
its unipotent radical N, so that P = MN, but beware that P is not standard! We
write Wy, for the Weyl group (M NN)/Z.

If P = MN is a standard parabolic subgroup of G, then M N B is a minimal
parabolic subgroup of M. If ®,; denotes the set of roots of T in the Lie algebra of
M, with respect to M N B we have QL =&, N®t and Ay = P NA. We also
write Ap for Ap; as P and M determine each other, P = MU. Thus we obtain a
bijection P — Ap from standard parabolic subgroups of G to subsets of A, with
B corresponding to ® and G to A. If I is a subset of A, we sometimes denote by
Pr = My Ny the corresponding standard parabolic subgroup of G. If I = {a} is a
singleton, we write P, = M,N,. We note a few useful properties. If P; is another
standard parabolic subgroup of G, then P C P; if and only if Ap C Ap; we have
Apnp, = Ap N Ap and the parabolic subgroup corresponding to Ap U Ap, is the
subgroup (P, P) of G generated by P and P;. The standard parabolic subgroup of
M associated to Ay N Ay is MNP = (M N M;)(MnN N;y) [Car85, Proposition
2.8.9]. It is convenient to write G’ for the subgroup of G generated by the unipotent



radicals of the parabolic subgroups; it is also the normal subgroup of G generated
by U, and we have G = ZG’'. For future reference, we now give a useful lemma
extracted from [AHHV17].

Lemma 2.1. The group Z NG’ is generated by the Z N M/, « running through A.
Proof. Take I = () in [AHHV17, 11.6.Proposition]. a

Let vp be the normalized valuation of F'. For each v € X*(T"), the homomor-
phism z — vp(a(z)) : T — Z extends uniquely to a homomorphism Z — Q that
we denote in the same way. This defines a homomorphism Z 2 X, (T) ® Q such
that a(v(z)) = vr(a(z)) for z € Z,a € X*(T).

An interesting situation occurs when A = I U J is the union of two orthogonal
subsets I and J. In that case, G’ = M;M/;,, M} and M/, commute with each other,
and their intersection is finite and central in G [AHHV17, IL.7 Remark 4].

2.2. I(P,0,Q) and minimality. We recall from [AHHV17] the construction of
I¢(P,0,Q), our main object of study.

Let o0 be an R-representation of M and let P, be the standard parabolic subgroup
with Ap = A, where

A, ={a € A\ Ap | ZN M., acts trivially on o}.
We also let P(0) be the standard parabolic subgroup with
AP(U) = A, UAp.

This is the largest parabolic subgroup P(o) containing P to which o extends, here
N C P acts on o trivially. Clearly when P C @ C P(0), o extends to @ and the
extension is denoted by eq(c). The restriction of ep(s)(0) to Q is eg(c). If there
is no risk of ambiguity, we write

e(0) = ep() (o).

Definition 2.2. An R[G]-triple is a triple (P, o, Q) made out of a standard par-
abolic subgroup P = M N of GG, a smooth R-representation of M, and a parabolic
subgroup @ of G with P C Q C P(0). To an R[G|]-triple (P, 0, Q) is associated a
smooth R-representation of G:

I6(P,0,Q) = nd%,)(e(0) ® Sto 7)),

where Stg(g) is the quotient of Indg(o) 1, 1 denoting the trivial R-representation
of @), by the sum of its subrepresentations Indg,(a) 1,

parabolic subgroups @’ of G with Q@ C Q' C P(0).

the sum being over the set of

Note that I¢(P,o,Q) is naturally isomorphic to the quotient of Indg(eQ(U))

by the sum of its subrepresentations Indg,(eQ/(a)) for @ € Q' C P(o) by [AHV,
Lemma 2.5].

It might happen that o itself has the form ep(o;) for some standard parabolic
subgroup P; = M; N; contained in P and some R-representation o1 of M;. In that
case, P(o1) = P(0) and e(0) = e(o1). We say that o is e-minimal if o = ep(07)
implies P = P,01 = 0.



Lemma 2.3 ([AHV, Lemma 2.9]). Let P = M N be a standard parabolic subgroup of
G and let o be an R-representation of M. There exists a unique standard parabolic
subgroup Pmin,e = Mmin,o Nmin,s 0of G and a unique e-minimal representation of
Omin Of Muin o With 0 = ep(Omin). Moreover P(0) = P(0min) and €(0) = €(Tmin)-

Lemma 2.4. Let P = MN be a standard parabolic subgroup of G and let o be an
e-minimal R-representation of M. Then Ap and Ap,) \ Ap are orthogonal.

That comes from [AHHV17, I1.7 Corollary 2]. That corollary of [AHHV17] also
shows that when R is a field and o is supercuspidal, then ¢ is e-minimal. Lemma
2.4 shows that Ap_; . and Ap,..) \ Ap,,,., are orthogonal.

Note that when Ap and A, are orthogonal of union A = Ap U A,, then G =
P(o) = MM/ and e(o) is the R-representation of G simply obtained by extending

o trivially on M.

Lemma 2.5 ([AHV, Lemma 2.11]). Let (P,0,Q) be an R|G]-triple. Then we have
that (Puin,o; Omin, @) is an R[G]-triple and I (P, o, Q) = I¢(Pmin,o> Omin, @)-

2.3. Pro-p Iwahori Hecke algebras. We fix a special parahoric subgroup K of
G fixing a special vertex xg in the apartment A associated to T in the Bruhat-
Tits building of the adjoint group of G. We let B be the Iwahori subgroup fixing
the alcove C in A with vertex zo contained in the Weyl chamber (of vertex )
associated to B. We let U be the pro-p radical of B (the pro-p Iwahori subgroup).
The pro-p Iwahori Hecke ring H = H(G,U) is the convolution ring of compactly
supported functions G — Z constant on the double classes of G modulo U. We
denote by T'(g) the characteristic function of Ugl{ for g € G, seen as an element
of H. Let R be a commutative ring. The pro-p Iwahori Hecke R-algebra Hpg is
R ®z H. We will follow the custom to still denote by h the natural image 1 ® h of
h € H in Hg.

For P = M N a standard parabolic subgroup of G, the similar objects for M are
indexed by M, we have IKCpy = KNM, By = BOAOM,Uy; = UNM, the pro-p Iwahori
Hecke ring Hy = H(M,Un), TM (m) the characteristic function of Uyymidys for
m € M, seen as an element of Hjy;. The pro-p Iwahori subgroup U of G satisfies
the Iwahori decomposition with respect to P:

U = UnUnly,
where Uy =U NN, Uz =U AN. The linear map
(2.1) Hy B, 0(TM(m)) =T(m) (me M)

does not respect the product. But if we introduce the monoid M* of elements
m € M contracting Uy, meaning mUnm ™! C Uy, and the submodule H;+ C Hys
of functions with support in M, we have [Vigl5b, Theorem 1.4]:

Har+ is a subring of Hyr and Hyr is the localization of Hyr+ at an element
™ € Hyp+ central and invertible in Hyr, meaning Hayr = U, e Har+ (7). The

map Hs 9 A s injective and its restriction 0|HM+ to Hys+ respects the product.

These properties are also true when (M7*,7™) is replaced by its inverse
(M=, (tM)=Y) where M~ ={m~' e M | me€ M*}.

3. PRO-p IWAHORI INVARIANTS OF I (P,0,Q)

3.1. Pro-p Iwahori Hecke algebras: Structures. Here we supplement the no-
tation of sections 2.1 and 2.3. The subgroups Z° = ZNK = ZNBand Z' = ZNU



are normal in N and we put
W=N/Z° W1)=N/Z'", A=2/Z°, NQ)=Z/Z", Z = Z°)Z".

We have N' = (M N K)Z so that we see the finite Weyl group W = N/Z as the
subgroup (N N K)/Z° of W; in this way W is the semidirect product A x W. We
put Ngr = NN G'. The image Wg: = W’ of Ng in W is an affine Weyl group
generated by the set S2F of affine reflections determined by the walls of the alcove
C. The group W’ is normal in W and W is the semidirect product W’ x Q where
Q) is the image in W of the normalizer NV of C in . The length function ¢ on the
affine Weyl system (W', S*T) extends to a length function on W such that  is the
set of elements of length 0. We also view ¢ as a function of W (1) via the quotient
map W(1) - W. We write

(3.1)

(1, w,w) € N x W (1) x W corresponding via the quotient maps N — W (1) — W.

When w = s in S* or more generally w in W, we will most of the time choose
W in NNG' and @ in the image Weg of N NG’ in W(1).

We are now ready to describe the pro-p Iwahori Hecke ring H = H(G,U) [Vigl6].
We have G = UNU and for n,n’ € N we have UnUd = Un'U if and only if nZ! =
n’Z. For n € N of image w € W(1) and g € Unld we denote T,, = T(n) = T(g)
in H. The relations among the basis elements (Tw)wew (1) of H are:

(1) Braid relations: Ty, Ty = Ty for w,w’ € W(1) with l(ww') = L(w) +
L(w’).
(2) Quadratic relations: T2 = qsTs2 + czT5
for § € W (1) lifting s € S*, where ¢5 = qo(s) = [U/U N 3U(5)~!| depends only on
s, and ¢z = ), , c3(t)T; for integers c3(t) € N summing to gs — 1.
We shall need the basis elements (T;;),ew 1) of H defined by:
(1) T =T, for w € W(1) of length £(w) = 0.

(2) TF =Ts — c; for § € W(1) lifting s € S2f.

(3) T, =TrTr, for w,w' € W(1) with f(ww') = l(w) + L(w').
We need more notation for the definition of the admissible lifts of S in Ng. Let
s € S* fixing a face Cy of the alcove C and K, the parahoric subgroup of G fixing
Cs. The theory of Bruhat-Tits associates to Cs a certain root oy € T [Vigl6, §4.2].
We consider the group G, generated by U,, UU_,,, where Uy, the root subgroup
of o (if 205 € @, then Us,, C U,,) and the group G, generated by U, U U_,,
where Uy, = Ui, NKs. When u € U, — {1}, the intersection Ng NU_q uld_q,
(equal to NgNU_,, uU_,, [BT72, 6.2.1 (V5)], [Vigl6, §3.3 (19)]) possesses a single
element n,(u). The group Z! = Z N G’ is contained in Z N K, = Z% its image in
Zj; is denoted by Zj .

The elements ns(u) for u € U,, — {1} are the admissible lifts of s in Ng; their
images in W (1) are the admissible lifts of s in W(1). By [Vigl6, Theorem 2.2,
Proposition 4.4], when § € W(1) is an admissible lift of s, c5(t) = 0if t € Zy \ Z;
and

(3.2) cs=(q—DIZ 7" > T modp.
teZ,’c,S

The admissible lifts of S in Ng are contained in Ng N K because K, C K when
seSs.



Definition 3.1. An admissible lift of the finite Weyl group W in N¢g is a map
w— W W — Ng N K such that § is admissible for all s € S and @ = Wy for
wy, wy € W such that w = wywy and €(w) = £(wy) + £(ws).

Any choice of admissible lifts of S in Ng N K extends uniquely to an admissible
lift of W ([JAHHV17, IV.6], [OV17, Proposition 2.7]).

Let P = MN be a standard parabolic subgroup of G. The groups Z,Z° =
ZN Ky = ZN By, Z4 = ZNUyy are the same for G and M, but N3y = NN M and
MNG’ are subgroups of A" and G’. The monoid M (section 2.3) contains (N NK)
and is equal to M+ = Uy Ny +Uy where Nyyr = NN M7T. An element z € Z
belongs to M7 if and only if vr(a(2)) > 0 for all « € &\ &}, (see [Vigl5b, Lemme
2.2]). Put Wy, = NM/ZO and Wy (1) = ./\/'M/Zl.

Let € = + or ¢ = —. We denote by Wyse, Wpse(1) the images of Ny in
War, War(1). We see the groups Wy, Wy (1), 1 Wy as subgroups of W, W (1), 1 Wer.
As 6 (section 2.3), the linear injective map

(3.3) Hu S H, 0°(TM") =To,  (we Wa(1)),

respects the product on the subring Hsc. Here T2 * € Hyy is defined in the same

way as T, for Hps. Note that 6 and 6* satisfy the obvious transitivity property
with respect to a change of parabolic subgroups.

3.2. Orthogonal case. Let us examine the case where Ay, and A\ Ay are or-
thogonal, writing Ma = Ma\a,, as in section 1.3.

From M N My = Z we get Wy N Wi, = A, War(1) N Wi, (1) = A(1), the
semisimple building of G is the product of those of M and M,. The set S* is the
disjoint union of Sja\? and S’ﬁz , the group W is the direct product of Wy and
WMé. For § € Wy (1) lifting s € S?Mﬂ, the elements TgM € Has and T € H satisfy
the same quadratic relations. A word of caution is necessary for the lengths £;s
of Wys and £y, of Wy, different from the restrictions of the length ¢ of Wy, for
example £37(X) = 0 for A € ANWyy,.

Lemma 3.2. We have A = (Wpre N A)(Way, NA).

Proof. We prove the lemma for ¢ = —. The case ¢ = + is similar. The map
v:Z — X,.(T)® Q defined in section 2.1 is trivial on Z° and we also write v for
the resulting homomorphism on A. For A € A there exists Ay € Wy N A such that
Ao € Wiy -, or equivalently a(v(AA2)) <0 for all o € T\ &}, = @]T/IQ. It suffices
to have the inequality for a € Ayy,. The matrix (a(8Y))a,pea,, i invertible, hence
there exists ng € Z such that ZﬂeAMz nga(BY) < —a(v(N)) for all @ € Apy,. As
v(War;NA) contains @aeAM2 ZaY where oV is the coroot of « [Vigl6, after formula
(71)], there exists Ay € Wy N A with v()g) = ZﬁeAM2 ngBY. O

The groups NN M" and N N M} are normal in N, and
N =WNNMINe(NNMY) =Z(NNMYN N M),
and
W =W QWayy = WyWary = Wy Wagy = Wiy~ Wy,

The first two equalities are clear, the equality Wy Wiy = Wae W)y, follows from
Wi = Wy A, Wy C Wyge and the lemma. The inverse image in W(1) of these



groups are
(3.4)
W(1) = W Q1) 1 Wagy = War(1) 1 Wagy = W (1) 1 Wagy = Wi (1) 1 Wy,

We recall the function qg(n) = q(n) = [U/UNn~1Un)| on N [Vigl6, Proposition
3.38] and we extend to N the functions gy on N'N M and g, on N N Ma:

(35)  aqum(n) = Un/Uns N Unm)|,  qar, () = Ung, /Ung, N 0™ Ung,n)|.

The functions ¢, gas, gar, descend to functions on W (1) and on W, also denoted by
q,9M 5 4M; -
Lemma 3.3. Let n € N of image w € W. We have
(1) (n) = arr(m)ans (n).
(2) qm(n) = qu(nar) if n=nyme, nyr € NN M,ny € NN M, and similarly
when M and My are permuted.
(3) q(w) =1 qu(Awn) = g, (Mwar,) = 1, if w = Awnpwag,, (A, wa, war,) €
A x WM X WMQ-
(4) On the coset (NN MYNen, qu is constant equal to gun(nar) for any
element nyp € M' N (N N MHONen. A similar result is true when M
and My are permuted.

Proof. We put Upyr = U N M' and Upyy = U N M. The product map
(3.6) 2 I Ua ] Ua—u

Q€PN red Q€P My red
with U, = U, NU, is a homeomorphism. We have Uy = Z' Yy, Upp = (Z1 N
M"Yy where Yy = Ha€¢1\l,7‘cd U, and NN M} commutes with Yy, in particular
N N M} normalizes Yps. Similar results are true when M and M, are permuted,
and U = L{M/?/{M2 = uMuMé-
Writing N = Z(N' N M'")(N N M) (in any order), we see that the product map

(3.7) ZN Y N V) Vg N0 Vagn) = U N Un

is a homeomorphism. The inclusions induce bijections

(38) yM//(y]\/p N nilyM/n) ~ UA['/(UM/ N ’nilz/{]u/n) ~ UM/(UA[ n n’luMn),
similarly for Ms, and also a bijection

(39) L{/(L{ N n71Un) ~ (J)Mé/()/Mé N nilijén)) X (y]\,{//(yM/ M nilyM/n)).
From (3.8) and (3.9), we get

(3.10)  U/U N0~ Un) ~ Ungy/Ungy Ny ) x Ung /Une OVnldpgn™t))
which implies the assertion (1) in the lemma.

The assertion (2) follows from (3.7) since N'N M} normalizes Va5 with (1), it
implies the assertion (3).

A subgroup of N normalizes Uy, if and only if it normalizes Yy by (3.8) if
and only if gy = 1 on this group. The group N N M} normalizes Vy;r. Therefore
the group (N N Mj)N¢ normalizes Up;. The coset (N N Mj)Nen contains an
element ny € M'. For x € (NN MYNe, (xnar) "Uznyy = nyUnye hence
am(znar) = qur(nar)- U



3.3. Extension of an H);-module to . This section is inspired by similar
results for the pro-p Iwahori Hecke algebras over an algebraically closed field of
characteristic p [Abe, Proposition 4.16]. We keep the setting of section 3.2 and we
introduce ideals:
o J; (resp., J;) the left (resp., right) ideal of H generated by T, — 14 for all
w e 1WMé7
o T (resp., Jarr) the left (resp., right) ideal of H s generated by Tf\”’* -
1HM for all A in IW]MZ’, N WM(l) = 1WM$ n A(l)
The next proposition shows that the ideals J, = J, are equal and similarly Jas =
Jum,r. After the proposition, we will drop the indices ¢ and r.

Proposition 3.4. The ideals Jp and J, are equal to the submodule J' of H gen-
erated by Toy — Ty, for allw € W(1) and wy € Wy,

The ideals Tnre and Jar are equal to the submodule Jy,of Har generated by
M — T2 for all w € War(1) and Ay € A(1) N1 Wiy,

Proof.
(1) We prove J; = J'. Let w € W(1),ws € 1Wyy;. We prove by induction on
the length of wsy that Ty (T, — 1) € J'. This is obvious when £(ws) = 0 because

TiTo, = T, Assume that £(wz) = 1 and put s = wy. If L(ws) = L(w) + 1, as

before T (TF — 1) € J' because T:TF = Tr.. Otherwise {(ws) = £(w) — 1 and
Ty, =T, T hence

TS 1) = T s (T2 = T = Toa (@ T — Tes) = T = T — Tles + 1),
Since ¢5 + 1 = ZteZ,’c cs(t)Ty with ¢4(t) € N and Ztez,’c cs(t) = qs [Vigl6, Proposi-
tion 4.4],

Ty = Ti(cs +1) = D> es(O)(Thy = ToTy) = Y eolt)(Thpy = Tiyger)) € T
teZ}, tez;

Assume now that ¢(ws) > 1. Then, we factorize wy = zy with x,y € Wy, of
length £(z),£(y) < £(w2) and £(wz) = £(x) + £(y). The element T (T, — 1) =
ToTy (T, — 1)+ Ty(T; — 1) lies in J' by induction.

Conversely, we prove Ty, — Ty € J;. We factorize w = xy with y € 1 W)y, and

x € 1WiarQ(1). Then, we have {(w) = {(z) + {(y) and L(wws) = £(x) + L(yws).
Hence

Ty — T = T2 (T, — T0) = Ti(T},, — 1) — TX(T; — 1) € T

wwsa Yyw2 Yyw2
This ends the proof of J, = J'.

By the same argument, the right ideal 7. of H is equal to the submodule of
H generated by Ty, — T for all w € W(1) and wy € 1Wpyy. But this latter
submodule is equal to J' because Wy, is normal in W (1). Therefore we proved
J =T =T

(2) Proof of the second assertion. We prove Jar¢e = J;,. The proof is easier than
in (1) because for w € Wiy (1) and Mg € 1 Wiy NA(1), we have £(wA2) = £(w)+£(A2)
hence Té}”**(Ti\;j’* —-1) = T%: — TM* We have also £(Aaw) = £(A2) + £(w) hence
(Tﬁ’* — )TM* = Ti\f;: — TM* hence Jur is equal to the submodule of H s
generated by T)]\‘;[w* — T for all w € Wiy(1) and Ay € {Wyyy N A(L). This latter
submodule is Jy,, as 1 Wagy NA(1) = 1 Wy, "Wy (1) is normal in Wiy (1). Therefore
T =Ivyr = T O



By Proposition 3.4, a basis of J is T}, — Ty, for w in a system of representatives
of W(1)/1Wayy, and wa € 1Wyy \ {1}. Similarly a basis of Jas is TM* T%;

for w in a system of representatives of Was(1)/(A(1) N1 Wpy). and Ay € (A(1) N
W) \ {1}

Proposition 3.5. The natural ring inclusion of Hyr— in Has and the ring inclusion
of Har— in H wvia 0* induce ring isomorphisms

Hoar /T <= Har- /(T N Hy-) = H/T.

Proof.

(1) The left map is obviously injective. We prove the surjectivity. Let w €
Whar(1). Let Ay € 1Wpy; N A(1) such that why ' € Wy~ (1) (see (3.4)). We have
Tﬁ, € Hy- and TM* = TﬁQflTﬁ’* = Tﬁ, + Tﬁ’;l(Ti\f’* —1). Therefore
TM* ¢ Hyr- + Tu. As w is arbitrary, Hy = Har— + T

(2) The right map is surjective: let w € W (1) and wy € 1 Wy, such that wwy b €
Wh—(1) (see (3.4)). Then T — T* _, € J with the same arguments as in (1),

'LU'LU2
using Proposition 3.4. Therefore H = 6*(Hy-) + J.

We prove the injectivity: 0*(H - )NT =0*(Hp-NTar)- Let ZwEWMf ) cwTM>,
with ¢, € Z, be an element of Hy,;-. Its image by 6* is ZwEW(l) cw T, where
we have set ¢, = 0 for w € W(1) \ Wy-(1). We have }_ ) coTy, € T if
and only if szeleé Cow, = 0 for all w € W(1). If cypuw, # 0, then wy €
].W]Wé n VV]\J(].)7 that is, we € 1WJ\4§ n A(].) The sum ZwQEIWMé
to ZAgeleéﬂA(l) Cwx,- By Proposition 3.4, ZweW(l) cwTy € J if and only if

ZwEWMf ) CleJUVI,* c Ju- O

Cuww, 1S equal

We construct a ring isomorphism
6* : HA,{/jA[ l> H/j

by using Proposition 3.5. For any w € W(1), it + J = e*(Tu]YII\;’i + Jum) where
wy- € Way-(1) Nw 1 Wy (see (3.4)), because by Proposition 3.4, Ty + J =
T,  +JandTy +J= e*(T%’: + Jm) by construction of e*. We check that
e* is induced by 6*.

Theorem 3.6. The linear map Hr L H induces a ring isomorphism
e Hy/Iu = H/T.

Proof. Let w € Wy (1). We have to show that T + 7 = e*(T2* 4 Jur). We saw
above that T + 7 = e*(TM* + Jur) with w = wy;- A with Ay € 1 Wy "W (1).

w w M-

As Ly (Ng) = 0, TA = T IO € TM* 4 Jyy. Therefore TA 4 Jyy =
Tfuw * + Ju- This ends the proof of the theorem. O

We now wish to compute e* in terms of the T, instead of the T;.

Proposition 3.7. Let w € W(1). Then, T, + J = e*(T)! qns, (w) + Tar) for any
wy € WM(l) nw 1WM;



Proof. The element wj; is unique modulo right multiplication by an element Ay €
War(1) M 1Wyyy of length £p7(X2) = 0 and T qar,(w) + Ty does not depend on
the choice of wys. We choose a decomposition (see (3.4)):

w=351...8uSq41-..8q4p, L(w)=a+b,
for u € Q(1), §; € {Wyy lifting s; € S3ff for 1 <4 < a and 5 € 1Whyy lifting
s; € Sﬁi for a+1 < i < a+b, and we choose ups € Wis(1) such that u € uyy 1Wary.
Then
Wp = S1...8,up € W]u(l) nw 1WM5
and gar, (W) = qar, (Sat1 - - - Sato) (Lemma 3.3 (4)). First we check the proposition
in three simple cases:

Case 1. Let w = 5 € W)y lifting s € Sﬁf; we have T:+J = e*(TgMJrJM) because
Tr — e (T e T, Ts = TF +c5, TM = TM* 4 ¢z and 1 = quy, (3).

Case 2. Let w = u € W(1) of length ¢(u) = 0 and ups € Wy(1) such that
u € up 1Wagy. We have £ps(upr) = 0 and gpr, (u) = 1 (Lemma 3.3). We deduce
T.+ J = e (TY + Ju) because Tj +J = T + T = e (TM* + Ju), and
T, =TT = T
Case 3. Let w = 5 € {W)yy lifting s € S?V?Z; we have T5 + J = e*(qa, (8) + Tm)
because TF —1,¢s — (¢s — 1) € J, T5 =T7 + ¢c5 € ¢s + J and ¢s = qur, (8)-

In general, the braid relations T, = T3, ...T5, TuT5,,, ... T5,,, give a similar

product decomposition of T, + J, and the simple cases 1, 2, 3 imply that T\, + J
is equal to
(T + Tu) ... (T + Ta)e (To, + Tn)e* (an, (3as1)
+Im) - € (qur, (Bavd) + Tm)
= 6*(T£/leqM2 (’LU) =+ jM)
The proposition is proved. O

Propositions 3.4, 3.5, 3.7, and Theorem 3.6 are valid over any commutative ring
R (instead of Z).

The two-sided ideal of H generated by T, —1 for all w € Wi is Tr = J @z R,
the two-sided ideal of Hpsr generated by Ty — 1 for all A € 1War, N A1) is
JIum,r = Ju ®z R, and we get as in Proposition 3.5 isomorphisms

Har,m/Inmr <— Har- v/ (T, NV Har- ) — Hr/Tr,

giving an isomorphism Har, r/Jm,r — Hr/Jr induced by 6*. Therefore, we have
an isomorphism from the category of right H s, g-modules where J)s acts by 0 onto
the category of right H z-modules where J acts by 0.

Definition 3.8. A right s r-module V where Jas acts by 0 is called extensible
to H. The corresponding H z-module where J acts by 0 is called its extension to
‘H and denoted by ey (V) or e(V).

With the element basis T};, V is extensible to H if and only if
(3.11) VT = v for all v eV and Ay € Wiy, NA(L).
The H-module structure on the R-module (V) =V is determined by
(3.12) v, =v, vl = oTM* for all v eV, wy € Wiy, w € Wa(1).



It is also determined by the action of Ty, for w € 1 Wy U Wi+ (1) (or w € 1 Wiy, U
Wis-(1)). Conversely, a right H-module W over R is extended from an #H j;-module
if and only if

(3.13) VT, =v forall veW,wy € 1Wyy.

In terms of the basis elements T, instead of 77, this says the following.
Corollary 3.9. A right Has-module V over R is extensible to H if and only if
(3.14) vTAA;I = for all veV and Ay € 1 Wy, NA(L).

Then, the structure of an H-module on the R-module e(V) =V is determined by
(3.15)
VT = Vuys VT = vTM qar,(w)  for all v €V, wy € Wy, w € War(1).

w

(War+ (1) or Wys- (1) instead of Wy (1) is enough.) A right H-module W over R
is extended from an Hpr-module if and only if

(3.16) VT, = Vquw, for all v €W, ws € 1Wayy.

3.4. o"M is extensible to H of extension e(c“M) = e(o)¥. Let P = MN be a
standard parabolic subgroup of G such that Ap and A\ Ap are orthogonal, and
let o be a smooth R-representation of M extensible to G. Let P, = M5N> denote
the standard parabolic subgroup of G with Ap, = A\ Ap.

Recall that G = MM), that M N M, = Z N M} acts trivially on o, e(o) is
the representation of G equal to o on M and trivial on MJ). We will describe the
H-module e(o)¥ in this section. We first consider e(c) as a subrepresentation of
mdS . For v € 0, let f, € (Ind§ )Mz be the unique function with value v on Mj.
Then, the map

(3.17) v fyio—IndSo

is the natural G-equivariant embedding of e(c) in Ind§ 0. As o™ = e(o)! as
R-modules, the image of e(o)¥ in (Ind% o) is made out of the f, for v € o!M.

We now recall the explicit description of (Ind$ )Y, For each d € Wyy,, we fix a
lift d € 1Wayy and for v € o Tet Tpau. € (Ind$ o) for the function with support
contained in Pdl and value v on did. As Z N M}, acts trivially on o, the function
deu,u does not depend on the choice of the lift de 1Wayy of d. By [OV17, Lemma
4.5], recalling that w € Wy, is of minimal length in its coset wWy = Wyw as
Ajpr and Ay, are orthogonal to each other:

The map @dewm ot — (IndS o) given on each d-component by v — frivtv:
is an Hyr+ -equivariant isomorphism where Hyr+ is seen as a subring of H wia 0,
and induces an Hpr-module isomorphism

(3.18) v®h e fpuyh: o™ @y, 0 M — (IndG o)H.

In particular for v € o™, v ® T (CZ) does not depend on the choice of the lift
de IW]V[é of d and

(3.19) Fpiuw = FPunT(d).



As G is the disjoint union of PdU for d € Wi, we have f, = ngwMz Fpav., and
fu is the image of v ® epr, in (3.18), where

(3.20) e, = Y, T(d).

deEW nr,
Recalling (3.17) we get the following.

Lemma 3.10. The map v — v ® ey, : e(o)4 — oM ®,, .0 " is an Hp-
equivariant embedding.

Remark 3.11. The trivial map v — v ® 13 is not an Hg-equivariant embedding.

We describe the action of T'(n) on e(o)¥ for n € M. By definition for v € e(o)¥,

(3.21) vT(n) = Z yn v,
yeU /(UNn—1Un)

Proposition 3.12. We have vT(n) = vT™ (na)qu, (n) for any nar € NN M is
such that n = np (N N MJ).

Proof. The description (3.10) of U /(U Nn~Un) gives

vT'(n) = Z Y1 Z yon " to.

y1€UNM /UnrNn~Unrn) Y2 euMé /(uMé ﬂnfluMé n)
As M} acts trivially on e(o), we obtain

vT'(n) = g, (n) > Y1t v = qas, () v T ().
y1€UM /(UniNn— Uy )

O

Theorem 3.13. Let o be a smooth R-representation of M. If P(c) = G, then o¥™
is extensible to H of extension e(o¥™) = e(0)¥. Conversely, if o¥™ is extensible
to H and generates o, then P(o) = G.

Proof.
(1) The Hp-module o™ is extensible to H if and only if Z N M} acts trivially
on ¢“M . Indeed, for v € o™ 2o € Z N M},

VT (29) = E yzy tv = E yzy v =2y ',
yEU]u/(uMﬂzz_ll/{]uZQ) yeyM//(yM/r‘lzz_lyM/ZQ)

by (3.21), then (3.8), then the fact that 2z, ' commutes with the elements of V.
(2) P(o) = G if and only if Z N M}, acts trivially on o (the group Z N M} is
generated by Z N M/, for o € Ayy, by Lemma 2.1). The R-submodule 62"z of
elements fixed by Z N M} is stable by M, because M = ZM’, the elements of M’
commute with those of Z N M) and Z normalizes Z N M.
(3) Apply (1) and (2) to get the theorem except the equality e(c¥™) = e(o)¥
when P(o) = G which follows from Propositions 3.12 and 3.7. O

Let 1), denote the trivial representation of M over R (or 1 when there is no
ambiguity on M). The right H g-module (15)¥ = 14 (or 1 if there is no ambiguity)
is the trivial right Hpg-module: for w € Wy (1), Ty = guid and T)5 = id on 1.



Example 3.14. The H-module (Ind% 1)¥ is the extension of the H,z,-module
(Ind%ﬁmB 1)z Indeed, the representation Ind$ 1 of G is trivial on Ny, as G =
MMj and Ny C M’ (as @ = @ UPpy,). For g = mm), with m € M, mj € Mj and
ng € Ny, we have Pgny = Pmfing = Pnomb = Pm/, = Pg. The group Mo N B =
M, N P is the standard minimal parabolic subgroup of My and (Ind$1)|y, =
Ind]\]vgm 5 1. Apply Theorem 3.13 as follows.

3.5. The Hpr-module ¢(V) ®p (Indg 1)¥. Let P = MN be a standard para-
bolic subgroup of G such that Ap and A\ Ap are orthogonal, let V be a right
Har,r-module which is extensible to H g of extension e(V), and let @ be a para-
bolic subgroup of G containing P. Let P, = M3N> denote the standard parabolic
subgroup of G with Ap, = A\ Ap.

We define on the R-module e(V) ® g (Indg 1) a structure of a right H gr-module
as follows.

Proposition 3.15.

1) The diagonal action of T for w € W(1) on e(V) ®gr Ind& 1) defines a
w Q
structure of a right Hr-module.
(2) The action of the T,, is also diagonal and satisfies:

(v® f)Tw, (v [)Ty) = (VTuww,, @ fTuwMé 0T 0, @ fTJwMé)v
where w = wwypwyy with u € W(1),0(u) = 0,wnr € 1War, wagy € 1Wag

Proof. If the lemma is true for P it is also true for @, because the R-module
e(V)®r (Indg 1) naturally embedded in e(V) @ (Ind$ 1) is stable by the action
of H defined in the lemma. So, we suppose Q = P.

For each element in 1.5%% we fix an admissible lift and denote the set of admissible
lifts by 152, We also use the obvious notation 15}1? and 15}‘12. Suppose that T7;
for w € W(1) acts on e(V) @ (Ind% 1) as in (1). The braid relations obviously
hold. The quadratic relations hold because T with s € 1S, acts trivially either
on e(V) or on (Indg 1)Y. Indeed, ;52 = 15}? U 155{?2, T* for s € 15?\?, acts
trivially on (Ind% 1)¥ which is extended from an #z,-module (Example 3.14), and
T for s € 15}‘}2 , acts trivially on e()) which is extended from an Hj;-module.
This proves (1).

We describe now the action of Ty, instead of 75 on the H-module e(V) Qg
(Indg Y. Let w € W(1). We write w = uwppwyy = uwygwyy with u €
W(1),l(u) = 0,wrr € 1War,wary € 1Wagy. We have £(w) = Lwar) + (wary)
hence T, = T, Ty, T iy

For w = u, we have T,, = T)F and (v® )T, = (v )Tk = 0T @ fToF = 0T, Q fT,.

For w = wy, (v®@ f)TE = oI5 @ f; for s € 194, ¢ = Yiezpmw,,, ¢s(HTF in
particular, we have (v® f)Ts = (v® f)(TF +¢s) = v(TF +¢5) @ f = vTs® f. Hence
(v )Ty =Ty ® f.

For w = wyyy, we have similarly (v® f)Ty, = v® fT,, and (v& )Ty = v@fTy. O

Example 3.16. Let X be a right Hr-module. Then 1y ®p X where the T}; acts
diagonally is an ‘H g-module isomorphic to X. But the action of the T, on 14 ® p X
is not diagonal.



It is known [Lyl5] that (Indg, 1)¥ and (Stg)“ are free R-modules and that
(Stg)” is the cokernel of the natural Hg-map

(3.22) P (ndg, 1) — (Indg 1)
QCQ’

u

although the invariant functor (—)“ is only left exact.

Corollary 3.17. The diagonal action of Tpl for w € W(1) on e(V) ®g (Stg)“
defines a structure of a right Hr-module satisfying Proposition 3.15(2).

4. HECKE MODULE Iy (P, V,Q)

4.1. Case V extensible to H. Let P = M N be a standard parabolic subgroup of
G such that Ap and A\ Ap are orthogonal, let V be a right H s, g-module extensible
to Hp of extension e(V), and let @ be a parabolic subgroup of G containing P.
As @Q and Mg determine each other: Q = MqU, we denote also Hy, = Hq
and Hy,,r = Ho,r when Q # P,G. When Q = G we drop G and we denote
en(V) =e(V).

Lemma 4.1. V is extensible to an Hq gr-module ez, (V).

Proof. This is straightforward. By Corollary 3.9, V extensible to H means that
TM(2) acts trivially on V for all z € Nuy N Z. We have Mg = MM, g with
M; o C Mg N M; and ./\fMéQ C Ny; hence TM(z) acts trivially on V for all
z € NM%,Q N Z meaning that V is extensible to Hq. d

Remark 4.2. We cannot say that ey, (V) is extensible to H of extension e()) when
the set of roots Ag and A\ Ag are not orthogonal (Definition 3.8).

Let Q' be an arbitrary parabolic subgroup of G containing (). We are going to de-

fine an H p-embedding Ind%@/ (eny (V) LCITON Ind%@ (enoWV) = eno(V)®n .0
@

‘H defining an H p-homomorphism
Bocqca Insz, (er1g, (V) = Indji, (e3,(V))
of cokernel isomorphic to e(V) ®r (Stg)“. In the extreme case (Q, Q') = (P, G), the

‘H g-embedding e()V) URG), Ind? ., (V) is given in the following lemma where fg and

fpu € (Ind% 1) denote the characteristic functions of G and PU, fo = fpuenr,
(see (3.20)).

Lemma 4.3. There is a natural Hg-isomorphism
vR1ly —»v® fpy: IndzM V) =Vn, oM 2 e(V) @ (Indg 1)Y,

and compatible Hg-embeddings

(4.1) v V@ foe(V) = e(V) @p (IndS 1)Y,
(4.2) v U en, :e(V) UPG), IndzM V).

Proof. We show first that the map
(4.3) v v ® fpy V= e(V) g (IndG 1)



is Hps+-equivariant. Let w € Wy+(1). We write w = uwprwyy, as in Propo-
sition 3.15 (2), so that fpyTy = fpz,{TuwMé. We have fpuTuwMé = fpy because

1Warr € Wi+ (1) NWy- (1) hence uwpyy, = ww;;, € Wy+(1) and in 1y, ®’HM+’QH
we have (1® 13)Tyw,,, = 1705 = ® 1y, and T2 acts trivially in 14, because
2

U'U)Afé uu}Mé
g]w(u’ijé) = 0. We deduce (U ® fpu)Tw =0Ty ® fruTw = UTqy ® fru-
By adjunction (4.3) gives an H g-equivariant linear map

(4.4) VR ly 0@ fpy VO, o H L e(V)®@p (IndG 1)Y.

Mt

We prove that kp is an isomorphism. Recalling de NN M, de Wy lift d, one
knows that

(45) Veu,,oH= P Vol V)ormdf)" = B Vel
deW dEW

where each summand is isomorphic to V. The left equality follows from section 4.1
and Remark 3.7 in [Vigl5b] recalling that w € Wy, is of minimal length in its coset
Warw = wWpy, as Aps and Ayy, are orthogonal; for the second equality see section
3.4 (3.19). We have kp(v®@T;) = (v® fpu)T; = v ® fpuT; (Proposition 3.15).
Hence kp is an isomorphism.

We consider the composite map

v @1 0® feyen, e(V) = e(V) ®r 1y — e(V) @g (Ind§ 1),
where the right map is the tensor product e(V) ® g — of the H g-equivariant embed-
ding 13 — (Ind% 1) sending 15 to fpyens, (Lemma 3.10); this map is injective

because (Ind$ 1)¥ /1 is a free R-module; it is # z-equivariant for the diagonal action
of the Ti on the tensor products (Example 3.16 for the first map). By compati-

bility with (4.4), we get the H g-equivariant embedding v — v ® epy, : e(V) UPG),
Ind}} (V). O

For a general (Q, Q') the H r-embedding Ind%@l (eny (V) Mlndﬁcz (ene(V))
is given in the next proposition generalizing Lemma 4.3. The element ez, of Hpr
appearing in the definition of ¢(P, G) is replaced in the definition of +(Q, Q') by an
element 9@/(68/) € Mg that we define first.

Until the end of section 4, we fix an admissible lift w — w : W — N NK
(Definition 3.1) and @ denotes the image of @ in W(1). We denote Wy, = Wq
and by WeW the set of w € W of minimal length in their coset Wow. The group G
is the disjoint union of Qdf for d running through Y@ W [OV17, Lemma 2.15 (2)]:
G = |Uyevqw QdU. Since QdU C QU if and only if d € Q', namely d € oWy,
we have

(4.6) Qu= || Qau.
de"ew,,
Set
Q’ o M1
(4.7) eg = Y, T; 9.
de" QW

: M
We write e& = eg. We have e = > dewn, . T; .



Remark 4.4. Note that W»W = W, and ep = enr,, where My is the standard
Levi subgroup of G with Ay, = A\ Apy, as Apr and A\ Ay are orthogonal. More
generally, WQWMQ, = WM%QWM‘Z’Q, where My g = My N M.

Note that eg/ € Hpr+ NHpr-. We consider the linear map

0 Mo —»Ho TN Tu'®  (we Wiy (1).

w

We write 08 = 0 so that HQ(Tqﬁ/[Q) =T,. When @) = P this is the map 6 defined
earlier. Similarly we denote by 08/’* the linear map sending the Th'@™* to T

and 98’* = 0. We have
(4.8) bo(eg)= D, Ti fa(c})=0g(cR)0g(eq ).
de"eW,
Proposition 4.5. There exists an Hpg-isomorphism
(4.9)
VR1ly —v® sz,{ : Indz@ (eyQ (V)) = e, (V) ®7.¢M+,9 H K—Q> E(V) QR (Indg ].)M7
Q

and compatible Hg-embeddings
(4.10) v ® fou = v ® fou : exy, (V) @r (Indg, D — ey, (V) @ (IndgG 1),

/ 1(Q,Q"
(411) 0@ Ly = v ©0g(ed) : Tnd}f_ (erp, (V) “2D5 nd%, (ery (V).

Proof. We have the Hr, r-embedding

Vi 0@ el en,(V) = Vou,,. 0 Ho = Indy® (V)

by Lemma 4.3 (4.2) as Ay is orthogonal to Apz, \ Aps. Applying the parabolic
induction which is exact, we get the H-embedding

V@ 1y > 0@ eE ® 1y 1 Ind(ex, (V) = Ind} (Ind 2 (V).

Note that TC?IQ eH M5 for d € Wyy,. By transitivity of the parabolic induction,
it is equal to the H r-embedding

(4.12) v @ Iy v @ Og(eR) : Ind}f (e, (V) = Indf (V).
On the other hand we have the H g-embedding
(4.13) v® fou v ®0g(eR) : e(V) ®r (IndG 1)Y — Ind% (V)

given by the restriction to e(V) ®gr (Indg 1) of the Hg-isomorphism given in
Lemma 4.3 (4.1), from e(V) @ (Ind§ 1) to V@, 0H sending v®@ fpy to v® 13,
noting that v ® fou = (v ® fpu)(‘)Q(elQJ) by Proposition 3.15, fou = fpueQ(ejQD)
and 9@(6%) acts trivially on e(V) (this is true for T}; for de 1Wyyy). Comparing
the embeddings (4.12) and (4.13), we get the H g-isomorphism (4.9).

We can replace @ by Q' in the Hz-homomorphisms (4.9), (4.12), and (4.13).
With (4.12) we see Insz, (en,, (V) and Ind%@ (enq(V)) as Hp-submodules of

IndzM (V). As seen in (4.8) we have OQ/(EQ,) = HQ(ejQD)@Q/(eQI). We deduce the
‘H g-embedding (4.11).



By (3.19) for @ and (4.6),
fou= > fauT;= fQuGQ'(eg/)

de"ewW g,
in (Indg 1)“. We deduce that the H g-embedding corresponding to (4.11) via kg
and k¢ is the H r-embedding (4.10). O

We recall that Ap and A\ Ap are orthogonal and that V is extensible to H of
extension e(V).

Corollary 4.6. The cokernel of the Hgr-map

B mdff, (e, (V) = Indff, (ero (V)
QEQR'CG

defined by the 1(Q,Q"), is isomorphic to e(V) Qr (Stg)” Vi KQ.
4.2. Invariants in the tensor product. We return to the setting where P = M N
is a standard parabolic subgroup of GG, o is a smooth R-representation of M with
P(0) = G of extension e(o) to G, and @ a parabolic subgroup of G containing P.
We still assume that Ap and A\ Ap are orthogonal.

The Hg-modules e(c"™) = (o) are equal (Theorem 3.13). We compute
Ic(P,0,Q)% = (e(0) ®@r StG)H.

Theorem 4.7. The natural linear maps e(o)" Qg (Indg 1Y — (e(0) ®r Indg 1)
and e(o)¥ @p (Stg)“ — (e(o) ®r Stg)“ are isomorphisms.
Proof. We need some preliminaries. In [GK14,Ly15], are introduced a finite free Z-
module 9 (depending on Ag) and a B-equivariant embedding Sth L Cx(B, M)
(we indicate the coefficient ring in the Steinberg representation) which induces an
isomorphism (St§Z)5 ~ C2°(B,M)5.
Lemma 4.8.

(1) (Indg 7)B is a direct factor of Indg Z.

(2) (Sth)B is a direct factor of Sth.
Proof.

(1) [AHV, Example 2.2].

(2) As M is a free Z-module, C(B,9M)5 is a direct factor of C°(B,9M). Con-
sequently, L((Sth)B) = C®(B,M)B is a direct factor of L(Sth). As ¢ is injective,
we get (2). O

We now prove Theorem 4.7. We may and do assume that o is e-minimal (because
P(c) = P(0min); €(0) = €(0min)) so that Aps and A\ Ay are orthogonal and we
use the same notation as in section 3.2 in particular My = Ma\a,,- Let V be
the space of e(c) on which M} acts trivially. The restriction of Indg Z to My is
Ind2,y, Z, that of StGZ is Sty2 . Z.

As in [AHV, Example 2.2], ((Indgr'iM2 Z) @ V)M ~ (Indé“?{?\M2 )" @ V. We
have u

(Indgy2,,, Z)™% = (Indgy2, Z)H = (Indg Z).
The first equality follows from My = (Q N Ma)Wa,Uni,, Uni, = ZluMé and Z!
normalizes Uy, and is normalized by Wyy,. The second equality follows from U =



UnUng, and Indg Zis trivial on M’. Therefore ((Indg Z)@V)MMQ ~ (Indg ZHeV.
Now taking fixed points under Uy, asU = U MéUM,

(Ind§ Z) ® V) ~ ((Indg Z)% ® V)™ = (Ind§ Z)" @ V¥,

The equality uses that the Z-module Indg Z is free. We get the first part of the
theorem as (Indg M @ VUM ~ (Indg R ®@p Vi,

Tensoring with R the usual exact sequence defining Sth gives an isomorphism
Sth@R ~ Sth and in [GK14,Ly15], it is proved that the resulting map Sth LB,
C>® (B, M ® R) is also injective. Their proof in no way uses the ring structure of
R, and for any Z-module V, tensoring with V gives a B-equivariant embedding
Sth @V Y% C®(B,M® V). The natural map (Sth)B RV = Sth ®V is also
injective by Lemma 4.8 (2). Taking B-fixed points we get inclusions

(4.14) (StGZ)P RV = (SKGZ@ V)P = CX(B,Me V)P~ Me V.

The composite map is surjective, so the inclusions are isomorphisms. The image
of vy consists of functions which are left Z°-invariant, and B = Z%U’ where U’ =
G’ NU. Tt follows that ¢ yields an isomorphism (St$Z)% ~ C(Z°\B, M)*" again
consisting of the constant functions. So that in particular (Sth)u' = (Sth)B and
reasoning as previously we get isomorphisms

(4.15) (StSZY @V ~ (StSZe V) ~Mma V.

The equality (Sth)“/ = (Sth)B and the isomorphisms remain true when we
replace U’ by any group between B and U’. We apply these results to Stgﬁ] L ®
V to get that the natural map (StgﬁMz)Z)uMé RV — (StgﬁMQZ ® V)" is an
isomorphism and also that (Stgr%M2Z) = (StgﬁMzz)uME . We have U = UnpUnr,
S0 (Sth)” = (StgﬁMQZ)uMz and the natural map (Sth)u QV — (Sth ® V)uMé
is an isomorphism. The Z-module (Sth)u is free and the VY™ = VY 5o taking
fixed points under Uy, we get (Sth)u QVY ~ (Sth@)V)u. We have Sth®V =
Sth ®gr V and (Sth)u @ VY = (Sth)u ®pr VY. This ends the proof of the
theorem. 0

Upsr
M)

Theorem 4.9. The Hpr-modules (e(o) Qg Indg Y = e(o)4 ®r (Indg 1Y are
equal. The Hp-modules (e(o) @r Stg)“ =e(o)" ®p (Stg)u are also equal.

Proof. We already know that the R-modules are equal (Theorem 4.7). We show that
they are equal as H-modules. The H z-modules e(o) @r (Indg DY = ey(c¥™) @R
(Indg 1)% are equal (Theorem 3.13), they are isomorphic to Ind%Q (e3, (aH1))
(Proposition 4.5), to (Indg(eQ(U)))” [OV17, Proposition 4.4], and to (e(c) ®g
Indg} 1) [AHV, Lemma 2.5]). We deduce that the H r-modules e(0)¥ @ (Indg, 1)
= (e(0)®@r Indg 1) are equal. The same is true when @ is replaced by a parabolic

subgroup @’ of G containing (). The representation e(o) Qg Stg is the cokernel of
the natural R[G]-map

@ e(o) ®r Indg, 1% e(0) @p Indg 1
QEQ’



and the H g-module e(o)¥ @z (Stg)u is the cokernel of the natural H z-map

D (o) @ (nd * 22 e(0) ©p (Ind§ 1)

QEQ’
obtained by tensoring (3.22) by e(o)¥ over R, because the tensor product is right
exact. The maps Bg = oz% are equal and the R-modules e(0)¥ ®r (Stg)“ =
(e(o) ®r Stg)u are equal. This implies that the Hgz-modules e(0)¥ ®g (Stg)u =
(e(o) ®r Stg)u are equal. O

Remark 4.10. The proof shows that the representations e(o) ®g Indg 1and e(o)®
Stg of G are generated by their U-fixed vectors if the representation o of M is gener-
ated by its Ups-fixed vectors. Indeed, the R-modules e(o)¥ = o¥n (Indg 1)“Mé =
(Indg 1) are equal. If o“™ generates o, then e(o) is generated by e(o)¥. The rep-
resentation Indg 1[r is generated by (Indg 1)Y (this follows from the lemma be-
low), we have G = M M}, and M} acts trivially on e(c). Therefore the R[G]-module
generated by o ®@p (Indg 1) is e(0) ®r Indg 1. Ase(o) ®r Stg is a quotient of
e(0) ®g Indg 1, the R[G]-module generated by o ®g (Stg)“ is e(0) ®r Stg.
Lemma 4.11. For any standard parabolic subgroup P of G, the representation
Indg 1| is generated by its U-fized vectors.

Proof. Because G = PG’ it suffices to prove that if J is an open compact subgroup
of N the characteristic function 1p; of PJ is a finite sum of translates of 1py =
Lpuy by G'. For t € T we have PUt = Pt’luﬁt and we can choose t € T'NJ’ such
that t~'Ugt C J. a

4.3. General triples. Let P = M N be a standard parabolic subgroup of G. We
now investigate situations where Ap and A\ Ap are not necessarily orthogonal.
Let V be a right H s, g-module.

Definition 4.12. Let P(V) = M(V)N(V) be the standard parabolic subgroup of
G with AP(V) =ApUA, and

Ay = {a € A orthogonal to Ay, TM(2) acts trivially on V for all z € ZN M }.
If @ is a parabolic subgroup of G between P and P(V), the triple (P,V, Q) called
an Hp-triple, defines a right Hg-module I (P, V, Q) equal to

MV MV
Ind} | (V) @R (St nion) ) = (e(V) @ (Stoyin o)) M) @3y, o M
where e(V) is the extension of V to Hsy).

This definition is justified by the fact that M (V) is the maximal standard Levi
subgroup of G such that the Hys g-module V is extensible to Hpz(v).

Lemma 4.13. Ay, is the mazimal subset of A\ Ap orthogonal to Ap such that
Tiw’* acts trivially on 'V for all A € A(1) N1 Wy, .

Proof. For J C A let M; denote the standard Levi subgroup of G with Ay, = J.
The group Z N M/, is generated by the ZN M/, for all o € J (Lemma 2.1). When J
is orthogonal to Ay and A € AM‘/](l)7 Ly (X) = 0 where £, is the length associated

to S3ff| and the map A — T)]\V[’* =TM: Apr (1) = Har is multiplicative. a



The following is the natural generalization of Proposition 4.5 and Corollary 4.6.
Let Q' be a parabolic subgroup of G with @ C Q" C P(V). Applying the results of
section 4.1 to M (V) and its standard parabolic subgroups @ N M (V) C Q' N M (V),
we have an H (1), g-isomorphism

Ind} "™ (e3, (V)

KQNM (V) IndM(V)

= ey, (V) Ry 0 HM(V),R _ e(V) ®R ( QAM(V) l)uMW)

M(*?"
v® 1y = v® founmv) :

and an H vy, g-embedding

UQNM(V),Q'NM(V))

H s H
Ind}f" (eng, (V) nd} ™ (30, (V)

V® 131y, P U@ 95,0;)(68/).

Applying the parabolic induction IndzM o which is exact and transitive, we obtain

an H r-isomorphism kg = Ind%mw (kgnm o))

(4.16) Ind;:fQ(eHQ V) MCN Ind;:fM(v) (e(V) ®r (Indgr(]x/j)(v) IMQ)“M(W)
v 1y = v ® fQuyn, ® 1u
and an Hg-embedding 1(Q, Q") = Ind?  (4(Q,Q")MM)

Hu(v)
! Q,Q’
(417) 0@l @0 (ed) ¥ (ery (V) “2L0 ndff, (ery (V)

Applying Corollary 4.6 we obtain:
Theorem 4.14. Let (P,V,Q) be an Hg-triple. Then, the cokernel of the Hr-map
Decqcrw) IndﬁQ, (e31q, (V) = Indji, (€36 (V)),

defined by the 1(Q, Q") is isomorphic to Iy (P, V, Q) via the Hr-isomorphism kg.
Let o be a smooth R-representation of M and let ) be a parabolic subgroup of

G with P C Q C P(o).

Remark 4.15. The Hp-module I (P,o"™ Q) is defined if Ag \ Ap and Ap are

orthogonal because Q C P(c) C P(¢“™) (Theorem 3.13).

We denote here by Ppin = MinNmin the minimal standard parabolic subgroup
of G contained in P such that ¢ = ep(o|a,,,) (Lemma 2.3, we drop the index
o). The sets of roots Ap,,, and Ap(y(,, )\ Ap,, are orthogonal (Lemma 2.4).

min [ Mpn;

The groups P(c) = P(o|n,,, ), the representations e(o) = e(o|ns,,,,) of M (o), the
representations Ig (P, 0,Q) = Ig(Puin, 0|r,.,., Q) = Indg(g)(e(a) ®r Stg(”)) of G,
and the R-modules o“min = g™ are equal. From Theorem 3.13,

P(0) C P(a™Mmin), 31, (0 Mmin) = e(o) 0,

and P(o"min) = P(0) if 0%Mmin generates the representation o|y; The Hrg-

module

Iy (Pmim oMM , Q) — Ind%

min *

Uns P(e"™Mumin )\ Uy
e min St Mo Mmin)
M(a“Mmim( (U ) or ( @ ) )

is defined because Ap_, and Ap(g“Mmm) \ Ap,,, are orthogonal and P C @ C

P(0) C P(cMMmin).



Remark 4.16. If ocMmin generates the representation o|as, . (in particular if R is
an algebraically closed field of characteristic p and o is irrreducible), then P(o) =
P(o"Mmin ) hence

M(o
I’H (Pmin> O_UMmin , Q) = IndgM(”) (eHM@,) (O.UMm;n) RR (StQé]\;(g))MM(a) )

Applying Theorem 4.9 to (Punin M (0), 0| My s @NM (0)), the Hpz(o), g-modules

M(o y M(o
(418) ey, (0400) @R (Stoyat o)) ™7 = (€11(0)(0) B R Stiyatoy) M

are equal. We have the H g-isomorphism [OV17, Proposition 4.4]:
I6(P,0,Q" = (Ind%,, (e(0) ®r St5' ™)

ELN Ind%ma) ((e(o) ®r Stgjrg?\-}(g))uﬂﬂd))

Frioe = 1@ 1y (1€ (e(0) @n Sty 1)) 1)
We deduce the following.
Theorem 4.17. Let (P, 0, Q) be an R[G]-triple. Then, we have the H g-isomorphism

I6(P,o, QM 25 Indjt | (€31, (0"min) @R (Stoy 1 (o)1)

In particular,
I3 (Pain, cHmin Q) if P(o) = P(0MMmin ),

U
IG(P7U7 Q) — {IH(P7 O'MM,Q) ZfP — RninaP(U) = P(UUM).

4.4. Comparison of the parabolic induction and coinduction. Let P = M N
be a standard parabolic subgroup of G, let V be a right Hr-module, and let @ be
a parabolic subgroup of G with @ C P(V). When R is an algebraically closed field
of characteristic p, in [Abe], we associated to (P,V,Q) an Hgr-module using the
parabolic coinduction

COindzMQ (-) = HomHM&g* (H,—) : Modg(H,) — Modg(H)

instead of the parabolic induction Ind;iMQ (=) =—®3_ ., oH. Theindex 6" in the
M7
Q

parabolic coinduction means that #,,- embeds in H by 6. Our terminology is

different from the one in [Abe] where the parabolic coinduction is called induction.
For a parabolic subgroup @’ of G with Q C Q' C P(V), there is a natural inclusion
of ‘H r-modules

(419)  Homy, _  (H.ewy, (V) “2% Homy _ (H.eny(V))
Qr @
because 6’*(’HM§) C 0*(H,,- ) as WM(;(I) C Wy, (1), and VT = T Mo for
Q’ Q’

w e WM(E (1) and v € V. (This is [Abe, Proposition 4.19] when R is an algebraically
closed field of characteristic p. This follows from our formulation of the extension
for any R.)

Definition 4.18. Let CI3(P,V, Q) denote the cokernel of the map
D  Homw,  (Heng (V) —Homy — (Heny(V))
QEQ'CPY) “ “
defined by the H g-embeddings (Q, Q).



When R is an algebraically closed field of characteristic p, we showed that the
‘Hp-module CIy(P,V, Q) is simple when V is simple and supersingular (Definition
4.25), and that any simple Hpg-module is of this form for an Hp-triple (P, V, Q)
where V is simple and supersingular, P,Q and the isomorphism class of V are
unique [Abe]. The aim of this section is to compare the Hg-modules I3 (P, V, Q)
with the H g-modules CI# (P, V, Q) and to show that the classification is also valid
with the Hz-modules I3 (P, V, Q).

It is already known that a parabolically coinduced module is a parabolically
induced module and vice versa [Abe, Proposition 4.15], [Vigl5b, Theorem 1.8]. To
make it more precise we need to introduce notation.

We lift the elements w of the finite Weyl group W to @ € NgNK as in [AHHV17,
IV.6], [OV17, Proposition 2.7]: they satisfy the braid relations w;ws = (w;ws) when
L(wy) +£(wz) = £(wrws) and when s € S, § is admissible, in particular lies in 1 Wer.

Let w, wyy, wM denote, respectively, the longest elements in W, W, and ww .

We have w = w™— *WAIWM,WM le,w WM,

wM(Ay) = —w(Ay) A, wM(@T\ of) =w(®T\ o).

Let w.M be the standard Levi subgroup of G with Ay, = wM(Ay) and w.P
the standard parabolic subgroup of G with Levi w.M. We have

w.M =wMMw) T =wM(Ww) ", WM =wyw = (wM) L

The conjugation w +— wMw(w™)~!in W gives a group isomorphism Wy — Wy, as
sending S3f onto Sw 17> Tespecting the finite Weyl subgroups wM Wy, (w)~1 =
Ww.r = wWyw!, and exchanging Wi+ and Wiy a)- = wWy+w—!. The
conjugation by W™ restricts to a group isomorphism Wjs(1) — Wy ar(1) sending
Wi+ (1) onto Wiy ar)-(1). The linear isomorphism

(420) H M) Hw M TM — T~ A[w(ij) 1 for w S WM( )

w

is a ring isomorphism between the pro-p-Iwahori Hecke rings of M and w.M. It
sends the positive part Hys+ of Hys onto the negative part Hw.ar)- of Hw.mr
[Vigl5b, Proposition 2.20]. We have W = wyww-M
VNVW'JMI‘JJM where ty; = Wz\i’]_vf € Z.

= wMwy, (WwM)7h =

Definition 4.19. The twist w™.V of V by w is the right H.27-module deduced
from the right Hj;-module V by functoriality: as R-modules WM.V = V and for
v eV, we Wy (l) we have UTVVMw(wM) , =vTM.

We can define the twist w.V of V with the Tqﬂ'{’* instead of TwM.

Lemma 4.20. Forv € V,w € Wy(1) we have UTYV,V/(*WM) L = oTMr i WML,
I\I)
Proof. By the ring isomorphism H s —> Hw ., wWe have CWMS(WM . =c

when § € Wy, (1) lifts s € S3¥. So the equality of the lemma is true for w =
Apply the braid relations to get the equality for all w € Wy, (1).

O = "%

We return to the Hg-module Homy (H,V) parabolically coinduced from

M—,0%
V. It has a natural direct decomposition indexed by the set WW» of elements d in



the finite Weyl group W of minimal length in the coset dW ;. Indeed it is known
that the linear map

fe (F(T) aewnn : Homay,_ o (H,V) > P V
deWWm

is an isomorphism. For v € V and d € WW# | there is a unique element

_o+(H,V) satisfying f(T;) = v and f(T5) =0 for d' € W \ {d}.

f(i,v S HOHl'HM ,
It is known that the map v — fgnm , : wMy — HOHlHMﬂg* (H,V) is H(W.M)+‘
equivariant: fgum yrw.n = fgu Ty for all v € V,w € Wy, pr+(1). By adjunction,
this H (w.ar)+-equivariant map gives an H g-homomorphism from an induced module
to a coinduced module:

(4.21) V@ Ly > for s WY D4y apyi 0 L2 Homyy,,_ o+ (H, V).

This is an isomorphism [Abe, Proposition 4.15], [Vigl5b, Theorem 1.8].

The naive guess that a variant pug of up induces an H g-isomorphism between
the Hp-modules Iy, (w.P, WM.V, w.Q) and CI#(P,V, Q) turns out to be true. The
proof is the aim of the rest of this section.

The Hg-module Iy (w.P,w™ .V, w.Q) is well defined because the parabolic sub-
groups of G containing w. P and contained in P(w™.V) are w.Q for P C Q C P(V),
as follows from Lemma 4.21.

Lemma 4.21. Agn y = —w(Ay).

Proof. Recall that Ay is the set of simple roots @ € A\ Ay orthogonal to Ay
and TM(z) acts trivially on V for all z € Z N M, and the corresponding standard
parabolic subgroup Py, = MyNy. The Z N M/, for a € Ay generate the group
Z N M, Aroot a € A\ Ay orthogonal to Ay is fixed by way so wM(a) = w(a)
and

WM My (M)~ = WMy (w) L

The proof of Lemma 4.21 is straightforward as A = —w(A), Aw .y = —w(Ayp). O

Before going further, we check the commutativity of the extension with the twist.
As Q = MqU and Mg determine each other we denote wyy, = wo, wMe = w@
when Q # P,G.

Lemma 4.22. ey, , (WMY) = WQ'GHQ V).

Proof. As R-modules V = ey, ,(WM.V) = w@.ey,(V). A direct computation
shows that the Hecke element TW-“* acts in the Hgz-module ey, ,(W*.V), by
the identity if w € v~vQ1WMé (w?)~! and by T(ng)flwva ifw e v~vQ1WMé (w1
where My denotes the standard Levi subgroup with Ay, = Ag \ Ap. Whereas
in the Hz-module W%.e,,(V), the Hecke element TpV-9* acts by the identity if
w € 1 Wy and by T(]g’;f)flwva if we Wy (1), So the lemma means that

Weeary = WO Wy (w?) ™ (W9) T rww® = () " Tww™ if w e Wy (1)

These properties are easily proved using that ;Wgr is normal in W(1) and that
the sets of roots Ap and Ag \ Ap are orthogonal: wg = wag, Wy, the elements
wr, and wys normalize Wy, and W)y, , the elements of W, commutes with the
elements of Wj,. O



We return to our guess. The variant pg of pp is obtained by combining the
commutativity of the extension with the twist and the isomorphism (4.21) applied
to (Q,en,(V)) instead of (P, V). The H g-isomorphism pq is

(4.22) v @ Ly v fgrry Inde_MQ (e300 (WHV)) X2 Hom,{%ﬂ* (H, 35 (V).

Our guess is that ;g induces an H g-isomorphism from the cokernel of the H -
map
D Wmdi, (e, o (FY) = Indj,  (ery,.o (WD)
QCQ/'CP(V)
defined by the H g-embeddings «(w.Q, w.Q’), isomorphic to Iy (w.P, W™V, w.Q)
via kw.q (Theorem 4.14), onto the cokernel C'Iy (P, V, Q) the Hr-map

@ HomHM:e* (H,en, (V) — HomHMCs‘e* (H,en, (V)
QCQ'CP(V) Q
defined by the Hpg-embeddings i(Q,Q’). This is true if (Q,Q’) corresponds to
(w.Q,w.Q") via the isomorphisms p¢g and pg. This is the content of the next
proposition.

Proposition 4.23. For all Q C Q' C P(V) we have
i(Q.Q) o gy = g 0 L(w.Q. w.Q).
We postpone to section 4.6 the rather long proof of the proposition.
Corollary 4.24. The Hg-isomorphism ug o /-i‘;'lQ induces an Hg-isomorphism
In(w.P,w™MV, w.Q) — CI;(P,V, Q).

4.5. Supersingular Hr-modules, classification of simple Hgz-modules. We
recall first the notion of supersingularity based on the action of the center of H.
The center of H [Vigld, Theorem 1.3] contains a subalgebra Z7+ isomorphic
to Z[T*/Ti] where T+ is the monoid of dominant elements of 7" and 7Ty is the
pro-p-Sylow subgroup of the maximal compact subgroup of T'.
Let t € T of image y; € W(1) and let (£,(w))wew (1) denote the alcove walk
basis of ‘H associated to a closed Weyl chamber o of W. The element

Eo(C(me)) = Z Eo(1)

is the sum over the elements in p' in the conjugacy class C'(p) of py in W(1). It
is a central element of H and does not depend on the choice of 0. We write also

2(t) = Eo(C ().

Definition 4.25. A non-zero right Hz-module V is called supersingular when, for
any v € V and any non-invertible ¢ € T, there exists a positive integer n € N
such that v(z(¢))™ = 0. If one can choose n independent on (v,t), then V is called
uniformly supersingular.

Remark 4.26. One can choose n independent on (v,t) when V is finitely generated
as a right Hpr-module. If R is a field and V is simple we can take n = 1.

When G is compact modulo the center, 7T = T, and any non-zero H r-module
is supersingular.



The induction functor IndzM : Mod(Har,r) — Mod(Hg) has a left adjoint £
and a right adjoint R}~ [Vigl5b]: for V € Mod(Hr),
(4.23)

ﬁzM V) = wWM o v ®7—¢(w _ o Hw.m), R%M w) = HOmHM+79(H]VI7 V).

M)

In the left adjoint, V is seen as a right H (. a7)--module via the ring homomor-
phism 63, /1 Hw.an- — H; in the right adjoint, V is seen as a right H/+-module
via the ring homomorphism 6y : Hy+ — H (section 2.3).

Proposition 4.27. Assume thatV is a supersingular right Hg-module and that p is
nilpotent in V. Then E%M (V) =0, and if V is uniformly supersingular ’RﬁM V) =
0.

Proof. This is a consequence of three known properties:

(1) Has is the localization of Hys+ (resp., Hys-) at T;ﬁ” for any element u €
Ar(1), central in Wy (1) and strictly N-positive (resp., N-negative), and
TA{V[ = Téw’*. See [Vigl5b, Theorem 1.4].

(2) When o is anti-dominant, E,(u) = T, if p € AT(1) and E,(u) = Ty if
we A (1).

(3) Let an integer n > 0 and p € A(1) such that the W-orbit of v(p) € X.(T)®
Q (definition in section 2.1) and of p have the same number of elements.
Then

(Eo(C(1))" Eo(p) — Eo(u)" ™ € pH.
See [Viglba, Lemma 6.5], where the hypotheses are given in the proof (but
not written in the lemma).

Let u € AJ(1) satisfying (1) for M T and (3), similarly let w.u € AL (1) satisfying
(1) for (w.M)~ and (3). For (R,V) as in the proposition, let v € V and n > 0
such that vE,(C(p))" = vE,(C(w.u))™ = 0. Multiplying by E,(u) or E,(w.u),
and applying (3) and (2) for o anti-dominant we get:

VB, () = oTIH € gV, wE,((wn)") = o(T,)" € p.

The proposition follows from: vT} !, v(Ty )" in pV (as explained in [Abel6,
Proposition 5.17] when p = 0 in R). From v(Ty, )" in pV, we get v@ (T M)+
=u(Ty )" @1y, ,, inpV OH ) agy— 0% Hw.na- As Tw-Mx = Tw-M ig invertible in
Hw. v We get v® 1y, ,, in pV®H(w.M>7 0+ Hw.nv. As v was arbitrary, V®H<W.M)— o
Hw. v C pV®H<W_M)7 0+ Hw .- If pis nilpotent in V, then V®H<W.M)— 0

Suppose now that there exists n > 0 such that V(z(¢))™ = 0 for any non-invertible
t € T*; then VT;*! C pV where p = p; and hence ¢(h) = go(hT}i”fn,l)T[}H
in pV for an arbitrary ¢ € HomHM%g(HM,V) and an arbitrary h € Hy;. We
deduce Homy, , o(Har,V) C Homyy, , o(Har,pV). If p is nilpotent in V, then
HomHM+79(HM, V) =0. O

Hw. vt = 0.

Recalling that W?.V is obtained by functoriality from V and the ring isomor-
phism (W) defined in (4.20), the equivalence between V supersingular and w™V
supersingular follows from Lemma 4.28
Lemma 4.28.

(1) Lett € T. Then t is dominant for Upr if and only if WMt(wM)~1 € T is
dominant for Uy pr-



(WM
(2) The R-algebra isomorphism Har g M Hw M, R M s ch:i%u(va)fl

forw € Wiy (1) sends zM (t) to 2™ M (WMt(wM)~1) fort € T dominant for
Ups.

Proof. The conjugation by w™ stabilizes T, sends Ups to U, ps, and sends the Wy~
orbit of t € T to the W, p-orbit of WMt(wM)~1 as wM Wy (wM)™t = Wy .
It is known that +(W™) respects the anti-dominant alcove walk bases [Vigl5b,
Proposition 2.20]: it sends EM (w) to EWV-M (WMw(wM)~1) for w € Wy (1). O

We deduce the following.

Corollary 4.29. Let V be a right Hyr,r-module. Then V is supersingular if and
only if the right Hw . ar,r-module WMV is supersingular.

Assume R is an algebraically close field of characteristic p. The supersingular
simple H s, p-modules are classified in [Viglbal. By Corollaries 4.24 and 4.29, the
classification of the simple H g-modules in [Abe] remains valid with the H gp-modules
Iy (P, V, Q) instead of CIy(P,V,Q):

Corollary 4.30 (Classification of simple Hpg-modules). Assume R is an alge-
braically closed field of characteristic p. Let (P,V,Q) be an Hg-triple where V
is simple and supersingular. Then, the Hg-module Iy, (P, V, Q) is simple. A sim-
ple Hr-module is isomorphic to Iy (P,V, Q) for an Hg-triple (P,V,Q) where V is
simple and supersingular, P,Q and the isomorphism class of V are unique.

4.6. A commutative diagram. We prove in this section Proposition 4.23. For
@ C Q' C P(V) we show by an explicit computation that

o' 0i(Q,Q") o pg Indif |, (en, o, (WMV)) = Indjf  (en, o (WM. V)

is equal to ¢(w.Q,w.Q'). The R-module ey, , (WwM.V) ® 13 generates the Hp-

module ey, (WM.V) @y or Hr = Indzw_Ql (€34, o (wM.V)) and by (4.17)

w.Q!,R>

(4.24) (W.Q,w.Q)v®1ly) =v® > T;

WNI
-Q
de MwQWar o,

for v € V seen as an element of ey, (WM.V) in the LHS and an element of
€3w.o (WMD) in the RHS.

Lemma 4.31. (,uél 0i(Q,Q)opg)(vR1ly) =v® ZdeWWMQ qd Tvi;Q(wQ’&)*l'

My
Proof. pg/(v®1y) is the unique homomorphism f_ W€ HomHM& o (H,en, (V)

sending Tgo to v and vanishing on T}, for d’ € WMo \ {w@'} by (4.22). By
(4.19), i(Q,Q’) is the natural embedding of Homy _ (H,en,, (V) in
Q"
Homy, _  (H,en,y(V)) therefore i(Q, Q") (fg ) is the unique homomorphism
5 .
Homy _ (H, e, (V)) sending Ty to v and vanishing on T}, for d’ € WMo \
© Warg
M

w@Y. As WWe = wWerw , this homomorphism vanishes on Ty for w not
IQ/



in WMQ'WXZ? . By [Abel6, Lemma 2.22], the inverse of pq is the 7 p-isomorphism
—1
u M
(425)  Homu,_o-(Hoeng(V) “0 ndf, , (er o(W.V)

f = Z f(Td_) ®T;,1\l(i—17
deWW M
where WY is the set of d € W with minimal length in the coset dW,;. We deduce
the explicit formula
(ng' i@ @) ope)w@ly) = 3 ilQ Q)N Ty N Ti)® Thugy s
wEWWMQ
W
Some terms are zero: the terms for w € W' ™e not in WJMQ'WMZ/Q. We analyze
W W
the other terms for w in W"e N WMQ'WMZ/Q; this set is WMQ’WMZ?. Let w =
W - -
whard, d e W M’C‘j& and @ = wMe'd with d € 1 W lifting d. By the braid relations
Ty = TWIVIQ/ T;. We have T; = 6*( é\/lQ') by the braid relations because d € WMQ,,

S, C S and 0*(0?@) = c5 for s € Sm,,. As Wy, C Wy - NWyt, we
Q' Q
deduce:
Q. Q) )(Ta) = HQ Q) )Ty Ty)
. / Mg

= 1(Q7Q/)(f§MQ/ _v)(T‘;VMQ/) d N

_ 7Maer _

= de~ = qqu.
Corollary 3.9 gives the last equality. a

The formula for (uél 0i(Q, Q") o pg ) (v ® 1y) given in Lemma 4.31 is different
from the formula (4.24) for «(w.Q,w.Q")(v®1y). It needs some work to prove that
they are equal.

. . W o _1 Warg

A first reassuring remark is that “*w.e Wy, = {wd™'w | d € WMQ/ }, so

the two summation sets have the same number of elements. But better,

’ W
Mtw oWy, o = {wWO(wd)"! | d e W, "?

Q!

W W
because wgo/W MZ/Q wo =W MZQ' To prove the latter equality, we apply the crite-

rion: w € Wy, lies in WMQ,WMQ if and only if w(a) > 0 for all @ € Ag noticing
that d € WY[Z,“? implies wg(a) € —Ag, dwg(a) € =P, Wodwg(a) > 0.
Let 24 = wQ(w?d)~!. We have wMe(wMa'd)~1 = &, because the lifts @ of
the elements w € W satisfy the braid relations and ¢(zq4) = (wod lwg/) =
Uwq)—l(waod™") = l(wo)—l(wo)—l(d™") = l(wq)—l(wq)—{(d) = —l(w?)+
{(w®) — £(d). We have qq = AWy gawy, o DECAUSE wd tw = Ww.QTdWw.Q, and
4d = qq-1 = Gwd—1w- SO
Z 4aTg0wa gy-1 = Z Qway.qrawe. o Lo,

War War
deWMQQ zg€ MWQ Wiy

/ w.Q



In the RHS, only WM.V, w.Q, w.Q’ appear. The same holds true in the formula
(4.24). The map (P,V,Q,Q") — (w.P,wM.V, w.Q,w.Q') is a bijection of the set
of triples (P,V,Q, Q') where P = MN,Q,Q’ are standard parabolic subgroups
of G, V a right Hr-module, @ C Q" C P(V) by Lemma 4.21. So we can re-
place (w.P,wM.V, w.Q,w.Q") by (P,V,Q,Q"). Our task is reduced to prove in
eno (V) ®u_ .0 Hr:

M+a

(4.26) ve Y Ti=v® Y. Gwodwe 1)

deWAIQ WMQ, deWMQ WMQ/
A second simplification is possible: we can replace @ C @’ by the standard parabolic
subgroups Q2 C Q5 of G with Ag, = Ag \ Ap and Ag, = Ag \ Ap, because Ap
and Apy) \ Ap are orthogonal. Indeed, WMQ, =Wy x \WMQ,2 and Wyz, = Wy x
Wy, are direct products, the longest elements wg = WMWQ,, WQ = WHWQ,
are direct products and

WMQ W]\/[Q, = WMQ2 W}V] WQdWQ/ = WQ2dWQ'2 .

@y’
Once this is done, we use the properties of ey, (V): vh ® 1y = v ® Og(h) for
h e HM+ , and T¢* acts trivially on ey, (V) for w € W, U (A(1) N 1WMEy2)'
Set 1WM/ ={w € 1WM/ | w is a lift of some element in WM , } and 1WM/

similarly. Then Zi N 1WM/ C (AN 1WMr )ﬂ Wy 5 and 1WMr 1WM/ ﬂ
1WM+ . This implies that (4 26) where Q C Q@' has been replaced by Q2 C Q2

follows from a congruence

(4.27) Z ;= Z dwo,dwqy T3

w W
de M2 WMQ, de M2 WMQ,
2 2

in the finite subring H(1WMQ,2) of M generated by {T}, | w € 1WM22/2} modulo the
right ideal J> with generators {0g(T9*) — 1| w € (Zx N 1WM/ ) U 1WM&)2 }.

Another simplification concerns T* modulo /> for d € WM g We recall that
for any reduced decomposition d = s1...s, with s; € §N WM , we have T ¥ =
(Ts, — cs,) ... (Ts, — cs,) where the §; are admissible. For § adm1551ble by (3. 2)

c; =qs — 1.
Therefore
Ti = (T5, — go + 1) (Ts, — s, + 1)

Let J' C J> be the ideal of H(y WM/ ) generated by {T; — 1|t € Zi N 1WM/ }
Then the ring H (1WM/ )/ T’ and 1ts right ideal J2/J’ are the spcmahzatlon of
the generic finite ring H(WM ) over Z[(qa)éesM ; ] where the ¢, for s € SMQ, =
SNW Mg, are indeterminates, and of its right 1dea1 J§ with the same generators.
The similar congruence modulo J§ in H(Wyy o )9 (the generic congruence) implies

the congruence (4.27) by specialization.

We will prove the generic congruence in a more general setting where H is the
generic Hecke ring of a finite Coxeter system(W, S) and parameters (gs)ses such
that ¢s = ¢ when s, s’ are conjugate in W. The Hecke ring H is a Z[(qs)ses]-free



module of basis (T}, )wew satisfying the braid relations and the quadratic relations
T? = g5+ (qs — 1)Ts for s € S. The other basis (T} ),cw satisfies the braid
relations and the quadratic relations (T¥)? = g; — (gs — 1)T¥ for s € S, and is
related to the first basis by T = Ts — (¢s — 1) for s € S, and more generally
TWT) - =T% Ty = qu for w € W [Vigl6, Proposition 4.13].

Let J C S and J is the right ideal of H with generators T,; — 1 for all w in the
group W generated by J.

Lemma 4.32. A basis of J is (T, — )Ty, for wi € Wy \ {1}, w2 € "'W, and
adding Ty, for wa € WoW gives a basis of H. In particular, J is a direct factor of
H.

Proof. The elements (T — 1)T. for w1 € Wy, w € W generate J. We write

w1
w = ujwsy with unique elements u; € Wy, wy € W/W, and T, =T; Ty, Therefore,
(T, — )Ty Ty, By an induction on the length of uy, one proves that (T, —1)Ty,

is a linear combination of (T;} — 1) for vy € W as in the proof of Proposition 3.4.
It is clear that the elements (775 — 1)T, and Tj; for wy € W, \ {1}, wy € /W
form a basis of H. O

Let w; denote the longest element of W; and w = wg.

Lemma 4.33. In the generic Hecke ring H, the congruence modulo J
Z Td = Z QWdeT;
deVsw deVsw
holds true.

Proof.
Step 1. We show
WJW = WJWway Qw5 QWdeT;ik = TWJTWJdWTvT/'

The equality between the groups follows from the characterization of W/ W in W:
an element d € W has minimal length in W ;d if and only if £(ud) = £(u) + ¢(d) for
all w € W;. An easy computation shows that £(uw ydw) = £(u) + ¢(wydw) for all
u €Wy, deW/W (both sides are equal to £(u) +£(w) —£(w;) — £(d)). The second
equality follows from Gy, Gw,dw = qaw because (wy)? =1 and £(w ;) + £(w sdw) =
{(dw) (both sides are {(w) — £(d)) and from qawT] = TywTy -1 T; = TawTy,. We
also have Ty = Ty, T, dw-

Step 2. The multiplication by gw, on the quotient H/7 is injective (Lemma 4.32)
and gw, = Tw,. By Step 1, ¢w,awl] = Tw, w1y and

> qwanTi= Y TiTy.
deVIw deVIw
The congruence
(4.28) Yo Tu= > TuT:
deVsw deWsw

for all s € S implies the lemma because Ty, = T

o - Ty for any reduced decom-
position w = 57 ...s, with s; € S.



Step 3. When J = (), the congruence (4.28) is an equality
(4.29) Y Tw=> T,T:.
weW weW

It holds true because Y cw Tw = D Tw(Ts+1) and (Ts+1)TF = T Tr+TF =
qs + Tg* = Ts + 1.

w<ws

Step 4. Conversely the congruence (4.28) follows from (4.29) because

DTu=(YT) >, Tu=(Y, @) Y, T

weW ueWy, deVow ueWy, deWsw
(vecall ¢, =T, T, = T,) and we can simplify by >y ¢ in H/J. O

This ends the proof of Proposition 4.23.

5. UNIVERSAL REPRESENTATION [y (P, V, Q) @« R[U\G]

The invariant functor (—)¥ by the pro-p-Iwahori subgroup U of G has a left
adjoint
— ) RIU\G] : Modg(H) — ModF (G).
Hr
The smooth R-representation V ®4, R[U\G] of G constructed from the right Hp-
module V is called universal. We write

RIU\G] = X.

Question 5.1. Does V # 0 imply V ®y, X # 0 or does v ® 1y = 0 for v € V
imply v = 0?7 We have no counterexample. If R is a field and the Hgz-module V
is simple, the two questions are equivalent: V ®4, X # 0 if and only if the map
v = v ® 1y is injective. When R is an algebraically closed field of characteristic p,
V @, X # 0 for all simple H-modules V if this is true for V simple supersingular
(this is a consequence of Corollary 5.13).

The functor — ®HR X satisfies a few good properties: it has a right adjoint and
is compatible with the parabolic induction and the left adjoint (of the parabolic
induction). Let P = M N be a standard parabolic subgroup and Xy = R[Un\M].
We have functor isomorphisms

(5.1) (- @ X) oInd}f,, — IndFo(— X) Xu),
Hr Hu, R
(5.2) (“)vo (- QX) = (- &) Xn)o LY.
'HR HM.R

The first one is [OV17, formula 4.15], the second one is obtained by left adjunction
from the isomorphism IndzM o(—)UM — (=) o Ind$ [OV17, formula (4.14)]. If V
is a right H pr-supersingular module and p is nilpotent in V, then C%M(V) =0if
M # G (Proposition 4.27). Applying (5.2) we deduce the following.

Proposition 5.2. If p is nilpotent in V and V supersingular, then V @4, X is left
cuspidal.



Remark 5.3. For a non-zero smooth R-representation 7 of M, A, is orthogonal to
Ap if 7 is left cuspidal. Indeed, we recall from [AHHV17, I1.7 Corollary 2] that
A, is not orthogonal to Ap if and only if there exists a proper standard parabolic
subgroup X of M such that o is trivial on the unipotent radical of X; moreover
is a subrepresentation of Ind}! (7|x), so the image of 7 by the left adjoint of Ind%’
is not 0.

From now on, V is a non-zero right #H s, pg-module and
o=V Ot r X

In general, when o # 0, let P, (o) be the standard parabolic subgroup of G with
Ap (o) = ApUA] , where A , is the set of simple roots a € A, orthogonal to
P-

Proposition 5.4.

(1) P(V)C Pi(o) if o #0.

(2) P(V) = P,(0) if the map v — v ® ly,, is injective.

(3) P(V) = P(o) if the map v — v ® ly,, is injective, p nilpotent in ¥V and V
supersingular.

(4) P(V)=P(o) if o #0, R is a field of characteristic p and V simple super-
singular.

Proof.

(1) P(V) C Py (o) means that ZNMj, acts trivially on V®1,,, where My is the
standard Levi subgroup such that Ay, = Ay. Let z € ZNMj, and v € V. As Ay
and Ay are orthogonal, we have TM*(2) = TM (2) and Upr2Un; = Uprz. We have
v®1y,, = vTM(2)@1y,, = v@TM (2)1y,, = v®1y,,. = v®2z "y, = 27 (v®1y,,)-

(2) If v ® 1y, = 0 for v € V implies v = 0, then o # 0 because V # 0. By (1)
P(V) C Pi(0). As in the proof of (1), for z € Z N M| , we have vTM*(2) ®
1y, = vTM(2) ® 1y,, = v ® 1y,, and our hypothesis implies vT™*(2) = v hence
P(V) D Py (o).

(3) Proposition 5.2, Remark 5.3, and (2).

(4) Question 5.1 and (3). a

Let @ be a parabolic subgroup of G with P C @ C P(V). In this chapter

we will compute I3 (P,V,Q) ®y RU\G] where I4(P,V,Q) = Ind},,  (e(V) ®

(Stgr(]xl)(v))ulvf(")) (Theorem 5.11). The smooth R-representation I (P, o, Q) of G

is well defined: it is 0 if o = 0 and IndIG)(g)(e(o) ® Stg(g)) if o # 0 because (P, 0, Q)
is an R[G]-triple by Proposition 5.4. We will show that the universal representation
Iy(P,V,Q) ®y RU\G] is isomorphic to I¢(P,0,Q), if P(V) = P(c) and p = 0,
or if ¢ = 0 (Corollary 5.12). In particular, Iy (P, V, Q) @y RU\G] = I¢(P,0,Q)
when R is an algebraically closed field of characteristic p and V is supersingular.

5.1. @ = G. We consider first the case Q = G. We are in the simple situation where
V is extensible to H and P(V) = P(o) = G, Iy(P,V,G) = e(V) and I¢(P,0,G) =
e(o). We recall that A\ Ap is orthogonal to Ap and that M> denotes the standard
Levi subgroup of G with Ay, = A\ Ap.



The Hg-morphism e(V) — e(0)¥ = oM sending v to v ® 1y, for v € V, gives
by adjunction an R[G]-homomorphism

G
VR 1y v @y, ¢ e(V) @y, X 2 e(0).

If ¢ is an isomorphism, then (V) ®,, X is the extension to G of (e(V) @4, X)|ar,
meaning that M acts trivially on e(V) ®4, X. The converse is true.

Lemma 5.5. If M} acts trivially on e(V) @4, X, then ®% is an isomorphism.

Proof. Suppose that M} acts trivially on e(V) ®4, X. Then e(V) ®4, X is the
extension to G of (e(V) ®«, X)|a, and by Theorem 3.13, (e(V) ®%, X)¥ is the
extension of (e(V) @, X)¥M . Therefore, by (3.12),

(U ® 1u)T5 = (1) Q 11/1)T£I’* forallveV,we W}y](l).

As V is extensible to 7, the natural map v — v ® Iy : V — (e(V) @, X)HUM ig
H pr-equivariant, i.e.,
vTM* @ 1y = (v 1y)TM* forallv € V,w € Wi (1)
because (3.12) vTM* @ 1y = vT: @ 1y =v @ T = (v® 1) T} in e(V) @y, X.
We recall that — @, . Xas is the left adjoint of (—)¥m . The adjoint R[M]-
homomorphism o = V ®,, , Xy — e(V) @ny X sends v ® 1y, to v ® 1y for

all v € V. The R[M]-module generated by the v ® 1;; for all v € V is equal to
e(V) @3, X because My acts trivially. Hence we obtained an inverse of ®¢. g

Our next move is to determine if M} acts trivially on e(V) @4, X. It is equivalent
to see if M acts trivially on e(V) ® 1 as this set generates the representation
e(V) ®uy, X of G and M) is a normal subgroup of G as M} and M commute and
G = ZM' M. Obviously, U N M} acts trivially on e(V) ® 13;. The group of double
classes (U N MLH\MS /(U N MJ) is generated by the lifts § € NN M} of the simple
affine roots s of Wyy;. Therefore, Mj acts trivially on (V) ®4,, X if and only if for
any simple affine root s € S}\’Z of Wy, any § € N'N My lifting s acts trivially on
B(V) ® 1u.

Lemma 5.6. Letv € V,s € S}TZ and § € N'N M} lifting s. We have
(g5 +1)(v® 1y — 3(v ® 1)) = 0.
Proof. We compute:
Ta(81u) = 3(Tsly) = Ly = Y su(d) My =Y uly,

u°rP

To(8°1y) = 8°(Tolu) = Lysucs)-2 = lu) -1u = ZUﬂu
u

for w in the group U/(371U3NU) and u°? in the group 8U(3)~1/(8U(5)~L NU); the
reason is that §2 normalizes U, U3U5 ™! is the disjoint union of the sets Usu~1(5)~!
and U(8)71U is the disjoint union of the sets U(8) lu~!. We introduce now a
natural bijection

(5.3) w—u?  U/ETUSNU) — 3UB)TH(3UG) T NUY)
which is not a group homomorphism. We recall the finite reductive group G s

quotient of the parahoric subgroup £ of G fixing the face fixed by s of the alcove
C. The Iwahori groups Z%U and Z°sU (S’)*1 are contained in K¢ and their images



in G, are opposite Borel subgroups Z,Us  and Zka’,’c Via the surjective maps
u T U = Uy and w — % @ 8U3)"T — U, we identify the groups
U/(87USNU) ~ U, i, and similarly §U(8)~1/(8U(8) " NU) ~ U, Let G}, ; be the
group generated by U, and UJ%, and let B, =G N2 Us i = (G N Zk)Us -
We suppose (as we can) that § € R, and that its image 8 in Gy, lies in G;c,s' We
have §,Us (3;) ! = Ugf; and the Bruhat decomposition G}, = By U Uy 8By,
implies the existence of a canonical bijection @ — @ : (U.", —{1}) = (s —{1})
respecting the cosets u’P By, , = uy By, ,. Via the preceding identifications we get
the wanted bijection (5.3). 7 ,

For v € e(V) and z € Z° N M} we have vT, = v, zly = T, 1y and v @ T, 1y =
vT, ® 1y therefore Z° N M} acts trivially on V ® 1y;. The action of the group
(Z° N M5U on V @ 1y is also trivial. As the image of Z° N M} in G,y contains
Z NGy,

ud(v @ 1y) = u(v ® 1yy)

when u and u°P are not units and correspond via the bijection (5.3). So we have
(5.4) v @ Ts(81y) — (v @ 1y) = v @ Tu(8%1y) —v @ 8ly.

We can move T on the other side of ® and as vTs; = gsv (Corollary 3.9), we can
replace T by gs. We have v ® 821y = v ® T,-21y because 8% € Z° N M} normalizes
U; as we can move T,—» on the other side of ® and as vT,-2 = v we can forget 5.
So (5.4) is equivalent to (gs + 1)(v ® 1y — 5(v ® 1)) = 0. O

Combining the two lemmas we obtain the following.

Proposition 5.7. When V is extensible to H and has no qs + 1-torsion for any
s€ S?VZ, then M} acts trivially on e(V) @y, X and ® is an R[G]-isomorphism.

Proposition 5.7 for the trivial character 14, says that 1y ®4,, X is the trivial
representation 1¢ of G when ¢, + 1 has no torsion in R for all s € S*f. This
is proved in [OV17, Lemma 2.28] by a different method. The following counter-
example shows that this is not true for all R.

Example 5.8. Let G = GL(2, F) and let R be an algebraically closed field where
gso +1 =¢qs, + 1 = 0 and Sag = {S0,s1}. (Note that g5, = gs, is the order of
the residue field of F'.) Then the dimension of 1y ®4, X is infinite, in particular
13 @y, X # 1g.

Indeed, the Steinberg representation Stg = (Indg 17)/1g of G is an indecom-
posable representation of length 2 containing an irreducible infinite dimensional
representation 7 with 74 = 0 of quotient the character (—1)v2°det  This follows
from the proof of Theorem 3 and from Proposition 24 in [Vig89]. The kernel of the
quotient map Stg ® (—1)¥°det 5 14 is infinite dimensional without a non-zero
U-invariant vector. As the characteristic of R is not p, the functor of U-invariants
is exact hence (Stg ® (—1)"1°9N = 1, As — ®3,, RU\G] is the left adjoint of
(—)Y there is a non-zero homomorphism

1?-[ ®'HR X — StG ® (_1)valod0t

with image generated by its U-invariants. The homomorphism is therefore surjec-
tive.



5.2. V extensible to H. Let P = MN be a standard parabolic subgroup of G
with Ap and A\ Ap orthogonal. We still suppose that the Hys g-module V is
extensible to H, but now P C Q C G. So we have Iy (P,V,Q) = ¢(V) ®r (Stg)“
and Ig(P,0,Q) = e(0) ®r Stg where 0 = V ®4,, » Xpr. We compare the images
by — @3, X of the Hr-modules e(V) @p (Indg 1% and e(V) ®gr (Stg)u with the
smooth R-representations e(o) ® Indg 1 and e(0) ® Stg of G.

As — @y, X is left adjoint of (—)¥, the H p-homomorphism v® f ++ v®1y,, ® f :
e(V)®R(Indg 1Y — (e(a)@RIndg 1)¥ gives by adjunction an R[G]-homomorphism

(I:‘G
0@ f@ 1y v® Ly, ® f:(e(V) @ (Ind§ 1)) @3, X — (o) @ Ind 1.
When Q = G we have CDg = ®¢. By Remark 4.10, @g is surjective. Proposition
5.7 applies with Mg instead of G and gives the R[Mg]-homomorphism
PR
VR 1uMQ = v 1y, - €1g (V) ®OHg.n XMQ — eQ(O').

Proposition 5.9. The R[G]-homomorphism @8 is an isomorphism if ®2 is an
isomorphism, in particular if V has no qs + 1-torsion for any s € SaH;mMQ.

Proof. The proposition follows from another construction of <I)g that we now de-
scribe. Proposition 4.5 gives the H r-module isomorphism

v® fou = v@ 13 (e(V) @p (IndG 1Y) = Ind} (exq (V) = eng (V) @, , 0 H.
Q,R

We have the R[G]-isomorphism [OV17, Corollary 4.7]
V@ 1y & lu = fauwei,,, i (61 (V) @np X = Ind(erq (V) O1g,n Xarg)
and the R[G]-isomorphism

fouwetu,, = v ® luy ® fou Indg(eQ (0)) = e(o)® Indg 1.

From ®© and these three homomorphisms, there exists a unique R[G]-homomor-
phism

(e(V) ®@r (Indg 1)) @y, X — e(0) @ Indd 1
sending v® fou ® 1y to v®@1y,, ® fou. We deduce: this homomorphism is equal to
G, V@ lou © 1y generates (e(V) ®r (Indg DY) @4, X, if @9 is an isomorphism,
then <I>g is an isomorphism. By Proposition 5.7, if V has no g5 + 1-torsion for any

s€ SJB\LZQMQy then ®? and ®§ are isomorphisms. 0O

We recall that the H s, g-module V is extensible to H.
Proposition 5.10. The R[G]-homomorphism CI’g induces an R|G]-homomorphism
(e(V) ®r (Stg)z’{) Oup X —e(0) ®r Stg,

It is an isomorphism if ®E, is an R[G]-isomorphism for all parabolic subgroups Q'
of G containing Q, in particular if V has no qs + 1-torsion for any s € S?Vf[f,.
2



Proof. The proof is straightforward, with the arguments already developed for
Proposition 4.5 and Theorem 4.9. The representations e(o) ®g Stg and (e(V) ®r
(Stg)u) ®up X of G are the cokernels of the natural R[G]-homomorphisms

©ocqe(o) ®r Indg/ 1 ld®ey e(o) ®r Indg 1,

. U o
EBQQQ/(@(V) RR (Indg/ l)u) Oup X M (e(V)®r (Indg l)u) Oup X

These R[G]-homomorphisms make a commutative diagram with the R[G]-homomor-
phisms GBQQQ' <I>8, and <I>g going from the lower line to the upper line. Indeed,
let v ® fou ® lu € (e(V) ®r (Ind$, 1)¥) @3, X. On the one hand, it goes
to v ® sz,(GQ/(eg) ® 1y € (e(V) ®r (Indg 1)) ®3, X by the horizontal map,
and then to v ® 1y, ® fQueQr(eQ/) by the vertical map. On the other hand, it
goes to v ® 1y, ® fouu by the vertical map, and then to v ® 1y, ® fQué'Q/(egl)
by the horizontal map. One deduces that @8 induces an R[G]-homomorphism
(e(V) ®r (Stg)u) ®@up X — e(0) ®r Stg, which is an isomorphism if <I>g, is an
R[G]-isomorphism for all Q C Q. O

5.3. General. We consider now the general case: let P = MN C @ be two
standard parabolic subgroups of G and let V be a non-zero right H s, g-module

with @ C P(V). We recall Iy(P,V,Q) = Ind}j,,  (e(V) ®@r (SthV))ae) and
0 =V @, r X (Proposition 5.4). There is a natural R[G]-homomorphism

eF, G P(V)
I (PV, Q) ®uy, X — IndP ) (earvy(0) ®r Sty ")

obtained by composition of the R[G]-isomorphism [OV17, Corollary 4.7] (proof of
Proposition 5.9):

MV
Ly(P,V,Q) @3, X = IndF ) ((e(V) @r (Sthgj\}(V))uMm) Orar vy w X))
with the R[G]-homomorphism
Indf ) (V) @ (Stg V0 @ty o Xarw)) = IndF ) (earv) (0) €1 St ),
image by the parabolic induction Indg(v) of the homomorphism
(V) @ (315" ™) Oy, Karv) = ar)(0) Or 5t

induced by the R[M (V)]-homomorphism @g(v) = @gr%)(v) of Proposition 5.10
applied to M (V) instead of G.

This homomorphism ‘I)? is an isomorphism if @g(v) is an isomorphism, in par-
ticular if V has no ¢s + 1-torsion for any s € Sﬁz where Ay, = Apvy \ A
(Proposition 5.10). We get the main theorem of this section.

Theorem 5.11. Let (P = MN,V, Q) be an Hg-triple and 0 = V®yy,, , RUM\M].
Then, (P,0,Q) is an R|G]-triple. The R[G]|-homomorphism

Ly(P,V RUNG] 2% tndC §tPM)
1PV, Q) @y, RUNG] — Indpyy (enr(v)(0) ®r Sty )

is an isomorphism if QZ(V) is an isomorphism. In particular <I>IG is an isomorphism
if V has no qs + 1-torsion for any s € Sﬁ/ﬁf,.
2



Recalling Ig(P,0,Q) = Indg(a)(e(a) ®r Stg(g)) when o # 0, we deduce the
following.

Corollary 5.12. We have the following:

I4(P,V,Q) @y, RU\G] ~ Ia(P,0,Q), if 0 # 0, P(V) = P(c) and V has no
gs + 1-torsion for any s € Safz.

Iy (P,V,Q) ®ny, RU\G] = I6(P,0,Q) =0, if o = 0.

Recalling P(V) = P(o) if 0 # 0, R is a field of characteristic p and V simple
supersingular (Proposition 5.4 (4)), we deduce the following.

Corollary 5.13. Iy(P,V,Q) @y, RU\G| ~ I¢(P,0,Q) if R is a field of charac-
teristic p and V simple supersingular.

6. VANISHING OF THE SMOOTH DUAL

Let V be an R[G]-module. The dual Homg(V, R) of V is an R[G]-module for
the contragredient action: gL(gv) = L(v) if ¢ € G, L € Hompg(V, R) is a linear
form and v € V. When V € Modg (G) is a smooth R-representation of G, the
dual of V' is not necessarily smooth. A linear form L is smooth if there exists an
open subgroup H C G such that L(hv) = L(v) for all h € H,v € V; the space
Hompg(V, R)*>°of smooth linear forms is a smooth R-representation of G, called the
smooth dual (or smooth contragredient) of V. The smooth dual of V' is contained
in the dual of V.

Example 6.1. When R is a field and the dimension of V' over R is finite, the dual
of V' is equal to the smooth dual of V' because the kernel of the action of G on V'
is an open normal subgroup H C Gj the action of G on the dual Homg(V, R) is
trivial on H.

We assume in this section that R is a field of characteristic p. Let P = M N be
a parabolic subgroup of G and V € Mod% (M). Generalizing the proof given in
[Vig07, 8.1] when G = GL(2, F') and the dimension of V is 1, we show the following.

Proposition 6.2. If P # G, the smooth dual of Ind$ (V') is 0.

Proof. Let L be a smooth linear form on Ind%(V) and let K be an open pro-p-
subgroup of G which fixes L. Let J be an arbitrary open subgroup of K, g € G
and f € (Ind% (V) with support Pg.J. We want to show that L(f) = 0. Let J' be
any open normal subgroup of .J and let ¢ denote the function in (Ind%(V))”" with
support PgJ’ and value ¢(g) = f(g) at g. For j € J we have L(j¢) = L(p), and
the support of jo(x) = ¢(xj) is PgJ'j~!. The function f is the sum of translates
jo, where j ranges through the left cosets of the image X of g~'PgNJ in J/J',
so that L(f) = rL(p) where r is the order of X in J/J'. We can certainly find .J/
such that r # 1, and then r is a positive power of p. As the characteristic of R is p
we have L(f) = 0. O

The module R[U\G] is contained in the module R“\C of functions f : U\G — R.
The actions of H and of G on R[U\G] extend to RY\G by the same formulas. The
pairing

(fr0) = (F0) = Y. f(9)elg) : R\ x RU\G] — R
geU\G



identifies RY\® with the dual of RU\G]. Let h € H and h € H, h(g) = h(g™") for
g € G. We have

(f.he) = (hf, ).

Proposition 6.3. When R is an algebraically closed field of characteristic p, G is
not compact modulo the center and V is a simple supersingular right Hgr-module,
the smooth dual of V ®4,, RU\G] is 0.

Proof. Let H3 be the subalgebra of Hp of basis (T,)wew (1) where W/(1) is the
inverse image of W’ in W(1). The dual of V ®4, R[U\G] is contained in the
dual of V Opgase RIU\GJ; the Hff-module V|H%ff is a finite sum of supersingular
characters [Viglbal. Let x : H‘j‘f — R be a supersingular character. The dual
of X @gyasr R[U\G] is contained in the dual of R[U\G] isomorphic to RY\G. Tt is
the space of f € RU\NG with Af = x(h)f for all h € H%{f. The smooth dual of
X @yt RIU\G] is 0 if the dual of x Dpyast R[U\G] has no non-zero element fixed by
U. Let us take fve RUNG/U with hf = x(h)f for all h € ’H%ﬂ. We shall prove that
f =0. We have Ty, = T,,—1 for w € W(1).

Let < denote the Bruhat order of W (1) associated to S* [Vig16]. The elements
(Ty)tez, and (Ts),ega where 3 is an admissible lift of s in W (1), generate the
algebra H3t and

Tgw, Sw > w,
TtTw = Ttwa TETw = {

csTy, Sw<w,

with ¢z = —|Z;, | ZteZ,@ _ T because the characteristic of R is p [Vigl6, Proposition

4.4]. Expressing f = Z;ew(l) aw Ty, ay € R, as an infinite sum, we have

th: Z atflewa Tgf: Z (a(§)71w+awC§)Tu"

weW (1) weW (1),5w<w
A character x of H?{Y is associated to a character xx : Zx — R* and a subset J of
S;if = {s € g | (X’“)|ch,s trivial }
[Viglba, Definition 2.7]. We have

X(Ti) = xx(1), t € Zy,

(6.1) N J0, sesr\y, (xr)(cs) = {
x(Ts) = {—1, s€J

ff ff
0, s e S? \S;k,
aff
-1, se Sy

Therefore xx(t)f = Ty f = Ty-1 f hence x(t)ayw = arp. We have x(15)f = Tsf =
Tis)y-1f = TsT(g)-2f = xe((3)*)Tsf; as (5)* € 7y, s [Vigl6, three lines before Propo-

sition 4.4] and J C 52, we obtain

o, s€ SN\ g,
(6.2) Tsf = {—f, seJ.



Introducing xi(t)a, = at, in the formula for T5f, we get

7 =1
E awCETw = _‘Zk7s| E athw

weW (1),5w<w weW (1),5w<w,teZ;, |

/=1
_‘Zk,sl Z at_lwﬂu
weW (1),5w<w,teZ;, |

1z Y )Yl

tez; weW (1),5w<w

= xx(cs) Z awThy-

weW (1),5w<w

T§f = Z (a‘(g)’lw + aka(c§))Tw
weW (1),5w<w
_ Zu}GW(l),§w<’w a(g)—lew, s€ Saﬂl \ S;f:’
Zwew(l),§w<w(a(§)*1w - aw)Tun ERS S;S

From the last equality and (6.2) for Tsf, we get:

o — {0, s € JU (S §21) 3w < w,

6.3
(6:3) U, sGS;f:\J.

Assume that a, # 0. By the first condition, we know that w > Sw for s €
JU (SaH\S;f). The character y is supersingular if for each irreducible component X
of S the intersection X N.J is not empty and different from X [Vigl5a, Definition
2.7, Theorem 6.18]. This implies that the group generated by the s € S;f \ J is
finite. If x is supersingular, by the second condition we can suppose w > Sw for
any s € S, But there is no such element if S*¥ is not empty. g

Theorem 6.4. Let m be an irreducible admissible R-representation of G with a
non-zero smooth dual where R is an algebraically closed field of characteristic p.
Then 7 is finite dimensional.

Proof. Let (P, o, Q) be an R[G]-triple with ¢ supercuspidal such that 7 ~ I (P, o, Q).
The representation I(P, 0, Q) is a quotient of Indg eq(o) hence the smooth dual of
Indg eq(o) is not zero. From Proposition 6.2, Q = G. We have Ig(P,0,G) = e(0).
The smooth dual of o contains the smooth linear dual of e(o) hence is not zero. As
o is supercuspidal, the H;-module ¢¥™ contains a simple supersingular submod-
ule V [Vigl5a, Proposition 7.10, Corollary 7.11]. The functor — @y, , RUn\M]
being the right adjoint of (—)“™, the irreducible representation o is a quotient of
Y @44 r RUn\M], hence the smooth dual of V ®4,, , R[Un\M] is not zero. By
Proposition 6.3, M = Z. Hence o is finite dimensional and the same is true for
e(o) =1g(B,0,G) ~ 7. O

Remark 6.5. When the characteristic of F' is 0, Theorem 6.4 was proved by
Kohlhaase for a field R of characteristic p. He gives two proofs [Koh, Proposi-
tion 3.9, Remark 3.10], but none of them extends to F of characteristic p. Our
proof is valid without restriction on the characteristic of F' and does not use the
results of Kohlhaase. Our assumption that R is an algebraically closed field of
characteristic p comes from the classification theorem in [AHHV17].
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