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Recovery and convergence rate of the Frank-Wolfe
Algorithm for the m-EXACT-SPARSE Problem

Farah Cherfaoui, Valentin Emiya, Liva Ralaivola and Sandrine Anthoine

Abstract—We study the properties of the Frank-Wolfe algo-
rithm to solve the m-EXACT-SPARSE reconstruction problem,
where a signal y must be expressed as a sparse linear combination
of a predefined set of atoms, called dictionary. We prove that
when the dictionary is quasi-incoherent, then the iterative process
implemented by the Frank-Wolfe algorithm only recruits atoms
from the support of the signal, that is the smallest set of atoms
from the dictionary that allows for a perfect reconstruction of
y. We also prove that when the dictionary is quasi-incoherent,
there exists an iteration beyond which the algorithm converges
exponentially.

Index Terms—sparse representation, Frank-Wolfe algorithm,
recovery properties, exponential convergence.

I. INTRODUCTION

A. The m-EXACT-SPARSE problem

A signal y in Rd is m-sparse in a given dictionary Φ in
Rd×n, when y is a linear combination of at most m

atoms (i.e. columns) of Φ. Given a dictionary Φ and an m-
sparse signal y, the m-EXACT-SPARSE problem is to express
y as a linear expansion of at most m atoms.

Here, we study the algorithmic properties of the Frank-
Wolfe optimization procedure [5] when implemented to solve
this problem.

In the sequel, the dictionary Φ = [ϕ1 · · ·ϕn] ∈ Rd×n is
the matrix made of the n atoms ϕ1, . . . , ϕn ∈ Rd, assumed
to be so that ‖ϕi‖2 = 1,∀i. The support Λ of an m-sparse
signal y is the smallest subset of {1, . . . , n} of size m such
that y is in the span of the atoms indexed by Λ (we give in
Section III the condition under which this support is unique).
The sparsity of a linear combination Φx (x ∈ Rn) such that
y = Φx is measured by the number of nonzero entries of x,
sometimes referred to as the quasi-norm ‖x‖0 of x.

Formally the m-EXACT-SPARSE problem is the following.
Giving a dictionary Φ and an m-sparse signal y:

find x s.t. y = Φx and ‖x‖0 ≤ m.

Since y is a linear combination of at most m atoms of Φ, a
solution of the problem can be obtained by solving:

arg minx∈Rn
1
2‖y − Φx‖22 s.t. ‖x‖0 ≤ m. (1)
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B. Related work

The m-EXACT-SPARSE problem is NP-hard [4]. This raises
the question on the conditions under which m-EXACT-SPARSE
becomes tractable. Many types of algorithms have been pro-
posed to answer this question, including brute force [11],
nonlinear programming [13], and greedy pursuits [10], [12],
[15], [14], [1]. Another way to tackle the m-EXACT-SPARSE
problem is to relax Problem (1) for example, by changing
the l0 quasi-norm to an l1 norm (e.g. LASSO [16] and
Basis Pursuit [3]). This gives rise to convex optimization
problems for which a number of different methods can be used.
Moreover the approximation that is made by such relaxation
can sometimes be controlled. Even better, Tropp in [18] proved
that under specific conditions, the supports of the solutions of
the l1-relaxation of LASSO and Basis Pursuit are included in
that of the m-EXACT-SPARSE problem.

In this paper, we consider the following l1-relaxation:

arg minx∈Rn
1
2‖y − Φx‖22 s.t. ‖x‖1 ≤ β (2)

where ‖.‖1 is the l1 norm and β > 0 is a hyperparameter.
We will solve this problem by applying a Frank-Wolfe proce-
dure [5].

To motivate our work, let us go back to the m-EXACT-
SPARSE problem. Matching Pursuit (MP) [10] and Orthogonal
Matching Pursuit (OMP) [12] are two greedy algorithms used
to seek a solution to this problem. These two algorithms were
studied a lot, and recovery guarantees for sparse signals were
given for MP and OMP. Tropp [17] and Gribonval and Van-
dergheynst [6] proved that, if the dictionary is quasi-incoherent
(for example, the dictionary is close to an orthonormal basis),
then at each iteration the MP and OMP algorithms pick up
an atom indexed by the support. They also proved that MP
converges exponentially, and that OMP converges after exactly
m iterations, where m is the size of the support. In their
papers, Tropp [17] and Gribonval and Vandergheynst [6] also
studied the case when the signal is not exactly m-sparse, and
proved similar results.

On the other hand, the Frank-Wolfe algorithm [5] is an iter-
ative optimization algorithm designed for constrained convex
optimization. It has been proven to converge exponentially
if the objective function is strongly convex [7] and linearly
in the other cases [5]. When solving (2), the atom selection
steps in Matching Pursuit and Frank-Wolfe are very similar (as
we will see in Section II-C). This inspired for example Jaggi
and al. [8] to exploit tools usually used for the Frank-Wolfe
algorithm to prove the convergence of the MP algorithm when
no assumptions are made on the dictionary.
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In our paper, we will do the opposite. We will exploit tools
used for MP and OMP to study the properties of the Frank-
Wolfe algorithm when seeking a solution of Problem (2) when
y is m-sparse.

C. Main results

We show that the Frank Wolfe algorithm, when used to
solve (2), enjoys recovery and convergence properties regard-
ing m-EXACT-SPARSE that are similar to those established
in [6], [17] for MP and OMP, under the very same assump-
tions.

Our results rely on a fundamental quantity associated to a
dictionary Φ = [ϕ1 · · ·ϕn]: its Babel function, defined as

µ1(m) = max
|Λ|=m

max
i/∈Λ

∑
j∈Λ

|〈ϕi, ϕj〉|.

For given m, µ1(m) is roughly a measure on how well any
atom from Φ can be expressed as a linear combination of a
set of m − 1 other atoms. When m = 1, the Babel function
boils down to

µ = µ1(1) = max
j 6=k
|〈ϕj , ϕk〉|,

which is known as the coherence of Φ. When

m < 1
2 (µ−1 + 1),

we say that the dictionary is quasi-incoherent. In Featured
Theorem 1, we state that when the dictionary is quasi-
incoherent, then at each iteration the Frank-Wolfe algorithm
picks up an atom indexed by the support of y.

Featured Theorem 1. Let Φ be a quasi-incoherent dictionary,
and y an m-sparse signal. Then at each iteration, the Frank-
Wolfe algorithm picks up an atom of the support of the signal.

For such dictionaries, we also prove that the rate of conver-
gence of the Frank-Wolfe algorithm is exponential beyond a
certain iteration even though the function we consider is not
strongly convex. This is given by Featured Theorem 2.

Featured Theorem 2. Let Φ be a quasi-incoherent dictionary
and y an m-sparse signal. Under some conditions on y and
β, there exists an iteration K of the Frank-Wolfe algorithm
and 0 < θ ≤ 1 such that:

‖y − Φxk+1‖22 ≤ ‖y − Φxk‖22(1− θ) ∀ k ≥ K

where θ depends on µ1(m − 1), β, and y and 0 < θ ≤ 1
(which implies the exponential convergence).

D. Organization of the Paper

In Section II, we instantiate the Frank-Wolfe algorithm for
Problem (2) and we relate it to MP and OMP. Section III is
devoted to the statement and the proofs of our main results.
We probe their optimality with numerical experiments in
Section IV.

II. THE ALGORITHMS

This section recalls Matching Pursuit and Orthogonal
Matching Pursuit, the classical greedy algorithms used for
solving the m-EXACT-SPARSE problem. We then present the
Frank-Wolfe algorithm and derive it for Problem (2), showing
its similarities with MP and OMP.

A. Matching Pursuit and Orthogonal Matching Pursuit

Let Φ be a dictionary and y an exactly m-sparse signal (i.e.
there exists an x with exactly m non-zero entries such that
y = Φx). If the dictionary is an orthonormal basis, the m-
EXACT-SPARSE problem has an easy solution: one chooses
the m atoms having the largest absolute inner products with
the signal. These m atoms have non-zero inner products with
the signal. The corresponding non-zero values in x are then
the inner products themselves.

Algorithmically, this can be achieved by building the ap-
proximation one term at a time. Noting yk the current approx-
imation and rk = y−yk the corresponding residual, we select
at each time the atom which has the largest inner product with
the residual, and update the approximation.

Matching Pursuit [10] and Orthogonal Matching Pur-
suit [12] are two greedy algorithms used for approximating
signals that build upon this idea of greedy selection and iter-
ative updates. MP and OMP initialize the first approximation
y0 = 0 and residual r0 = y and then repeat the following
steps:
• Atom selection: λk = arg maxi |〈ϕi, rk〉|.
• Approximation update:

– MP: yk+1 = yk + 〈ϕλk , rk〉ϕλk
– OMP: yk+1 = arg mina∈span({ϕλ0

,...,ϕλk})
‖y−a‖2

• Residual update: rk+1 = y − yk+1.

B. Frank-Wolfe

The Frank-Wolfe algorithm [5] is an iterative algorithm
developed to solve the optimization problem:

min
x∈C

f(x) s.t. x ∈ C (3)

where f is a convex and continuously differentiable function
and C is a compact and convex set. The Frank-Wolfe algorithm
is initialized with an element of C. Then, at iteration k, the
algorithm applies the three following steps:
• Descent direction selection:

sk = arg mins∈C〈s,∇f(xk)〉.
• Step size optimization:

γk = arg minγ∈[0,1] f((1− γ)xk + γsk).
• Update: xk+1 = (1− γk)xk + γksk.

Note that the step-size γk can be chosen by others methods [8],
without affecting the convergence properties of the algorithm.

C. Frank-Wolfe for the m-EXACT-SPARSE problem

We are interested in solving the m-EXACT-SPARSE problem
by finding the solution of the following problem:

arg minx∈Rn
1
2‖y − Φx‖22 s.t. ‖x‖1 ≤ β (2)
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Algorithm 1: The Frank-Wolfe algorithm
Data: signal y, dictionary Φ = [ϕ1, . . . , ϕn], β > 0.

1 x0 = 0
2 k = 0
3 while stopping criterion not verified do
4 ik = arg maxi∈{1,...,n} |〈ϕi, y − Φxk〉|
5 sk = sign(〈ϕik , y − Φxk〉)βeik
6 γk = arg minγ∈[0,1] ‖y − Φ(xk + γ(sk − xk))‖22
7 xk+1 = xk + γk(sk − xk)
8 k = k + 1
9 end

using the Frank-Wolfe algorithm. Let us derive the algorithm
in this context. The objective function to minimize is:

f(x) = 1
2‖y − Φx‖22,

and the convex set is:

C = {x : ‖x‖1 ≤ β}.

C is the l1 ball of radius β that we denote by B1(β). It
can be written as the convex hull: B1(β) = conv{±βei|i ∈
{1, . . . , n}}, with ei the canonical basis vectors of Rn. More-
over, ∇f(x) = Φt(Φx− y). The selection step of the Frank-
Wolfe algorithm thus becomes:

sk = arg mins∈conv{±βei|i∈{1,...,n}}〈s,Φ
t(Φxk − y)〉.

Since this optimization problem is linear and B1(β) is closed
and bounded, the solution corresponds to an extreme point of
B1(β) (see [2] for more details):

sk = arg mins∈{±βei|i∈{1,...,n}}〈s,Φ
t(Φxk − y)〉

or equivalently

sk = arg maxs∈{±βei|i∈{1,...,n}}〈Φs, y − Φxk〉.

Noticing that s = ±βei implies Φs = ±βϕi, we conclude
that the direction selection step of the Frank-Wolfe algorithm
for Problem (2) can be rewritten as:{

ik = arg maxi∈{1,...,n} |〈ϕi, y − Φxk〉|
sk = sign(〈ϕik , y − Φxk〉)βeik .

Recalling that the residual rk is:

rk = y − Φxk,

we notice that we have the same atom selection as in MP
and OMP: ik = λk = arg maxi |〈ϕi, rk〉|. Finally, we specify
the initialization x0 = 0 which is in B1(β). This completes
the description of the Frank-Wolfe algorithm for Problem (2)
which is summarized in Algorithm 1.

In the sequel, we will be interested in the recovery and
convergence properties of this algorithm in the case when
the dictionary is quasi-incoherent (m < 1

2 (µ−1 + 1)). This
hypothesis implies that the atoms of any subset of at most
m atoms ({ϕi|i ∈ Λ} such that |Λ| ≤ m) are necessarily
linearly independent and also that for any m-sparse signal

y, the expansion coefficients x∗ such that y = Φx∗ and
‖x∗‖0 ≤ m and the corresponding support are unique.

In this case, x∗ is the unique solution of the m-EXACT-
SPARSE problem and also of Problem (1). As for the relaxed
problem (2), we have f(x∗) = 0; however x∗ is a solution of
Problem (2) if and only if it is feasible i.e. ‖x∗‖1 ≤ β.

Now, let us clarify some notations. For an m-sparse sig-
nal y = Φx∗, we denote by Λopt its support i.e. y =∑
i∈Λopt

x∗[i]ϕi such that |Λopt| ≤ m. For Λ a subset of
{1, . . . , n}, we denote by ΦΛ the matrix whose columns are
the atoms indexed by Λ. When Λ is the support Λopt, we note
λ∗min (resp. λ∗max) its lowest (resp. largest singular value). For
a matrix Φ we denote by span(Φ) the vector space spanned
by its columns. Finally, when we study the convergence of
Algorithm 1, we consider the residual squared norm as it is
linked to the objective function:

f(xk) = 1
2‖y − Φxk‖22 = 1

2‖rk‖
2
2.

III. EXACT RECOVERY AND EXPONENTIAL CONVERGENCE

In this section, we state and prove our main results on the
recovery property and the convergence rate of Algorithm 1. We
state in Theorem 1 the recovery guaranties of this algorithm,
and we present its convergence rate in Theorem 2.

A. Recovery condition

Tropp [17] and Gribonval and Vandergheynst [6] proved that
when the dictionary is quasi-incoherent, then MP and OMP
exactly recover the m-expansion of any m-sparse signal. To do
so, they prove that at each step, MP and OMP pick an atom of
the support. Theorem 1 extends this result to the Frank-Wolfe
algorithm.

Theorem 1. Let Φ be a dictionary, µ its coherence, and y an
m-sparse signal of support Λopt. If m < 1

2 (µ−1 + 1), then at
each iteration, Algorithm 1 picks up a correct atom, i.e. ∀ k,
ik ∈ Λopt.

Remark 1. As in [17], [6], the condition m < 1
2 (µ−1 + 1)

can be replaced by a weaker support-specific condition called
the exact recovery condition (ERC): max

i/∈Λopt
‖Φ+

Λopt
ϕi‖1 < 1.

ERC is not easy to check in practice because it depends on the
unknown support Λopt. The quasi-incoherence m < 1

2 (µ−1 +
1) is a sufficient condition to have ERC [17]. Furthermore,
this last condition is easy to check.

Proof of Theorem 1. The proof of this theorem is very similar
to the proof of Theorem 3.1 in [17]. One shows by induction
that at each step the residual rk = y − Φxk remains in
span(Φλopt) and in the process that the selected atom is in
Λopt.

• k = 0: by definition r0 = y is in span(Φλopt).
• If k ≥ 0: we assume that rk ∈ span(ΦΛopt). The atom
ϕik is a “good atom” (i.e. ik ∈ Λopt), if and only if:

ρ(rk) =
‖Ψt

optrk‖∞
‖Φtoptrk‖∞

< 1.
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Tropp [17] proved that ρ(rk) ≤ max
i/∈Λopt

‖Φ+
Λopt

ϕi‖1 ≤
µ1(m)

1−µ1(m−1) and that m < 1
2 (µ−1 + 1) implies

µ1(m)
1−µ1(m−1) < 1.
Hence ik is in Λopt and sk = ±βϕik is thus in
span(ΦΛopt). Notice that rk+1 = rk − γkΦ(sk − xk).
Since rk is also span(ΦΛopt) by assumption, we deduce
that rk+1 is in span(ΦΛopt).

Theorem 1 specifies that under the quasi-incoherence hy-
pothesis, Algorithm 1 only recruits atoms of the support of y.
As noted before however, the expansion x∗ can not always be
reached (because it might be the case that ‖x∗‖1 > β). In the
case when it can be reached (i.e. when ‖x∗‖1 ≤ β) one can
furthermore prove that the expansion itself is recovered:

Corollary 1. Let Φ be a dictionary, µ its coherence, and
y an m-sparse signal of support Λopt. If m < 1

2 (µ−1 + 1)
and ‖x∗‖1 ≤ β then the sequence xk converges to x∗ (i.e.
Algorithm 1 exactly recovers the m-sparse expansion of y).

Proof of Corollary 1. ‖x∗‖1 ≤ β so that x∗ is a solution of
Problem (2). The Frank-Wolfe algorithm is known to converge
in terms of objective values (f(xk)), we deduce that f(xk)
converges to f(x∗) = 0. Since Theorem 1 ensures that the
iterates xk are in span(ΦΛopt), we also have convergence of
the iterates (xk converge to x∗) since

|f(xk)− f(x∗)| = |f(xk)− 0| = 1
2‖y − Φxk‖22

= 1
2‖Φx

∗ − Φxk‖22
≥ 1

2 (λ∗min)
2 ‖x∗ − xk‖22

where the last line holds because xk − x∗ is in span(ΦΛopt)
and λ∗min > 0 since m < 1

2 (µ−1 + 1) [17].

In this section, we presented the recovery guarantees for
the Frank-Wolfe algorithm. In the next section, we will show
that the convergence rate of the Frank-Wolfe algorithm is
exponential when the dictionary is quasi-incoherent and β is
large enough so that the expansion x∗ is recovered.

B. Rate of convergence

As mentioned in the introduction, in the generic case of
Problem (3), the Frank-Wolfe algorithm converges exponen-
tially beyond a certain iteration when the objective function
is strongly convex [7] and linearly in the other cases [5].
We prove in Theorem 2, that when the dictionary is quasi-
incoherent, the Frank-Wolfe algorithm converges exponen-
tially beyond a certain iteration even though the function we
consider is not strongly convex.

Theorem 2. Let Φ be a dictionary, µ its coherence, µ1 its
Babel function, and y = Φx∗ an m-sparse signal.
If m < 1

2 (µ−1 + 1) and ‖x∗‖1 < β, then there exists K such
that for all iterations k ≥ K of Algorithm 1, we have:

‖rk+1‖22 ≤ ‖rk‖22(1− θ)

where
θ = 1

16

(
1−µ1(m−1)

m

)(
1− ‖x

∗‖1
β

)2

.

Remark 2. Note that 0 < θ ≤ 1. Indeed, m < 1
2 (µ−1 + 1)

implies 0 < µ1(m − 1) < 1 so that 0 < 1
16m (1 − µ1(m −

1))
(

1− ‖x
∗‖1
β

)2

≤ 1 i.e. 0 < θ ≤ 1. Thus, Theorem 2 shows
exponential convergence.

Remark 3. As for Theorem 1, the same result holds when
the Exact Recovery Condition (ERC), µ1(m − 1) < 1 and
‖x∗‖1 < β hold.

Proof of Theorem 2. Note that we are in the case where both
Theorem 1 and Corollary 1 hold. Let k be an iteration of
Algorithm 1. There are two possibles values for γk:

a) γk = 0: then xk = xk+1 and subsequently for all
l ≥ k, xk = xl and f(xk) = f(xl). The convergence of the
objective values yields: f(xl) = f(x∗) = 0 for l ≥ k and in
particular ‖rk+1‖22 = ‖rk‖22 = 0. Thus Theorem 2 holds.

b) 0 < γk ≤ 1: by definition of the residual, we have:

‖rk+1‖22 = ‖y − Φxk+1‖22
= ‖rk − Φγk(sk − xk)‖22
= ‖rk‖22 − 2γk〈Φ(sk − xk)), rk〉+ γ2

k‖Φ(sk − xk))‖22.

γk is the solution of the following optimization problem:

γk = arg minγ∈[0,1] ‖y − Φ(xk + γ(sk − xk))‖22.

Notice that ‖Φv‖2 ≤ ‖v‖1 for all vectors v in Rn since
the ϕi are of unit norm (‖Φv‖22 =

∑n
i,j=1 v[i]v[j]〈ϕi, ϕj〉 ≤∑n

i,j=1 |v[i]||v[j]| = ‖v‖21). Hence

‖y‖2 = ‖Φx∗‖2 ≤ ‖x∗‖1 < β.

We show in Lemma 2 (stated in the appendix) that the solution
of the previous problem is then:

γk =
〈Φ(sk − xk), rk〉
‖Φ(sk − xk)‖22

.

Replacing the value of γk in the previous equation we obtain:

‖rk+1‖22 = ‖rk‖22 −
〈Φ(sk − xk), rk〉2

‖Φ(sk − xk)‖22
. (4)

We shall now lower-bound 〈Φ(sk − xk), rk〉2 and upper-
bound ‖Φ(sk − xk)‖22.

To bound ‖Φ(sk − xk)‖22, we use ‖Φv‖2 ≤ ‖v‖1 and sk
and xk are in B1(β):

‖Φ(sk − xk)‖22 ≤ ‖sk − xk‖21 ≤ 4β2. (5)

To bound 〈Φ(sk − xk), rk〉2, fix ε = β−‖x∗‖1
2 > 0. As noted

in Corollary 1, the iterates xk converge to x∗, there exists an
iteration K such that for every k ≥ K: ‖xk − x∗‖1 ≤ ε. Fix
k ≥ K. Let us define u ∈ Rn, such that:

u[i] =

{
ε√

m‖ΦtΛoptrk‖2
(Φtrk)[i] if i ∈ Λopt

0 otherwise.

One can show that xk + u is in B1(β), indeed

‖xk + u‖1 ≤ ‖xk − x∗‖1 + ‖x∗‖1 + ‖u‖1
≤ ε+ ‖x∗‖1 +

ε√
m‖ΦtΛoptrk‖2

‖ΦtΛoptrk‖1.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Noting that ‖ΦtΛoptrk‖1 ≤
√
m‖ΦtΛoptrk‖2 (because

ΦtΛoptrk ∈ R|Λopt| and |Λopt| ≤ m) leads to:

‖xk + u‖1 ≤ 2ε+ ‖x∗‖1 = β.

We conclude that xk + u is in B1(β).
Since sk = arg mins∈B1(β)〈s,∇f(xk)〉 then:

〈sk,∇f(xk)〉 ≤ 〈xk + u,∇f(xk)〉
〈sk − xk,∇f(xk)〉 ≤ 〈u,∇f(xk)〉.

By definition of f : ∇f(xk) = −Φtrk, thus:

〈sk − xk,Φtrk〉 ≥ 〈u,Φtrk〉
〈Φ(sk − xk), rk〉 ≥ 〈u,Φtrk〉.

Noting that

〈u,Φtrk〉 =
∑
i∈Λopt

ε√
m‖ΦtΛoptrk‖2

(Φtrk)2[i] =
ε‖ΦtΛoptrk‖2√

m
,

we conclude:

〈Φ(sk − xk), rk〉 ≥
ε√
m
‖ΦtΛoptrk‖2.

By Theorem 1, rk is in span(ΦΛopt) and since the atoms
indexed by Λopt are linearly independent (thus λ∗min > 0),
we obtain:

‖ΦtΛoptrk‖2 ≥ λ
∗
min‖rk‖2

and
〈Φ(sk − xk), rk〉 ≥

ε√
m
λ∗min‖rk‖2.

By Lemma 2.3 of [17], (λ∗min)2 ≥ 1 − µ1(m − 1). Since
m < 1

2 (µ−1 + 1) implies µ1(m) + µ1(m − 1) < 1 [17], we
have 0 < 1− µ1(m− 1) < 1 and deduce that:

〈Φ(sk − xk), rk〉 ≥ ε
√

1− µ1(m− 1)

m
‖rk‖2. (6)

Plugin in the bounds of Eq. (5) and (6) in Eq. (4), we obtain:

‖rk+1‖2 =‖rk‖2 −
〈Φ(sk − xk), rk〉2

‖Φ(sk − xk)‖2

‖rk+1‖2 ≤‖rk‖2
(

1− ε2(1− µ1(m− 1))

4β2m

)
‖rk+1‖2 ≤‖rk‖2

(
1− 1

16

(
1−µ1(m−1)

m

)(
1− ‖x

∗‖1
β

)2
)
.

which finishes the proof.

A natural question that comes from examining Theorem 2
and from the convergence rate of MP and OMP is whether
it is possible to guarantee the exponential convergence from
the first iteration. The following theorem proves that this is
possible if β is large enough.

Theorem 3. Let Φ be a dictionary of coherence µ and y an
m-sparse signal. If m < 1

2 (µ−1 + 1) and

β > 2‖y‖2
√

m
1−µ1(m−1) ,

then Algorithm 1 converges exponentially from the first itera-
tion.

We proved in Theorem 2 that when the iterates xk stay close
enough x∗ (‖xk − x∗‖1 ≤ ε = β−‖x∗‖1

2 ), Algorithm 1 con-
verges exponentially. The intuition of Theorem 3 is to choose
β large enough so that a similar bound this is guaranteed from
the first iteration.

Remark 4. Let us remark that the assumption β >

2‖y‖2
√

m
1−µ1(m−1) is stronger than that of Theorem 2 (β >

‖x∗‖1). Indeed, we have on the one hand: ‖x∗‖1 ≤
√
m‖x∗‖2

because x∗ has non-zero coefficients only in λopt. On the other
hand:

‖y‖2 = ‖Φx∗‖2 ≥ λ∗min‖x∗‖2 ≥
√

1− µ1(m− 1)‖x∗‖2.

We conclude

‖x∗‖1 ≤ ‖y‖2
√

m
1−µ1(m−1) . (7)

So that β > 2‖y‖2
√

m
1−µ1(m−1) implies β > ‖x∗‖1.

Besides, while the assumption of Theorem 2 (β > ‖x∗‖1)
can not be verified beforehand since it depends on the un-
known x∗, the assumption of Theorem 3 can be checked since
it depends on the dictionary and y.

To prove Theorem 3, the key is to bound uniformly the l1
norm of the iterates xk. This is the purpose of the following
Lemma.

Lemma 1. Let Φ be a dictionary, µ its coherence, and y =
Φx∗ an m-sparse signal. If m < 1

2 (µ−1 + 1), then for each
iteration k of Algorithm 1

‖xk‖1 ≤ 2‖y‖2
√

m
1−µ1(m−1) .

The proof of Lemma 1 is available in Appendix B. We can
now give the proof of Theorem 3.

Proof of Theorem 3. Since β > 2‖y‖2
√

m
1−µ1(m−1) ≥ ‖x

∗‖1
(see Remark 4), we can re-use the arguments of the proof of
Theorem 2. We will do so up to Eq. (5) and only modify the
lower bound on 〈Φ(sk − xk), rk〉2.

By definition of sk,

〈Φsk, rk〉 = βmax
i
|〈ϕi, rk〉|

and

〈Φxk, rk〉 = 〈xk,Φtrk〉 =
∑
i

(xk)[i](Φtrk)[i]

≤ ‖xk‖1 max
i
|(Φtrk)[i]|

= ‖xk‖1 max
i
|〈ϕi, rk〉|.

We conclude that:

〈Φ(sk − xk), rk〉 = 〈Φsk, rk〉 − 〈Φxk, rk〉

≥ βmax
i
|〈ϕi, rk〉|

(
1− ‖xk‖1

β

)
.

By Lemma 2 of [6]:

max
i
|〈ϕi, rk〉| ≥ ‖rk‖2

√
1−µ1(m−1)

m .
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Hence:

〈Φ(sk − xk), rk〉 ≥ β‖rk‖2
√

1−µ1(m−1)
m

(
1− ‖xk‖1

β

)
.

(8)
What is left to prove is that 1− ‖xk‖1β is uniformly bounded

away from zero. Using Lemma 1 we obtain:

1− ‖xk‖1
β
≥ 1− 2‖y‖2

β

√
m

1−µ1(m−1) . (9)

By assumption 1 − 2‖y‖2
β

√
m

1−µ1(m−1) > 0, we deduce that
for all k:

〈Φ(sk − xk), rk〉 ≥ β‖rk‖2
√

1−µ1(m−1)
m (1− τ) > 0, (10)

with
τ = 2‖y‖2

β

√
m

1−µ1(m−1) . (11)

Using this and Eq. (4), we obtain:

‖rk+1‖22 = ‖rk‖22 −
〈Φ(sk − xk), rk〉2

‖Φ(sk − xk)‖2

≤ ‖rk‖22 − ‖rk‖22
1− µ1(m− 1)

4m
(1− τ)

2
.

We conclude that for all k:

‖rk+1‖22 ≤ ‖rk‖22
(

1− (1− µ1(m− 1))

4m
(1− τ)

2

)
,

with 0 <
(

1− (1−µ1(m−1))
4m (1− τ)

2
)
< 1 which proves the

exponential convergence from the first iteration.

IV. EXPERIMENTS

Theorem 2 shows that there is exponential convergence
when the sparsity m is small enough m < 1

2 (µ−1 + 1)
and β is larger than ‖x∗‖1. The goal of this section is to
investigate whether these conditions are tight by performing
three numerical experiments on synthetic data.

We simulate in Python signals of size d = 1000 that are
sparse on a dictionary of n = 2000 atoms. The dictionary is
the union of two orthonormal bases: a DCT-II dictionary [9]
and the identity. This dictionary has low coherence (µ = 4.5×
10−2), and m∗ = d 1

2 (µ−1 − 1)e = 11 is the largest integer
such that the condition of Theorem 2 holds. The supports of
size m are drawn uniformly at random while the corresponding
coefficients are chosen using a standard normal distribution.
For each experiment, Algorithm 1 is run for 10000 simulated
signals.

The exponential convergence in Theorem 2, is quantified by

‖rk‖22 ≤ ‖rk−1‖22(1− θ).

which is equivalent to

log ‖rk‖22 ≤ log ‖y‖22 + k log(1− θ).

In the first two experiments, we visualize the convergence rate
by displaying the quantity log ‖rk‖22, the convergence being
exponential when this is upper-bounded by a line with negative
slope (the steepest the slope, the fastest the convergence).

In the first experiment, the values of m and β comply
with the conditions of Theorem 2. We fix β = 8‖x∗‖1, and

m = m∗. We draw in Figure 1 the mean and the maximum
over the 10000 simulated signals of the function log ‖rk‖22
for each iteration k, and compare it to the theoretical bound
in Theorem 2. As expected, the maximum and the mean
of the function log ‖rk‖22 can be bounded above by a line
with negative slope, and thus converge exponentially. We also
notice that in practice, the maximum and the mean are much
lower than the theoretical prediction. This suggests that the
theoretical bound might be improved in this case.

Fig. 1. Evolution of log ‖rk‖22 in Algorithm 1, for β = 8‖x∗‖1, and m =
m∗ = d 1

2
(µ−1 − 1)e. Comparison of the theoretical bound with results

obtained on 10000 simulated signals.

In the second experiment, we investigate if the exponential
convergence is still possible when the sparsity is larger than
m∗ = d 1

2 (µ−1+1)e−1, i.e., when the condition of Theorem 2
is not satisfied. We fix here β = 8‖x∗‖1 and show the maximal
value of log ‖rk‖22 for m = m∗, 2m∗, 5m∗ and 20m∗ in
Figure 2. We observe that exponential convergence still arises
at least up to m = 5m∗ but probably not for m = 20m∗,
suggesting that in practice one may reconstruct very fast a
larger set of signals than only those being m∗-sparse, and that
there might be room for a little improvement in the assumption
m ≤ m∗ in Theorem 2.

In the last experiment, we study the influence of the distance
from x∗ to B1(β) on the convergence rate. Indeed Theorem 2
predicts that the convergence slows down when ‖x∗‖1 ap-
proaches β and does not predict exponential convergence if
‖x∗‖1 = β.

In this experiment, the sparsity m is fixed to m = m∗. We
will display the ratio ‖rk+1‖22

‖rk‖22
which if smaller than 1 shows

exponential convergence. We show in Figure 3 the mean (over
10000 simulated signals) and theoretical values of the ratio
‖rk+1‖22
‖rk‖22

in two cases: either β = β1 = 1.1‖x∗‖1 or β = β2 =

8‖x∗‖1. As expected, the ratio is smaller when β is larger. For
large β, the ratio stays well below the theoretical bound. This
is not the case anymore for β close to ‖x∗‖1 suggesting that
the theoretical bound may be reached and that the assumption
β > ‖x∗‖1 might be necessary.
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Fig. 2. Evolution the maximum value of log ‖rk‖22 for 10000 simulated
signals, with β = 8‖x∗‖1 and for different values of m.

Interestingly, one notes here a drop in the mean value for
the case β = β2, at iterations k ≤ m∗ = 11. This drop in the
ratio may be explained by the fact that at this point most of
the atoms corresponding to the largest expansion coefficients
have been selected. But further considerations on this matter
go beyond the scope of this paper.

Fig. 3. Evolution of the mean of ‖rk+1‖22
‖rk‖22

for 10000 simulated signals, with

m = m∗ and for two values of β: β1 = 1.1‖x∗‖1 and β2 = 8‖x∗‖1.

V. CONCLUSION

We studied in this paper the properties of the Frank-Wolfe
algorithm when solving the m-EXACT-SPARSE problem. We
proved that as MP and OMP, when the dictionary is quasi-
incoherent, the Frank-Wolfe algorithm picks up only atoms of
the support. We also proved that under this same condition,
the Frank-Wolfe algorithm converges exponentially. In the
experimental part, we have observed the optimality of the
obtained bound in terms of the size of the l1-ball constraining

the search space. We have gained some insights on the
sparsity bound, suggesting to study its tightness in future work.
Extending these results to the case of non-exact-sparse but only
compressible signals is also a natural next step.

APPENDIX A
PROOF OF LEMMA 1

Lemma 1. Let Φ be a dictionary, µ its coherence, and y =
Φx∗ an m-sparse signal. If m < 1

2 (µ−1 + 1), then for each
iteration k of Algorithm 1

‖xk‖1 ≤ 2‖y‖2
√

m
1−µ1(m−1) .

Proof. Indeed, we have on the one hand: ‖xk‖1 ≤
√
m‖xk‖2

because xk has non-zero coefficients only in λopt (proved in
Theorem 1). On the other hand:

‖Φxk‖2 ≥ λ∗min‖xk‖2 ≥
√

1− µ1(m− 1)‖xk‖2.

We conclude

‖xk‖1 ≤
√

m
1−µ1(m−1)‖Φxk‖2.

Moreover

‖Φxk‖2 ≤ ‖Φxk − y‖2 + ‖y‖2
≤
√

2f(xk) + ‖y‖2
≤
√

2f(x0) + ‖y‖2
≤ ‖y‖2 + ‖y‖2
≤ 2‖y‖2,

where the third line holds because by construction of the
Frank-Wolfe algorithm, the sequence {f(xk)}k is non increas-
ing. So we conclude that ‖xk‖1 ≤ 2‖y‖2

√
m

1−µ1(m−1) .

APPENDIX B
PROOF OF LEMMA 2

Lemma 2. For any iteration k of Algorithm 1, if γk 6= 0,
and if ‖y‖2 < β then:

γk =
〈Φ(sk − xk), rk〉
‖Φ(sk − xk)‖22

.

Proof. Recall that

γk = arg minγ∈[0,1] ‖y − Φ(xk + γ(sk − xk))‖22
and define

γ∗k = arg minγ∈R ‖y − Φ(xk + γ(sk − xk)‖22.

Note that
γ∗k =

〈Φ(sk − xk), rk〉
‖Φ(sk − xk)‖22

,

so we wish to prove that γk = γ∗k .
Because γk is the solution of the same minimization prob-

lem as γ∗k but restricted on the interval [0, 1], we have only
three possibilities: (i) γ∗k ≥ 1 and γk = 1, (ii) 0 < γk = γ∗k <
1, (iii) γ∗k ≤ 0 and γk = 0. Here we assume that γk 6= 0
so the last possibility (iii) is ruled out. What is left to do to
finish the proof is to rule out the first possibility: (i) γ∗k ≥ 1
and γk = 1.
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To do so, consider these two different cases:
• k = 0: since x0 = 0 and r0 = y,

γ∗0 =
〈Φs0, y〉
‖Φs0‖22

≤ ‖y‖2
β

.

Since ‖y‖2 < β, we have γ∗0 < 1. Moreover, by
construction of s0, 〈Φs0, y〉 > 0 so 0 < γ∗0 < 1. We
conclude we are in case (ii) and γ0 = γ∗0 .

• k 6= 0: assume that γk = 1. We then have xk+1 = sk.
By construction of the Frank-Wolfe algorithm we have:

f(xk+1) = f(sk) ≤ f(xk) ≤ · · · ≤ f(x1) = f(γ0s0).

Since we proved that γ0 6= 1 , we have:

f(γ0s0) < f(s0).

This implies f(sk) < f(s0), that is:

‖y − Φsk‖22 < ‖y − Φs0‖22
〈Φs0, y〉 < 〈Φsk, y〉.

Since s0 = sign(〈ϕi0 , y〉)βei0 , both sides of the previous
equation are positive:

0 < 〈Φs0, y〉 < 〈Φsk, y〉

This is clearly a contradiction because s0 =
arg maxs∈B1(β)〈Φs, y〉. We conclude that 0 < γk < 1
so that we are again in case (ii) where γk = γ∗k .

We conclude that if γk > 0 and ‖y‖2 < β then γk =
〈Φ(sk−xk),rk〉
‖Φ(sk−xk)‖22

.
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