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Abstract

The African cultivated rice (Oryza glaberrima) was domesticated in West Africa

3000 years ago. Although less cultivated than the Asian rice (O. sativa), O. glaberrima
landraces often display interesting adaptation to rustic environment (e.g. drought).

Here, using RNA-seq technology, we were able to compare more than 12 000 tran-

scripts between 9 O. glaberrima, 10 wild O. barthii and one O. meridionalis individu-

als. With a synonymous nucleotide diversity ps = 0.0006 per site, O. glaberrima appears

as the least genetically diverse crop grass ever documented. Using approximate Bayes-

ian computation, we estimated that O. glaberrima experienced a severe bottleneck dur-

ing domestication. This demographic scenario almost fully accounts for the pattern of

genetic diversity across O. glaberrima genome as we detected very few outliers regions

where positive selection may have further impacted genetic diversity. Moreover, the

large excess of derived nonsynonymous substitution that we detected suggests that the

O. glaberrima population suffered from the ‘cost of domestication’. In addition, we

used this genome-scale data set to demonstrate that (i) O. barthii genetic diversity is

positively correlated with recombination rate and negatively with gene density, (ii)

expression level is negatively correlated with evolutionary constraint, and (iii) one

region on chromosome 5 (position 4–6 Mb) exhibits a clear signature of introgression

with a yet unidentified Oryza species. This work represents the first genome-wide sur-

vey of the African rice genetic diversity and paves the way for further comparison

between the African and the Asian rice, notably regarding the genetics underlying

domestication traits.
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Introduction

Domestication represents a unique opportunity to study

the evolutionary process. In a few thousand years,

domesticated populations have experienced major phe-

notypic changes under adaptation to the new agricultural

environments and the pressure of human artificial selec-

tion (Diamond 2002; Gepts 2004). Although evolutionary

rates under domestication may be slower than previously

thought (Purugganan & Fuller 2009), drastic phenotypic

changes in such a short timescale are rarely well docu-

mented for wild species, especially because the ancestral

state is rarely available for comparative study. In this

context, a major goal is to identify the genetics underly-

ing the adaptation to domestication (Ross-Ibarra et al.
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2007). One approach to fulfil this goal is to study the pat-

tern of polymorphism across the genome to identify

regions exhibiting signatures of adaptation. This so-

called bottom-up approach (starting from the gene to the

phenotype) assumes, often implicitly, that a low propor-

tion of genes is affected by adaptive evolution. As a

result, the average genomic pattern of polymorphism can

be used to infer demographic history (Ross-Ibarra et al.

2007). Integrating demographical history is of importance

as domestication often implies population bottleneck that

affects genome-wide allele frequencies. This is particu-

larly true in crop grasses (Poaceae) where domesticated

populations are typically two to three times less variable

at neutral markers than their wild relatives (Glémin &

Bataillon 2009). In addition to the shuffling of allele fre-

quencies, decrease in population size could lead to the

accumulation of slightly deleterious mutations (Ohta

1992). Such an accumulation has been detected by an

increase in nonsynonymous (amino acid changing) over

synonymous (amino acid conservative) substitutions in

dog (Bj€ornerfeldt et al. 2006; Cruz et al. 2008), laboratory

yeast (Gu et al. 2005) and yak (Wang et al. 2011) but also

potentially in Asian rice (Lu et al. 2006). Beside demogra-

phy, other genomic features including recombination

rates and genetic linkage to selected sites are known to

influence neutral polymorphism levels (Cutter & Payseur

2013). Therefore, taking recombination rates and gene

densities into account could help better understand vari-

ations in polymorphism levels. However, these features

have rarely been considered in domestication analyses so

far (but see Flowers et al. 2012).

First limited to some of the major crops such as

maize (Wright et al. 2005; Hufford et al. 2012), Asian

rice (Caicedo et al. 2007; Huang et al. 2012) and soybean

(Glycine max, Lam et al. 2010), genome-wide studies

have recently benefited from advances in next-genera-

tion sequencing, opening the way for studies of less

economically important species. Such a species is the

cultivated African rice (Oryza glaberrima), independently

domesticated from the wild Oryza barthii in West Africa

maybe as recently as 3000 years ago (Linares 2002; Mur-

ray 2004). The African rice is currently a minor crop

with a cultivation area mainly restricted to West Africa

(Linares 2002). Its agricultural potential is however

enhanced by the recent discovery that O. sativa x

O. glaberrima hybrids could lead to high-yielding and

stress-resistant varieties, the so-called NERICA (for

NEw RICe for Africa). Characterizing the genetic diver-

sity of the African rice could therefore be important in

a broader context of conservation of genetic resources.

Moreover, the phylogenetic proximity with the Asian

rice (Wang et al. 1992; Zhu & Ge 2005) makes it an ideal

candidate to test the hypothesis of parallel domestica-

tion (Lin et al. 2012). Compared with the Asian rice, the

population genetic of the Africa rice was little studied

(Bezanc�on 1994). Li et al. (2011) estimated the genetic

diversity of the African rice using 14 nuclear loci. This

study pointed out a sharp loss of diversity (about 70%)

in the domesticated population compared with the wild

O. barthii. Semon et al. (2005) used O. sativa microsatel-

lites to study the population structure of the African

rice and revealed a weak population structure within

O. glaberrima and elevated linkage disequilibrium

expanding chromosome wide. The latter result has been

interpreted as an effect of demography and population

structure rather than of low recombination rate.

In this study, we analyse the transcriptome-wide

polymorphism of 9 domesticated and 10 wild African

rice individuals using RNA-seq technology (Wang et al.

2009). This technology allows us to characterize the

genetic diversity of more than 12 000 transcripts in the

African rice genome. Using the well-annotated Asian

rice genome (International Rice Genome Sequencing

Project 2005; Kawahara et al. 2013) as a reference and

O. meridionalis as out-group, we tackle the following

questions: (i) How polymorphism varies across the gen-

ome and which factors shape these variations? (ii) How

strongly domestication has affected the genetic diversity

of the domesticated compartment? and (iii) Can we

identify potential genomic regions affected by selection

during domestication?

Materials and methods

Plant material

Ten Oryza barthii and nine O. glaberrima varieties repre-

senting the species-wide distribution of the two species

(Table S1, Supporting information) were grown in IRD

greenhouse, for 7 weeks in short-day conditions. Five

plants per accession were used, to obtain enough RNA

from inflorescences. For O. glaberrima, all the plants

were grown in greenhouse for two generations, with

pollen bags to ensure a pure inbreed. All five plants

were derived from the same original seed. Panicles

were collected 4–15 days after induction, to span the

initials steps of development (stage 1 to early 8 as

describe in Ikeda et al. 2004). Green leafs from the same

plants were also collected.

Preparation of RNA samples

Samples were ground in liquid nitrogen, and total cellu-

lar RNA was extracted using a total RNA easy Plant

minikit with RLT and RWT buffers (Qiagen, GmbH,

Germany) with a DNase treatment (RNase-free DNase,

Qiagen). RNA concentrations were first measured using

a NanoDrop ND-1000 Spectrophotometer then using

© 2014 John Wiley & Sons Ltd
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the Quant-iTTM RiboGreen� (Invitrogen, USA) protocol

on a Tecan Genius spectrofluorimeter. RNA quality was

assessed by running 1 lL of each RNA sample on RNA

6000 Pico chip on a Bioanalyzer 2100 (Atablegilent

Technologies, Inc., USA). Samples with an RNA integ-

rity number (RIN) value greater than eight were

deemed acceptable according to the Illumina TruSeq

RNA protocol. For each genotype, 80% of RNA from

the inflorescence and 20% from the leave were mixed to

obtain 2 lg of tissue-bulked RNA.

Illumina library production

The TruSeq RNA sample Preparation v2 kit (Illumina

Inc., USA) was used according to the manufacturer’s

protocol with the following modifications. In brief,

poly-A-containing mRNA molecules were purified from

2 lg total RNA using poly-T oligo-attached magnetic

beads. The purified mRNA was fragmented by addition

of the fragmentation buffer and was heated at 94 °C in

a thermocycler for 4 min. The fragmentation time of

4 min was used to yield library fragments of 250–

300 bp. First-strand cDNA was synthesized using ran-

dom primers to eliminate the general bias towards 30

end of the transcript. Second-strand cDNA synthesis,

end repair, A-tailing and adapter ligation were carried

out in accordance with the manufacturer supplied pro-

tocols. Purified cDNA templates were enriched by 15

cycles of PCR for 10 s at 98 °C, 30 s at 65 °C and 30 s

at 72 °C using PE1.0 and PE2.0 primers and with Phu-

sion DNA polymerase (NEB, USA). Each indexed

cDNA library was verified and quantified using a DNA

100 Chip on a Bioanalyzer 2100 then equally mixed by

ten (from different genotypes). The final library was

then quantified by real-time PCR with the KAPA

Library Quantification Kit for Illumina Sequencing Plat-

forms (Kapa Biosystems Ltd, SA) adjusted to 10 nM in

water and provided to the Montpellier Genomix plat-

form (http://www.mgx.cnrs.fr/) for sequencing.

Illumina library clustering and sequencing conditions

Final mixed cDNA library was sequenced using the

Illumina mRNA-Seq, paired-end protocol on a

HiSeq2000 sequencer, for 2 9 100 cycles. Library was

diluted to 2 nM with NaOH and 2.5 lL transferred into

497.5 lL HT1 to give a final concentration of 10 pM.

One hundred and twenty microlitres was then trans-

ferred into a 200-lL strip tube and placed on ice before

loading onto the cBot, mixed library, from 10 individual

indexed libraries, being run on a single lane. Flow cell

was clustered using TruSeq PE Cluster Kit v3, following

the Illumina PE_Amp_Lin_Block_V8,0 recipe. Following

the clustering procedure, the flow cell was loaded onto

the Illumina HiSeq 2000 instrument following the man-

ufacturer’s instructions. The sequencing chemistry used

was v3 (FC-401-3001, TruSeq SBS Kit) with the 2 9 100

cycles, paired-end, indexed protocol. Image analyses

and basecalling were performed using the HISEQ CONTROL

Software (HCS 1.5.15) and Real-Time Analysis compo-

nent (RTA 1.13.48). Demultiplexing was performed

using CASAVA 1.8.1 (Illumina) to produce paired

sequence files containing reads for each sample in Illu-

mina FASTQ format. Raw reads are available at http://

arcad-bioinformatics.southgreen.fr/african_rice.

Mapping & SNP calling

We used Oryza sativa as reference genome. We down-

loaded Oryza sativa transcriptome (version MSU6.1)

from Ensembl plant (Kersey et al. 2009) using the BioMart

Web interface portal (Guberman et al. 2011), http://

plants.ensembl.org/biomart/martview/, downloaded in

October 2012). O. sativa and glaberrima are very closely

related (estimated divergence = 0.3%) therefore prevent-

ing a mapping biased towards conserved regions. We

chose to download the coding sequence (CDS) plus

300 bp upstream and downstream in order to account

for the presence of UTRs. Mapping was performed with

the BWA software (Li & Durbin 2009) allowing at most

five mismatches between a given read and the refer-

ence. Further cleaning involved excluding reads with

more than two insertions/deletions (indels) or with in-

dels larger than 5 bp. Pair-end reads mapped on differ-

ent transcripts were also excluded from further

analyses.

Genotyping involved two steps. First, genotypes were

called using the method described in Tsagkogeorga

et al. (2012). This method estimates the sequencing error

rate from the data in a maximum-likelihood framework

and computes the posterior probability of genotypes

assuming Hardy–Weinberg equilibrium. Here, we

included the parameter FIS in the computation of the

expected heterozygous frequency to account for the

high rate of selfing in Oryza barthii/glaberrima (See equa-

tions in Appendix S1, Supporting information). Because

genotyping with a FIS of 0.95 or 0.5 led to very similar

result, we therefore chose to only report the results

obtained with FIS of 0.95. We kept genotypes with pos-

terior probability higher than 0.95, provided that at

least 10 reads were available for the considered position

and individual. Otherwise, data were considered as

missing. Second, dubious SNPs, potentially resulting

from hidden paralogy, were cleaned using the paraclean

method introduced by Gayral et al. (2013). This method

used a likelihood-ratio test (LRT) for each SNP to com-

pare the likelihood of a single locus model with the

likelihood of a two-locus model (i.e. assuming that two

© 2014 John Wiley & Sons Ltd
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distinct genes have reads which were erroneously

mapped on a single contig). Here too, the original

model was modified to account for selfing by introduc-

ing a FIS parameter (See equations in Appendix S1, Sup-

porting information). These methods are implemented

in the software READS2SNP (http://kimura.univ-montp2.

fr/PopPhyl/resources/tools/). Individuals RC4 and

RC6 that issued from the same cultivated accession will

be used to estimate the false positive rate. Following

this control analysis, these individuals were merged in

a consensus sequence as they were found to be geneti-

cally identical.

Population genetic analyses

Because of this high selfing rate, we treated the data as

haploid by randomly drawing one haploid sequence

per individuals. All analyses were restricted to coding

sequences (i.e. excluding UTRs). Population genetic sta-

tistics including nucleotide diversity (i.e. p; Tajima 1983

and hx; Watterson 1975), Tajima’s D (Tajima 1989) and

FST statistic (defined as FST = 1�pw/pb; pw is the mean

pairwise diversity within each population and pb mean

pairwise diversity between populations; Hudson et al.

1992) were computed for each populations. The synon-

ymous and nonsynonymous divergence (dS and dN,

respectively) were computed using mean pairwise

divergence with O. meridionalis. Because divergence

was small (dS < 5%), no correction for multiple substi-

tutions was applied. The computation of all above sta-

tistics was performed using a homemade program

(available at http://arcad-bioinformatics.southgreen.fr/

tools) build with the Bio++ library (Guéguen et al.

2013).

Population structure was inferred using the Bayesian

software STRUCTURE (version 2.3.4, Pritchard et al. 2000).

For each number of clusters, from 2 o 5, we ran two

MCMC chains of 60 000 steps including 30 000 steps of

burn-in. The STRUCTURE analysis was performed using

5648 SNP obtained by selecting randomly only one SNP

per loci. We also reconstructed a phylogenetic tree

using the concatenation of all sequences using the BIONJ

clustering method (Gascuel 1997) where genetic dis-

tances were estimated using a TN93 model (Tamura &

Nei 1993). The BIONJ phylogenetic reconstruction was

performed using Bio++ library (Guéguen et al. 2013).

We performed a rough approximation of linkage dis-

equilibrium using the r² measure implemented in the

‘LDcorSV’ R package (Mangin et al. 2012).

Expression levels were estimated as the number of

reads mapped on a transcript corrected by the tran-

script length and by the total number of reads

sequenced per individual. Following Mortazavi et al.

(2008), we computed the number of mapped reads per

kilobase of coding sequence per million of mappable

reads (RPKM):

RPKM ¼ 109C

NL
;

where C is the number (count) of reads mapped on a

transcript, N is the total number of mapped reads, and

L is the length of the transcript.

Genomic determinants of polymorphism

We tested the effect of four genomic variables on the

level of synonymous genetic diversity using multiple lin-

ear regressions. The variables are (i) synonymous diver-

gence with O. meridionalis, (ii) recombination rates, (iii)

GC content of third-codon position (GC3) and (iv) gene

density (computed as the number of coding sites per

Mb). For recombination rate, no estimate of recombina-

tion rate is currently available for the African rice. As a

consequence, we use the same Marey map (i.e. genetic

versus physical distance) as in Muyle et al. (2011). This

map includes 1202 markers along the O. sativa genome.

From this map, we estimated the recombination rate (in

cM/Mb) using the slope of a local polynomial regression

of degree two as proposed in the R package MAREYMAP

(Rezvoy et al. 2007). The degree of smoothing of the

polynomial regression (the loess function) was controlled

by a span parameter. We tested two values of the span

parameter, 0.2 and 0.4, which led to very similar results.

Results are presented for a span parameter of 0.2. For

GC content, mean GC3 was computed using the com-

plete CDS of O. sativa. Gene density was estimated as

the proportion of exonic sequences (including annotated

UTRs) in a given genomic region of O. sativa. Exonic

positions were downloaded from Ensembl plant (Kersey

et al. 2009) using the BioMart Web interface portal (Gu-

berman et al. 2011, downloaded in October 2012). Tran-

scripts described as ‘transposon’ or ‘pseudogene’,

potentially free from selective constraint, were excluded

from the estimation of gene density.

All these explanatory variables and the synonymous

genetic diversity (the response variable) were computed

across windows of three different sizes (500 kb, 1 Mb

or 2 Mb). For genetic diversity, we used the sum of

diversity divided by the total number of genotyped

sites (i.e. sites with READS2SNP posterior probability >0.95
and coverage >109 per individual) to avoid potential

extreme values taken by small transcripts. We assumed

that transcript positions were the same as in O. sativa.

All variables were log-transformed, except GC3 that

appeared to be almost normally distributed. We added

the constant one to recombination rates and synony-

mous diversity in order to account for zero values. Spa-

tial autocorrelation between windows was tested using

© 2014 John Wiley & Sons Ltd
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the Moran’s I index implemented in the ‘ape’ R package

(Paradis et al. 2004). Normality, homoscedasticity and

independence of the residuals were tested using Kol-

mogorov–Smirnov test (included in ‘stats’ R package),

Harrison–McCabe test and Durbin–Watson test both

from the ‘lmtest’ R package (Zeileis & Hothorn 2002).

The effect of chromosome was tested using an ANOVA.

All statistical analyses were performed using R version

2.15.3 (R Core Team 2013).

Approximate Bayesian Computation and outliers
detection

We ran 2 000 000 coalescent simulations using the soft-

ware ms (Hudson 2002) and following the simple

demographic scenario presented in Fig. S1 (Supporting

information). This scenario considers an ancestral popu-

lation that split into a domesticated population and a

wild population at time Tdom. Following this split, the

domesticated population experienced a population bot-

tleneck between Tdom and Tbot generations. Afterwards,

the domesticated population was assumed to have the

same size as the stable wild population (N0). As it is

impossible to estimate separately the strength and the

duration of the bottleneck, we fixed Tdom at 3000 genera-

tions before present (Linares 2002) and Tbot at 2000 gen-

erations (i.e. leading to a bottleneck duration of 1000

generations). Using approximate Bayesian computation

(ABC) method, we estimated N0 (assuming a mutation

rate l of 10�8 mutation per site per generation) and a

parameter a = Nbot/N0 where Nbot is population size

during the bottleneck. We generated uniform prior dis-

tribution for a, from 0.001 to 0.2, and N0, from 20 000 to

120 000, using a Perl script. We used the number of

SNP in both domesticated and wild populations and

FST (Hudson et al. 1992) and Tajima’s D (Tajima 1989)

in both domesticated and wild populations as summary

statistics. These statistics were computed across 1 Mb

windows leading to 370 windows. This was done using

a C++ program build with the BIO++ library (Guéguen

et al. 2013). Posterior distributions of N0 and a parame-

ters were estimated using the neural network method

of Blum & Franc�ois (2010) implemented in the ‘abc’ R

package (Csilléry et al. 2012) using log transformation

and a tolerance parameter of 0.002. Finally, we assessed

the fit of our model by performing a posterior predic-

tive checking (Gelman et al. 2013). To do that, we used

the set of 4000 demographic parameters taken from the

posterior distributions. Then, we obtained the distribu-

tions of the 5 summary statistics by simulating data sets

using the 4000 sampled sets of parameters. Comparisons

between the simulated and the observed statistics allow

to check the fit of our model to the data. The source

codes, executables and scripts used to perform the ABC

analysis are available at http://arcad-bioinformatics.

southgreen.fr/tools.

For the outlier detection analysis, we ran coalescent

simulations using the demographic parameters inferred

by ABC. 20 000 simulations were run for each of the

370 1 Mb window individually (taken into account the

number of genotyped sites per Mb). To detect outlier

windows, we computed Dp (define as ps O. glaberrima/

ps O. barthii) and FST statistics. These statistics have

been proven powerful to detect selective sweep (Innan

& Kim 2008). P-value of the null model (bottleneck

without selection) was computed as the proportion of

coalescent simulations producing Dp and FST, respec-

tively, below and above the observed values.

Finally, we also used GO-slim terms to sort the genes

according to the ‘Biological process’ category. GO-slim

terms were downloaded at the TIGR rice genome anno-

tation resource (downloaded in April 2012, version 6.0,

Ouyang et al. 2007). We compute the mean Dps (defined
as ps O. glaberrima/ps O. barthii) and the mean FST of

the genes belonging to each of the 45 generic GO-slim

terms (category ‘Biological process’). Then, we ask

whether Dps was lower or FST higher in each category

than in a random, similar-sized, subsets of genes within

the genome (randomization test, N = 10 000 replicates).

We applied the false discovery rate (FDR) method of

Benjamini and Hochberg (1995) to adjust the P-value

for multiple testing.

Cost of domestication

Using the two out-groups O. meridionalis and O. sativa to

orientate SNPs, we counted the number of derived syn-

onymous (Fs) and nonsynonymous (Fn) mutations which

are fixed in O. glaberrima (resp. O. barthii) but polymor-

phic or fixed for the ancestral allele in O. barthii (resp.

O. glaberrima). They correspond to fixed derived SNPs

specific to one of the two populations. We performed this

count on the whole data set, for half of the data set split

according to the median of gene expression levels (lowly

vs highly expressed genes), and for 2 Mb windows

across genome to get enough counts per window. The

contingency tables we obtained were tested by a Fisher’s

exact test using R (R Core Team 2013). Counts were nor-

malized by the number of synonymous (Ls) and nonsyn-

onymous (Ln) positions to get ratios equivalent to the

classical Dn/Ds ratios: Dn/Ds = Fn/Ln/Fs/Ls. Dn/Ds

ratios were computed for windows with at least four

fixed synonymous mutation, to limit very noisy esti-

mates. At the 2 Mb window scale, we correlated Dn/Ds

in the cultivated population with Dps (defined as ps
O. glaberrima/psO. barthii) ratios. For this correlation, we

excluded two windows over 131 with Dps > 1, but results

remain unchanged if these two windows are included.

© 2014 John Wiley & Sons Ltd
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Results

Mapping, genotyping and paralogy detection

The transcriptomes of 10 O. barthii, 9 O. glaberrima (plus

one technical replicate) and one O. meridionalis individ-

uals were sequenced using RNA-seq Illumina technol-

ogy. These individuals were chosen to represent the

diversity of the cultivated (O. glaberrima) and wild pop-

ulations (O. barthii) of the African rice (see Materials

and Methods). O. meridionalis was used as an out-group

in addition to O. sativa. The sequencing leads to a total

of 16 to 46 millions of 75 and 100 bp reads per individ-

uals (Table S2, Supporting information). After the clean-

ing process, between 55% and 73% of reads were

successfully mapped to the O. sativa reference tran-

scripts (see Methods), representing 10 to 29 millions

reads per individuals (Table S2, Supporting infor-

mation).

We performed genotyping and single nucleotide

polymorphism (SNP) calling using an extended version

of the reads2snp software, which includes the Wright’s

fixation index, FIS, in the genotype calling and paralog

filtering procedure (paraclean) (Gayral et al. 2013) (see

Supporting information). This allowed to take selfing

rate into account. We set FIS to 0.95 but a lower value

of FIS of 0.5 led to very similar results (see below). To

be called, a genotype must have a posterior probabil-

ity above 0.95 and a minimal coverage of 109 per indi-

vidual. When using the paraclean procedure, of 38 620

SNPs called in O. barthii, 15 042 (39%) rejected the one-

locus model (Likelihood-ratio test (LRT), P < 0.05). For

O. glaberrima, 593 of 8193 SNPs called (7%) rejected the

one-locus model (LRT, P < 0.05). All these sites were

excluded from further analyses. Overall, 5685 tran-

scripts contained at least one SNP that rejected the one-

locus model in the process of paralogy detection. Two

individuals, RC4 and RC6 issued from the same culti-

vated accession (i.e. expected to be genetically identi-

cal), were used to evaluate the accuracy of the cleaning

procedure. Without paraclean, we detected 117 SNPs

between RC4 and RC6, 4146 genes with an excess of

heterozygotes (negative FIS) and 232 SNPs with a pre-

mature stop codon. After using paraclean, we recorded

only 17 SNPs between RC4 and RC6 (~0.001 per kb),

representing less than one per cent of the expected

diversity in O. glaberrima (~0.25 per kb, Table 1).

Furthermore, we detected only 531 genes exhibiting an

excess of heterozygotes and only 81 SNPs with a pre-

mature stop codon. Other genotype calling results with

and without paraclean are provided in Table S2

(Supporting information). These results highlight the

crucial need of removing paralogous sequences and

inaccurate mapping, especially in highly selfing species

with low diversity and heterozygosity.

Despite the cleaning procedure, three individuals

(RS1, RC8 and RC9) appeared as clear outliers with

more than 1500 heterozygous positions compared with

an average of ~30 positions for other individuals (Fig.

S2, Supporting information). Although we cannot

exclude contamination during RNA extraction or library

preparation, these individuals do not seem to corre-

spond directly to a mix with any other individuals of

the sample. This excess of heterozygous positions could

be due to a recent outcrossing event that occurred in

the wild or during seed production in the genetic

resource centre. We thus chose to discard these individ-

uals and reperformed the SNPs calling/paralogy filter-

ing. However, results were mostly unchanged after

removal (results not shown).

For the final data set, we only considered sites with

at least 7 individuals per population, representing a

maximum of one missing individual for O. glaberrima

and two missing individuals for O. barthii. Transcripts

with less than 30 bp were excluded. We obtained

12 169 transcripts for a total of 11 987 421 aligned bp.

This represent 29% of the 41 678 annotated CDS in the

O. sativa genome (version MSU6.1, excluding genes

annotated as ‘transposon’ and mitochondrial proteins).

Our data set contain proportionally less transcripts

described as ‘transposon’ or ‘retrotransposon’ (accord-

ing to Ensembl gene description) than in the complete

genome (1.6%, 194 out of 12 169, in the present data set

vs. 29%, 16 564 out of 58 058, in the complete genome).

This result indicates that our data set is relatively free

of transposable elements including young paralogous

sequences where polymorphism and divergence are

probably difficult to disentangle.

In the final data set, we estimated a FIS of 0.87 and

0.95 for O. barthii and O. glaberrima populations, respec-

tively, values which are, respectively, lower and equal

to the parameter used in READS2SNP (see above). Never-

theless, using a lower FIS parameter in READS2SNP (e.g.

0.5) only weakly affects these estimates (FIS = 0.85 and

Table 1 Basic population genetic statistic

Population No. of genes Size (Mb) No. of SNPs p total per kb ps per kb pn/ps Tajima’s D

O. barthii 12 169 11.987 23 578 0.684 1.396 0.284 �0.221

O. glaberrima 7597 0.255 0.557 0.270 �0.044

© 2014 John Wiley & Sons Ltd
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0.94 for O. barthii and O. glaberrima populations, respec-

tively). It also does not change any of the global statis-

tics (Table S3, Supporting information). Therefore, we

hereafter consider only the results obtained with the

parameter FIS set to 0.95. Because of this high rate of

inbreeding, we treated individuals as haploid by ran-

domly selecting one haploid sequence per individuals.

It should be noted that these FIS could not correspond

to the FIS of natural populations as our individuals

were isolated for several generations in greenhouse.

Global patterns of genetic diversity

Basic population genetic statistics are summarized in

Table 1. Genetic diversity is low in the wild O. barthii

population (nucleotide diversity p = 0.68 per kb) and is

drastically reduced in the domesticated O. glaberrima

population (p = 0.25 per kb, Table 1). Our estimates are

comparable with the results of Li et al. (2011) for the

domesticated population (psilent = 0.61 per kb in Li et al.

(2011) vs. psynonymous (ps) = 0.57 per kb in the pres-

ent study), whereas for the wild population, Li et al.

(2011) obtained a seemingly higher genetic diversity

(psilent = 2.50 per kb), but not statistically different from

our estimate (ps = 1.40 per kb, t-test, P = 0.11). This dif-

ference appears to be mainly driven by two loci with

high diversity (Adh1 and CatA) in Li et al. (2011). This

estimation appears robust to individuals sampling as

we obtain the same value excluding randomly two indi-

viduals in each population from our data sets (results

not shown).

With synonymous polymorphism levels approxi-

mately three times lower than in human (Bustamante

et al. 2005), O. barthii is the less polymorphic wild pro-

genitor ever recorded in crop grasses (Table 2). It is, for

example, 15 times less diverse than teosinte (Zea mays;

Wright et al. 2005) and nearly four times less diverse

than the wild Asian rice (Oryza rufipogon; Caicedo et al.

2007).

Population structure

In the STRUCTURE analysis, we found a likelihood plateau

at K = 3 populations when O. sativa individual is

included (Fig. S3, Supporting information). The domes-

ticated population (O. glaberrima) form a homogeneous

population, whereas the wild O. barthii appears less

homogeneous with RS8 and, to a lower extant, RS2 pos-

sibly sharing common ancestry with O. sativa (Fig. 1A).

No wild individual appears closer to the domesticated

population, and no clear population structure could be

identified among wild individuals. This result is con-

firmed by neighbour-joining phylogenetic tree inferred

from the concatenation of all transcripts (Fig. 1B).

Introgression

A visual comparison of the genetic diversity between

O. barthii and O. glaberrima populations revealed a

region of chromosome 5 with an exceptionally high

genetic diversity (p glaberrima = 2.59 per kb vs p bar-

thii = 1.03, Fig. 2). Intriguingly, close inspection of these

Table 2 Genetic diversity in some wild and cultivated crops. ps and ptotal are nucleotide diversity of synonymous (or silent) and all

the coding sites, respectively. Ratio cultivated/wild is the ratio of ps when available and ptotal otherwise

Population

No. of

genes

No. of

sites

ps
Wild

ps
Cultivated

ptotal
Wild

ptotal
Cultivated

Ratio

Cultivated/

Wild References

Oryza barthii/O. glaberrima 12 169 11 987 421 1.40 0.56 0.69 0.26 0.40 This study

O. barthii/O. glaberrima 14 11 000 2.50 0.61 0.24 Li et al. (2011)

Triticum turgidum dicoccoides/

T. t. dicoccum

21 21 720 3.60 1.20 2.70 0.80 0.33 Haudry et al.

(2007)

O. rufipogon/O. s. japonica +
O. s. indica combined

111 54 541 5.19 3.20 3.57 2.29 0.61 Caicedo et al.

(2007)

O. rufipogon/O. s. japonica +

O. s. indica combined

G.W 7.2 5.4 0.75 Xu et al.

(2012)*

Zea mays mays/Z. m. parviglumis 774 230 638 9.74 6.51 0.67 Wright et al.

(2005)

Z. m. mays/Z. m. parviglumis G.W 7.4 7.8 5.9 4.9 0.83 Hufford et al.

(2012)*

Z. m. mays/Z. m. parviglumis 12 11 301 21.1 13.1 0.62 Tenaillon et al.

(2004)

Pennisetum glaucum glaucum/

P. g. monodii

20 9649 7.44 3.13 6.04 4.11 0.42 Clotault et al.

(2012)

*Study using next-generation sequencing technology. G.W, Genome-Wide estimate.
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genomic regions revealed that most of the variation

comes from one cultivated individual (RC3). Excluding

RC3 leads to a severe reduction in O. glaberrima’s

genetic diversity is this region (from ps = 8.01 per kb

with RC3 to ps = 0.26 per kb without RC3). A phylog-

eny reconstructed using the 60 available loci positioned

between position 4 and 6 Mb of chromosome 5

revealed that RC3 sit distinctively as an out-group of

sativa+barthii/glaberrima clade (Fig. 3). RC3 does not

seem to be close to neither O. sativa ssp japonica nor

O. meridionalis. This unexpected phylogenetic position

is most likely explained by an introgression from

another Oryza species or possibly with another

subspecies. More (sub-)species should be included in

phylogenetic analyses to clarify this point. Here, we

only excluded that O. s. ssp indica was the subspecies

involved in the introgression (See Supporting informa-

tion and Fig. S4). Polymorphism levels of O. glaberrima

also exceed polymorphism levels of O. barthii on 4

additional regions (chromosome 4, 10, 11 and 12 posi-

tions 13.5, 0.5, 22.5 and 15–17 Mb, see section ‘Possible

genetic targets of the domestication process’). Here,

(B)(A)

Fig. 1 (A) Estimation population structure of 9 Oryza barthii (RS) and 7 O. glaberima (RC) plus one O. sativa individuals from 5648

SNP using STRUCTURE. Horizontal bars represent each Oryza individual; for all individuals, the proportion of ancestry under K = 3

populations that can be attributed to each individual is given by the length of each coloured segment in a bar. (B) Phylogenetic tree

reconstructed using BIONJ clustering method and TN93 substitution model. RS represent O. barthii individuals and RC, O. glaberima.

The branch leading to O. sativa is artificially reduced for clarity.

Chromosomal location (Mb)

N
uc

le
ot

id
e 

di
ve

rs
ity

 π
 (

pe
r 

kb
)

0.032
0.1

0.32
1

3.2

0 10 20 30 40

1 2

0 10 20 30 40

3 4

5 6 7

0.032
0.1
0.32
1
3.2

8

0.032
0.1

0.32
1

3.2
9

0 10 20 30 40

10 11

0 10 20 30 40

12

O. barthii
O. glaberrima

Fig. 2 Nucleotide diversity computed

over window of 1 Mb along the 12 chro-

mosomes in wild (O. barthii) and domes-

ticated (O. glaberrima) African rice

populations. Grey and black lines indi-

cate lowess fits of O. glaberima and

O. barthii data, respectively, compute

using the R function loess. Vertical dotted

lines indicate centromere positions

obtained from http://rice.plantbiology.

msu.edu/annotation_pseudo_centro-

meres.shtml. Y-axis is in logarithmic

scale of base 10.
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however, phylogenetic analyses did not reveal any par-

ticular pattern in the gene genealogies.

Determinant of gene diversity across the African rice
genome

To study variations of polymorphism across the Asian

rice genome, we chose to average genetic diversity over

relatively large window (500 kb to 2 Mb), assuming the

same gene positions as in the Asian rice genome. This

approach reduces the background noise created by indi-

vidual gene variations and is also justified by the exten-

sive linkage-disequilibrium (LD) detected in our data.

A visual inspection of the decay of LD estimates using

correlation between genotype indicates that LD extends

up to 1 Mb in both O. glaberrima and O. barthii (Fig. S5,

Supporting information).

When averaged over 1 Mb windows, synonymous

genetic diversity varies extensively from 0.13 to 3.56 per

kb in the wild O. barthii (excluding windows with less

than 1 kb of coding sequence, Fig. 2). Overall, levels of

local polymorphism correlate well between O. barthii

and O. glaberrima populations (R² = 0.49, P < 10�16).

Effects of natural selection through genetic linkage are

frequently identified as an important factor affecting

neutral genetic diversity (see Cutter & Payseur 2013 for

a review). Natural selection is expected to reduce poly-

morphism levels at linked sites, in the case of selective

sweeps of beneficial mutations (Smith & Haigh 1974) or

purifying selection against deleterious mutations (i.e.

background selection, Charlesworth et al. 1993). In both

cases, a positive correlation with recombination rates

(Begun & Aquadro 1992) and a negative correlation

with coding-site density (Payseur & Nachman 2002) are

expected. Additionally, local variations in mutation

rates can also impact the level of neutral genetic diver-

sity (Hellmann et al. 2005).

To test for the effect of linked selection on genetic

diversity in African rice, we correlated synonymous

polymorphism levels with recombination rates and gene

density using the O. sativa ssp japonica cv NipponBare

genome as a reference (see Method for details). We also

tested the influence of two additional explanatory vari-

ables, namely synonymous divergence with O. meridio-

nalis (dS) and GC content (computed on third-codon

positions, GC3). Synonymous divergence serves as a

proxy of mutation rates, whereas GC content was

shown to influence genetic diversity in mammals and

birds (Hellmann et al. 2005; Mugal et al. 2013a).

Genome-wide estimates of these variables and of synon-

ymous genetic diversity were computed over nonover-

lapping windows of three different sizes: 500 kb, 1 Mb

or 2 Mb. The average number of genes per window

was of 16, 32 and 64 for the 500 kb, 1 Mb and 2 Mb

windows, respectively. Spatial autocorrelation was gen-

erally high for all the explanatory variables and espe-

cially so for recombination rates and gene density

(mean Morans’ I index per chromosome of 0.31 for

recombination rates, 0.39 for gene density, 0.10 for syn-

onymous divergence and 0.04 for GC3, estimated using

1 Mb window). To limit the impact of autocorrelation,

we selected only odd windows for multiple regression

analyses (therefore, excluding one of two windows, Mo-

rans’ I index dropped to 0.14, 0.25, 0.04 and 0.02,

respectively). The results obtained using even windows

were similar to those obtained using odd windows. We

thus present only results using odd windows, except

when stated otherwise.

Among the four explanatory variables, recombination

rates and coding sequence density have the strongest

influence on synonymous nucleotide diversity (Table 3,

Fig. 4). The effect of recombination is always positive

and that of gene density is always negative, regardless

of window size or population (cultivated and wild,

Table 3). These effects are, however, statistically signifi-

cant in only four of six combinations (three sizes of

windows and two species) for recombination and in

three of six combinations for gene density (Table 3).

These results are in agreement with a predominant

effect of selection reducing genetic diversity in lowly

recombining regions and/or genomic regions where

coding sites (i.e. potential targets to selection) are abun-

dant. Correlations appear less pronounced in the

RC4 6

RC10

RC2

RC3

O. meridionalis

O. sativa

RS2

RS6

RS3

RS10

RS9

RS4

RS7

RS5

RS8

RC1

RC5

RC7

*

*

*

*

*

*

1e−04

Fig. 3 Phylogenetic tree of the 60 loci positioned between the

position 4 and 6 Mb of the chromosome 5 reconstructed using

BIONJ clustering method and TN93 substitution model. RS rep-

resent O. barthii individuals and RC, O. glaberima. Nodes with

a bootstrap supports above 95% (100 replicates) are indicated

with a asterisks.
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domesticated populations, indicating that potential

adaptive events during domestication do not strengthen

the relationship between genetic diversity and recombi-

nation rates/gene density. However, it should be noted

that correlations are expected to be weaker in the

domesticated population because of the higher variance

in polymorphism created by the population bottleneck

during domestication and because the selection effi-

ciency against deleterious mutation is expected to be

weaker (see below).

Additionally, GC3 has a weak negative effect on

nucleotide diversity. This effect is never significant

(Table 3). Finally, synonymous divergence has a weak

positive effect that decreases in intensity from 500 kb to

2 Mb window size. This result suggests that local varia-

tions in mutation rates do exist across the rice genome

but likely at a small scale only (significant effect only for

windows <1 Mb). Similarly to GC content, synonymous

divergence appears to be strongly correlated with

recombination rate (Spearman’s q = 0.35, P < 0.001 at

1 Mb windows). This correlation could be a consequence

of a mutagenic effect of recombination (Hellmann et al.

2005; Flowers et al. 2012) maybe linked to open chroma-

tin (Thurman et al. 2012) but could also be the conse-

quence of ancestral polymorphism (Li 1977) that could

substantially contribute to the divergence between

O. barthii and O. meridionalis as they appear closely

related (mean synonymous divergence: dS = 2.7%).

Finally, we also tested for a potential chromosome-

wide effect on O. barthii synonymous polymorphism.

All chromosomes appear statistically similar in terms of

neutral genetic diversity except chromosome 11 which

exhibits a higher diversity (Tukey’s HSD test, P < 0.05

for all the pairwise comparison including the chromo-

some 11). The diversity of chromosome 11 is particu-

larly high close to the end between position 15 and

25 Mb (Fig. 2). This strong genetic diversity is not

explained by any of the four genomic features tested

above (dS with O. meridionalis, recombination rates,

gene density and GC content). In addition, population

genetic statistics, such as Tajima’s D, do not indicate

that balancing selection is acting in that particular

region. Excluding chromosome 11 from multiple regres-

sion analyses shows very similar results (Table S4,

Supporting information).

Gene expression and nonsynonymous variations

Recently, expression level was proposed as an impor-

tant determinant of protein evolutionary constraint

(Drummond et al. 2005; Drummond & Wilke 2008; Gout

et al. 2010). We tested for the effect of gene expression,

measured as the number of mapped reads standardized

by transcript length and sequencing effort (RPKM), on

the ratio of nonsynonymous (pn) over synonymous (ps)
nucleotide diversity in O. barthii. We divided genes into

20 groups of identical size based on their gene expres-

sion (RPKM). We found a strong negative correlation

Table 3 Effectif (N), R² and estimates of the multilinear regression analysis for potential genomic explanatory variables of synony-

mous nucleotide diversity (ps) of domesticated (O. glaberrima) and wild (O. barthii) population according to various windows size

Population N R²
Synonymous divergence

(subst./site)

Recombination rate

(cM/Mb) GC3

Number coding

site (106)

500 kb window O. barthii 363 0.05 9.07** 0.13* �1.01 �0.11

O. glaberrima 0.00 2.04 0.03 �0.10 �0.07

1 Mb window O. barthii 185 0.11 0.07 0.31*** �1.5 �0.34***

O. glaberrima 0.10 0.13 0.25** �2.75 �0.45***

2 Mb window O. barthii 94 0.15 �0.14 0.32*** �1.90 �0.32**

O. glaberrima 0.05 �0.19 0.26 0.97 �0.32

P-value: *<0.05, **<0.01 and ***<0.001.
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Fig. 4 Relationship between O. barthii synonymous diversity
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sequenced computed over 2 Mb windows. Black line is the lin-

ear regression line.
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between expression level and pn/ps (Spearman’s

r = �0.55 P = 0.002, Fig. 5). This result agrees with pre-

vious studies linking protein expression and evolution-

ary constraint. However, it appears that expression

level is negatively correlated to pn but also positively

related to ps, indicating that the relationship is not fully

explained by a direct link between transcription level

and evolutionary constraint. It should be noted that the

positive correlation between ps and expression level is

not explained by recombination and that expression

level is not correlated with ps if included as explanatory

variable in the multiple correlation analyses performed

above (result not show).

Estimation of the domestication bottleneck intensity by
Approximate Bayesian Computation

The first objective of this analysis was to estimate the

intensity of the bottleneck experienced by the African

rice during domestication, primarily to make it compa-

rable with others plant species. The second was to

obtain a demographic scenario serving as a neutral ref-

erence to detect outliers regions potentially under selec-

tion (Wright et al. 2005; Innan & Kim 2008). We used a

very simple demographic model (Fig. S1, Supporting

information) represented by an ancestral population

that split into a domesticated population and a wild

population at time Tdom. Whereas the wild population

was assumed to be stable, the domesticated population

experienced a bottleneck from Tdom to Tbot generation.

Between Tbot and time t = 0, we assumed that the popu-

lation size of the domesticated population equalled the

wild population. This model has only two free parame-

ters: namely, the wild h (which is the product of ances-

tral population size, N0, and mutation rate, l) and the

bottleneck intensity (which is the ratio of the population

size during domestication, Nbot, and the duration of the

domestication, that is, Ddom = Tbot�Tdom). In the simula-

tions, we did not estimate directly Nbot, but instead we

assumed a parameter a = Nbot/N0. We fixed Tdom at 3000

generations before present (Linares 2002) and Tbot at

2000 generations (Ddom = 1000 generations). We also

assumed a mutation rate of 10�8 per year and per site

(Caicedo et al. 2007). We estimated a and N0 using an

approximate Bayesian computation (ABC) method (Ber-

torelle et al. 2010; Csilléry et al. 2012). We run 2 millions

coalescent simulations using uniform prior distribution

for a and N0 and estimated posterior distributions using

a neural networks method (Blum & Franc�ois 2010). We

obtained estimates of N0 and a from the mean and the

credibility interval (CI) of the posterior distributions

with N0 = 71 600 (95% CI = 67 400–75 600) and

a = 0.017 (95% CI = 0.015–0.020), which corresponds to

Nbot � 1200 during 1000 generations. The extreme bot-

tleneck experienced by O. glaberrima during domestica-

tion corresponds to a reduction in approximately 98%

of the effective population size during 1000 generations.

Posterior predictive checking indicates that our sim-

ple demographic model has a moderate fit to the data

(Fig. S6, Supporting information). First and not surpris-

ingly, the model did not fit the negative Tajima’s D

observed in the wild population (mean Tajima’s

D = �0.21). Only 0.5% of the posterior predictive simu-

lations have a Tajima’s D lower than the observed

value. Excluding Tajima’s D from the summary statis-

tics, however, does not change the estimated parame-

ters (N0 = 70 800, 95% CI = 67 100–74 900 and

a = 0.017, 95% CI = 0.015–0.020). Additionally, the num-

ber of SNP in the domesticated population and FST are

both not very well recovered by the posterior predictive

simulations [in both cases, the observed statistics were

among the 3% most extreme values, Fig. S6 (Supporting

information)]. Excluding the number of SNP in the

domesticated population from the summary statistics

does not affect the estimation of N0 but leads to a

slightly higher a (a = 0.020, 95% CI = 0.018–0.024) and,

in contrast, excluding FST leads to a slightly lower a
(a = 0.013, 95% CI = 0.011–0.016). We choose to take

into account this variation in the next section.

Possible genetic targets of the domestication process

Following the recommendations of Innan & Kim (2008),

we used the statistics Dp (Dp = p O. glaberrima/p

Expression level (Reads/base pair)
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Fig. 5 Relation between expression level and the ratio of non-

synonymous (pn) over synonymous (ps) nucleotide diversity in

O. barthii. Genes are bind in 20 groups of similar expression.

Axes are in logarithmic scale of base 10. Black line is the linear

regression line.
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O. barthii) and FST (Hudson et al. 1992) computed for

370 1 Mb windows. For each window, a neutral distri-

bution of these statistics was computed from coalescent

simulations using the demographic parameters inferred

by ABC (using one value for N0 but three values for

a = 0.013, 0.017 and 0.020, see above). A P-value for

selection was computed as the proportion of coalescent

simulations producing a Dp and a FST, respectively,

below and above the observed values.

Using a = 0.017, οnly two windows of 370 have a Dp
significant at a 5% threshold (Table 4), one on chromo-

some 6, position 7.5 Mb and one on chromosome 10,

position 13.5 Mb. Using FST, three windows were

detected as outliers at a 5% threshold. All are on chro-

mosome 6 between positions 14 and 17 Mb, and one of

these windows (position 16.5 Mb) is also marginally

significant for the Dp statistics (Table 4, P = 0.051).

Overall, the number of windows detected as outliers is

very low, lower than expected solely by chance (i.e.

18.5 windows are expected at the 5% level) although

this expectation relies on the assumptions that windows

are independent which is probably not the case as sug-

gested by the high levels of LD (Fig. S6, Supporting

information) and by the spatial autocorrelation previ-

ously detected (see section ‘Recombination and gene

density affect synonymous diversity’). Looking for out-

liers in the upper value of the Dp statistic (i.e. excess of

diversity in O. glaberrima compared with O. barthii)

allowed us to identify the possibly introgressed win-

dow detected earlier (chromosome 5, positions 4–5 Mb,

P < 0.01). We also identified five other windows on

chromosome 4, 10, 11 and 12 positions 13.5, 0.5, 22.5

and 15–17 Mb, respectively. These windows represent

good candidates for introgressed genomic regions

although phylogenetic analysis did not reveal any clear

pattern as opposed to the region on chromosome 5,

positions 4–5 Mb (Fig. 3). Using a = 0.013 has only the

effect to move the P-value slightly higher (for example,

the P-value of the most extreme windows in terms of

Dp move from 0.024 to 0.039). Similarly, using a = 0.013

only slightly reduces P-values (the P-value of the most

extreme windows in terms of Dp move from 0.024 to

0.017).

In a second approach, we categorized the genes

according to the 45 GO-slims terms of ‘Biological pro-

cess’ category. For each term, we tested whether the

mean Dp was lower or the mean FST higher than a ran-

dom, similar-sized subsets of genes (randomization

test). Interestingly, the three categories with the most

significant FST were related to development (Table S5,

Supporting information): namely ‘anatomical structure

morphogenesis’ (N = 396, FST = 0.28, P-value = 0.004),

‘post-embryonic development’ (N = 625, FST = 0.26, P-

value = 0.006) and ‘cell differentiation’ (N = 251, FST =
0.28, P-value = 0.008). However, none of these GO cate-

gories had a significant P-value after correction for mul-

tiple testing (FDR adjusted P-value > 0.10).

Finally, we followed the method of Wright et al.

(2005) to estimate the proportion of windows poten-

tially affected by selection. This method assumes a pro-

portion f of windows that underwent a severe

bottleneck (mimicking positive selection), whereas the

remaining 1�f windows underwent the domestication

bottleneck only. As in Wright et al. (2005), the severe

bottleneck is chosen to be 10 times stronger that the

genome-wide estimate obtained by ABC. The propor-

tion f is the estimated by a likelihood approach (see

Method section and Wright et al. 2005). In contrast to

Wright et al. (2005), we found a maximum-likelihood

estimation of f = 0 (Fig. S7, Supporting information),

demonstrating that a model with a single bottleneck

adequately fits the domestication history of the whole

genome of O. glaberrima: variations in the loss of poly-

morphism we observed across the genome (Fig. 2)

Table 4 The five most extremes outlier windows using Dp, FST statistics and parameter a = 0.017

Statistic

No. of

genes Size (kb)

No. of

SNPs Wild

No. of SNPs

Cultivated p Wild p Cultivated FST Chromosome Location (Mb) P*

Dp 28 27.2 61 0 0.805 0 0.192 6 7.5 0.024

27 20 31 0 0.462 0 0.089 10 13.5 0.043

12 18.4 33 0 0.645 0 0.652 6 16.5 0.051

14 14.1 25 0 0.686 0 0.601 12 5.5 0.077

20 12.8 17 0 0.476 0 0.134 7 7.5 0.086

FST 6 5 11 1 0.821 0.057 0.727 6 14.5 0.023

12 13.5 39 1 1.169 0.021 0.679 6 15.5 0.033

12 18.4 33 0 0.645 0 0.652 6 16.5 0.042

20 23.7 59 2 0.794 0.048 0.63 2 17.5 0.051

14 14.1 25 0 0.686 0 0.601 12 5.5 0.066

*P-value is defined as the proportion of simulation showing a lower Dp or a higher FST than the observed value.

© 2014 John Wiley & Sons Ltd
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could thus simply correspond to stochastic variations of

the bottleneck process (Thornton et al. 2007). This result

is congruent with the very low number of windows

detected by the outliers approach. Finally, power analy-

ses (see Appendix S1 Supporting information) revealed

that the strong bottleneck experience by the African rice

might limit our power to detect outlier windows. Power

analyses indicate that the power drops rapidly below

a = 0.05 and is 55% at a = 0.017 (i.e. the estimated

value).

The cost of domestication: fixation of slightly
deleterious alleles in O. glaberrima

A potential consequence of the strong genome-wide bot-

tleneck experienced by O. glaberrima during domestica-

tion is a decrease in the efficacy of selection genome-

wide. This could lead to higher rates of fixation of

slightly deleterious mutations. To test this hypothesis,

we computed the number of derived synonymous (Fs)

and nonsynonymous (Fn) SNPs that are fixed in one

population but polymorphic or fixed for the ancestral

state (defined as the O. sativa and O. meridionalis state see

Method) in the other population (Fig. 6). These absolute

numbers are divided by the number of synonymous and

nonsynonymous sites, respectively, to obtain a ratio

equivalent to Dn/Ds. We found significantly more Fn

relative to Fs in the domesticated population (Dn/

Ds = 0.19) compared with the wild population (Dn/

Ds = 0.12, Fisher’s exact test, P < 2.10�5). Interestingly,

this difference in Dn/Ds between populations is notice-

ably higher in transcripts with low expression level

(lower than the median RPKM) compared with tran-

scripts with high expression level (low expression: Dn/

Ds glaberrima = 0.22 vs Dn/Ds barthii = 0.13, P < 0.001;

high expression: Dn/Ds glaberrima = 0.16 vs Dn/Ds bar-

thii = 0.11, P = 0.03, Fig. 6). Given that lowly expressed

transcripts are likely to be less constrained (Drummond

et al. 2005) (see also the correlation between pn/ps and

expression level above), mutations that affect these pro-

teins might be on average less deleterious and therefore

more sensible to an increase in genetic drift, than muta-

tions affecting highly expressed transcripts. As the inten-

sity of genetic drift during the domestication bottleneck

varied across the genome (see Fig. 2), we reasoned that

genomic regions that underwent higher genetic drift, as

measured by the ratio p Ο. glaberrima/p O. barthii (pglab/
pbart), should have more fixed nonsynonymous muta-

tions. As expected, we found a significant negative corre-

lation between the ratio pglab/pbart and the Dn/Ds ratio,

measured on nonoverlapping 2-Mb windows (Spear-

man’s r = �0.345 P-value < 8.10�5, Fig. S8, Supporting

information). Genomic regions that experienced stronger

genetic drift are likely to have fixed more deleterious

alleles.

Discussion

Patterns and determinants of diversity in the African
rice

Among all crop grasses studied so far, the African rice

is the least genetically diverse of all (Table 1). The wild

O. barthii has a mean synonymous nucleotide diversity

(ps) of 0.0014, whereas the domesticated O. glaberrima’s

diversity drops to only ps = 0.00057. This represents, on

average, one SNP every 500 bp in the wild population

and only one SNP every 1.6 kb in the protein-coding

genes of O. glaberrima. Compared with other wild Oryza

species, O. barthii is nearly four times less genetically

diverse than O. rufipogon (ps = 0.0052, Caicedo et al.

2007). More generally, a ps value of 0.14% range among

the lowest value in eukaryotes (Leffler et al. 2012). Pre-

vious studies are quite conflicting about O. barthii mat-

ing system, some mentioning selfing rate between 10

and 50% (Sweeney & McCouch 2007), while others

describing O. barthii as highly selfing (Li et al. 2011).

Our estimated FIS of 0.87 suggests rather high selfing

rate, at least higher than in O. rufipogon (average

FIS = 0.51, Gao & Hong 2000). As selfing is expected to

reduce the effective population size because of reduced

gene sampling and increase genetic linkage because of

low effective recombination rates (Charlesworth &

Wright 2001), O. barthii mating system could contributes

D
n/

D
s

0.05

0.10

0.15

0.20

O. barthii O. glaberrima

Highly expressed

O. barthii O. glaberrima

Lowly expressed

Fig. 6 The ratio of nonsynonymous (Dn) over synonymous

(Ds) divergence in O. glaberima and O. barthii in highly and

lowly expressed genes (genes categorized according to the

median of the expression level).
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to this low diversity. However, as seeds of wild indi-

viduals come from isolated lines kept in greenhouse,

our estimated FIS of 0.87 is likely an overestimation of

the FIS of natural populations and should be taken with

caution.

Across the genome, we found recombination rates and

gene density to be the best predictors of local genetic

diversity. A positive effect of recombination rates and a

negative effect of gene density are clearly in line with an

effect of natural selection (Cutter & Payseur 2013) that

reduces genetic diversity through hitchhiking with bene-

ficial (Smith & Haigh 1974; Wiehe & Stephan 1993) or

deleterious mutations (Charlesworth et al. 1993; Hudson

& Kaplan 1995). Correlations between recombination

and polymorphism are usually weak because low recom-

bination rates are sufficient to break down selective inter-

ferences. In the African rice, high selfing rate generates

high LD, which extends the effect of selection over hun-

dreds or thousands of kb and likely contributes to the

rather strong correlation we detected. Similarly, a strong

correlation between recombination and polymorphism

was also found in the highly selfing nematode, Caenor-

habditis elegans (Cutter & Payseur 2003). In a recent

study, Flowers et al. (2012) found an intriguing pattern

where both gene density and recombination rates had a

negative effect on nucleotide diversity in the Asian rice

genome – a result not expected by theoretical predic-

tions. Flowers et al. (2012) interpreted this negative corre-

lation as a by-product (statistical artefact) of the positive

correlation between gene density and recombination

rates. Not surprisingly, the coding-site density is also

strongly positively correlated with recombination rates

in our data set (Spearman’s r = 0.58, P < 10�16). We

manage to found both a positive effect of recombination

rates and a negative effect of gene density probably

because we analysed a considerably larger data set than

Flowers et al. (2012) (552 loci in Flowers et al. (2012) vs

more than 12 000 in the present data set) therefore

increasing the power to disentangle the effect of each

explanatory variable.

Severe bottleneck and high cost of domestication in the
African rice

We found that African rice experienced a severe bottle-

neck during domestication. Assuming Ddom = 1000 gen-

erations for the duration of the bottleneck, the

population size was reduced to less than 2% of the ini-

tial population size, that is, Nbot � 1200 individuals.

This corresponds to a bottleneck intensity of k = Nbot/

Ddom � 1.2, which is twice stronger than the one esti-

mated in maize, k = 2.45 (Wright et al. 2005). Several

reasons can explain such a strong bottleneck. The area

of domestication could have been very limited or the

selection initially strong. However, archaeological

records suggest rather slow evolutionary process, at

least for initial steps (Tanno & Willcox 2006; Purugga-

nan & Fuller 2009). High selfing could also amplify the

bottleneck strength as selection can extend genome-

wide, as discussed above (see also Caicedo et al. 2007;

Glémin & Bataillon 2009). Finally, O. glaberrima was lar-

gely replaced by O. sativa after the latter was intro-

duced in West Africa during the 16th century

(Bezancon 1993). This may also have contributed to the

genetic impoverishment of the African rice.

A potential consequence of a strong domestication bot-

tleneck is the accumulation of deleterious mutations as

already observed in dog (Bj€ornerfeldt et al. 2006; Cruz

et al. 2008), yeast (Gu et al. 2005) and yak (Wang et al.

2011). The effect could be increased by hitch hiking of

deleterious alleles especially in low recombining selfing

species (Hartfield & Otto 2011; Hartfield & Glémin 2014).

In agreement with this hypothesis of a cost of domestica-

tion, we observed an excess of fixation of derived non-

synonymous mutations in O. glaberrima compared with

O. barthii, especially for weakly expressed genes and in

genomic regions that suffered from stronger genetic drift

(Fig. 6). Increased fixation of nonsynonymous mutations

could also be explained by relaxed selection on certain

genes due to friendlier environmental conditions in agro-

systems. However, this hypothesis does not explain the

stronger accumulation in genomic regions that experi-

enced higher drift and would require that relaxed selec-

tion had only affected lowly expressed genes.

Accumulation of weakly deleterious mutations is thus

the most likely hypothesis to explain our results. Lu et al.

(2006) reported a similar result on the Asian rice. How-

ever, the authors compared Dn/Ds ratios between the

two Asian rice groups, O. sativa ssp japonica and O. sativa

ssp indica, with Dn/Ds ratios computed with a much

more distant species, O. brachyanta, thus mixing poly-

morphism, for the domesticated group, and divergence,

for the wild one. Therefore, they did not take into account

the confounding effect of divergence time on Dn/Ds, as

Dn/Ds is expected to decrease with divergence time (Ro-

cha et al. 2006; Peterson & Masel 2009; Wolf et al. 2009;

Dos Reis & Yang 2013; Mugal et al. 2013b). Here, we

directly compared the domesticated and the wild popula-

tions and clearly separated polymorphic from fixed

mutations. We thus provide here a clear evidence for a

high cost of domestication in the African rice, which still

needs to be confirmed in the Asian rice.

Which targets of selection during the domestication
process?

In our analysis, we identified only very few genomic

regions as candidate targets of positive selection during

© 2014 John Wiley & Sons Ltd
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domestication (e.g. only two windows using the Dp sta-

tistics). As an alternative, we also focused on loci that

have been identified as important determinant of agro-

nomic traits in the Asian rice such as sh4, qSH1, qSW5

or SD1 (Sang & Ge 2013). A close inspection of these

loci in our data sets did not reveal any particular pat-

tern of genetic diversity. This lack of positive result

surely does not indicate an absence of selection during

the African rice domestication. Rather, it more likely

reflects the difficulty to identify selection after a very

strong population bottleneck. The pattern of molecular

variation created by population bottlenecks can be sur-

prisingly similar to positive selection, and variations in

allele frequencies induced by genetic drift can mask the

effect of selection (Thornton et al. 2007). This difficulty

has already been pointed out in other cultivated plants

(e.g. Sorghum bicolor; Hamblin et al. 2006). Our simula-

tions demonstrated that when the bottleneck intensity is

moderate (e.g. a = 0.1 over 1000 generations), FST and

especially Dp appear powerful to detect positively

selected genomic regions (Innan & Kim 2008). In our

case, however, we estimated the bottleneck to be much

more intense (a ~ 0.02), which decreases the statistical

power. An alternative explanation might be that selec-

tion has affected very large regions throughout the gen-

ome of O. glaberrima. Here, the high selfing rate of the

African rice could broaden the impact of any selective

sweep, as also suggested for the Asian rice (Caicedo

et al. 2007). This would lead to an overestimation of the

bottleneck intensity and, subsequently, an underestima-

tion of the number of outlier regions. Interestingly,

Andersen et al. (2012) provided convincing evidences of

selective sweeps occurring at the scale of a chromosome

in the selfing species Caenorabditis elegans.

Implications for breeding

In addition to providing the first genome-wide charac-

terization of genetic diversity evolution in the African

rice domestication, our results also bear implications

for rice breeding. As previously noted (e.g. Li et al.

2011), genetic diversity is very low in the cultivated

compartment, likely the lowest value reported in

plants so far (compared with Leffler et al. 2012 and

Glémin et al. 2006). Such very low genetic diversity

may challenge breeding programmes. Beyond intro-

gressing interesting agronomic traits from Asian rice,

as in NERICA varieties, broadening the usable genetic

diversity of O. glaberrima should be considered as a

priority goal for breeding programmes, for instance

using O. barthii material. Another, overlooked, strategy

would be not to focus on improving specific traits but

more globally on purging the genetic load accumulated

during the domestication process. Again, the use of

O. barthii could be useful in breeding programme to

re-introduce fitter alleles lost during the domestication

bottleneck. Our results show that population genomic

approaches may help targeting genes or genomic

regions for which purging would be necessary. Finally,

our results suggest that high selfing rate has likely

contributed to the reduced diversity and load in

O. glaberrima. Increasing outcrossing and recombination

in this species should also improve the efficiency of

breeding strategies.
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Fig. S1 Demographic scenario used in the coalescent simula-

tion. Parameters in bold are estimated, the others are fixed in

the ABC analysis. Nbot = a N0, see text for detail.

Fig. S2 Number of heterozygous sites between individuals of

O. barthii (RS) and O. glaberrima (RC)

Fig. S3 Maximum-likelihood estimation according to the num-

ber of populations (K) in STRUCTURE analyses. Red and black

lines correspond to the two MCMC chains analysed.

Fig. S4 Phylogenetic tree of the 60 loci positioned between the

position 4 Mb and 6 Mb of the chromosome 5 including Oryza

sativa indica sequences. Phylogenetic tree reconstructed using

BIONJ clustering method and TN93 substitution model. RS

represent O. barthii individuals and RC, O. glaberima. Nodes

with a bootstrap supports above 95% (100 replicates) are indi-

cated with a asterisks.

Fig. S5 LD decay (r2) in a sample of 9 O. barthii and 7 O. glab-

errima, plotted as a function of the genetic distance between

SNP. Blue and green lines indicate lowest fits of O. glaberima

and O. barthii data, respectively compute using the R ‘loess’

function.

Fig. S6 Distribution of summary statistics obtained by posterior

predictive simulations (simulations under estimated parame-

ters). On each panels, vertical red line indicate the observed

value of the statistic.

Fig. S7 The likelihood surface fitting f: the proportion of genes

in the severe bottleneck (selected) class (a = 0.0017).

Fig. S8 Relation between the ratio of nonsynonymous (Dn)

over synonymous (Ds) divergence and the ratio of O. glaberima

nucleotide diversity (pglab) over O. barthii nucleotide diversity

(pbart) computed over 2 Mb windows. Black line is the linear

regression line.

Fig. S9 Power analysis of Dp and FST according to the bottle-

neck intensity a = Nbot/N0. Red dots correspond to the esti-

mated value of a = 0.017. Sample size for the wild and the

domesticated population is n = 9 for the wild and n = 8 for the

domesticated population in both cases.

Fig. S10 Power analysis of Dp and FST according to the bottle-

neck intensity a = Nbot/N0. Red dots correspond to the esti-

mated value of a = 0.017. Sample size for the wild and the

domesticated population is n = 20 in both cases.

Appendix S1 Supplementary methods and analyses.

Table S1 Details on the individuals sampled.

Table S2 Sequencing and mapping performance of cultivated

(RC) and wild (RS) African rice.

Table S3 Basic population genetic statistic with various param-

eters and option used in reads2snp.

Table S4 R², Estimates and P-values in a multi-linear regres-

sion analysis for potential genomic explanatory variables of

synonymous nucleotide diversity (ps) of domesticated (O. glab-

errima) and wild (O. barthii) population excluding the chromo-

some 11.

Table S5 Mean Dp mean FST and P-val associated with

randomization test for the 45 GO-slims terms of category

‘Biological process’.
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