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Segmentation of gray scale images of dropwise
condensation on textured surfaces

Helene Martin, Solmaz Boroomandi Barati, Nicolas Pionnier, Jean-Charles Pinoli, Stephane Valette,
and Yann Gavet,

Abstract—In the present work we developed an image pro-
cessing algorithm to measure water droplets characteristics
during dropwise condensation on pillared surfaces. The main
problem in this process is the similarity between shape and
size of water droplets and the pillars. The developed method
divides droplets into four main groups based on their size and
applies the corresponding algorithm to segment each group.
These algorithms generate binary images of droplets based on
both their geometrical and intensity properties. The information
related to droplets evolution during time including mean radius
and drops number per unit area are then extracted from the
binary images. The developed image processing algorithm is
verified using manual detection and applied to two different sets
of images corresponding to two kinds of pillared surfaces.

Keywords—Dropwise condensation, textured surface, image
processing, watershed.

I. INTRODUCTION

DROPWISE condensation attracted lots of attention in
many industrial applications since about 80 years ago

[1] due to its high rate of heat transfer [2]. Though this
phenomenon is not preferred in optical applications, for
example in automotive industry the light passing through
car headlights distracts by water droplets generated during
dropwise condensation.

Generally condensation occurs when the temperature of
saturated air goes behind its dew point [3]. In this case,
water droplets start to nucleate either in the air mixture
or on the cold substrate of chamber walls. Regarding con-
densation on cold substrate, nucleation can occur homo-
geneously (when there is no preference between different
spots for nucleation) or heterogeneously (preferentially on
the surface imperfections) [4]. In both cases, dropwise
condensation occurs in four main steps: nucleation, growth
of droplets by adsorbing water molecule, coalescence and
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steady state. In the last step, a constant pattern in both the
size and number of droplets is visible [5].

Heterogeneous dropwise condensation on textured sur-
faces is now more attractive to scientists because of the
ability of controlling droplets configuration [6]. This idea
could also be interesting for optical applications. Indeed,
this solution could make drops to form a continuous film
or to drain quickly from the surface of headlights or
glasses. Thus, several techniques were developed in order
to study the characteristics and the evolution of droplets
on textured surfaces. The first step of all these methods is
the image processing techniques that extract all droplets
information from gray scale images. These techniques
deal with non intrusive methods with a high spatial and
temporal resolution [7].

Most of the time, such image processing algorithms
are divided into three main steps: pre-processing, drop
segmentation and drop reconstruction. The first one aims
at improving contrast and removing noise in order to
facilitate the drop segmentation step. The drop segmenta-
tion step consists of isolating drops from the background
and then separating overlapping drops. The corresponding
algorithms can be classified into three groups: the ones
based on the shape analysis, based on the edge analysis,
and based on the intensity analysis. The algorithms based
on the shape analysis consider drops as circles with dark
edges and bright centers. These drops can be detected by
using circle detection methods like the Hough transform
[8] and its improvements, such as the normal-line Hough
transform [9] and the coherent circle Hough transform
[10]. However, these methods are only efficient for spher-
ical droplets. The algorithms based on the edge analysis
use images generated by an edge detection method [11].
For this purpose, the Canny method seems to be the
most convenient since although it is more sensitive to
noise with respect to other methods, it provides more
connected contours. Then the contour discontinuities that
represent multiple drops overlapping are detected. such
points are called breakpoints, that can be detected by
means of several techniques, either by rotating the edge
curves [12] or by analyzing their curvature [13], [14]. The
main drawback of these techniques is the noise sensitivity,
which necessitates to smooth the edge curvatures. A way
to limit the noise sensitivity of measurements is to use an



adaptive curvature [15]. Finally, the algorithms based on
an intensity analysis use the gray-level intensities as a drop
presence indicator. These intensities can be used directly
like the PIV methods [16] using a dynamic thresholding
and watershed [17] or indirectly like the appearance-based
approaches using an isolated drop to select the same
appearance drops [18]. These methods can be combined
thorough a tree of decision to improve the detection quality
[7]. For instance, the PIV methods are particularly efficient
for isolated drops while the watershed method works well
for overlapping ones. However, this combination requires
a long computational time.

The drop reconstruction step consists of reconstructing
missing parts of drops by determining their radius and
their centers. These methods can be divided into four
main groups: the ones based on ellipse fitting, based
on the geometrical analysis, based on the morphological
analysis and the ones using drop inner boundaries. The
ellipse fitting methods consist of recognizing ellipse-like
shapes in the image. For this purpose, least-squares fitting
methods [19] or k-means methods [20] are used. However,
these methods work only on ellipsoidal droplets. The
geometrical methods aim at determining whether two arcs
belong to the same drops by means of either correlation
coefficients [12] or applying convexity criteria directly to
the contour image [21] or to the polygonal approximation
image [22]. The main drawback of these methods is the
use of deterministic parameters. The morphological tech-
niques use the morphological reconstruction principle. For
this purpose, overlapping drops are reduced to independent
characteristic areas before being reconstructed, but the
percentage of overlapping droplets must not be too high.
Different techniques can be used in this regard: successive
erosion [23], [24], skeletonization and shrinking [25] or
the watershed technique applied to a distance map [26].
After all, a final technique is applied in order to complete
missing parts of droplets by using drops inner boundaries
[7]. This last method necessitates high inner boundaries
quality.

However, in the case of textured surfaces, the pillars
which represent the texturation do not let one to use di-
rectly these techniques, although they are adapted to differ-
ent drop shapes and image conditions. Indeed, pillars have
the same properties as drops, they have dark edges and
bright centers. Moreover, when the drop shape becomes
irregularly connected over the pillars, the already-existing
methods are not able to separate them and recognize each
droplet. Thus, the goal of this work is to find a way to
detect separately drops and pillars in order to analyze drop
characteristics evolution on the surface.

This work consists of finding an automatic way to seg-
ment drops on several textured surfaces in order to study
droplets characteristics. In the following, the experimen-
tal set-up enabling to photograph textured surface under
dropwise condensation condition will be described. Then,

the details of the developed image processing algorithm
will be presented. Finally, the algorithm accuracy will be
determined and the measurement results will be discussed.

II. EXPERIMENTAL SET-UP

The schematic of the experimental set-up is shown in
figure 1. The textured substrate with temperature 281K is
placed inside a humid chamber with relative humidity of
about 40% and air temperature of 303K. The humid air is
generated by mixing filtered compressed air and saturated
air.

Dropwise condensation on the sample is recorded by a
CCD gray scale camera at each second. This camera uses
a long-focal-distance adjustable lens in order to get a high
spatial resolution. The gray-level images are then used in
the following image processing algorithm.

Fig. 1. Schematic of the experimental set-up

III. IMAGE PROCESSING ALGORITHM

An image processing algorithm has been developed to
segment drops and to analyze drop characteristic evolution
during dropwise condensation. This algorithm is applied
to a set of images and it consists of three main steps as
shown in figure 2. The pillar characterization step aims at
isolating pillars in order to remove them from the other im-
ages. The goal of the second step is to divide the image set
into several groups: very small drops, small drops, medium
drops and big drops. The first two groups refer to the drop
growth by adsorption. The third group corresponds to the
coalescence step and the last one corresponds to the steady
state where the changes in size and number of droplets
are negligible. After this categorization, the corresponding
image processing algorithm is applied to each group. Thus,
an image of drop segmentation is generated on which the
mean radius and drop number can be measured.

A. pillar characterization

The goal of this step is to isolate pillars from back-
ground in order to remove them in the other images.
In fact, pillars can entail mis-measurement because of
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Fig. 2. Schematic diagram of the image processing algorithm

their similar properties to drops. As the images are taken
without shifting, pillars are at the same location on the
images from the same set. So for the purpose of pillar
elimination, the first image of the considering set is used
because the drop presence can be neglected. The algorithm
is detailed in figure 3.

As pillars are perfectly circular, the circle Hough trans-
form is the most adapted technique. Moreover, an approx-
imation of pillar radius is known. Indeed, their real size
is between 10 and 20 µm and according to the camera
magnification, the radius range considered for the Hough
transform is [10; 30] pixels. It is important to consider a
quite narrow range in order to get accurate results and a
low computational time. To improve again the algorithm
performances, the coherent Hough transform is used [10].

By means of this method, all the pillars are detected
except the ones at the image borders. However, some
artefacts are detected too as shown in figure 3 (b). As
they don’t have the same size as pillars, a technique to
solve this problem is to consider the distribution of circle
radius and to remove the ones with an aberrant radius, as
shown in figure 3 (c) and (d). Thus, the circle radius must
be inside the band [µ - 3.9 σ; µ + 3.9 σ] to be considered
as pillars, where µ and σ are the average and the standard
deviation of the radius distribution.

At the same time, a manual pillar recognition test is
led, as shown in figure 3 (e). This secondary method
enables to confirm the position of pillars and to validate
the calculated radius. Indeed, if the radius are smaller than
the real ones, the pillar boundaries will not be taken into
account and they will be considered as pillars during the
drop segmentation step. Similarly, if the radius are wider

than the real ones, some drops will be removed.
Figure 3 (f) shows that pillars from the Hough transform

are lightly smaller than the real ones, that can be explained
by their blurred boundaries. Consequently, the circles from
the Hough transform must be enlarged. In order to quantify
the correct radius, the equivalent circle radius is calculated
by means of the manual measurements. This equivalent
radius refers to the radius of the circle with the same center
as the one from the Hough transform but covering both the
Hough transform circle and the manual measured circle,
as shown in figure 4. In our case, pillar radius must be
enlarged from four-pixel wide.

Finally, the binary image of the pillars is generated.
The image with the radius from the Hough transform
is firstly generated and then, the image is dilated by
a disk structuring element, whose radius corresponds to
circle enlargement found previously. The final results show
visually good approximation of the pillar location and
dimension.

It is important to note that the pillars close to the image
borders can’t be detected because the missing parts are
too large. Thus, this problem must be taken into account
in the next parts of the algorithm. For instance, the images
will be resized.

B. Image categorization

As mentioned previously, there are four kinds of drops:
very small drops, small drops, medium drops and big
drops. It is important to distinguish these groups because
the drop identification algorithm will be adapted to each
kinds of drops.

This step is like a texturation determination process.
Two main categorization methods exist: the ones based on
the intensity distribution [27] and the ones based on the
pattern distribution [28], [29]. As the image categorization
needs to be very fast, the study of intensity histograms is
more preferred in our case.

Firstly, a sub-sampling of the image set is done to limit
the computational time. Thus, ten percent of images have
been chosen regularly, since the time step between images
is equal to 1s, 10% of images means the images have been
taken after each 10s. The corresponding gray-tone level
histograms of each studied image is determined. As shown
in figure 5, the number of major peaks in histograms vary
as a function of time. This variation represents the different
drop sizes. Thus, the ranges of each size group of drops
are characterized:

- Very small drops: histogram with three major peaks,
corresponding to the background, the drop edge and
the drop center.

- Small drops: after a while when the histogram of gray
tone turns in to bimodal diagram, the majority of
droplets are called small droplets that grow mainly
due to adsorption. With respect to the former stage
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Fig. 3. Algorithm for pillar characterization

Fig. 4. Equivalent circle determination

here the peak related to the background disappeared
because drops tend to cover entirely the sample.

- Medium drops: In the third stage, drops start to
coalesce and their centers become larger with the
same intensity as background. Therefore the gray
tone histogram will turn to a unimodal diagram. The
droplets at this stage are so called medium drops.

- Big drops: Finally, when the droplets are big enough
to reach the steady state condition, the gray tone
histogram will have two peaks again, that refer to
the drop edges and centers.

C. Drop identification

This last part of the algorithm consists of identifying
drops in each image during dropwise condensation in order

Fig. 5. Intensity histogram of (a) very small droplets at t = 100s, (b)
small droplets at t = 200s, (c) medium droplets at t = 500s and (d) big
droplets drops at t = 1500s.

to determine the evolution of drop characteristics.
1) Very small drops: The very small drops refer to

the small elements between pillars(figure 6). The idea of
this algorithm is to segment drops by means of correct
thresholding values, as shown in figure 7.

At first, in order to eliminating the pillars, they are
removed by means of the image generated in the pillar
characterization step. Thus, a gray-level image is obtained
with black holes at pillar places, as shown in figure 7 (a)
and (b). Figure 7 (c) shows the histogram corresponding
to the images containing very small droplets. This process
is applied in parallel to the first image at time of zero
(figure 7 (d), (e) and (f)).

The very small droplets spread the gray tone histogram



Fig. 6. Image of very small drops on a textured surface

towards darker area, because generally they are darker than
the substrate. Therefore, the superposition point between
these two histograms can be used as thresholding value
for figure 7(a). But since there are lots of superposition
points between these two histograms along the vertical
axis, the thresholding value can be calculated by finding
the superposition point with the maximum value. Figure 7
(g) represents the difference between these two histograms
and the zero values in this graph shows the superposition
points. So the first zero point after the peak corresponds
to the maximum superposition point or the thresholding
value. This value then used for thresholding the images
containing very small drops as is shown in figure 7 (h).
At last each region is labeled according to figure 7 (i).
Therefore, the number of regions corresponds to the drop
number N , that enables to determine the mean drop radius
Ravg from the total region area A:

Ravg =

√
Atot

Nπ
. (1)

2) Small drops: Small drops are presented as small
circular elements which are smaller than the pillars in the
images (figure 8). Since, at this step, droplets are perfectly
circular, they can be recognized by means of the Hough
transform as shown in figure 9 (b).

Then, as shown in figure 9 (c), the circles corresponding
to pillars are removed by comparing the position of circle
centers between the considered image and the first image
of the set. A binary image is obtained (figure 9 (d)), it
gives the total area Atot of drops. To get the number of
drops, the overlapping drops need to be separated. For this
purpose, the binary image is turned into a distance map
by the Euclidean distance (figure 9 (e)) and the watershed
technique is applied to this distance map (figure 9 (f)). A
labeling step enables to get the drop number and finally,
the equation 1 gives the mean radius of drops.

3) Medium drops: The medium drops form a contin-
uous cluster around pillars and drop centers look like
background regions (figure 10). Therefore, the centers of
drops must be determined by means of some criteria based
on both geometry and intensity (figure 11).

In this regard, the original images are firstly thresholded
by means of Otsu’s method as is shown in figure 11
(b). The problem here is that white area represents both
droplets center and substrate. In order to recognising
droplets center, two techniques are applied to sufficiently
large white regions. The droplets centers are either more
convex than substrate or are less homogeneous in intensity.
Consequently, the areas with the convexity rate under 4
% (figure 11 (d)) or with low rate of gradient magnitude
refer to the drops centers (figure 11 (c)). The limited rate
of gradient magnitude corresponds to 4/5 of the mean
gradient magnitude of the neighborhoods. Finally, the
binary images of drops as in figure 11 (f) are made by
applying the watershed method.

4) Big drops: Big drops are characterized by the fact
that they cover entirely several pillars as shown in figure
12. For binarizing images containing big droplets, shrink-
ing and gradient properties are used (figure 13).

Firstly, the images are thresholded by a Otsu’s method
as shown in figure 13 (b). Then, the black parts are shrunk
in order to get their skeletons (figure 13 (c)) around the
white regions which correspond to either drops centers
or the background. As was explained for the medium
drops, the average of gradient magnitude is calculated on
the white regions according to figure 13 (d). Then, the
distribution of this value is divided into two groups by
means of the histogram specification, the median between
the two main peaks, that gives the criterion value (figure
13 (e)).

However, when several white regions belong to the same
drop, the watershed technique can’t be applied directly.
To solve this problem, the white regions are dilated and
overlaid with the pillar image. Thus, the white regions
which belong to the same drop are connected. A test on
convexity enables to reconstruct each drop center (figure
13 (g)). Finally, a watershed technique is used to detect
each drop region (figure 13 (h)), that enables to get the
drops number and mean radius.

IV. ALGORITHM VERIFICATION

In order to measure quantitatively the performance of
this algorithm, the drops are divided into four groups
according to their presence in the initial configuration and
their detection by the algorithm:

- The true positive drops (TP ) which are detected by
the algorithm and are present in the initial image.

- The false positive drops (FP ) which are detected by
the algorithm but are not present in the initial image.

- The false negative drops (FN ) which are not detected
by the algorithm but are present in the initial image.
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Fig. 7. Algorithm for very small drops

Fig. 8. Image of small drops on a textured surface

- The true negative drops (TN ) which are not detected
by the algorithm and are not present in the original
image.

The number of drops which belong to each groups
enables to estimate the precision (PR) and the recall (RC)
of the algorithm:

PR =
TP

TP + FP
, (2)

RC =
TP

TP + FN
. (3)

A high value of PR indicates that detected drops are
present in the original image and there can be other
drops which are not detected by the algorithm. On the
contrary, a high value of RC indicates that the algorithm
detects almost all drops, but it also detects some drops,
which do not exist in the original image. Thus, these both
measurements suffer from a lack of accuracy. In fact,
neither FN nor FP are not preferred for an accurate
algorithm. That’s why, a more robust measurement of the
algorithm accuracy so-called F -measure (FM ) is used
[30]:

FM =
2

1/PR+ 1/RC
. (4)

In order to evaluate the F -measure of this algorithm, the
drops are manually detected in a sub-sampling of images
and are compared with those detected by means of the
algorithm. This study is led to two kinds of surfaces (grid
pattern and quincunx pattern) in order to determine the
application conditions of the algorithm. Table I shows the
evolution of the F -measure as a function of the considered
image set and the drop size.

The low values obtained for small drops can be ex-
plained by the fact that drops are not really circular
because they are adjacent to pillars. Despite these mis-
measurements, Table I shows that this algorithm is very
accurate, especially for large drops. Although the detection
on the quincunx pattern is less accurate. Thus, the pillar
pattern has an influence on the algorithm accuracy.
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Fig. 9. Algorithm for small drops

Fig. 10. Image of medium drops on a textured image

Set Drop size FM
Regular pattern Very small 75 %

Small 49 %
Medium 84 %
Big 93 %

Quincunx Very small -
Small 5 %
Medium 71 %
Big 87 %

TABLE I
PERFORMANCE PARAMETERS OF THE ALGORITHM FOR SEVERAL

IMAGE SETS

V. APPLICATION TO TEXTURED SURFACES

The developed image processing algorithm is applied to
images generated by the experimental set-up described in
Section 2. Several texturation are tested: grid pattern and
quincunx pattern.

Figure 14 shows the evolution of the drop mean radius
during dropwise condensation for both textured surfaces.

The measurements were done every 10s in order to reduce
the computational time. As can be seen in this figure, the
drops mean radius increases to reach a steady state sit-
uation, that follows the theory of dropwise condensation:
droplets grow and coalesce until reaching a regular pattern
[5].

Figure 15 shows the evolution of the drop number
during dropwise condensation for both of the textured
surfaces. In both cases, the drops number decreases rapidly
to reach a steady state situation, after which the number
of droplets follow a constant pattern.

The steady state situation in both radius and number of
droplets is due to coalescence phase, during which two or
more small droplets merge and form a bigger droplet. This
phenomenon leads to decrease in the total surface area
covered by the droplets, In the vacant area formed after
coalescence new small droplets can nucleate continuously.
The opposite effect of coalescence and nucleation of new
small droplets on the average size and total number of
droplets will lead to an approximately constant pattern in
these two diagrams.

However, the fluctuations at the initial seconds of the
algorithm show the lack of robustness of this algorithm in
initial stages of dropwise condensation.

The comparison between droplets radius and density
between two kinds of texturation reveals that, the drops
mean radius for the quinqunx pattern is lower than the one
for the grid pattern. In parallel, the initial droplets density
for the grid pattern is higher than quinqunx pattern. While
for both texturations, these measurements reach the same
values at steady state: 0.25mft for the mean radius and
301/ft2.

Figure 16 and 17 compare the drop characteristics of
the grid patterned surface with a flat surface formed with
the same material in order to see the influence of pillars on
the drop evolution. According to figure 16, the presence
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Fig. 11. Algorithm for medium drops

Fig. 12. Image of big drops on a textured image

of the pillars limits the increasing of drop radius at steady
state of about 50%. However, during other steps, droplets
on the flat surface are respectively larger. On the other
hand, the presence of pillars increases considerably the
drops number during the initial steps.

VI. CONCLUSION

A robust image processing algorithm has been devel-
oped for drop measurement on textured surfaces. The
existing techniques of drop measurement have been dis-
cussed and have been proved to be adequate in the case of

pillar texturation too. Thus, the developed algorithm com-
bines the geometrical, optical and topological information
of the images to segment the droplets. It is capable of
segmenting drops with a large range of radius. Indeed,
by means of an histogram analysis, it can estimate the
drop size, divides the drops in four main size range and
uses a corresponding algorithm adapted to each size range.
A manual verification of drop detection ability of the
present algorithm comparing to real images is conducted
to verify the algorithm accuracy. The F -measure enables
to quantify the accuracy of the detection and to show that
this algorithm has a high accuracy for drops with a radius
over 0.15mft.

The developed algorithm gives the evolution of drops
mean radius and number per unit area during dropwise
condensation. It has been applied to two kinds of textured
surfaces in order to compare the wettability of each
texturation. This comparison shows that the texturation
pattern affects the droplets size and the density before
steady state situation. The comparison with flat surface
shows that, although texturation enables to reduce the
droplets size at later stages , it increases the density of
initial nucleation.
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