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ABSTRACT

In the typical framework for boolean games (BG) each player can 
change the truth value of some propositional atoms, while a!empt-
ing to make her goal true. In standard BG goals are propositional 
formulas, whereas in iterated BG goals are formulas of Linear Tem-
poral Logic. Both notions of BG are characterised by the fact that 
agents have exclusive control over their set of atoms, meaning that 
no two agents can control the same atom. In the present contri-
bution we drop the exclusivity assumption and explore structures 
where an atom can be controlled by multiple agents. We introduce 
Concurrent Game Structures with Shared Propositional Control 
(CGS-SPC) and show that they account for several classes of re-
peated games, including iterated boolean games, in"uence games, 
and aggregation games. Our main result shows that, as far as veri-
#cation is concerned, CGS-SPC can be reduced to concurrent game 
structures with exclusive control. $is result provides a polyno-
mial reduction for the model checking problem of speci#cations in 
Alternating-time Temporal Logic on CGS-SPC.

KEYWORDS

Knowledge Representation, Iterated Games, Alternating-time Tem-
poral Logic, Propositional Control, Reasoning about Strategies

1 INTRODUCTION

Coalition Logic of Propositional Control CL-PC was introduced
by van der Hoek and Wooldridge [20] as a formal language for
reasoning about capabilities of agents and coalitions in multiagent
environments, later extended by the concept of transfer of control
[19]. In CL-PC, capability is modeled by means of the concept of
propositional control: it is assumed that each agent i is associated
with a speci#c #nite subset Φi of the #nite set of all atomic variables
Φ, which are the variables controlled by i , in the sense that i has the
ability to assign a (truth) value to each variable in Φi but cannot
change the truth values of the variables in Φ \ Φi . Control over
variables is assumed to be exclusive: two agents cannot control
the same variable, i.e., if i , j then Φi ∩ Φj = ∅.

1 $e connection
between CL-PC and Dynamic Logic of Propositional Assignments
was explored by Grossi et al. [8].

A boolean game BG [3, 11] is a game in which each player wants
to achieve a certain goal represented by a propositional formula.
Boolean games correspond to the speci#c subclass of normal form
games in which agents have binary preferences. $ey share with
CL-PC the idea that an agent’s action consists in a%ecting the truth
values of the variables she controls. Just as in there, control over
atomic propositions is exclusive in BGs. More recently, BGs were
generalized to iterated boolean games IBGs [9, 10]. In IBGs, the
agents’ goals are formulas of Linear Temporal Logic LTL, and an
agent’s strategy determines an assignment of the variables con-
trolled by the agent in every round of the game.

Gerbrandy [5] was the #rst to study CL-PC without exclusive
control. In his games of propositional control, the value of a vari-
able at the next state is determined by an outcome function that
combines the agents’ choices of values for propositional variables.
Gerbrandy’s language contains a coalition operator and—just as
coalition logic—only allows to reason about what agents and coali-
tions of agents are able to achieve in a single step. Importing results
from many-dimensional modal logics, Gerbrandy proved that the
satis#ability problem is decidable when there are at most 2 agents,
and undecidable otherwise [5, Prop.5].

1 In CL-PC, it is also assumed that control is complete, that is, every variable is
controlled by at least one agent (i.e., for every p ∈ Φ there exists an agent i such that
p ∈ Φi ).



$e aim of the present paper is to further study models with-
out exclusive propositional control as a basis for BGs and other 
game-theoretic approaches. Speci#cally, we introduce Concurrent 
Game Structures with Shared Propositional Control CGS-SPC and 
show their relationship with di%erent classes of games studied in 
literature, including IBGs. $e main result of the paper is that CGS-
SPC can be reduced to CGS with Exclusive Propositional Control 
CGS-EPC [2] by introducing a dummy agent who controls the value 
of the shared variables and simulates the transition function. $e 
reduction is polynomial, showing that the problem of veri#cation 
of speci#cations in Alternating-time Temporal Logic on CGS-SPC 
can be reduced to veri#cation in CGS-EPC. We also explore the 
consequences of such results in the problem of #nding a winning 
strategy in games with shared control.

$e paper is organized as follows. Section 2 provides the basic 
de#nitions of concurrent game structures with exclusive and shared 
control, as well as introducing the language and the semantic of 
Alternating-time Temporal Logic. Section 3 shows that a number 
of game structures introduced in the literature can be reconducted 
to our de#nition of CGS-SPC. We then prove our main result in 
Section 4, where we reduce the problem of ATL∗ model checking 
for CGS-SPC to model checking of a translated ATL∗ formula in a 
CGS-EPC suitably de#ned. Section 5 discusses the consequences 
in computational complexity of our main result, and Section 6 
concludes.

2 FORMAL FRAMEWORK

In this section we consider two classes of concurrent game struc-
tures with propositional control, suitable for the interpretation of a 
logic for individual and collective strategies which is introduced 
next. $e two classes di%er in the type of propositional control: 
exclusive in the former and shared in the la!er.

2.1 CGS with Exclusive and Shared Control
We #rst present concurrent game structures with exclusive propo-
sitional control CGS-EPC as they have been introduced by Belar-
dinelli and Herzig [2].2 We then generalise them by relaxing the 
assumption of exclusive control.

De!nition 2.1 ( CGS-EPC). A concurrent game structure with ex-
clusive propositional control is a tuple G = 〈N , Φ1, . . . , Φn , S, d, τ 〉, 
where:

• N = {1, . . . ,n} is a set of agents;
• Φ = Φ1 ∪ · · · ∪ Φn is a set of propositional variables parti-

tioned in n disjoint subsets, one for each agent;

• S = 2Φ is the set of states, corresponding to all valuations
over Φ;

• d : N × S → (2A \ ∅), for A = 2Φ, is the protocol function,

such that d (i, s ) ⊆ Ai for Ai = 2Φi ;
• τ : S × An → S is the transition function such that

τ (s,α1, . . . ,αn ) =
⋃

i ∈N αi .

Intuitively, a CGS-EPC describes the interactions of a group N

of agents, each one of them controlling (exclusively) a set Φi ⊆ Φ

2More precisely, the CGS-EPC we consider here as our basic framework correspond
to the “weak” version de#ned by Belardinelli and Herzig [2], as opposed to a strong
version where d (i, s ) = Ai for every i ∈ N and s ∈ S .

of propositional atoms. $e state of the CGS is an evaluation of the
atoms in Φ. In each such state the protocol function returns which
actions an agent can execute.

$e intuitive meaning of action αi ∈ d (i, s ) is “assign true to
all atoms in αi , and false to all atoms in Φi \ αi ”. $e idles action
can be introduced as {p ∈ Φi | s (p) = 1}, for every i ∈ N , s ∈ S .
With an abuse of notation we write d (i, s ) = α whenever d (i, s ) is
a singleton {α }.

We equally see each state s ∈ S as a function s : Φ → {0, 1}
returning the truth value of a propositional variable in s , so that
s (p) = 1 i% p ∈ s . Given α = (α1, . . . ,αn ) ∈ A

n , we equally see
each αi ⊆ Φi as a function αi : Φi → {0, 1} returning the choice of
agent i for p under action α .

We now introduce a generalisation of concurrent game struc-
tures for propositional control. Namely, we relax the exclusivity
requirement on the control of propositional variables, thus introduc-
ing concurrent game structures with shared propositional control
CGS-SPC.

De!nition 2.2 (CGS-SPC). A concurrent game structure with shared

propositional control is a tuple G = 〈N ,Φ0, . . . ,Φn , S,d,τ 〉 such
that:

• N , S , and d are de#ned as in Def. 2.1 with A = 2Φ\Φ0 ;
• Φ = Φ0 ∪ Φ1 ∪ · · · ∪ Φn is a set of propositional variables,

where Φ0 ∪Φ1 ∪ · · · ∪Φn is not necessarily a partition and
Φ0 = Φ \ (Φ1 ∪ · · · ∪ Φn );

• τ : S × An → S is the transition function.

Observe that in CGS-SPC the same atom can be controlled by
multiple agents, and propositional control is not exhaustive. Addi-
tionally, the actions in A do not take into account propositional
variables in Φ0 because they are not controlled by anyone (though
their truth value might change according to the transition func-
tion). $e transition function takes care of combining the various
actions and producing a consistent successor state according to
some rule. Simple examples of such rules include introducing a
threshold mp ∈ N for every variable p, thus se!ing p ∈ τ (s,α )

i% the number of agents i with p ∈ αi is greater than mp . $is

generalises Gerbrandy’s consensus games [5].3

Clearly, CGS-EPC can be seen as a special case of CGS-SPC
in which every atom is controlled exactly by a single agent, and
therefore {Φ0, . . . ,Φn } is a partition of Φ. Moreover, τ is given in a
speci#c form as per De#nition 2.1.

2.2 Logics for Time and Strategies

To express relevant properties of CGS, we present the Linear-time
Temporal Logic LTL [17] and the Alternating-time Temporal Logic
ATL∗ [1]. Firstly, state formulas φ and path formulasψ in ATL∗ are
de#ned by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | 〈〈C〉〉ψ

ψ ::= φ | ¬ψ | ψ ∨ψ | ©ψ | ψUψ

wherep ∈ Φ andC ∈ 2N . $e intuitive reading of 〈〈C〉〉ψ is “coalition
C has a strategy to enforce ψ ”, that of ©ψ is “ψ holds at the next
state” and that ofψUφ is “ψ will hold until φ holds”.

3$e de#nition of τ as an arbitrary function might seem too general. Nonetheless,
such a de#nition is needed to represent complex aggregation procedures such as those
used in the games described in Sections 3.2 and 3.3.



$e BNF for the language of ATL consists of all state formulas 
where ψ is either ©φ or φUφ. On the other hand, the language of 
LTL consists of all path formulas in ATL∗, whose state formulas are 
propositional atoms only. $at is, formulas in LTL are de#ned by 
the following BNF:

ψ ::= p | ¬ψ | ψ ∨ ψ | ©ψ | ψUψ

Truth conditions of LTL and ATL∗ formulas are de#ned with 
respect to concurrent game structures, such as the CGS-EPC and 
CGS-SPC introduced above. In order to do so, we #rst have to 
provide some additional notation.

$e s et o f enabled j oint a ctions a t s ome state s  i s de#ned as 
Act (s ) = {α ∈ An | αi ∈ d (i, s ) for every i ∈ N }. $en, the set of 
successors of s is given as Succ (s ) = {τ (s, α ) | α ∈ Act (s )}. Every 
Succ (s ) is non-empty because d (i, s ) , ∅. An in#nite sequence of
states λ = s0s1 . . . is a computation or a path if sk+1 ∈ Succ (sk ) 
for all k ≥ 0. For every computation λ and k ≥ 0, λ[k, ∞] =
sk , sk+1, . . . denotes the su&x of λ starting from sk . Notice that 
λ[k, ∞] is also a computation. When λ is clear from the context, 
we denote with α[k] the action such that λ[k+1] = τ (λ[k], α[k]).

A memoryless strategy for agent i ∈ N is a function σi : S → Ai 
such that σi (s ) ∈ d (i, s ), returning an action for each state. For 
simplicity, we will assume in the rest of the paper that agents have 
memoryless strategies.

We let σC be a joint strategy for coalition C ⊆ N , i.e., a function 
returning for each agent i ∈ C , the individual strategy σi . For 
notational convenience we write σ for σ N . $e set out (s, σC ) 
includes all computations λ = s0s1 . . . such that (a) s0 = s; and (b) 
for all k ≥ 0, there is α ∈ Act (s ) such that σC (i ) (sk ) = αi for all 
i ∈ C , and τ (sk , α ) = sk+1. Observe that out (s, σ ) is a singleton.

We are now ready to de#ne the truth conditions for LTL and 
ATL∗ formulas with respect to a CGS-SPC G. Formulas in ATL∗ 
are interpreted on states, while formulas in LTL are interpreted on 
computations.

(G, s ) |= p i% s (p) = 1
(G, s ) |= ¬φ i% (G, s ) 6 |= φ

(G, s ) |= φ1 ∨ φ2 i% (G, s ) |= φ1 or (G, s ) |= φ2
(G, s ) |= 〈〈C〉〉ψ i% for some σC , for all λ ∈ out (s,σC ),

(G, λ) |= ψ

(G, λ) |= φ i% (G, λ[0]) |= φ

(G, λ) |= ¬ψ i% (G, λ) 6 |= ψ

(G, λ) |= ψ1 ∨ψ2 i% (G, λ) |= ψ1 or G, λ |= ψ2
(G, λ) |= ©ψ i% (G, λ[1,∞]) |= ψ
(G, λ) |= ψ1Uψ2 i% for some i ≥ 0, (G, λ[i,∞]) |= ψ2

and (G, λ[j,∞]) |= ψ1 for all 0 ≤ j < i

We de#ne below the model checking problem for this context.

De!nition 2.3 (Model Checking Problem). Given a CGS-SPC G, a
state s ∈ S , and an ATL∗-formula φ, determine whether (G, s ) |= φ.

It is well-known that model checking for ATL∗ on general con-
current game structures is 2EXPTIME-complete [1]. Belardinelli
and Herzig [2] proved that model checking ATL on CGS-EPC is
∆
P
3 -complete. Herea*er we consider the general case of CGS-SPC

and ATL∗.

3 EXAMPLES OF SHARED CONTROL

In this section we take three examples of iterated games from the
literature, namely iterated boolean games [10], in"uence games [7],
and aggregation games [6], and we show that they are all instances
of our de#nition of a CGS-SPC.

3.1 Iterated Boolean Games

Wemake use of CGS-EPC to introduce iterated boolean games with
LTL goals as studied by Gutierrez et al. [9, 10]. An iterated boolean

game is a tuple 〈G,γ1, . . . ,γn〉 such that (i) G is a CGS-EPC with
a trivial protocol (i.e., for every i ∈ N , s ∈ S , d (i, s ) = Ai ); and (ii)
for every i ∈ N , the goal γi is an LTL-formula.

We can generalise the above to iterated boolean games with shared

control as follows:

De!nition 3.1. An iterated boolean game with shared control is a
tuple 〈G,γ1, . . . ,γn〉 such that

(i) G is a CGS-SPC;
(ii) for every i ∈ N , the goal γi is an LTL-formula.

Observe that function τ is thus no longer trivial. Just like CGS-
SPC generalise CGS-EPC, iterated boolean games with shared con-
trol generalise standard iterated boolean games. In particular, the
existence of a winning strategy can be checked via the satisfaction
of an ATL∗-formula:

Proposition 3.2. An agent i in an iterated boolean game has a

winning strategy for goal γi and state s if and only if formula 〈〈{i}〉〉γi
is satis!ed in (G,s).

Example 3.3. Consider an iterated boolean game with shared
control for agents {1, 2} and issues {p,q}, such that Φ1 = {p} and
Φ2 = {p,q}. Suppose that for all states s the transition function is
such that τ (s,α ) (q) = α2 (q), being agent 2 the only agent control-
ling q, while τ (s,α ) (p) = 1 i% α1 (p) = α2 (p) = 1. We thus have
that (G, s ) |= 〈〈{1, 2}〉〉 © p and (G, s ) |= ¬〈〈{1}〉〉 © q for all s .

3.2 In#uence Games

In"uence games model strategic aspects of opinion di%usion on
a social network. $ey are based on a set of variables op(i,p)

for “agent i has the opinion p” and vis(i,p) for “agent i uses her
in"uence power over p”. Agents have binary opinions over all
issues; hence ¬op(i,p) reads “agent i has the opinion ¬p”.

Goals are expressed in LTLwith propositional variables {op(i,p),
vis(i,p) | i ∈ N ,p ∈ Φ}. We de#ne an in"uence game in a compact
way below, pointing to the work of Grandi et al. [7] for more details.

De!nition 3.4. An in"uence game is a tuple IG = 〈N ,Φ,E, S0,
{Fi, Inf(i)}i ∈N , {γi }i ∈N 〉 where:

• N = {1, . . . ,n} is a set of agents;
• Φ = {1, . . . ,m} is a set of issues;
• E ⊆ N × N is a directed irre"exive graph representing the

in"uence network;
• S0 ∈ S is the initial state, where states in S are tuples

(B,V ), where B = (B1, . . . ,Bn ) is a pro#le of private opin-
ions Bi : Φ → {0, 1} indicating the opinion of agent i on
variable p, and V = (V1, . . . ,Vn ) is a pro#le of visibilities
Vi : Φ → {0, 1} indicating whether agent i is using her
in"uence power over p;



• Fi, Inf(i) is the unanimous aggregation function associating a
new private opinion for agent i based on agent i’s current
opinion and the visible opinions of i’s in"uencers in Inf(i);

• γi is agent i’s individual goal, i.e., an LTL formula.

In"uence games are repeated games in which individuals decide
whether to disclose their opinions (i.e., use their in"uence power
over issues) or not. Once the disclosure has taken place, opinions
are updated by aggregating the visible opinions of the in"uencers
of each agent (i.e., the nodes having an outgoing edge terminating
in the agent’s node).

We associate to IG = 〈N ,Φ,E, S0, {Fi, Inf(i)}i ∈N , {γi }i ∈N 〉 a CGS-

SPC G′ = 〈N ′,Φ′0, . . . ,Φ
′
n , S
′
,d ′,τ ′〉 by le!ing N ′ = N ; Φ′0 =

{op(i,p) | i ∈ N ,p ∈ Φ}; Φ′i = {vis(i,p) | p ∈ Φ} for i ∈ N ′;

S ′ = 2Φ
′
; d ′(i, s ′) = 2Φ

′
i for s ′ ∈ S ′; and #nally for state s ′ ∈ S ′ and

action α ′ we let:

τ ′(s ′,α ′) (φ) =

{

α ′i (vis(i,p)) if φ = vis(i,p)

Fi, Inf(i) (~a,
~b) |p if φ = op(i,p)

where vectors ~a = (a1, . . . ,a |Φ | ) and ~b = (b1, . . . ,b |Φ | ) are de#ned
as follows, for k ∈ Inf(i):

ap =




1 if op(i,p) ∈ s ′

0 otherwise

bp =





1 if αk (vis(k,p)) = 1 and op(k,p) ∈ s ′

0 if αk (vis(k,p)) = 1 and op(k,p) < s ′

? if αk (vis(k,p)) = 0

Vector ~a represents the opinion of agent i over the issues at state

s ′, while vector ~b represents the opinions of i’s in"uencers over
the issues, in case they are using their in"uencing. In particular,
‘?’ indicates that the in"uencers of i in Inf(i) are not using their
in"uence power.

Proposition 3.5. Agent i in in"uence game IG has a winning

strategy for goal γi and state S0 if and only if formula 〈〈{i}〉〉γi is

satis!ed in the associated CGS-SPC and state s ′ corresponding to S0.

proof sketch. Let IG be an in"uence game and let G′ be the
CGS-SPC associated to it. Consider now an arbitrary agent i and
suppose that i has a winning strategy in IG for her goal γi in S0.
A memoryless strategy σi for agent i in an in"uence game maps
to each state actions of type (reveal(J ), hide(J ′)), where J , J ′ ⊆ Φ

and J ∩ J ′ = ∅. For any state s in IG, consisting of a valuation of
opinions and visibilities, consider the state s ′ in G′ where Bi (p) = 1
i% op(i,p) ∈ s ′ and Vi (p) = 1 i% vis(i,p) ∈ s ′. We now construct
the following strategy for G′:

σ ′i (s
′) = {vis(i,p) | p ∈ J for σi (s ) = (reveal(J ), hide(J ′))}

By the semantics of the 〈〈{i}〉〉 operator provided in Section 2.2, and
by the standard game-theoretic de#nition of winning strategy, the
statement follows easily from our construction of G′. �

$e above translation allowed to shed light over the control
structure of the variables of type op(i,p). In fact, we can now see
that op(i,p) ∈ Φ′0 for all i ∈ N and p ∈ Φ.

3.3 Aggregation Games

Individuals facing a collective decision, such as members of a hiring
commi!ee or a parliamentary body, are provided with individual
goals speci#ed on the outcome of the voting process — outcome that
is jointly controlled by all individuals in the group. For instance, a
vote on a single binary issue using the majority rule corresponds
to a game with one single variable controlled by all individuals, the
majority rule playing the role of the transition function.

Similar situations have been modelled as one-shot games called
aggregation games [6], and we now extend this de#nition to the
case of iterated decisions:

De!nition 3.6. An iterated aggregation game is a tuple AG =

〈N ,Φ, F ,γ1, . . . ,γn〉 such that:

• N is a set of agents;
• Φ = {p1, . . . ,pm } are variables representing issues;

• F : {0, 1}N×Φ → {0, 1} is an aggregation function, that is, a
boolean function associating a collective decision with the
individual opinion of the agents on the issues;

• γi for i ∈ N is an individual goal for each agent, that is, a
formula in the LTL language constructed over Φ.

Individuals at each stage of an aggregation game only have
information about the current valuation of variables in Φ, resulting
from the aggregation of their individual opinions. Analogously to
Proposition 3.5, we can obtain the following result:

Proposition 3.7. An iterated aggregation gameAG is an instance

of a CGS-SPC. More precisely, agent i inAG has a winning strategy for

goal γi in s if and only if formula 〈〈{i}〉〉γi is satis!ed in the associated

CGS-SPC in the corresponding state s ′.

proof sketch. Starting from an iterated aggregation gameAG =
〈N ,Φ, F ,γ1, . . . ,γn〉, construct a CGS-SPC G

′
= 〈N ′,Φ′, S ′,d ′,τ ′〉

as follows. Let N ′ = N ; Φ′i = Φ for all i = 1, . . . ,n; and Φ
′
0 = ∅.

Hence, each agent controls all variables. Let the set of actions avail-

able to each player be d ′(i, s ) = 2Φ
′
for all i and s , and the transition

function τ ′ be such that τ ′(s,α1, . . . ,αn ) = F (α1, . . . ,αn ). $e
statement then follows easily. �

A notable example of an iterated aggregation game is the se!ing
of iterative voting [see, e.g., 14–16]. In this se!ing, individuals hold
preferences about a set of candidates and iteratively manipulate
the result of the election in their favour until a converging state is
reached. Similar situations can easily be modelled as iterated ag-
gregation games, which have the advantage of allowing for a more
re#ned speci#cation of preferences via the use of more complex
goals.

4 RESTORING EXCLUSIVE CONTROL

In this section we prove the main result of the paper, namely that
the shared control of a CGS-SPC can be simulated in a CGS-EPC
having exclusive control. In particular, any speci#cation in ATL∗

satis#ed in some CGS-SPC can be translated in polynomial time into
an ATL∗-formula satis#ed in a CGS-EPC. To do so, we introduce a
dummy agent to simulate the aggregation function. Moreover, we
make use of an additional ‘turn-taking’ atom which allows us to
distinguish the states where the agents choose their actions from
those in which the aggregation process takes place.



We begin by inductively de#ning a translation function t r within 
ATL∗. Intuitively, tr translates every ATL∗-formula χ into a formula 
tr (χ ) having roughly the same meaning, but where the one-step 
‘next’ operator is replaced by two ‘next’ steps:
tr (p) = p

tr (¬χ ) = ¬tr (χ )

tr (χ ∨ χ ′)= tr (χ ) ∨ tr (χ ′)

tr (©χ ) = © © tr (χ )

tr (χU χ ′)= tr (χ )Utr (χ ′)

tr (〈〈C〉〉χ ) = 〈〈C〉〉tr (χ )

where p ∈ Φ, C ⊆ N , and χ , χ ′ are either state- or path-formulas
as suitable. Clearly, the translation is polynomial.

We then map a given CGS-SPC to a CGS-EPC.

De!nition 4.1. Let G = 〈N ,Φ0, . . . ,Φn , S,d,τ 〉 be a CGS-SPC.
$eCGS-EPC corresponding toG isG′ = 〈N ′,Φ′1, . . . ,Φ

′
n , S
′
,d ′,τ ′〉

where:

• N ′ = N ∪ {∗};
• Φ

′
= Φ ∪ {turn} ∪ {cip | i ∈ N and p ∈ Φi } and Φ

′ is
partitioned as follows, for agents in N ′:

Φ
′
i = {cip ∈ Φ

′ | p ∈ Φi }

Φ
′
∗ = {turn} ∪ Φ

• S ′ = 2Φ
′
. For every s ′ ∈ S ′, let s = (s ′ ∩ Φ) ∈ S be the

restriction of s ′ on Φ;
• d ′ is de#ned according to the truth value of turn in s ′.

Speci#cally, given αi ∈ Ai , let α
′
i = {cip ∈ Φ

′
i | p ∈ αi } ∈

A ′i . $en, for i ∈ N we let:

d ′(i, s ′) =




{α ′i ∈ A
′
i | αi ∈ d (i, s )} if s ′(turn) = 0

∅ if s ′(turn) = 1

For agent * we de#ne:

d ′(∗, s ′) =




+turn if s ′(turn) = 0

τ (s,α ), for αi (p) = s
′(cip ) if s ′(turn) = 1

where +turn = idles ∪ {turn}.
• τ ′ is de#ned as per Def. 2.1, that is, τ ′(s ′,α ′) =

⋃

i ∈N ′ α
′
i .

Intuitively, in the CGS-EPC G′ every agent i ∈ N manipulates
local copies cip of atoms p ∈ Φ. $e aggregation function τ in G
is mimicked by the dummy agent ∗, whose role is to observe the
values of the various cip , then perform an action to aggregate them
and set the value of p accordingly. Observe that agent ∗ acts only
when the turn variable is true, in which case all the other agents
set all their variables to false, i.e., they all play ∅. $is is to ensure
the correspondence between memory-less strategies of G and G′,
as shown in Lemma 4.6.

Note also that the size of game G′ is polynomial in the size of
G, and that G′ can be constructed in polynomial time from G. To
see this, observe that an upper bound on the number of variables is
N × Φ.

Recall that we can associate to each state s ′ ∈ S ′ a state s = s ′∩Φ
in S . For the other direction, given a state s ∈ S , there are multiple
states s ′ that agree with s on Φ. $e purpose of the next de#nition
is to designate one such state as the canonical one.

De!nition 4.2. For every s ∈ S , we de#ne the canonical state

s ′
⋆
= {s ′ ∈ S ′ | s ′ ∩ Φ = s and s (p) = 0 for p < Φ}.

Observe that, in particular, in all canonical states atom turn is false.
As an example, consider Φ = {p,q} and N = {1, 2}. Let then Φ1 =

{p} and Φ2 = {p,q}.We thus have that Φ′ = {p,q, c1p , c2p , c2q , turn}.
If s = {p}, we have for instance that s ′ ∩ Φ = s for s ′ = {p, c1p }. On
the other hand, s ′

⋆
= {p}.

We nowmove to de#ne a correspondence between paths ofG and
G′. For notational convenience, we indicate with λ[k] |Φ = λ[k]∩Φ,
the restriction of state λ[k] to variables in Φ. Given a path λ′ of G′,
consider the unique in#nite sequence of states λ associated to λ′

de#ned as follows:

λ[k] = λ′[2k] |Φ = λ′[2k+1] |Φ for all k ∈ N. (†)

On the other hand, there are multiple sequences λ′ that can be
associated with a path λ, so that (†) holds true. In fact, we only
know how the variables in Φ behave, while the truth values of the
other variables can vary. We now make use of condition (†) to
characterise the paths of G and G′ that can be associated:

Lemma 4.3. Given a CGS-SPC G and the corresponding CGS-EPC

G′, the following is the case:

(1) for all paths λ′ of G′, sequence λ satisfying condition (†) is

a path of G;

(2) for all paths λ of G, for all sequences λ′ satisfying (†), λ′ is

a path of G′ i# for all k there exists a G-action α[k] such

that λ[k]
α [k]
−−−−→ λ[k+1] and states λ′[2k+1] and λ′[2k+2]

can be obtained from state λ′[2k] by performing actions

(α ′1, . . . ,α
′
n ,+turn) and then (∅1, . . . , ∅n ,τ (λ

′[2k+1] |Φ,α )).

Proof. We #rst prove (1) by showing that λ is a path of G, i.e.,
that for every k there is an action α that leads from λ[k] to λ[k+1].

Suppose that λ′[2k]
α ′[2k]
−−−−−→ λ′[2k+1]

α ′[2k+1]
−−−−−−−−→ λ′[2(k+1)] for ac-

tionα ′[2k] = (α ′1, . . . ,α
′
n ,+turn) and actionα

′[2k+1] = (∅1, . . . , ∅n ,τ (λ
′[2k+1] |Φ,

$en, we observe that we can move from state λ[k] = λ′[2k] |Φ =
λ′[2k+1] |Φ to λ[k+1] = λ′[2k+2] |Φ by performing action (α1, . . . ,αn )
such that αi = {p ∈ Φ | cip ∈ α

′
i } for every i ∈ N .

As for (2), the right-to-le* direction is clear. For the le*-to-right
direction, let λ′ be a path associated to λ. From (†) we know that
for any k we have that λ′[2k] |Φ = λ[k] and λ′[2k+2] |Φ = λ[k+1].
Now by De#nition 4.1, the only actions available to the players
at λ′[2k] are of the form (α ′1, . . . ,α

′
n ,+turn), and the only action

available at λ′[2k+1] is (∅1, . . . , ∅n ,τ (λ
′[2k+1] |Φ,α )). We can thus

obtain the desired result by considering action α[k] = (α1, . . . ,αn ),
where αi = {p ∈ Φi | cip ∈ α

′
i } for each i ∈ N , and by observing

that by (†) we have τ (λ′[2k + 1] |Φ,α ) = τ (λ[k],α ). �

Figure 1 illustrates the construction of the two paths λ and λ′

in the proof of Lemma 4.3. In particular, the second part of the
lemma characterises the set of G′-paths λ′ associated to a G-path
λ: for any sequence of G-actions that can generate path λ, we can
construct a distinct G′-path λ′ that corresponds to λ, where the
sequence of actions can be reconstructed by reading the values of
the variables in Φ

′
i in odd states λ[2k + 1].

From this set of G′-paths λ′ we can specify a subset of canonical
paths as follows:

De!nition 4.4. For a path λ of G, a canonical associated path λ′
⋆

of G′ is any path λ′ such that (†) holds and λ′[0] = λ[0]′
⋆
.



λ[0]

λ′[0] λ′[1]

λ[1]

λ′[2] λ′[3]

λ[2]

λ′[4] λ′[5]

λ[3]

λ′[6]

. . .

. . .

(α1 . . . αn )[0]

α ′1 . . . α
′
n

+turn

∅

τ (λ′[1]|Φ, α )

(β1 . . . βn )[1]

β ′1 . . . β
′
n

+turn

∅

τ (λ′[3]|Φ, β )

(δ1 . . . δn )[2]

δ ′1 . . . δ
′
n

+turn

∅

τ (λ′[5]|Φ, δ )

Figure 1: A path λ in a CGS-SPC G and its associated path λ′ in a CGS-EPC G′.

$at is, a canonical path λ′ associated to λ starts from the canonical
state λ[0]′

⋆
associated to λ[0]. $e following example clari#es the

concepts just introduced.

Example 4.5. Consider a CGS-SPC G with N = {1, 2} and Φ =

{p,q} such that Φ1 = {p} and Φ2 = {p,q}. Let d (i, s ) = 2Φi for all i ∈
N and s ∈ S , and let τ (s,α ) (p) = 0 if and only if α1 (p) = α2 (p) = 0,
while τ (s,α ) (q) = α2 (q) for all s ∈ S . Namely, issue p becomes true
if at least one agent makes it true, while issue q follows the decision
of agent 2. Let now λ = s0s1 . . . be a path of G such that s0 = {p}
and s1 = {p,q}. Observe that there are multiple actions α such that
τ (s0,α ) = s1: namely, the one where both agents set p to true, or
where just one of them does (and agent 2 sets q to true).

Construct now the CGS-EPC G′ as in De#nition 4.1 and consider
the following four sequences λ′ = s ′0s

′
1s
′
2 . . . where:

(a) s ′0 = {p}, s
′
1 = {c1p , c2p , c2q ,p, turn}, s

′
2 = {p,q}, . . .

(b) s ′0 = {p}, s
′
1 = {c1p , c2q ,p, turn}, s

′
2 = {p,q}, . . .

(c) s ′0 = {p, c1p }, s
′
1 = {c1p , c2q ,p, turn}, s

′
2 = {p,q}, . . .

(d) s ′0 = {p}, s
′
1 = {c2q ,p, turn}, s

′
2 = {p,q}, . . .

Observe that (a) and (b) are both examples of canonical paths (up
to the considered state), corresponding to two actions that might
have led from s0 to s1 inG. On the other hand, (c) is a non-example
while being a path of G′ satisfying (†), since s ′0 is not canonical.
Finally, sequence (d) satis#es (†) but it is not a path of G′, since it
is not possible to obtain s ′2 from s ′1.

$e next result extends the statement of Lemma 4.3 to paths
generated by a speci#c strategy. Given a G′-strategy σ

′
C
and a

state s ′ ∈ S ′, let Π(out (s ′,σ ′
C
)) = {λ | λ′ ∈ out (s ′,σ ′

C
)}, i.e., all the

“projections” of paths λ′ in out (s ′,σ ′
C
) to paths λ in G, obtained

through (†).

Lemma 4.6. Given a CGS-SPC G, the corresponding CGS-EPC G′

is such that:

(1) for every joint strategy σC in G, there exists a strategy

σ
′
C

in G′ such that for every state s ∈ S we have that

Π(out (s ′
⋆
,σ
′
C
)) = out (s,σC );

(2) for every joint strategy σ ′
C
in G′, there exists a strategy σC

in G such that for all canonical states s ′ ∈ S ′ we have that
Π(out (s ′,σ ′

C
)) = out (s ′ |Φ,σC ).

proof sketch. We #rst prove (1). Given strategy σC in G, for
i ∈ C de#ne σ ′i as follows:

σ ′i (s
′) =





{cip | p ∈ σi (s ) and s = s
′
|Φ} if s ′(turn) = 0

∅ otherwise

Observe that if s ′(turn) = 1 agents inC are obliged to play action ∅
by De#nition 4.1, since it is their only available action. By combin-
ing all de#nitions above, we get that Π(out (s ′

⋆
,σ
′
C
)) = out (s,σC )

for an arbitrary state s ∈ S .
To prove (2), we start from a strategy σ ′

C
in G′. For any state s ∈

S , de#ne σi (s ) = {p ∈ Φi | cip ∈ σ
′
i (s
′
⋆
)}. Note that the assumption

in De#nition 4.1 that all variables outside of Φ are put to false at
stage 2k+1 in G′ is crucial here. In fact, without this assumption we
would only be able to prove that Π(out (s ′,σ ′

C
)) ⊇ out (s ′ |Φ,σC ), as

a strategyσ ′
C
may associate a di%erent action to states s ′1 and s

′
2 that

coincide on Φ and that are realised in a path λ′ ∈ out (s ′,σ ′
C
). �

By means of Lemma 4.6 we are able to prove the main result of
this section.

Theorem 1. Given any CGS-SPC G, the corresponding CGS-EPC

G′ is such that for all state-formulas φ and path-formulasψ in ATL∗

the following holds:

for all s ∈ S (G, s ) |= φ i# (G′, s ′⋆) |= tr (φ)

for all λ of G (G, λ) |= ψ i# (G′, λ′⋆) |= tr (ψ ) for any λ′⋆.

Proof. $e proof is by induction on the structure of formulas
φ andψ . $e base case for φ = p follows from the fact that s = s ′ |Φ
for all s ′ associated to s , and in particular also for s ′

⋆
. As to the

inductive cases for boolean connectives, these follow immediately
by the induction hypothesis.

Now suppose that φ = 〈〈C〉〉ψ . As to the le*-to-right direction,
assume that (G, s ) |= φ. By the de#nition of the semantics, for some
strategy σC , for all λ ∈ out (s,σC ), (G, λ) |= ψ . By Lemma 4.6.1 we
can #nd a strategyσ ′

C
in G′ such that Π(out (s ′

⋆
,σ
′
C
)) = out (s,σC ).

By induction hypothesis, we know that for all λ ∈ out (s,σC ) we
have that (G′, λ′

⋆
) |= tr (ψ ). $ese two facts combined imply that

for all λ′ ∈ out (s ′
⋆
,σ
′
C
) we have that (G′, λ′

⋆
) |= tr (ψ ), i.e., by

the semantics, that (G′, s ′
⋆
) |= 〈〈C〉〉tr (ψ ), obtaining the desired

result. $e right-to-le* direction can be proved similarly, by using
Lemma 4.6.2.

Further, if φ is a state formula, (G, λ) |= φ i% (G, λ[0]) |= φ, i% by
induction hypothesis (G′, λ[0]′

⋆
) |= tr (φ), that is, (G′, λ′

⋆
) |= tr (φ).

For ψ = ©ψ1, suppose that (G, λ[1,∞]) |= ψ1. By induction
hypothesis, this is the case i% (G′, (λ[1,∞])′

⋆
) |= tr (ψ1). Recall that

by (†), we have that (λ[1,∞])′
⋆
= λ′

⋆
[2,∞]. $is is the case because,

when moving from λ to λ′
⋆
, we include an additional state λ′

⋆
[1]

in which the aggregation takes place. $erefore, (G′, λ′
⋆
[2,∞]) |=

tr (ψ1), that is, (G
′
, λ′

⋆
) |= © © tr (ψ1) = tr (ψ ). $e case for

ψ = ψ1Uψ2 is proved similarly. �



⋆

As a consequence of $eorem 1, if we want to model-check an 
ATL∗-formula φ at a state s of an CGS-SPC G, we can check its 
translation tr (φ) at the related state s ′ of the associated CGS-EPC
G′. Together with the observation that both the associated game
G′ and the translation φ are polynomial in the size of G and φ, we
obtain the following:

Corollary 2. $e ATL∗ model-checking problem for CGS-SPC

can be reduced to the ATL∗ model-checking problem for CGS-EPC.

5 COMPUTATIONAL COMPLEXITY OF

SHARED CONTROL STRUCTURES

$e results proved in the previous sections allow us to obtain com-
plexity results for the model checking of an ATL∗ (or ATL) speci#-
cation φ on a pointed CGS-SPC (G, s ) de#ned in De#nition 2.3.

Theorem 3. $e model-checking problem of ATL speci!cations in

CGS-SPC is ∆
p
3 -complete.

Proof. As for membership, given a pointed CGS-SPC (G, s ) and
an ATL speci#cation φ, by the translation tr introduced in Section 4
and $eorem 1 we have that (G, s ) |= φ i% (G′, s ′) |= tr (φ).
Also, we observe that the CGS-EPC G′ is of size polynomial in the
size of G, and that model checking ATL with respect to CGS-EPC

is ∆
p
3 -complete [2]. For hardness, it is su&cient to observe that

CGS-EPC are a subclass of CGS-SPC. �

As for the veri#cation of ATL∗, we can immediately prove the
following result:

Theorem 4. $e model-checking problem of ATL∗ speci!cations

in CGS-SPC is PSPACE-complete.

Proof. Membership follows by the PSPACE-algorithm for ATL∗

on general CGS [4]. As for hardness, we observe that satis#ability
of an LTL formula φ can be reduced to the model checking of the
ATL∗ formula 〈〈1〉〉φ on a CGS-SPC with a unique agent 1. �

In Section 3 we showed how three examples of iterated games
from the literature on strategic reasoning can be modelled as CGS-
SPC, and how the problem of determining the existence of a win-
ning strategy can therefore be reduced to model checking an ATL∗

speci#cation. Let E-WIN(G, i ) be the decision problem of deciding
whether agent i has a memory-less winning strategy in game G.
As an immediate consequences of $eorem 4 we obtain:

Corollary 5. IfG is an iterated boolean game with shared control,

E-WIN(G, i ) is in PSPACE.

An analogous result cannot be obtained for in"uence and ag-
gregation games directly. Decision problems in these structures
are typically evaluated with respect to the number of agents and
issues, and the size of the CGS-SPCs associated to these games are
already exponential in these parameters. $erefore, in line with
previous results obtained in the literature [7], we can only show
the following:

Corollary 6. If G is an in"uence game or an aggregation game,

then E-WIN(G, i ) is in PSPACE in the size of the associated CGS-SPC.

6 CONCLUSION

In this contribution we have introduced a class of concurrent game
structures with shared propositional control, or CGS-SPC. $en,
we have interpreted popular logics for strategic reasoning ATL

and ATL∗ on these structures. Most importantly, we have shown
that CGS-SPC are a general framework, whereby we can capture
iterated boolean games and their generalisation to shared control,
as well as in"uence and aggregation games. $e main result of the
paper shows that the model checking problem for CGS-SPC can be
reduced to the veri#cation of standard CGS with exclusive control,
which in turn allows us to establish a number of complexity results.

$e results proved here open up several research directions.
Firstly, in this paper we have focussed on the veri#cation problem,
but what about satis#ability and validity? $e undecidability result
provided by Gerbrandy [5] for CL-PC with shared control does not
immediately transfer to CGS-SPC, as the relevant languages are
di%erent: CL-PC includes normal modal ‘diamond-operators’ 〈C〉
and ‘box-operators’ [C], while our 〈〈C〉〉 is non-normal.4

Further, given our reduction of CGS-SPC to CGS with exclu-
sive control, one may wonder what the bene#ts of our move to
shared control are. As our three examples have demonstrated,
shared control allows to model in a natural way complex interac-
tions between agents concerning the assignment of truth values
to propositional variables. $e strategic aspects of these games
remain largely unexplored, and clean characterisations of equilib-
ria and other game-theoretic concepts seem rather hard to prove,
supporting the use of automated veri#cation in these context.

Compact representations of CGS with exclusive control are a
thriving subject of research in the formal veri#cation commu-
nity[see, e.g., 12, 13, 18]. $ere, so-called reactive modules de#ne for
every action whether it is available by means of a boolean formula.
In future work we plan to investigate such compact representations
for CGS with shared control. $is requires in particular a compact
representation of the transition function τ , which becomes more
involved in the shared control se!ing.

Finally, we conclude by remarking that a key assumption on our
CGS (both with exclusive and shared control) is that agents have
perfect knowledge of the environment they are interacting in and
with. Indeed, in De#nition 4.1 the dummy agent ∗ is able to mimick
the aggregation function τ as she can observe the values of cip for
any other agent i . In contexts of imperfect information, agents can
only observe the atoms they can act upon. Hence, an interesting
question is whether our reduction of CGS-SPC to CGS-EPC goes
through even when imperfect information is assumed.
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