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In the typical framework for boolean games (BG) each player can change the truth value of some propositional atoms, while a empting to make her goal true. In standard BG goals are propositional formulas, whereas in iterated BG goals are formulas of Linear Temporal Logic. Both notions of BG are characterised by the fact that agents have exclusive control over their set of atoms, meaning that no two agents can control the same atom. In the present contribution we drop the exclusivity assumption and explore structures where an atom can be controlled by multiple agents. We introduce Concurrent Game Structures with Shared Propositional Control (CGS-SPC) and show that they account for several classes of repeated games, including iterated boolean games, in uence games, and aggregation games. Our main result shows that, as far as verication is concerned, CGS-SPC can be reduced to concurrent game structures with exclusive control. is result provides a polynomial reduction for the model checking problem of speci cations in Alternating-time Temporal Logic on CGS-SPC.

INTRODUCTION

Coalition Logic of Propositional Control CL-PC was introduced by van der Hoek and Wooldridge [START_REF] Van Der Hoek | On the logic of cooperation and propositional control[END_REF] as a formal language for reasoning about capabilities of agents and coalitions in multiagent environments, later extended by the concept of transfer of control [START_REF] Van Der Hoek | Reasoning About the Transfer of Control[END_REF]. In CL-PC, capability is modeled by means of the concept of propositional control: it is assumed that each agent i is associated with a speci c nite subset Φ i of the nite set of all atomic variables Φ, which are the variables controlled by i, in the sense that i has the ability to assign a (truth) value to each variable in Φ i but cannot change the truth values of the variables in Φ \ Φ i . Control over variables is assumed to be exclusive: two agents cannot control the same variable, i.e., if i j then Φ i ∩ Φ j = ∅. 1 e connection between CL-PC and Dynamic Logic of Propositional Assignments was explored by Grossi et al. [START_REF] Grossi | Ceteris Paribus Structure of Logics of Game Forms[END_REF].

A boolean game BG [START_REF] Bonzon | Boolean games revisited[END_REF][START_REF] Harrenstein | Boolean games[END_REF] is a game in which each player wants to achieve a certain goal represented by a propositional formula. Boolean games correspond to the speci c subclass of normal form games in which agents have binary preferences. ey share with CL-PC the idea that an agent's action consists in a ecting the truth values of the variables she controls. Just as in there, control over atomic propositions is exclusive in BGs. More recently, BGs were generalized to iterated boolean games IBGs [START_REF] Gutierrez | Iterated Boolean games[END_REF][START_REF] Gutierrez | Iterated Boolean games[END_REF]. In IBGs, the agents' goals are formulas of Linear Temporal Logic LTL, and an agent's strategy determines an assignment of the variables controlled by the agent in every round of the game.

Gerbrandy [START_REF] Gerbrandy | Logics of propositional control[END_REF] was the rst to study CL-PC without exclusive control. In his games of propositional control, the value of a variable at the next state is determined by an outcome function that combines the agents' choices of values for propositional variables. Gerbrandy's language contains a coalition operator and-just as coalition logic-only allows to reason about what agents and coalitions of agents are able to achieve in a single step. Importing results from many-dimensional modal logics, Gerbrandy proved that the satis ability problem is decidable when there are at most 2 agents, and undecidable otherwise [START_REF] Gerbrandy | Logics of propositional control[END_REF]Prop.5].

e aim of the present paper is to further study models without exclusive propositional control as a basis for BGs and other game-theoretic approaches. Speci cally, we introduce Concurrent Game Structures with Shared Propositional Control CGS-SPC and show their relationship with di erent classes of games studied in literature, including IBGs. e main result of the paper is that CGS-SPC can be reduced to CGS with Exclusive Propositional Control CGS-EPC [START_REF] Belardinelli | On Logics of Strategic Ability based on Propositional Control[END_REF] by introducing a dummy agent who controls the value of the shared variables and simulates the transition function. e reduction is polynomial, showing that the problem of veri cation of speci cations in Alternating-time Temporal Logic on CGS-SPC can be reduced to veri cation in CGS-EPC. We also explore the consequences of such results in the problem of nding a winning strategy in games with shared control.

e paper is organized as follows. Section 2 provides the basic de nitions of concurrent game structures with exclusive and shared control, as well as introducing the language and the semantic of Alternating-time Temporal Logic. Section 3 shows that a number of game structures introduced in the literature can be reconducted to our de nition of CGS-SPC. We then prove our main result in Section 4, where we reduce the problem of ATL * model checking for CGS-SPC to model checking of a translated ATL * formula in a CGS-EPC suitably de ned. Section 5 discusses the consequences in computational complexity of our main result, and Section 6 concludes.

FORMAL FRAMEWORK

In this section we consider two classes of concurrent game structures with propositional control, suitable for the interpretation of a logic for individual and collective strategies which is introduced next.

e two classes di er in the type of propositional control: exclusive in the former and shared in the la er.

CGS with Exclusive and Shared Control

We rst present concurrent game structures with exclusive propositional control CGS-EPC as they have been introduced by Belardinelli and Herzig [START_REF] Belardinelli | On Logics of Strategic Ability based on Propositional Control[END_REF]. 2 We then generalise them by relaxing the assumption of exclusive control.

De nition 2.1 ( CGS-EPC).

A concurrent game structure with exclusive propositional control is a tuple G = N , Φ 1 , . . . , Φ n , S, d, τ , where:

• N = {1, . . . , n} is a set of agents; • Φ = Φ 1 ∪ • • • ∪ Φ n is a set of propositional variables parti-
tioned in n disjoint subsets, one for each agent; • S = 2 Φ is the set of states, corresponding to all valuations over Φ;

• d : N × S → (2 A \ ∅), for A = 2 Φ , is the protocol function, such that d (i, s) ⊆ A i for A i = 2 Φ i ; • τ : S × A n → S is the transition function such that τ (s, α 1 , . . . , α n ) = i ∈N α i .
Intuitively, a CGS-EPC describes the interactions of a group N of agents, each one of them controlling (exclusively) a set Φ i ⊆ Φ of propositional atoms. e state of the CGS is an evaluation of the atoms in Φ. In each such state the protocol function returns which actions an agent can execute.

e intuitive meaning of action α i ∈ d (i, s) is "assign true to all atoms in α i , and false to all atoms in Φ i \ α i ". e idle s action can be introduced as {p ∈ Φ i | s (p) = 1}, for every i ∈ N , s ∈ S. With an abuse of notation we write d (i, s) = α whenever d (i, s) is a singleton {α }.

We equally see each state s ∈ S as a function s : Φ → {0, 1} returning the truth value of a propositional variable in s, so that s (p) = 1 i p ∈ s. Given α = (α 1 , . . . , α n ) ∈ A n , we equally see each α i ⊆ Φ i as a function α i : Φ i → {0, 1} returning the choice of agent i for p under action α.

We now introduce a generalisation of concurrent game structures for propositional control. Namely, we relax the exclusivity requirement on the control of propositional variables, thus introducing concurrent game structures with shared propositional control CGS-SPC.

De nition 2.2 (CGS-SPC).

A concurrent game structure with shared propositional control is a tuple G = N , Φ 0 , . . . , Φ n , S, d, τ such that:

• N , S, and d are de ned as in Def. 2.1 with A = 2 Φ\Φ 0 ;

• Φ = Φ 0 ∪ Φ 1 ∪ • • • ∪ Φ n is a set of propositional variables, where Φ 0 ∪ Φ 1 ∪ • • • ∪ Φ n is not necessarily a partition and Φ 0 = Φ \ (Φ 1 ∪ • • • ∪ Φ n ); • τ : S × A n → S is the transition function.
Observe that in CGS-SPC the same atom can be controlled by multiple agents, and propositional control is not exhaustive. Additionally, the actions in A do not take into account propositional variables in Φ 0 because they are not controlled by anyone (though their truth value might change according to the transition function). e transition function takes care of combining the various actions and producing a consistent successor state according to some rule. Simple examples of such rules include introducing a threshold m p ∈ N for every variable p, thus se ing p ∈ τ (s, α ) i the number of agents i with p ∈ α i is greater than m p . is generalises Gerbrandy's consensus games [START_REF] Gerbrandy | Logics of propositional control[END_REF]. 3Clearly, CGS-EPC can be seen as a special case of CGS-SPC in which every atom is controlled exactly by a single agent, and therefore {Φ 0 , . . . , Φ n } is a partition of Φ. Moreover, τ is given in a speci c form as per De nition 2.1.

Logics for Time and Strategies

To express relevant properties of CGS, we present the Linear-time Temporal Logic LTL [START_REF] Pnueli | e temporal logic of programs[END_REF] and the Alternating-time Temporal Logic ATL * [START_REF] Alur | Alternating-time temporal logic[END_REF]. Firstly, state formulas φ and path formulas ψ in ATL * are de ned by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | C ψ ψ ::= φ | ¬ψ | ψ ∨ ψ | ψ | ψ Uψ
where p ∈ Φ and C ∈ 2 N . e intuitive reading of C ψ is "coalition C has a strategy to enforce ψ ", that of ψ is "ψ holds at the next state" and that of ψ Uφ is "ψ will hold until φ holds". e BNF for the language of ATL consists of all state formulas where ψ is either φ or φUφ. On the other hand, the language of LTL consists of all path formulas in ATL * , whose state formulas are propositional atoms only. at is, formulas in LTL are de ned by the following BNF:

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ | ψUψ
Truth conditions of LTL and ATL * formulas are de ned with respect to concurrent game structures, such as the CGS-EPC and CGS-SPC introduced above. In order to do so, we rst h ave to provide some additional notation.

e s et o f e nabled j oint a ctions a t s ome state s i s d e ned as 

Act (s) = {α ∈ A n | α i ∈ d (i, s) for every i ∈ N }. en,
[k+1] = τ (λ[k], α[k]).
A memoryless strategy for agent i ∈ N is a function σ i : S → A i such that σ i (s) ∈ d (i, s), returning an action for each state. For simplicity, we will assume in the rest of the paper that agents have memoryless strategies.

We let σ C be a joint strategy for coalition C ⊆ N , i.e., a function returning for each agent i ∈ C, the individual strategy σ i . For notational convenience we write σ for σ N .

e set out (s, σ C ) includes all computations λ = s 0 s 1 . . . such that (a) s 0 = s; and (b) for all k ≥ 0, there is α ∈ Act (s) such that σ C (i)(s k ) = α i for all i ∈ C, and τ (s k , α ) = s k+1 . Observe that out (s, σ ) is a singleton.

We are now ready to de ne the truth conditions for LTL and ATL * formulas with respect to a CGS-SPC G. Formulas in ATL * are interpreted on states, while formulas in LTL are interpreted on computations.

(G, s) |= p i s (p) = 1 (G, s) |= ¬φ i (G, s) |= φ (G, s) |= φ 1 ∨ φ 2 i (G, s) |= φ 1 or (G, s) |= φ 2 (G, s) |= C ψ i for some σ C , for all λ ∈ out (s, σ C ), (G, λ) |= ψ (G, λ) |= φ i (G, λ[0]) |= φ (G, λ) |= ¬ψ i (G, λ) |= ψ (G, λ) |= ψ 1 ∨ ψ 2 i (G, λ) |= ψ 1 or G, λ |= ψ 2 (G, λ) |= ψ i (G, λ[1, ∞]) |= ψ (G, λ) |= ψ 1 Uψ 2 i for some i ≥ 0, (G, λ[i, ∞]) |= ψ 2 and (G, λ[j, ∞]) |= ψ 1 for all 0 ≤ j < i
We de ne below the model checking problem for this context.

De nition 2.3 (Model Checking Problem

). Given a CGS-SPC G, a state s ∈ S, and an ATL * -formula φ, determine whether (G, s) |= φ.

It is well-known that model checking for ATL * on general concurrent game structures is 2EXPTIME-complete [START_REF] Alur | Alternating-time temporal logic[END_REF]. Belardinelli and Herzig [START_REF] Belardinelli | On Logics of Strategic Ability based on Propositional Control[END_REF] proved that model checking ATL on CGS-EPC is ∆ P 3 -complete. Herea er we consider the general case of CGS-SPC and ATL * .

EXAMPLES OF SHARED CONTROL

In this section we take three examples of iterated games from the literature, namely iterated boolean games [START_REF] Gutierrez | Iterated Boolean games[END_REF], in uence games [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF], and aggregation games [START_REF] Grandi | Equilibrium Re nement through Negotiation in Binary Voting[END_REF], and we show that they are all instances of our de nition of a CGS-SPC.

Iterated Boolean Games

We make use of CGS-EPC to introduce iterated boolean games with LTL goals as studied by Gutierrez et al. [START_REF] Gutierrez | Iterated Boolean games[END_REF][START_REF] Gutierrez | Iterated Boolean games[END_REF]. An iterated boolean game is a tuple G, γ 1 , . . . , γ n such that (i) G is a CGS-EPC with a trivial protocol (i.e., for every i ∈ N , s ∈ S, d (i, s) = A i ); and (ii) for every i ∈ N , the goal γ i is an LTL-formula.

We can generalise the above to iterated boolean games with shared control as follows:

De nition 3.1. An iterated boolean game with shared control is a tuple G, γ 1 , . . . , γ n such that (i) G is a CGS-SPC; (ii) for every i ∈ N , the goal γ i is an LTL-formula.
Observe that function τ is thus no longer trivial. Just like CGS-SPC generalise CGS-EPC, iterated boolean games with shared control generalise standard iterated boolean games. In particular, the existence of a winning strategy can be checked via the satisfaction of an ATL * -formula:

P 3.
2. An agent i in an iterated boolean game has a winning strategy for goal γ i and state s if and only if formula {i} γ i is satis ed in (G,s). Example 3.3. Consider an iterated boolean game with shared control for agents {1, 2} and issues {p, q}, such that Φ 1 = {p} and Φ 2 = {p, q}. Suppose that for all states s the transition function is such that τ (s, α )(q) = α 2 (q), being agent 2 the only agent controlling q, while τ (s, α

)(p) = 1 i α 1 (p) = α 2 (p) = 1. We thus have that (G, s) |= {1, 2}
p and (G, s) |= ¬ {1} q for all s.

In uence Games

In uence games model strategic aspects of opinion di usion on a social network. ey are based on a set of variables op(i, p) for "agent i has the opinion p" and vis(i, p) for "agent i uses her in uence power over p". Agents have binary opinions over all issues; hence ¬op(i, p) reads "agent i has the opinion ¬p".

Goals are expressed in LTL with propositional variables {op(i, p), vis(i, p) | i ∈ N , p ∈ Φ}. We de ne an in uence game in a compact way below, pointing to the work of Grandi et al. [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF] for more details. 

De nition 3.4. An in uence game is a tuple IG = N , Φ, E, S 0 , {F i,Inf(i) } i ∈N , {γ i } i ∈N where: • N = {1, . . . , n} is a set of agents; • Φ = {1, . . . , m} is a set of issues; • E ⊆ N × N is a directed
= (V 1 , . . . , V n ) is a pro le of visibilities V i : Φ → {0, 1}
indicating whether agent i is using her in uence power over p;

• F i,Inf(i) is the unanimous aggregation function associating a new private opinion for agent i based on agent i's current opinion and the visible opinions of i's in uencers in Inf(i); • γ i is agent i's individual goal, i.e., an LTL formula.

In uence games are repeated games in which individuals decide whether to disclose their opinions (i.e., use their in uence power over issues) or not. Once the disclosure has taken place, opinions are updated by aggregating the visible opinions of the in uencers of each agent (i.e., the nodes having an outgoing edge terminating in the agent's node).

We associate to

IG = N , Φ, E, S 0 , {F i,Inf(i) } i ∈N , {γ i } i ∈N a CGS- SPC G ′ = N ′ , Φ ′ 0 , . . . , Φ ′ n , S ′ , d ′ , τ ′ by le ing N ′ = N ; Φ ′ 0 = {op(i, p) | i ∈ N , p ∈ Φ}; Φ ′ i = {vis(i, p) | p ∈ Φ} for i ∈ N ′ ; S ′ = 2 Φ ′ ; d ′ (i, s ′ ) = 2 Φ ′
i for s ′ ∈ S ′ ; and nally for state s ′ ∈ S ′ and action α ′ we let:

τ ′ (s ′ , α ′ )(φ) = α ′ i (vis(i, p)) if φ = vis(i, p) F i,Inf(i) ( a, b) |p if φ = op(i, p)
where vectors a = (a 1 , . . . , a |Φ| ) and b = (b 1 , . . . , b |Φ | ) are de ned as follows, for k ∈ Inf(i):

a p =      1 if op(i, p) ∈ s ′ 0 otherwise b p =            1 if α k (vis(k, p)) = 1 and op(k, p) ∈ s ′ 0 if α k (vis(k, p)) = 1 and op(k, p) s ′ ? if α k (vis(k, p)) = 0
Vector a represents the opinion of agent i over the issues at state s ′ , while vector b represents the opinions of i's in uencers over the issues, in case they are using their in uencing. In particular, '?' indicates that the in uencers of i in Inf(i) are not using their in uence power. P 3.5. Agent i in in uence game IG has a winning strategy for goal γ i and state S 0 if and only if formula {i} γ i is satis ed in the associated CGS-SPC and state s ′ corresponding to S 0 .

. Let IG be an in uence game and let G ′ be the CGS-SPC associated to it. Consider now an arbitrary agent i and suppose that i has a winning strategy in IG for her goal γ i in S 0 . A memoryless strategy σ i for agent i in an in uence game maps to each state actions of type (reveal( ), hide( ′ )), where , ′ ⊆ Φ and ∩ ′ = ∅. For any state s in IG, consisting of a valuation of opinions and visibilities, consider the state s ′ in G ′ where B i (p) = 1 i op(i, p) ∈ s ′ and V i (p) = 1 i vis(i, p) ∈ s ′ . We now construct the following strategy for G ′ :

σ ′ i (s ′ ) = {vis(i, p) | p ∈ for σ i (s) = (reveal( ), hide( ′ ))
} By the semantics of the {i} operator provided in Section 2.2, and by the standard game-theoretic de nition of winning strategy, the statement follows easily from our construction of G ′ . e above translation allowed to shed light over the control structure of the variables of type op(i, p). In fact, we can now see that op(i, p) ∈ Φ ′ 0 for all i ∈ N and p ∈ Φ.

Aggregation Games

Individuals facing a collective decision, such as members of a hiring commi ee or a parliamentary body, are provided with individual goals speci ed on the outcome of the voting process -outcome that is jointly controlled by all individuals in the group. For instance, a vote on a single binary issue using the majority rule corresponds to a game with one single variable controlled by all individuals, the majority rule playing the role of the transition function.

Similar situations have been modelled as one-shot games called aggregation games [START_REF] Grandi | Equilibrium Re nement through Negotiation in Binary Voting[END_REF], and we now extend this de nition to the case of iterated decisions: De nition 3.6. An iterated aggregation game is a tuple AG = N , Φ, F , γ 1 , . . . , γ n such that:

• N is a set of agents;

• Φ = {p 1 , . . . , p m } are variables representing issues;

• F : {0, 1} N ×Φ → {0, 1} is an aggregation function, that is, a boolean function associating a collective decision with the individual opinion of the agents on the issues; • γ i for i ∈ N is an individual goal for each agent, that is, a formula in the LTL language constructed over Φ.

Individuals at each stage of an aggregation game only have information about the current valuation of variables in Φ, resulting from the aggregation of their individual opinions. Analogously to Proposition 3.5, we can obtain the following result: P 3.7. An iterated aggregation game AG is an instance of a CGS-SPC. More precisely, agent i in AG has a winning strategy for goal γ i in s if and only if formula {i} γ i is satis ed in the associated CGS-SPC in the corresponding state s ′ .

. Starting from an iterated aggregation game AG = N , Φ, F , γ 1 , . . . , γ n , construct a CGS-SPC G ′ = N ′ , Φ ′ , S ′ , d ′ , τ ′ as follows. Let N ′ = N ; Φ ′ i = Φ for all i = 1, . . . , n; and Φ ′ 0 = ∅. Hence, each agent controls all variables. Let the set of actions available to each player be d ′ (i, s) = 2 Φ ′ for all i and s, and the transition function τ ′ be such that τ ′ (s, α 1 , . . . , α n ) = F (α 1 , . . . , α n ). e statement then follows easily.

A notable example of an iterated aggregation game is the se ing of iterative voting [see, e.g., [START_REF] Lev | Convergence of iterative voting[END_REF][START_REF] Meir | Convergence to Equilibria in Plurality Voting[END_REF][START_REF] Obraztsova | On the Convergence of Iterative Voting: How Restrictive Should Restricted Dynamics Be?[END_REF]. In this se ing, individuals hold preferences about a set of candidates and iteratively manipulate the result of the election in their favour until a converging state is reached. Similar situations can easily be modelled as iterated aggregation games, which have the advantage of allowing for a more re ned speci cation of preferences via the use of more complex goals.

RESTORING EXCLUSIVE CONTROL

In this section we prove the main result of the paper, namely that the shared control of a CGS-SPC can be simulated in a CGS-EPC having exclusive control. In particular, any speci cation in ATL * satis ed in some CGS-SPC can be translated in polynomial time into an ATL * -formula satis ed in a CGS-EPC. To do so, we introduce a dummy agent to simulate the aggregation function. Moreover, we make use of an additional 'turn-taking' atom which allows us to distinguish the states where the agents choose their actions from those in which the aggregation process takes place.

We begin by inductively de ning a translation function t r within ATL * . Intuitively, tr translates every ATL * -formula χ into a formula tr (χ ) having roughly the same meaning, but where the one-step 'next' operator is replaced by two 'next' steps:

tr (p) = p tr (¬χ ) = ¬tr (χ ) tr (χ ∨ χ ′ )= tr (χ ) ∨ tr (χ ′ ) tr ( χ ) = tr (χ ) tr (χ U χ ′ ) = tr (χ )Utr (χ ′ ) tr ( C χ ) = C tr (χ )
where p ∈ Φ, C ⊆ N , and χ , χ ′ are either state-or path-formulas as suitable. Clearly, the translation is polynomial.

We then map a given CGS-SPC to a CGS-EPC.

De nition 4.1. Let G = N , Φ 0 , . . . , Φ n , S, d, τ be a CGS-SPC. e CGS-EPC corresponding to G is G ′ = N ′ , Φ ′ 1 , . . . , Φ ′ n , S ′ , d ′ , τ ′ where: • N ′ = N ∪ { * }; • Φ ′ = Φ ∪ {turn} ∪ {c ip | i ∈ N and p ∈ Φ i }
and Φ ′ is partitioned as follows, for agents in N ′ :

Φ ′ i = {c ip ∈ Φ ′ | p ∈ Φ i } Φ ′ * = {turn} ∪ Φ • S ′ = 2 Φ ′ . For every s ′ ∈ S ′ , let s = (s ′ ∩ Φ) ∈ S be the restriction of s ′ on Φ; • d ′ is de ned according to the truth value of turn in s ′ . Speci cally, given α i ∈ A i , let α ′ i = {c ip ∈ Φ ′ i | p ∈ α i } ∈ A ′ i .
en, for i ∈ N we let:

d ′ (i, s ′ ) =      {α ′ i ∈ A ′ i | α i ∈ d (i, s)} if s ′ (turn) = 0 ∅ if s ′ (turn) = 1
For agent * we de ne:

d ′ ( * , s ′ ) =      +turn if s ′ (turn) = 0 τ (s, α ), for α i (p) = s ′ (c ip ) if s ′ (turn) = 1
where +turn = idle s ∪ {turn}. • τ ′ is de ned as per Def. 2.1, that is, τ ′ (s ′ , α ′ ) = i ∈N ′ α ′ i . Intuitively, in the CGS-EPC G ′ every agent i ∈ N manipulates local copies c ip of atoms p ∈ Φ. e aggregation function τ in G is mimicked by the dummy agent * , whose role is to observe the values of the various c ip , then perform an action to aggregate them and set the value of p accordingly. Observe that agent * acts only when the turn variable is true, in which case all the other agents set all their variables to false, i.e., they all play ∅. is is to ensure the correspondence between memory-less strategies of G and G ′ , as shown in Lemma 4.6.

Note also that the size of game G ′ is polynomial in the size of G, and that G ′ can be constructed in polynomial time from G. To see this, observe that an upper bound on the number of variables is N × Φ.

Recall that we can associate to each state s ′ ∈ S ′ a state s = s ′ ∩Φ in S. For the other direction, given a state s ∈ S, there are multiple states s ′ that agree with s on Φ. e purpose of the next de nition is to designate one such state as the canonical one.

De nition 4.2. For every s ∈ S, we de ne the canonical state s ′ ⋆ = {s ′ ∈ S ′ | s ′ ∩ Φ = s and s (p) = 0 for p Φ}.

Observe that, in particular, in all canonical states atom turn is false. As an example, consider Φ = {p, q} and N = {1, 2}. Let then Φ 1 = {p} and Φ 2 = {p, q}.We thus have that Φ ′ = {p, q, c 1p , c 2p , c 2q , turn}. If s = {p}, we have for instance that s ′ ∩ Φ = s for s ′ = {p, c 1p }. On the other hand, s ′ ⋆ = {p}. We now move to de ne a correspondence between paths of G and G ′ . For notational convenience, we indicate with λ[k] |Φ = λ[k] ∩ Φ, the restriction of state λ[k] to variables in Φ. Given a path λ ′ of G ′ , consider the unique in nite sequence of states λ associated to λ ′ de ned as follows:

λ[k] = λ ′ [2k] |Φ = λ ′ [2k+1] |Φ for all k ∈ N. ( †)
On the other hand, there are multiple sequences λ ′ that can be associated with a path λ, so that ( †) holds true. In fact, we only know how the variables in Φ behave, while the truth values of the other variables can vary. We now make use of condition ( †) to characterise the paths of G and G ′ that can be associated:

L 4.3.
Given a CGS-SPC G and the corresponding CGS-EPC G ′ , the following is the case:

(1) for all paths λ ′ of G ′ , sequence λ satisfying condition ( †) is a path of G;

(2) for all paths λ of G, for all sequences λ ′ satisfying ( †), λ ′ is a path of G ′ i for all k there exists a G-action α

[k] such that λ[k] α [k] ----→ λ[k+1] and states λ ′ [2k+1] and λ ′ [2k+2] can be obtained from state λ ′ [2k] by performing actions (α ′ 1 , . . . , α ′ n , +turn) and then (∅ 1 , . . . , ∅ n , τ (λ ′ [2k+1] |Φ , α )).
P . We rst prove (1) by showing that λ is a path of G, i.e., that for every k there is an action α that leads from λ

[k] to λ[k+1]. Suppose that λ ′ [2k] α ′ [2k ] -----→ λ ′ [2k+1] α ′ [2k+1] --------→ λ ′ [2(k+1)] for ac- tion α ′ [2k] = (α ′ 1 , . . . , α ′ n , +turn) and action α ′ [2k+1] = (∅ 1 , . . . , ∅ n ,τ (λ ′ [2k+1]
|Φ en, we observe that we can move from state λ

[k] = λ ′ [2k] |Φ = λ ′ [2k+1] |Φ to λ[k+1] = λ ′ [2k+2] |Φ by performing action (α 1 , . . . , α n ) such that α i = {p ∈ Φ | c ip ∈ α ′
i } for every i ∈ N . As for (2), the right-to-le direction is clear. For the le -to-right direction, let λ ′ be a path associated to λ. From ( †) we know that for any k we have that λ

′ [2k] |Φ = λ[k] and λ ′ [2k+2] |Φ = λ[k+1].
Now by De nition 4.1, the only actions available to the players at λ ′ [2k] are of the form (α ′ 1 , . . . , α ′ n , +turn), and the only action

available at λ ′ [2k+1] is (∅ 1 , . . . , ∅ n , τ (λ ′ [2k+1] |Φ , α )).
We can thus obtain the desired result by considering action α

[k] = (α 1 , . . . , α n ), where α i = {p ∈ Φ i | c ip ∈ α ′ i } for each i ∈ N
, and by observing that by ( †) we have τ

(λ ′ [2k + 1] |Φ , α ) = τ (λ[k], α ).
Figure 1 illustrates the construction of the two paths λ and λ ′ in the proof of Lemma 4.3. In particular, the second part of the lemma characterises the set of G ′ -paths λ ′ associated to a G-path λ: for any sequence of G-actions that can generate path λ, we can construct a distinct G ′ -path λ ′ that corresponds to λ, where the sequence of actions can be reconstructed by reading the values of the variables in Φ ′ i in odd states λ[2k + 1]. From this set of G ′ -paths λ ′ we can specify a subset of canonical paths as follows:

De nition 4.4. For a path λ of G, a canonical associated path λ ′ ⋆ of G ′ is any path λ ′ such that ( †) holds and λ ′ [0] = λ[0] ′ ⋆ . λ[0] λ ′ [0] λ ′ [1] λ[1] λ ′ [2] λ ′ [3] λ[2] λ ′ [4] λ ′ [5] λ[3] λ ′ [6] . . . . . . (α 1 . . . α n )[0] α ′ 1 . . . α ′ n +tur n ∅ τ (λ ′ [1] |Φ , α ) (β 1 . . . β n )[1] β ′ 1 . . . β ′ n +tur n ∅ τ (λ ′ [3] |Φ , β ) (δ 1 . . . δ n )[2] δ ′ 1 . . . δ ′ n +tur n ∅ τ (λ ′ [5] |Φ , δ ) Figure 1: A path λ in a CGS-SPC G and its associated path λ ′ in a CGS-EPC G ′ .
at is, a canonical path λ ′ associated to λ starts from the canonical state λ[0] ′ ⋆ associated to λ[0]. e following example clari es the concepts just introduced.

Example 4.5. Consider a CGS-SPC G with N = {1, 2} and Φ = {p, q} such that Φ 1 = {p} and Φ 2 = {p, q}. Let d (i, s) = 2 Φ i for all i ∈ N and s ∈ S, and let τ (s, α )(p) = 0 if and only if α 1 (p) = α 2 (p) = 0, while τ (s, α )(q) = α 2 (q) for all s ∈ S. Namely, issue p becomes true if at least one agent makes it true, while issue q follows the decision of agent 2. Let now λ = s 0 s 1 . . . be a path of G such that s 0 = {p} and s 1 = {p, q}. Observe that there are multiple actions α such that τ (s 0 , α ) = s 1 : namely, the one where both agents set p to true, or where just one of them does (and agent 2 sets q to true).

Construct now the CGS-EPC G ′ as in De nition 4.1 and consider the following four sequences

λ ′ = s ′ 0 s ′ 1 s ′ 2 . . . where: (a) s ′ 0 = {p}, s ′ 1 = {c 1p , c 2p , c 2q , p, turn}, s ′ 2 = {p, q}, . . . (b) s ′ 0 = {p}, s ′ 1 = {c 1p , c 2q , p, turn}, s ′ 2 = {p, q}, . . . (c) s ′ 0 = {p, c 1p }, s ′ 1 = {c 1p , c 2q , p, turn}, s ′ 2 = {p, q}, . . . (d) s ′ 0 = {p}, s ′ 1 = {c 2q , p, turn}, s ′ 2 =
{p, q}, . . . Observe that (a) and (b) are both examples of canonical paths (up to the considered state), corresponding to two actions that might have led from s 0 to s 1 inG. On the other hand, (c) is a non-example while being a path of G ′ satisfying ( †), since s ′ 0 is not canonical. Finally, sequence (d) satis es ( †) but it is not a path of G ′ , since it is not possible to obtain s ′ 2 from s ′ 1 . e next result extends the statement of Lemma 4.3 to paths generated by a speci c strategy. Given a G ′ -strategy σ ′ C and a state s ′ ∈ S ′ , let Π(out

(s ′ , σ ′ C )) = {λ | λ ′ ∈ out (s ′ , σ ′ C )}, i.
e., all the "projections" of paths λ ′ in out (s ′ , σ ′ C ) to paths λ in G, obtained through ( †). L 4.6. Given a CGS-SPC G, the corresponding CGS-EPC G ′ is such that:

(1) for every joint strategy σ C in G, there exists a strategy σ ′ C in G ′ such that for every state s ∈ S we have that

Π(out (s ′ ⋆ , σ ′ C )) = out (s, σ C ); (2 
) for every joint strategy σ ′ C in G ′ , there exists a strategy σ C in G such that for all canonical states s ′ ∈ S ′ we have that Π(out (s ′ , σ ′ C )) = out (s ′ |Φ , σ C ). . We rst prove [START_REF] Alur | Alternating-time temporal logic[END_REF]. Given strategy σ C in G, for i ∈ C de ne σ ′ i as follows: 

σ ′ i (s ′ ) =      {c ip | p ∈ σ i (s) and s = s ′ |Φ } if s ′ (turn) = 0 ∅ otherwise Observe that if s ′ (turn) =
(s) = {p ∈ Φ i | c ip ∈ σ ′ i (s ′ ⋆ )}.
Note that the assumption in De nition 4.1 that all variables outside of Φ are put to false at stage 2k+1 in G ′ is crucial here. In fact, without this assumption we would only be able to prove that Π(out (s ′ , σ ′ C )) ⊇ out (s ′ |Φ , σ C ), as a strategy σ ′ C may associate a di erent action to states s ′ 1 and s ′ 2 that coincide on Φ and that are realised in a path λ ′ ∈ out (s ′ , σ ′ C ).

By means of Lemma 4.6 we are able to prove the main result of this section. P . e proof is by induction on the structure of formulas φ and ψ . e base case for φ = p follows from the fact that s = s ′ |Φ for all s ′ associated to s, and in particular also for s ′ ⋆ . As to the inductive cases for boolean connectives, these follow immediately by the induction hypothesis. Now suppose that φ = C ψ . As to the le -to-right direction, assume that (G, s) |= φ. By the de nition of the semantics, for some strategy σ C , for all λ ∈ out (s, σ C ), (G, λ) |= ψ . By Lemma 4.6.1 we can nd a strategy σ ′ C in G ′ such that Π(out (s ′ ⋆ , σ ′ C )) = out (s, σ C ). By induction hypothesis, we know that for all λ ∈ out (s, σ C ) we have that (G ′ , λ ′ ⋆ ) |= tr (ψ ). ese two facts combined imply that for all λ ′ ∈ out (s ′ ⋆ , σ ′ C ) we have that (G ′ , λ ′ ⋆ ) |= tr (ψ ), i.e., by the semantics, that (G ′ , s ′ ⋆ ) |= C tr (ψ ), obtaining the desired result. e right-to-le direction can be proved similarly, by using Lemma 4.6.2.

Further, if φ is a state formula, (G, λ)

|= φ i (G, λ[0]) |= φ, i by induction hypothesis (G ′ , λ[0] ′ ⋆ ) |= tr (φ), that is, (G ′ , λ ′ ⋆ ) |= tr (φ). For ψ = ψ 1 , suppose that (G, λ[1, ∞]) |= ψ 1 . By induction hypothesis, this is the case i (G ′ , (λ[1, ∞]) ′ ⋆ ) |= tr (ψ 1 ). Recall that by ( †), we have that (λ[1, ∞]) ′ ⋆ = λ ′ ⋆ [2, ∞]
. is is the case because, when moving from λ to λ ′ ⋆ , we include an additional state λ ′ ⋆ [START_REF] Alur | Alternating-time temporal logic[END_REF] in which the aggregation takes place. erefore,

(G ′ , λ ′ ⋆ [2, ∞]) |= tr (ψ 1 ), that is, (G ′ , λ ′ ⋆ ) |= tr (ψ 1 ) = tr (ψ ).
e case for ψ = ψ 1 Uψ 2 is proved similarly.

⋆

As a consequence of eorem 1, if we want to model-check an ATL * -formula φ at a state s of an CGS-SPC G, we can check its translation tr (φ) at the related state s ′ of the associated CGS-EPC G ′ . Together with the observation that both the associated game G ′ and the translation φ are polynomial in the size of G and φ, we obtain the following:

C

2. e ATL * model-checking problem for CGS-SPC can be reduced to the ATL * model-checking problem for CGS-EPC.

COMPUTATIONAL COMPLEXITY OF SHARED CONTROL STRUCTURES

e results proved in the previous sections allow us to obtain complexity results for the model checking of an ATL * (or ATL) specication φ on a pointed CGS-SPC (G, s) de ned in De nition 2.3.

T

3. e model-checking problem of ATL speci cations in CGS-SPC is ∆ p 3 -complete.

P

. As for membership, given a pointed CGS-SPC (G, s) and an ATL speci cation φ, by the translation tr introduced in Section 4 and eorem 1 we have that (G, s) |= φ i (G ′ , s ′ ) |= tr (φ). Also, we observe that the CGS-EPC G ′ is of size polynomial in the size of G, and that model checking ATL with respect to CGS-EPC is ∆ p 3 -complete [START_REF] Belardinelli | On Logics of Strategic Ability based on Propositional Control[END_REF]. For hardness, it is su cient to observe that CGS-EPC are a subclass of CGS-SPC.

As for the veri cation of ATL * , we can immediately prove the following result: 

P

. Membership follows by the PSPACE-algorithm for ATL * on general CGS [START_REF] Bulling | Model Checking Logics of Strategic Ability: Complexity*[END_REF]. As for hardness, we observe that satis ability of an LTL formula φ can be reduced to the model checking of the ATL * formula 1 φ on a CGS-SPC with a unique agent 1.

In Section 3 we showed how three examples of iterated games from the literature on strategic reasoning can be modelled as CGS-SPC, and how the problem of determining the existence of a winning strategy can therefore be reduced to model checking an ATL * speci cation. Let E WIN(G, i) be the decision problem of deciding whether agent i has a memory-less winning strategy in game G. As an immediate consequences of eorem 4 we obtain:

C 5. If G is an iterated boolean game with shared control, E WIN(G, i) is in PSPACE.
An analogous result cannot be obtained for in uence and aggregation games directly. Decision problems in these structures are typically evaluated with respect to the number of agents and issues, and the size of the CGS-SPCs associated to these games are already exponential in these parameters. erefore, in line with previous results obtained in the literature [START_REF] Grandi | Strategic Disclosure of Opinions on a Social Network[END_REF], we can only show the following: C 6. If G is an in uence game or an aggregation game, then E WIN(G, i) is in PSPACE in the size of the associated CGS-SPC.

CONCLUSION

In this contribution we have introduced a class of concurrent game structures with shared propositional control, or CGS-SPC. en, we have interpreted popular logics for strategic reasoning ATL and ATL * on these structures. Most importantly, we have shown that CGS-SPC are a general framework, whereby we can capture iterated boolean games and their generalisation to shared control, as well as in uence and aggregation games. e main result of the paper shows that the model checking problem for CGS-SPC can be reduced to the veri cation of standard CGS with exclusive control, which in turn allows us to establish a number of complexity results.

e results proved here open up several research directions. Firstly, in this paper we have focussed on the veri cation problem, but what about satis ability and validity? e undecidability result provided by Gerbrandy [START_REF] Gerbrandy | Logics of propositional control[END_REF] for CL-PC with shared control does not immediately transfer to CGS-SPC, as the relevant languages are di erent: CL-PC includes normal modal 'diamond-operators' C and 'box-operators' [C], while our C is non-normal. 4Further, given our reduction of CGS-SPC to CGS with exclusive control, one may wonder what the bene ts of our move to shared control are. As our three examples have demonstrated, shared control allows to model in a natural way complex interactions between agents concerning the assignment of truth values to propositional variables.

e strategic aspects of these games remain largely unexplored, and clean characterisations of equilibria and other game-theoretic concepts seem rather hard to prove, supporting the use of automated veri cation in these context.

Compact representations of CGS with exclusive control are a thriving subject of research in the formal veri cation community[see, e.g., [START_REF] Huang | e Complexity of Model Checking Succinct Multiagent Systems[END_REF][START_REF] Jamroga | Modular interpreted systems[END_REF][START_REF] Wiebe Van Der Hoek | On the complexity of practical ATL model checking[END_REF]. ere, so-called reactive modules de ne for every action whether it is available by means of a boolean formula. In future work we plan to investigate such compact representations for CGS with shared control. is requires in particular a compact representation of the transition function τ , which becomes more involved in the shared control se ing.

Finally, we conclude by remarking that a key assumption on our CGS (both with exclusive and shared control) is that agents have perfect knowledge of the environment they are interacting in and with. Indeed, in De nition 4.1 the dummy agent * is able to mimick the aggregation function τ as she can observe the values of c ip for any other agent i. In contexts of imperfect information, agents can only observe the atoms they can act upon. Hence, an interesting question is whether our reduction of CGS-SPC to CGS-EPC goes through even when imperfect information is assumed.

T 1 .

 1 Given any CGS-SPC G, the corresponding CGS-EPC G ′ is such that for all state-formulas φ and path-formulas ψ in ATL * the following holds:for all s ∈ S (G, s) |= φ i (G ′ , s ′ ⋆ ) |= tr (φ) for all λ of G (G, λ) |= ψ i (G ′ , λ ′ ⋆ )|= tr (ψ ) for any λ ′ ⋆ .

T 4 .

 4 e model-checking problem of ATL * speci cations in CGS-SPC is PSPACE-complete.

  the set of successors of s is given asSucc (s) = {τ (s, α ) | α ∈ Act (s)}. Every Succ (s) is non-empty because d (i, s) ∅. An in nite sequence of states λ = s 0 s 1 . . . is a computation or a path if s k+1 ∈ Succ (s k )for all k ≥ 0. For every computation λ and k ≥ 0, λ[k, ∞] = s k , s k+1 , . . . denotes the su x of λ starting from s k . Notice that λ[k, ∞] is also a computation. When λ is clear from the context, we denote with α[k] the action such that λ

  irre exive graph representing the in uence network; • S 0 ∈ S is the initial state, where states in S are tuples (B, V ), where B = (B 1 , . . . , B n ) is a pro le of private opinions B

i : Φ → {0, 1} indicating the opinion of agent i on variable p, and V

  1 agents in C are obliged to play action ∅ by De nition 4.1, since it is their only available action. By combining all de nitions above, we get that Π(out(s ′ ⋆ , σ ′ C )) = out (s, σ C ) for an arbitrary state s ∈ S.To prove (2), we start from a strategy σ ′ C in G ′ . For any state s ∈ S, de ne σ i

In CL-PC, it is also assumed that control is complete, that is, every variable is controlled by at least one agent (i.e., for every p ∈ Φ there exists an agent i such that p ∈ Φ i ).

More precisely, the CGS-EPC we consider here as our basic framework correspond to the "weak" version de ned by Belardinelli and Herzig[START_REF] Belardinelli | On Logics of Strategic Ability based on Propositional Control[END_REF], as opposed to a strong version where d (i, s ) = A i for every i ∈ N and s ∈ S .

e de nition of τ as an arbitrary function might seem too general. Nonetheless, such a de nition is needed to represent complex aggregation procedures such as those used in the games described in Sections 3.2 and 3.3.

We observe that, on the other hand, following van der Hoek and Wooldridge[START_REF] Van Der Hoek | On the logic of cooperation and propositional control[END_REF] the fragment of the language of ATL without 'until' can be embedded into that of CL-PC by identifying C ϕ with C [N \ C]ϕ.
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