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FLOWS REVISITED: THE MODEL
CATEGORY STRUCTURE AND ITS

LEFT DETERMINEDNESS

Philippe GAUCHER

Résumé. Les flots sont un modèle topologique de la concurrence qui permet
d’encoder la notion de raffinement de l’observation et de comprendre les
propriétés homologiques des branchements et des confluences des chemins
d’exécution. Intuitivement, ce sont des d-espaces au sens de Grandis sans
espace topologique sous-jacent. Ils ont seulement un type d’homotopie sous-
jacent. Cette note a deux objectifs. Premièrement de donner une nouvelle
construction de la catégorie de modèles des flots plus conceptuelle grâce au
travail d’Isaev. Cela permet d’éviter des arguments topologiques difficiles.
Deuxièmement nous prouvons que cette catégorie de modèles est déterminée
gauche en adaptant un argument de Olschok. L’introduction contient quelques
spéculations sur ce qu’on s’attend à trouver en localisant cette catégorie de
modèles minimale.
Abstract. Flows are a topological model of concurrency which enables to
encode the notion of refinement of observation and to understand the homo-
logical properties of branchings and mergings of execution paths. Roughly
speaking, they are Grandis’ d-spaces without an underlying topological space.
They just have an underlying homotopy type. This note is twofold. First, we
give a new construction of the model category structure of flows which is more
conceptual thanks to Isaev’s results. It avoids the use of difficult topological
arguments. Secondly, we prove that this model category is left determined
by adapting an argument due to Olschok. The introduction contains some
speculations about what we expect to find out by localizing this minimal model
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1. Introduction

1.1 Topological models of concurrency

There is a multitude of topological models of concurrency: flows which
are the subject of this paper and which are introduced in [6], but also d-
spaces [18], streams [28], inequilogical spaces [19], spaces with distinguished
cubes [21] [20], multipointed d-spaces [14] etc... All these mathematical
devices contain the same basic examples coming from concurrency (e.g. the
geometric realizations of precubical sets), a local ordering modeling the
direction of time and its irreversibility, execution paths, a set or a topological
space of states and a notion of homotopy between execution paths to model
concurrency. Grandis’ d-spaces give rise to a vast literature studying the
directed fundamental category and the directed components of directed spaces
whatever the definition we give to this notion of directed space.

This paper belongs to the sequence of papers [6] [9] [15] [12] [10] [11]
[7] [8]. The main feature of the model category of flows is to enable the
formalization and the study of the notion of refinement of observation (the
cofibrant replacement functor plays a crucial role in the formalization indeed).
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The model category of flows also enables the study of the homological
properties of the branching areas and merging areas of execution paths in
concurrent systems, in particular a long exact sequence, and their interaction
with the refinement of observation, actually their invariance with respect to
them. Since flows have also a labeled version (see [13, Section 6]), they can be
used for modeling the path spaces of process algebras for any synchronization
algebra [13] [16].

1.2 Speculative digression

In our line of research, the objects are multipointed, i.e. they are equipped
with a distinguished set of states. The set of states provided by the description
of a concurrent process is not forgotten. It is exactly the same phenomenon
as in the formalism of simplicial set. A simplicial set is equipped with a set
of vertices which comes from the description of the space. This family of
topological models of concurrency differs from other topological models of
concurrency like Grandis’ d-spaces or streams which are not multipointed.

The interest of our approach is that it is already possible to build model
category structures such that the weak equivalences preserve the causal stru-
cture of a process. Indeed, all flows are fibrant. By Ken Brown’s lemma, two
flows are therefore weakly equivalent if and only if they can be related by a
zig-zag of trivial fibrations. Every trivial fibration satisfies the right lifting
property with respect to any cofibration, and therefore with respect to any
reasonable notion of extension of paths. Thus two weakly equivalent flows
are bisimilar in Joyal-Nielsen-Winskel’s sense [27] for any reasonable notion
of extension of paths.

The main drawback of a lot of, and to the best of our knowledge, actually
all other model categories introduced in directed homotopy is that their weak
equivalences destroy the causal structure for example by identifying the
directed segment up to weak equivalence with a point. Indeed, the directed
segment should not be contractible (in a directed sense) in directed homotopy.
To understand the reason, consider the well-known example of the Swiss Flag
example (cf. Figure 1). It consists of two processes concurrently executing the
instructions PA.PB.V A.V B and PB.PA.V B.V A where Px means taking
the control of a shared ressource x and V x means releasing it. We suppose
that at most one process can take the control of a given shared ressource.
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Figure 1: Swiss Flag example

There are in our example two shared ressources A and B which can be for
example buffers to temporarily store data. The execution paths start from
the bottom left corner, ends to the top right corner, and are supposed to be
nondecreasing with respect to each axis of coordinates. Then the point of
coordinates (PB, PA) is a deadlock because it is impossible from it to reach
the desired final state. As soon as the directed segment becomes weakly
equivalent to a point, the deadlock (PB, PA) could disappear up to weak
equivalence (the picture on the right is an object having the same causal
structure). It means that a weak equivalence could break the causal structure
as soon as the directed segment is contractible in a directed sense and, in this
case, if left properness is assumed.

The weak equivalences of the model category of flows do preserve the
causal structure. However, they are too restrictive. It is not even possible up
to weak equivalence to replace in a flow a directed segment by a more refined
one (cf. Figure 2), by adding additional points in the middle of the segment in
the distinguished set of states. This annoying behaviour can be overcome by
adding weak equivalences by homotopical localization. One of the challenges
of our line of research is precisely to understand the homotopical localization
of the model category of (labeled) flows with respect to this kind of maps:
they are called T-homotopy equivalences in [10].

The paper [7] proves not only that the class of weak equivalences of this
homotopical localization contains more equivalences than the dihomotopy
equivalences of flows as defined in [9], but also that there is no hope to obtain
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T−HOMOTOPY

Figure 2: Replacement of a directed segment by a more refined one

a model category structure on flows such that the weak equivalences are
exactly these dihomotopy equivalences, even if a notion of fibrant object (the
homotopy continuous flows [9, Definition 4.3]) with the associated Whitehead
theorem exists for dihomotopy equivalences [9, Theorem 4.6].

By now, we only know by studying examples that the weak equivalences
of this homotopical localization seem to be, in the labeled case, dihomotopy
equivalences in the sense of [9] up to a kind of bisimulation. In particular,
it means that the weak equivalences of this homotopical localization likely
preserve causality, but not the branching and merging homologies, and not
the underlying homotopy type of a flow as defined in [11] which is, roughly
speaking, the homotopy type of the space obtained after removing the directed
structure of a flow.

It is actually possible to homotopically localize the model category of
labeled flows by the whole class of bisimulations in Joyal-Nielsen-Winskel’s
sense since this class of maps is accessible. Then another strange phenomenon
occurs. We would then have to deal in the localization with weak equivalences
breaking the causal structure. The latter phenomenon is explained in [17,
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Theorem 12.4] within the combinatorial framework of Cattani-Sassone higher
dimensional transition systems but it can be easily adapted and generalized to
many other frameworks of directed homotopy, including the one of flows.

1.3 Purpose of this note

The construction of the model category of flows as carried out in [6] is quite
long and tricky. It makes use of rather complicated topological lemmas, in
particular because colimits of flows are difficult to understand. Indeed, flows
are roughly speaking small categories without identities (precategories ?
pseudocategories ?) enriched over topological spaces 1 Therefore new paths
are created as soon as states are identified in a colimit, which may generate
complicated modifications of the topology of the path space (e.g. see the
proof of [6, Theorem 15.2] which is not only complicated but also contains a
flaw which will be fixed in a subsequent paper). The first purpose of this note
is to drastically simplify this construction using [25]. We then explain in a
second part why the model category of flows is left determined in the sense of
[30] by adapting an argument due to Marc Olschok for the model category of
topological spaces. The latter fact is a new result (it was mentioned without
proof in [17, Section 12]). In the (complicated) quest of finding out better
model categories with as much weak equivalences as possible preserving the
causal structure, this result means that it is not possible in the framework of
flows to remove weak equivalences without changing the set of generating
cofibrations.

1.4 Organization

Section 2 recalls what we need to use from Isaev’s paper. Section 3 explains
the new construction of the model category structure of flows (Theorem 3.11).
Section 4 recalls the notion of left determined model category and proves
that the category of flows is left determined (Theorem 4.3). Section 5 makes
some final comments.

1There is no known relation between the model category of flows and the model category
of topologically enriched small categories of [3]: the obvious adjunction is not even a Quillen
adjunction; moreover the terminology of “flow” must not mislead the reader, it has nothing
to do with a similar terminology in Morse theory.
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1.5 Notations

All categories are locally small. The category of sets is denoted by Set. The
set of maps in a category K from X to Y is denoted by K(X, Y ). The initial
(final resp.) object, if it exists, is always denoted by ∅ (1 resp.). The identity
of an objectX is denoted by IdX . The composite of two maps f : A→ B and
g : B → C is denoted by g.f . A subcategory is always isomorphism-closed
(replete). Let f and g be two maps of a category K. Denote by f � g when
f satisfies the left lifting property (LLP) with respect to g, or equivalently g
satisfies the right lifting property (RLP) with respect to f . Let C be a class
of maps. Let us introduce the notations inj(C) = {g ∈ K,∀f ∈ C, f � g}
and cof(C) = {f | ∀g ∈ inj(C), f � g}. The class of morphisms of K
that are transfinite compositions of pushouts of elements of C is denoted
by cell(C). We refer to [1] for locally presentable categories, to [29] for
combinatorial model categories. We refer to [24] and to [23] for more general
model categories.

2. Isaev approach for constructing model categories

Let K be a locally presentable category. A combinatorial model category
structure is characterized by its set of generating cofibrations and by its class
of fibrant objects by [26, Proposition E.1.10]. Therefore, for a given set of
maps I , there exists at most one combinatorial model category structure on
K such that the set of generating cofibrations is I and such that all objects
are fibrant. In [25], several methods are expounded to obtain model category
structures such that all objects are fibrant. We summarize in the next theorem
what we are going to need in this note.

Theorem 2.1. [25, Theorem 4.3, Proposition 4.4, Proposition 4.5 and Corol-
lary 4.6] Let K be a locally presentable category. Let I be a set of maps of K
such that the domains of the maps of I are I-cofibrant (i.e. belong to cof(I)).
Suppose that for every map i : U → V ∈ I , the relative codiagonal map
V tU V → V factors as a composite V tU V

γ0tγ1→ CU(V )→ V such that
the left-hand map belongs to cof(I). Let JI = {γ0 : V → CU(V ) | U →
V ∈ I}. Suppose that there exists a path functor Path : K → K, i.e. an end-
ofunctor of K equipped with two natural transformations τ : Id⇒ Path and
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π : Path⇒ Id× Id such that the composite π.τ is the diagonal. Moreover
we suppose that the path functor satisfies the following hypotheses:

1. With π = (π0, π1), π0 : Path(X)→ X and π1 : Path(X)→ X have
the RLP with respect to I .

2. The map π : Path(X)→ X ×X has the RLP with respect to the maps
of JI .

Then there exists a unique model category structure on K such that the set
of generating cofibrations is I and such that the set of generating trivial
cofibrations is JI . Moreover, all objects are fibrant.

Unlike in [25], we can drop the hypothesis about the smallness of the
domains and the codomains of the maps of I with respect to I by [2, Proposi-
tion 1.3] because the ambient category is supposed to be locally presentable
. Note that every map of JI is a split monomorphism since the composite
V tU V → CU(V )→ V is the relative codiagonal. Therefore every object is
fibrant indeed.

3. The model category of flows

Notation 3.1. The category Top denotes a bicomplete locally presentable
cartesian closed full subcategory of the category of general topological spaces
containing all CW-complexes.

The category of ∆-generated spaces, i.e. the colimits of simplices, or
equivalently the colimits of the segment [0, 1] by [4, Proposition 3.17], satis-
fies these hypotheses [5]. It is also possible to add weak separability hypothe-
ses like this one: for every continuous map g : ∆n → X where ∆n is the
topological n-simplex with n > 0, g(∆n) is closed in X . For a tutorial about
these topological spaces, see for example [14, Section 2]. We take Top to be
equipped with the standard Quillen model category structure.

Notation 3.2. The internal hom functor is denoted by TOP(−,−).

Definition 3.3. [6] A flow X consists of a topological space PX of execution
paths, a discrete space X0 of states, two continuous maps s and t from PX
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to X0 called the source and target map respectively, and a continuous and
associative map

∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX

such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f :
X −→ Y consists of a set map f 0 : X0 −→ Y 0 together with a continuous
map Pf : PX −→ PY such that f(s(x)) = s(f(x)), f(t(x)) = t(f(x)) and
f(x ∗ y) = f(x) ∗ f(y). The corresponding category is denoted by Flow.

Notation 3.4. For a topological space X , let Glob(X) be the flow defined
by Glob(X)0 = {0, 1} and PGlob(X) = X with s and t being the constant
functions s = 0 and t = 1. The Glob mapping induces a functor from the
category Top of topological spaces to the category Flow of flows.

We need to recall the two following easy propositions:

Proposition 3.5. [6, Proposition 13.2] A morphism of flows f : X −→ Y
satisfies the RLP with respect to Glob(U) −→ Glob(V ) if and only if for
any α, β ∈ X0, Pα,βX −→ Pf(α),f(β)Y satisfies the RLP with respect to
U −→ V .

Proposition 3.6. [6, Proposition 16.2] Let f be a morphism of flows. Then
the following conditions are equivalent:

1. f is bijective on states

2. f satisfies the RLP with respect to R : {0, 1} −→ {0} and C : ∅ ⊂
{0}.

We will also need this new proposition which does not seem to be proved
in one of our previous papers about flows:

Proposition 3.7. The globe functor Glob : Top → Flow preserves con-
nected colimits (i.e. colimits such that the underlying small category is
connected).

Note that the connectedness hypothesis is necessary. Indeed, V and W
being two topological spaces, the flow Glob(V tW ) has two states whereas
the flow Glob(V ) tGlob(W ) has four states.
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Proof. Let V be a topological space. Giving a map from the flow Glob(V )
to a flow X is equivalent to choosing two states α and β of X (the image of
the states 0 and 1 of Glob(V )) and a continuous map from V to Pα,βX . Thus
the following natural bijection of sets holds

Flow(Glob(V ), X) ∼=
⊔

(α,β)∈X0×X0

Top(V,Pα,βX). (1)

We obtain the sequence of natural bijections (lim−→Vi being a connected colimit
of topological spaces)

Flow(Glob(lim−→Vi), X) ∼=
⊔

(α,β)∈X0×X0

Top(lim−→Vi,Pα,βX)

∼=
⊔

(α,β)∈X0×X0

lim←−Top(Vi,Pα,βX)

∼= lim←−
⊔

(α,β)∈X0×X0

Top(Vi,Pα,βX)

∼= lim←−Flow(Glob(Vi), X)

∼= Flow(lim−→Glob(Vi), X),

the first and the fourth isomorphisms by (1), the second and the fifth isomor-
phisms by definition of a (co)limit and the third isomorphism by the connect-
edness of the limit. The proof is complete using the Yoneda lemma.

Notation 3.8. [6, Notation 7.6] Let U be a topological space. Let X be a
flow. The flow {U,X}S is defined as follows:

1. The set of states of {U,X}S is X0.

2. For α, β ∈ X0, let Pα,β{U,X}S = TOP(U,Pα,βX).

3. For α, β, γ ∈ X0, the composition law

∗ : Pα,β{U,X}S × Pβ,γ{U,X}S −→ Pα,γ{U,X}S
is the composite

Pα,β{U,X}S × Pβ,γ{U,X}S ∼= TOP (U,Pα,βX × Pβ,γX)

−→ TOP (U,Pα,γX)

induced by the composition law of X .
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The flow {U,X}S is functorial with respect to U and X (contravariant
with respect to U and covariant with respect to X). The flow {∅, Y }S is
the flow having the same set of states as Y and exactly one non-constant
execution path between two points of Y 0. The flow {{0}, X}S is canonically
isomorphic to X for all flows X . Maybe the latter assertion deserves a little
explanation because it is precisely why cartesian closedness matters (the fact
that {0} is exponentiable is actually sufficient). For all topological spaces U ,
we have the natural bijections

Top(U,Pα,βX) ∼= Top(U × {0},Pα,βX) ∼= Top(U,TOP({0},Pα,βX)).

Thus by Yoneda, we obtain the homeomorphism

Pα,βX ∼= TOP({0},Pα,βX)).

Notation 3.9. Let n > 1. Denote by Dn = {b ∈ Rn, |b| 6 1} the n-
dimensional disk, and by Sn−1 the (n−1)-dimensional sphere. By convention,
let D0 = {0} and S−1 = ∅. Let Igl+ = {Glob(Sn−1) ⊂ Glob(Dn) | n >
0} ∪ {C : ∅→ {0}, R : {0, 1} → {0}}.

We recall an elementary lemma about the model category Top which is a
straightforward consequence of the fact that the Quillen model structure is
Cartesian monoidal:

Lemma 3.10. Let i : U → V be a cofibration of Top. Then for all topo-
logical spaces X , the map i∗ : TOP(V,X) → TOP(U,X) is a fibration.
If moreover i is a weak equivalence, then the map i∗ : TOP(V,X) →
TOP(U,X) is a trivial fibration.

We can now easily carry out the construction of the model category
structure.

Theorem 3.11. There exists a unique model category structure such that Igl+
is the set of generating cofibrations and such that all objects are fibrant.

Proof. We have to check the hypotheses of Theorem 2.1. The category Flow
is locally presentable since Top is locally presentable (see for example the
proof of [7, Proposition 6.11]). That all Glob(Sn−1) for all n > 0 are Igl+ -
cofibrant comes from the fact that the (n− 1)-sphere is cofibrant in Top. We
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can factor the relative codiagonal map Dn tSn−1 Dn → Dn as a composite
DntSn−1Dn ⊂ Dn+1 → Dn for all n > 0. Thus for U → V being one of the
maps Glob(Sn−1) ⊂ Glob(Dn) for n > 0, we set CU(V ) = Glob(Dn+1).
We have a pushout diagram of topological spaces

Sn //

��

Dn tSn−1 Dn

��
Dn+1 //Dn+1

which gives rise to the pushout diagram of flows

Glob(Sn)

��

// Glob(Dn) tGlob(Sn−1) Glob(Dn)

��
Glob(Dn+1) // Glob(Dn+1)

for all n > 0 by Proposition 3.7. This implies that for U → V being one of
the maps Glob(Sn−1) ⊂ Glob(Dn) for n > 0, the map V tU V → CU(V )
belongs to cell(Igl+ ). The map C : ∅ → {0} gives rise to the relative
codiagonal map {0} t {0} → {0}. Thus we set C∅({0}) = {0}. In this case,
the map V tU V → CU(V ) is R : {0, 1} → {0} which belongs to cell(Igl+ ).
The map R : {0, 1} → {0} gives rise to the relative codiagonal map Id{0}.
Thus we set C{0,1}({0}) = {0}. In this case, the map V tU V → CU(V ) is
Id{0} which belongs to cell(Igl+ ). The set of generating trivial cofibrations
will be therefore the set of maps Glob(Dn) ⊂ Glob(Dn+1) for n > 0. Let
Path(X) = {[0, 1], X}S for all flows X . The composite map {0, 1} ⊂
[0, 1] → {0} yields a natural composite map of flows X ∼= {{0}, X}S →
Path(X)→ {{0, 1}, X}S which is constant on states and which gives rise to
the composite continuous map Pα,βX → TOP([0, 1],Pα,βX)→ Pα,βX ×
Pα,βX on the spaces of paths for all (α, β) ∈ X0 × X0. We obtain a
natural composite map of flows X τ−→ Path(X)

π−→ X × X since the
set of states of X × X is X0 × X0 and the space of paths from (α, α′)
to (β, β′) is Pα,βX × Pα′,β′X by [6, Theorem 4.17]. We have obtained a
path object in the sense of Theorem 2.1. Since the maps π0 and π1 are
bijective on states, they satisfy the RLP with respect to {C : ∅ → {0}, R :
{0, 1} → {0}} by Proposition 3.6. By Proposition 3.5, the maps π0 and
π1 satisfy the RLP with respect to Glob(Sn−1) ⊂ Glob(Dn) for n > 0 if
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and only if the evaluation maps TOP([0, 1],Pα,βX) ⇒ Pα,βX on 0 and
1 satisfy the RLP with respect to the inclusion Sn−1 ⊂ Dn for n > 0
and for all (α, β) ∈ X0 × X0, i.e. if and only if the evaluation maps
TOP([0, 1],Pα,βX)⇒ Pα,βX are trivial fibrations for all (α, β) ∈ X0×X0.
The latter fact is a consequence of Lemma 3.10 and from the fact that the
inclusions {0} ⊂ [0, 1] and {1} ⊂ [0, 1] are trivial cofibrations of Top.
Finally we have to check that the map π : Path(X) → X × X satisfies
the RLP with respect to the maps Glob(Dn) ⊂ Glob(Dn+1) for n > 0. By
Proposition 3.5 again, it suffices to prove that the map TOP([0, 1],Pα,βX)→
TOP({0, 1},Pα,βX) = Pα,βX × Pα,βX is a fibration of topological spaces
for all (α, β) ∈ X0 ×X0. By Lemma 3.10 again, this comes from the fact
that the inclusion {0, 1} ⊂ [0, 1] is a cofibration of Top.

This model category structure coincides with the one of [6].

4. Left determinedness of the model category of flows

Let us now recall the definition of a left determined model category:

Definition 4.1. Let I be a set of maps of a locally presentable category K.
A class of mapsW is a localizer (with respect to I) or an I-localizer ifW
satisfies:

• Every map satisfying the RLP with respect to the maps of I belongs to
W .

• W is closed under retract and satisfies the 2-out-of-3 property.

• The class of maps cof(I) ∩W is closed under pushout and transfinite
composition.

The class of all maps is an I-localizer. The class of I-localizers is closed under
arbitrarily large intersection. Therefore there exists a smallest I-localizer
denoted byWI .

Definition 4.2. [30] A combinatorial model category K with the set of gen-
erating cofibrations I is left determined if the class of weak equivalences is
WI .
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Consider a combinatorial model categoryK such that all objects are fibrant
with a class of weak equivalences W and a set of generating cofibrations
I . The localizer WI could be strictly smaller than W . If WI is the class
of weak equivalences of a model category structure on K, then all objects
of this model category structure are fibrant, and therefore W = WI . To
the best of our knowledge, we can only say, using [30, Theorem 2.2], that
every combinatorial model category such that all objects are fibrant is left
determined if we assume Vopěnka’s principle. Since in any model category,
two fibrant objects are weakly equivalent if and only if they are related
by a span of trivial fibrations, and since all trivial fibrations belong to the
smallest localizer, it is also true that there is an equivalence of categories
K[W−1I ] ' K[W−1] between the categorical localizations of K with respect
toWI andW if all objects of the combinatorial model category K are fibrant.
Note that in [25], a localizer is just the class of weak equivalences of a model
category structure. In the latter sense, a model category of fibrant objects has
a minimal localizer indeed.

In our case, it is possible to conclude that the model category is left
determined without assuming Vopěnka’s principle by adapting a technique
we learned from Marc Olschok for the model category of topological spaces.

Theorem 4.3. The model category of flows is left determined.

Proof. Let f : X → Y be a weak equivalence of flows. Then f fac-
tors as a composite f = f2.f1 where f1 is a trivial cofibration, i.e. f1 ∈
cof({Glob(Dn) ⊂ Glob(Dn+1) | n > 0}) and where f2 is a trivial fibra-
tion. In particular f2 satisfies the RLP with respect to C : ∅ → {0} and
R : {0, 1} → {0}. Thus f2 is bijective on states by Proposition 3.6. The
functor X 7→ X0 from Flow to Set is colimit-preserving since it has a right
adjoint (the functor taking a set S to the flow with the set of states S and
exactly one path between each pair of states). Therefore f1 is bijective on
states since the maps Glob(Dn) ⊂ Glob(Dn+1) for all n > 0 are bijective
on states. We deduce that f is bijective on states. Consider the commutative
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diagram of flows

X
∃!f //

f

��

Nf
p′ //

f ′

��

X

f

��
Y τ // {[0, 1], Y }S

π0 //

π1

��

Y

Y

where the existence of f comes from the universal property of the pullback.
All arrows are bijective on states. Using the fact that the functor P : Flow→
Top is limit-preserving by [6, Theorem 4.17], one obtains the commutative
diagram of topological spaces

PX Pf //

Pf

��

PNf
Pp′ //

Pf ′

��

PX

Pf

��
PY Pτ // TOP([0, 1],PY )

P(π0) //

P(π1)

��

PY

PY

By [22, Proposition 4.64], the map P(π1).P(f ′) is a Hurewicz fibration, and
therefore a fibration of the model category of Top. By Proposition 3.5,
π1.f

′ satisfies the RLP with respect to all trivial cofibrations of flows, i.e.
π1.f

′ is a fibration of flows. The maps P(π0) and P(π1) are trivial fibrations
of the model category of Top by Lemma 3.10. By Proposition 3.5 and
Proposition 3.6, π0 and π1 satisfy the RLP with respect to all cofibrations
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of Flow, i.e. π0 and π1 are trivial fibrations of flows. Thus p′ is a trivial
fibration of Flow since it is a pullback of a trivial fibration. Since f is a weak
equivalence of flows by hypothesis, we deduce by the 2-out-of-3 property
that f ′ is a weak equivalence of Flow. Thus π1.f ′ is a trivial fibration of
flows as well. We have p′.f = IdX . Since p′ is a trivial fibration, it belongs to
the smallest localizer. Therefore by the 2-out-of-3 property, f belongs to the
smallest localizer. Since π1.f ′ is a trivial fibration, it belongs to the smallest
localizer as well. Since π1.f ′.f = π1.τ.f = f , we deduce that f belongs to
the smallest localizer.

5. Concluding remarks

The hypothesis that Top is locally presentable can be removed. Theorem 3.11
and Theorem 4.3 hold by working in any bicomplete cartesian closed full
subcategory of the general category of topological spaces containing all CW-
complexes. But then, we have to check that all domains and all codomains of
the maps of I+gl are small relative to cell(I+gl). This is done in [6, Section 11]
and there is no known way to avoid the use of some difficult topological
arguments. However, the model category of flows is left proper but not
cellular because of the presence of R : {0, 1} → {0} in the generating
cofibrations. So outside the framework of locally presentable categories, we
have no tools to prove the existence of any homotopical localization and to
study the homotopical localization of Flow with respect to the refinement of
observation.
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