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Abstract

Particle swarm optimization algorithm is a stochastic meta-heuristic solving global op-
timization problems appreciated for its efficacity and simplicity. It consists in a swarm of
particles interacting among themselves and searching the global optimum. The trajectory of
the particles has been well-studied in a deterministic case and more recently in a stochastic
context. Assuming the convergence of PSO, we proposed here two CLT for the particles
corresponding to two kinds of convergence behavior. These results can lead to build confi-
dence intervals around the local minimum found by the swarm or to the evaluation of the
risk. A simulation study confirms these properties.

Keywords Particle swarm optimization, Convergence, Central limit theorem

1 Introduction

Eberhart and Kennedy [1995] introduced the particle swarm optimization algorithm (PSO)
based on social interactions (behaviors of birds or fishes). Since then PSO has known a great
popularity in many domains and gave to birth to many variants of the original algorithm
(see Zhang et al. 2015 for a survey of variants and applications of PSO). PSO is a stochastic
meta heuristic solving an optimization problem without any evaluation of the gradient. The
algorithm explores the search space in an intelligent way thanks to a population of particles
interacting among themselves. It is an iterative algorithm where the particles update at each
step their position and their speed. The dynamic of the particles relies on two attractors:
their personal best position (historical best position of the particle), and the neighborhood best
position (corresponding to the social component of the particles). In the dynamic equation, the
attractors are linked with a stochastic process to have a global exploration of the search space.
Algorithm 1 refers to the classical version of PSO with S particles and N iterations.

Algorithm 1 Classical PSO

Initialize the swarm of S particles with random positions xs
0 and velocities vs

0 over the search
space.
for n = 1 to N do

Evaluate the optimization fitness function for each particle.
Update ps

n (personal best position) and gs
n (neighbourhood best position).

Change velocity (vs
n) and position (xs

n) according to dynamic equation.
end for

The convergence and stability analysis of PSO are important matters. In the literature,
there are two kinds of convergence:
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• the convergence of the particles towards a local or global optimum. This convergence is
not obtained with the classical version of PSO. Van den Bergh and Engelbrecht [2010] and
Schmitt and Wanka [2015] proposed a modified version of PSO to obtain such convergence.

• the convergence of each particle to a point (Poli 2009, Cleghorn and Engelbrecht 2018).

Here we focus on the convergence of each particle to a point. It started with the stability
of the trajectory of the particles. In a deterministic case, Clerc and Kennedy [2002] dealt
with the stability of the particles with some conditions on the parametrization of PSO. Later,
Kadirkamanathan et al. [2006] used the Lyapunov stability theorem to study the stability.
About the convergence of PSO, Van Den Bergh and Engelbrecht [2006] looked at the trajec-
tories of the particles and proved that each particle converges to a stable point (deterministic
analysis). Under stagnation hypotheses (no improvement of the personal and neighborhood
best positions), Poli [2009] gives the exact formula of the second moment. More recently,
Bonyadi and Michalewicz [2016] or Cleghorn and Engelbrecht [2018] provided results for the
order-1 and order-2 stabilities with respectively stagnant and non-stagnant distribution as-
sumptions (both weaker than the stagnation hypotheses).

Our objective is to provide a central limit theorem for the convergence of a single particle.
We distinguish two cases: a case where the particle is oscillating between gs

n and ps
n, with

ps
n 6= gs

n, and another one where the particle converges to gs
n = ps

n. For the non-oscillating case,
we propose also a study of the risk E|xs

n − gs
n|2.

2 Dynamic Equation

We consider here a cost function f : Rd → R
+ that should be minimized on a compact set

Ω. Consequently the particles evolve in Ω ⊂ R
d.

Let xs
n ∈ R

d 1 ≤ s ≤ S denote the position of particle number s in the swarm at step n.
Let (rj,n)j=1,2,n≥1 be sequences of independent random vectors whose margins obey a uniform
distribution over [0, 1] and denote by ω, c1 and c2 three positive constants which will be discussed
later. Then the PSO algorithm considered in the sequel is defined by the two following equations
(or dynamic equation, Poli 2009):

{
vs

n+1 = ω · vs
n + c1r1,n ⊙ (ps

n − xs
n) + c2r2,n ⊙ (gs

n − xs
n) ,

xs
n+1 = xs

n + vs
n+1.

(1)

where ps
n and gs

n are respectively the best personal position and the best neighborhood
position of the particle s,

ps
n = argmin

t∈{xs
0
,...,xs

n}
f (t) ,

gs
n = argmin

t∈{ps′
n :s′∈V(s)}

f (t) .

with V(s) the neighborhood of particle s. In Equation (1), ⊙ stands for the Hadamard product:

u ⊙ v = (u1v1, ..., udvd) .

The neighbourhood is associated to the swarm’s topology: if the topology is called global (all
the particles communicate between each other) then gs

n = gn = argmint∈{p1
n,...,pS

n} f (t).
We take it for granted that particles are warm, reached an area of the domain were they

fluctuate without exiting and where the personal and global best converge. In other words, our
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final goal is to provide asymptotic confidence sets without addressing the issue of convergence.
The type of convergence we have in mind will be made more precise in assumptions below.

We fix once and for all:
c1 = c2 = c

Without this assumption above, computations turn out to get considerably intricate.

3 Main results

Let us denote Fs
n the filtration generated by {xs

0, ..., xs
n}, a single particle up to step n and

FS
n the filtration generated by the swarm {xs

0, ..., xs
n : s = 1, ..., S} up to step n. We denote

gs
n = Egs

n + ξs
n and ps

n = E (ps
n) + νs

n the expectation-variance decomposition of gs
n and ps

n where
ξs

n and νs
n are centered random vectors and support all the variability of gs

n and ps
n respectively.

Notations:
The usual euclidean norm and associated inner product for vectors in R

d are denoted re-
spectively ‖·‖ and 〈·, ·〉. We will also need norms for square matrices of size d. It is well known
that all norms on the vector space of d × d matrices are equivalent. We will use here two of
them: the usual sup norm and Frobenius norm. For any square matrix M of size d with entries
Mi,j these norms are respectively defined by:

‖M‖∞ = sup
x 6=0

‖Mx‖
‖x‖ ‖M‖F =

√∑

i,j

|Mi,j |2.

The bound ‖M‖∞ ≤ ‖M‖F ≤
√

d ‖M‖∞ is classical.
The tensor product notation is appropriate when dealing with special kind of matrices for

instance covariance matrices. Let u and v be two vectors of Rd then u ⊗ v = uvt where vt is the
transpose of vector v stands for the rank one matrix defined by (u ⊗ v) (x) = 〈v, x〉 u. Besides
‖u ⊗ v‖∞ = ‖u ⊗ v‖F = ‖u‖ ‖v‖. The Hadamard product between vectors was mentioned
earlier. Its matrix version may be defined a similar way. Let M and S be two matrices with
same size then M ⊙ S is the matrix whose (i, j) cell is (M ⊙ S)i,j = mi,jsi,j. We recall without
proof the following computation rule mixing Hadamard and tensor product. Let η, ε, u and v
be four vectors in R

d. Then:

(η ⊙ u) ⊗ (ε ⊙ v) = (η ⊗ ε) ⊙ (u ⊗ v) , (2)

and the reader must be aware that the Hadamard product on the left-hand side operates between
vectors whereas on the right-hand side it operates on matrices.

If X is a random vectors with null expectation then E (X ⊗ X) is the covariance matrix of
X.

Convergence in probability of Xn to X is denoted Xn →P X. The arrow →֒ stands for
convergence in distribution (weak convergence).

In all the sequel we consider a single particle and drop the particle index so that xs
n = xn,

ps
n = pn and gs

n = gn.

3.1 First case: oscillatory (p 6= g)

With the simplifications defined above, the second line in (1) becomes:

xn+1 = (1 + ω) xn − ωxn−1 + c (r1,n + r2,n) ⊙
(

pn + gn

2
− xn

)
+ c (r1,n − r2,n) ⊙ pn − gn

2
.
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Taking expectation:

Exn+1 = (1 + ω)Exn − ωExn−1 + c

(
Epn + Egn

2
− Exn

)
. (3)

By subtracting we get the following Proposition from the above.

Proposition 1. Denote the centered process zn = xn − Exn and e the vector of Rd defined by
e = (1, 1, ..., 1) then the PSO equation becomes

zn+1 = (1 + ω − c) zn − ωzn−1 − cεn ⊙ zn + cr̃n +
c

2
ηn ⊙ (pn − gn) , (4)

with

εn = r1,n + r2,n − e ηn = r1,n − r2,n,

r̃n = εn ⊙
(
Epn + Egn

2
− Exn

)
+

e + εn

2
⊙ (pn − Epn + gn − Egn) .

Equation (4) will be a starting point especially for studying single particle trajectories.

Assumptions:
A1 : At any step n and for all particles s xs

n ∈ Ω where Ω is a compact subset of Rd.
A2 : For both tn = ξs

n and tn = νs
n : 1√

N

∑N
n=1 tn →P 0 and limn→+∞ E ‖tn‖ = 0.

A3 : The following inequality connecting c and ω holds

12

(
1 − ω

1 + ω

)(
1 + ω − c

2

)
> c.

Discussion of the Assumptions:
We avoid here the assumption of stagnation: the personal and local best are not supposed to

be constant but they oscillate around their expectation. The convergence occurs at a rate ensur-
ing that neither gn nor pn are involved in the weak convergence of the particles xn. Condition
A2 is specific of what we intend by a convergent PSO.

First, notice that 1√
N

∑N
n=1 tn →P 0 does not imply limn→+∞ E ‖tn‖ = 0 nor the converse.

Take for instance tn = (−1)n t0 with Et0 6= 0 then 1√
N

∑N
n=1 tn →P 0 whereas E ‖tn‖ = E ‖t0‖.

Conversely take tn = t0/ log (n) limn→+∞ E ‖tn‖ = 0 but 1√
N

∑N
n=1 tn = t0√

N

∑N
n=1 log−1 (n)

cannot converge in probability to 0. Assumption A2 requires that the oscillations of pn and gn

around their expectations are negligible. We tried here to model the stagnation phenomenon
which consists in sequence of iterations during which gn (resp. pn) remain constant hence

gn = Egn for n in
[
N, N

]
supposedly. Notice however that convergence of the expectation

towards p and g is not mentioned at this step.
Note that assumption A3 holds for the classical calibration appearing in Clerc and Kennedy

[2002] (constriction constraints) with c = 1.496172 and ω = 0.72984.
Let δ = (δ1, ..., δd) ∈ R

d, in the Theorem below the notation diag (δ) stands for the diagonal
d × d matrix with entries δ1, ..., δd and δ⊙2 is the vector in R

d defined by δ⊙2 =
(
δ2

1 , ..., δ2
d

)
.

Theorem 2. Assume that, when n goes to infinity Epn → p and Egn → g. Set:

L = 2c

(
1 − ω

1 + ω

)(
1 + ω − c

2

)
− c2

6
, C =

c

12L

1 − ω

1 + ω

(
1 + ω − c

2

)
.
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Denote finally Γ = C · diag (p − g)⊙2 then:

√
N

(
1

N

N∑

n=1

xn − 1

N

N∑

n=1

Epn + Egn

2

)
→֒ N (0, Γ) ,

where N (0, Γ) denotes a Gaussian centered vector of Rd with covariance matrix Γ.

Corollary 3. If the convergence of Epn and Egn is fast enough, that is:

1√
N

N∑

n=1

(|p − Epn| + |g − Egn|) → 0,

then the Theorem above comes down to:

√
N

(
1

N

N∑

n=1

xn − p + g

2

)
→֒ N (0, Γ) .

Remark 4. From the Corollary above we can immediately derive approximated confidence sets
for θ = (p + g) /2. We note however that the vector θ may not be of crucial interest for the
initial optimization problem conversely to g.

3.2 Second case: non-oscillatory (p = g)

In this section we suppose once and for all that xn ∈ R. Starting from Equation (1), the
PSO equation becomes this time:

xn+1 = (1 + ω) xn − ωxn−1 + c (r1,n + r2,n) (gn − xn) .

We change our centering and consider xn − gn ≡ yn instead of xn − Exn:

yn+1 = (1 + ω − c + cεn) yn − ωyn−1,

where εn is still the sum of two independent random variables with U [−1/2; 1/2] distribution.
Under matrix form the system is purely linear but driven by a random matrix:

(
yn+1

yn

)
=

[
1 + ω − c (1 + εn) −ω

1 0

](
yn

yn−1

)
(5)

yn+1=Sn+1yn, yn = SnSn−1...S2y1 = Tny1,

with Tn = SnSn−1...S2. It is plain here that a classical Central Limit Theorem cannot hold
for the sequence (yn)n∈N

. We turn to asymptotic theory for the product of random matrices.
We refer to the historical references: Furstenberg and Kesten [1960] and Berger [1984] who
proved Central Limit Theorems for the regularity index of the product of i.i.d random matrices.
Later Hennion [1997] generalized their results. But the assumptions of (almost surely) positive
entries is common to all these papers. Other authors obtain similar results under different sets
of assumptions (see Le Page, 1982, Benoist and Quint, 2016, and references therein), typically
revolving around characterization of the semi-group spanned by the distribution of S. These
assumptions are uneasy to check here that is why in section 3.2.2 (Weak convergence), we turn
to a direct approach. Let us start with a result on the risk for a single particle.

In this part, we fix once for all λ = 1 + ω − c.
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3.2.1 Risk

Proposition 5. Assume that 0 ∈ Ω and that x0 and x1 are drawn independently from the same
centered distribution with variance σ2 then for all n Eyn = 0. Denote λ = 1 + ω − c, consider
the polynomial:

PM (x) = −x3 +
(
λ2 − ω + c2/6

)
x2 + ω

(
ω − λ2 + c2/6

)
x + ω3,

and assume that:

B1 :
c2

6
< min

(
ω − λ2, 3

|λ|√
ω

(
ω − λ2

)
, 1 + λ2 − ω2 − 2

λ2

1 + ω

)

holds. Then PM has a single real strictly positive root denoted r∗. Besides let z and z be the
two other complex conjugate roots then the following inequality holds:

|z| < r∗ < 1, (6)

and almost surely:
‖cov (yn)‖ ≤ K · (r∗)n ,

where K is some constant which does not depend on n and ‖cov (yn)‖ stands for any classical
matrix norm (Schatten, entry-wise or induced by vectors) of the covariance matrice of yn.

Corollary 6. As a consequence the inequality above provides an upper bound for the mean
square distance between the particle and gn in the non-oscillatory setting:

E |xn − gn|2 ≤ K′ · (r∗)n .

Remark 7. Assumption B1 holds for ω = 0.72984 and c = 1.496172. Then an estimate for r∗

is 0.9442164. When |λ| /
√

ω < 1/3 condition B1 comes down to:

c2

6
< min

(
3

λ√
ω

(
ω − λ2

)
, 1 + λ2 − ω2 − 2

λ2

1 + ω

)
.

3.2.2 Weak convergence

To have the weak convergence, we turn to another approach. Assuming that for all n yn 6= 0,
we have successively:

yn+1

yn
= (1 + ω − c + cεn) − ω

yn−1

yn
,

Xn+1 = 1 + ω − c − ω

Xn
+ cεn.

with Xn = yn/yn−1. Notice that
∑N

n=1 log |Xn| = log |yN | − log |y0|. We focus on the above
homogeneous Markov chain Xn and we aim at proving that a CLT holds for h (Xn) = log |Xn|
namely that for some µ and σ2:

√
N

[
1

N

N∑

n=1

log |Xn| − µ

]
→֒ N

(
0, σ2

)
,

which will yield: √
N

[
1

N
log |yN | − µ

]
→֒ N

(
0, σ2

)
.
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We aim at applying Theorem 1 p.302 in Jones [2004]. We need to check two points: existence
of a small set C and of a function g with a drift condition (see Meyn and Tweedie, 2012).

Let us focus on the Markov chain:

Xn+1 = 1 + ω − c − ω

Xn
+ cεn,

where εn = r1,n + r2,n − 1 has a “witch hat” distribution with support [−1, +1]. Denote π the
stationary distribution of Xn and:

µx = Eπ log |X| ,

σ2
x = Varπ (log |X0|) + 2

+∞∑

k=1

Covπ (log |X0| , log |Xk|) .

Theorem 8. Assume that ω ∈ ]0, 1[, c > 1, Xn is Harris recurrent, for sufficiently large n
gn = pn, and that:

B2 : λ < ω/c < (1 + c)/4

holds. Then:
1√
n

(log |xn − gn| − nµx) →֒ N
(
0, σ2

x

)
.

Remark 9. The mean and variance µx and σ2
x are usually unknown but may be approximated

numerically. We refer to the simulation section for more details.

Corollary 10. If pn = p an asymptotic confidence (non convex) region for p at level 1 − α
denoted Λ1−α below may be derived from the preceding Theorem:

Λ1−α = Λ+
1−α ∪ Λ−

1−α

Λ+
1−α =

[
xn + exp

(
µx +

σx√
n

qα/2

)
, xn + exp

(
µx − σx√

n
q1−α/2

)]

Λ−
1−α =

[
xn − exp

(
µx +

σx√
n

q1−α/2

)
, xn − exp

(
µx − σx√

n
qα/2

)]

3.3 The swarm at a fixed step

In this section we change our viewpoint but we still address only the case xn ∈ R even if our
results may be straigthforwardly generalized to xn ∈ R

d. Instead of considering a single particle
and sampling along its trajectory we will take advantage of the whole swarm but at a fixed and
common iteration step. Our aim here is to localize the minimum of the cost function based
on the whole swarm. We provide below two kinds of results. First, a Central Limit Theorem
suited to the case when the number of particles in the swarm is reasonably large. Second,
when typically only a few particles are generated (say less than 30) we obtain a concentration
inequality available for any swarm size. In the sequel, the iteration step n is assumed to be
fixed and we denote S the swarm size. In order to clarifiy the method, we assume below that
for all particles xi

n in the swarm pi
n = gn. In other words, no local minimum stands in the

domain Ω. This may be possible by a preliminary screening of the search space. So we are

given
(
x1

n, ..., xS
n

)
where S is the sample size.

7



Basically, the framework is the same as in the non oscillatory case studied above for a single
particle. From (5) we get with yi

n = xi
n − gn :

yi
n = Ti

nyi
1,

Ti
n = Πn

j=2Sj, Sj =

[
1 + ω − c

(
1 + εi

j

)
−ω

1 0

]
.

Assume that the domain Ω contains 0 and that for all s
(
xi

0, xi
1

)
i≤S are independent, identically

distributed and centered then from the decomposition above, for all n and s, Eyi
n = 0 and the(

yi
n

)
1≤i≤S are i.i.d too.

Assumptions :
C1 : The operational domain Ω contains 0 (and is ideally a symmetric set).
C2 : The couples

(
xi

0, xi
1

)
i≤S are i.i.d. and centered.

C3 : For all i in {1, ..., S} pi
n = gn.

When S is large the following Proposition may be of interest and is a simple consequence of
the i.i.d. CLT.

Proposition 11. Under assumptions C1−3 a CLT holds when S the number of particles in the
swarm becomes large :

1√
S

S∑

i=1

(
xi

n − gn

)
→֒

S→+∞
N
(
0, σ2

n

)
,

where σ2
n = E

(
x1

n − gn
)2

is estimated consistently by :

σ̂2
n =

1

S

S∑

i=1

(
xi

n − gn

)2
.

Remark 12. The convergence of σ̂2
n to σ2

n is a straigthforward consequence of the weak and
strong laws of large numbers. Denote xS = (1/S)

∑S
i=1 xi

n. The Proposition above paves the
way towards asymptotic confidence sets of the form :

[
xS − σ̂n√

S
q1−α/2, xS +

σ̂n√
S

q1−α/2

]
.

Under the previous set of assumptions we obtain as well exponential concentration inequal-
ities (see Chapter 2 in Massart, 2007) which may be of interest when S is not large. We state
below the Hoeffding version.

Proposition 13. Let D (Ω) be the diameter of Ω, under assumptions C1−3 and for all S :

P

(∣∣∣xS − g
∣∣∣ > τ

)
≤ 2 exp

(
− 2Sτ2

D2 (Ω)

)
.

Remark 14. In the Proposition above D (Ω) may be replaced by a sharper constant. Namely
if for all n and i xi

n ∈ [cn, cn] almost surely then D2 (Ω) may be replaced by (cn − cn)2. Clearly
Proposition 13 does not make sense for small values of S/D2 (Ω) which may occur if the size of
Ω is large with respect to S. Notice however that in the present framework where we consider
convergent PSO we can expect |cn − cn| to tend to zero quickly enough to ensure a satisfactory
bound after several iteration steps, even with few particles in the swarm. As a consequence, a
well-calibrated non asymptotic concentration inequality as the one just above may outperform
the confidence intervals derived from the CLT.
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4 Simulation and numerical results

The Himmelblau’s function is chosen as example for our experiments. It is a 2 dimensional
function with four local optima in [−10, 10]2 defined: f(x, y) =

(
x2 + y − 11

)2
+
(
x + y2 − 7

)2
.

Figure 1 illustrates the contour of this function.
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Figure 1: Contour of the Himmelblau’s function in the space [−6, 6]2.

With the Himmelblau’s function, we can observe the two different behaviors of the particles:
oscillatory and non-oscillatory. The Himmelblau’s function has four local minima in: (3, 2),
(−2.81, 3.13), (−3.77, −3.28), (3.58, −1.84) where f(x, y) = 0. We use a ring topology (for a
quick review of the different topologies of PSO see Lane et al. 2008) for the algorithm in order
to have both oscillating and non-oscillating particles.

4.1 Oscillatory case

We select particles oscillating between (3.58, −1.84) and (3, 2), these values could be both
their personal best position or their neighbourhood best position. In this case, the convergence
of the pn and gn to (3.58, −1.84) or (3, 2) are satisfying the conditions of Corollary 3. We have

to verify the Gaussian asymptotic behaviour of Hs
1(N) =

√
N
(

1
N

∑N
n=1 xs

n − p+g
2

)
for each s

oscillating particle.
We launch PSO with a population of 200 particles and with 2000 iterations, ω = 0.72984

and c = 1.496172. A ring topology was used to ensure the presence of oscillating particles. A
particle is said oscillating if between the 500th and the 2000th iteration, Assumptions A1−3

holds.
A visual tool to verify the normality of Hs

1(N) for a particle is a normal probability plot.
Figures 2 and 3 displays the normal probability plot of Hs

1(N) respectively for the x axis and
y axis. For each axis, the normality is confirmed: Hs

1(N) fits well the theoretical quantiles.
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Figure 2: Normal probability plot of
Hs

1(N) on the first coordinate.
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Figure 3: Normal probability plot of
Hs

1(N) on the second coordinate.

To check the formula of the covariance matrix Γ, the confidence ellipsoid is also a good
indicator to display (see Figure 4). For a single particle, Hs

1(N) is not necessarily always inside
the confidence ellipsoid and does not respect the percentage of the defined confidence level.
Figure 5 shows the trajectory of xs

n and Hs
1(N) on the y axis, Hs

1(N) remains bounded.
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Figure 4: Trajectory of Hs
1(N) for an oscillating particle in [−10, 10]2. The confidence ellipsoid

at a level of 85% is displayed in red. Around 99% of the trajectory of Hs
1(N) is inside the ellipse.
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Figure 5: Top track: Trajectory of a oscillating particle on the y axis. The particle is oscillating
between 2 and -1.84. Bottom track: corresponding trajectory of Hs

1(N) on the y axis, the red
dot are corresponding to the 95% confidence interval. The trajectory of Hs

1(N) is well bounded.

With 200 Monte-Carlo simulations of PSO (200 particles, and 2000 iterations), we select
all the particles oscillating between (3.58, −1.84) and (3, 2), and for each of them we compute
Hs

1(2000). Figure 6 displayed the density of Hs
1(2000) using 1150 oscillating particles. Almost

95% of the particles are inside the confidence ellipsoid of level 95% (represented in red).

−1.0 −0.5 0.0 0.5 1.0
x
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0.00

0.04
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0.20

0.24

0.28

0.32

0.36

Figure 6: Density of H1(2000) with 1150 particles issued from Monte-Carlo simulations. The
red ellipse is the 95% confidence ellipsoid.
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4.2 Non-oscillatory case

We study now the behaviors of non-oscillating particles on the Himmelblau’s function. We
launch PSO with a population of 1000 particles and with 2000 iterations, ω = 0.72984 and
c = 1.496172. A ring topology was used to ensure the presence of enough particle converging
to each local optimum. We select particles converging to (3, 2), meaning that pn = gn for a
sufficiently large n.

4.2.1 Risk

First, Figure 7 illustrates the condition over ω and c of Proposition 5. We notice that every
values of c above 1.6 are rejected.

0.0 0.2 0.4 0.6 0.8 1.0
omega

1.0

1.2

1.4

1.6

1.8

2.0

c

Figure 7: Condition over ω and c of Proposition 5. The acceptance region is displayed in blue.

To verify Proposition 5, we compute the trajectory of E|xn−gn|2 with around 200 converging
particles to (3,2). Figure 8 displays this trajectory which always stays below (r⋆)n where
r⋆ = 0.9442164.

0 100 200 300 400 500

Iteration after a heating phase

10
−30
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−26
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−22
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−18
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−14

10
−10

10
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10
−2

Figure 8: Trajectory of E|xn − gn|2 (with 200 particles) in logarithmic scale after a heating
phase of 50 iterations. The black line is (r⋆)n.
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4.2.2 Weak convergence

For the weak convergence of the particle, we consider:

Hs
2(N) =

1√
N

(log |xs
N − gN | − Nµx) .

First, it is easy to check the linear dependency of log |xs
N − gN | with a single display of the tra-

jectory. Figure 9 illustrates this phenomenon for a single particle. We observed numerical issues
when we reach the machine precision, but a numerical approximation of µx can be performed
thanks to a linear regression.

0 100 200 300 400 500

Iteration

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

Figure 9: |xn − gn| over 500 iterations in a logarithmic scale. After 300 iterations, we reach the
computer precision. One can notice the linear behavior of log (|xn − gn|).

Using many converging particles, a monte carlo approximation of µx is done. For the
approximation of σx, a possibility is:

σ̄2
x = Varπ (log |X0|) + 2

T∑

k=1

Covπ (log |X0| , log |Xk|) ,

where T = 20. With near 240 converging particles to (3, 2), we found that for the first coordi-
nate:

µ̄x = −0.032,

σ̄x = 0.156.

We verify the asymptotic normality of H2(N) with a normal probability plot using the approx-
imation of µx. Figure 10 displays the normal probability plot of H2(N) on the first coordinate,
the theoretical quantiles are well fitted by H2(N).
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Figure 10: Normal probability plot of H2(N) on the first coordinate.

Figure 11 illustrates different trajectories of H2(N) on the first coordinate which are bounded
by the 95% confidence interval deduced from σ̄x.
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iteration
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Figure 11: Trajectories of H2(N) on the first coordinate for five particles. The red dot represents
the 95% confidence interval deduced from σ̄x. Trajectories stop around the 400 iterations (after
an heating phase) due to numerical precision.

4.2.3 Swarm at a fixed step

To check the Proposition 11, we study:

Hn
3 (S) =

1√
Sσ̂n

S∑

i=1

(
xi

n − gn

)
.

In practice, we encountered some difficulties to verify Proposition 11 because of the conver-
gence rate of the particles. Indeed, when ps

n = gs
n, the particle s converges exponentially to gs

n

but the spread of the rate of convergence is large. As a consequence, at a fixed step of PSO,
some particles could be considered as outliers because of a lower rate of convergence. Because of
these particles qualified as belated, the asymptotic Gaussian behaviour of Hn

3 (S) is not verified.
A solution is to filter the particles and remove the belated particles. Figures 12 and 13 illustrate
this phenomenon for the Himmelblau’s function in 2D and with near 1500 converging particles
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to (3, 2) over 500 iterations. In Figure 12, we compute without any filtering Hn
3 (S) and we

notice that the Gaussian behaviour is not verified and some jumps appeared. The presence of
these ”jumps” is due to belated particles which have a lower rate of convergence in comparison
to the swarm. When we remove these particles with a classical outliers detection algorithm in
Figure 13, Proposition 11 seems to be verified.
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Figure 12: Normal probability plot of
Hn=200

3 (S) at the 200th iteration on the
first coordinate, using all the particles. We
observe a discontinuity of the probability
plot due to belated particles.
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Figure 13: Normal probability plot of
Hn=200

3 (N) at the 200th iteration on the
first coordinate, computed without outly-
ing or belated particles.

5 Derivations of the results

5.1 First case: oscillatory

5.1.1 Technical Lemmas

Let us start with some Lemmas who will be invoked later.

Lemma 15. Let ε
(i)
n and η

(j)
n be any coordinate of the random vectors εn and ηn. Clearly,

ε
(i)
n and η

(j)
n are not independent but not correlated and follow the same type of distribution.

Besides:

Eε(i)2
= Eη(j)2

= 1/6, Eε(i)η(j) = 0,

Eε(i)3
η(j) = Eε(i)η(j)3

= 0.

Lemma 16. Let En be a sequence of i.i.d centered random matrices with finite moment of order
4, let un and vn two sequence of random vectors almost surely bounded and such that (un, vn)
is for all n independent from En then for both ‖·‖∞ and ‖·‖F norms:

1

N

N∑

n=1

En ⊙ (un ⊗ vn) →P 0.

The proof of the above Lemma is a straightforward application of Cauchy-Schwartz inequal-
ity.

Lemma 17. When A1−3 hold and when N goes to infinity:

1

N

N∑

n=1

∥∥∥∥
Epn + Egn

2
− Exn

∥∥∥∥
2

→ 0.
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Proof: Denote qn = Exn − (Epn + Egn) /2. From (3) we get in matrix form:

(
qn+1

qn

)
=

[
1 + ω − c −ω

1 0

](
qn

qn−1

)
+

(
Kn

0

)

where:
Kn+1 = (1 + ω)E (pn+gn) − ωE (pn−1+gn−1) − E (pn+1+gn+1) .

The above equation may be rewritten qn+1 = Mqn + Kn+1 with obvious but shorter notations.
Notice that in Kn each E (pk+gk), k ∈ {n − 1, n, n + 1} may be replaced by E (pk+gk)− (p + g).
Consequently, we know that Kn tends to 0. Also notice that ‖M‖∞ < 1 because ω < 1.

Then we derive:

qn=
n∑

p=2

Mn−pKp.

It suffices to notice now that if qn decays to 0, so does ‖qn‖ and Lemma 17 will be derived
by a simple application of Cesaro’s famous Lemma. Let us prove now that qn ↓ 0.

Take ε > 0 denote K∞ = max (‖Kp‖) and CM = [1 − ‖M‖∞]−1 . First pick N∗ such that
supp≥N∗+1 ‖Kp‖ < ε/ (2CM )

‖qn‖ ≤
N∗∑

p=2

‖M‖n−p
∞ ‖Kp‖ +

n∑

p=N∗+1

‖M‖n−p
∞ ‖Kp‖

≤ ‖M‖n−N∗

∞

N∗∑

p=2

‖M‖n−p
∞ ‖Kp‖ + max

p≥N∗+1
‖Kp‖

n∑

p=N∗+1

‖M‖n−p
∞

≤ CM

[
K∞ ‖M‖n−N∗

∞ + sup
p≥N∗+1

‖Kp‖ .

]

Then let N † be such that ‖M‖N†

∞ < ε/ (2CM K∞). It can be seen from the equations above that
for n > N † + N∗, ‖ qn‖ < ε.

5.1.2 Proof of Theorem 2

The following Proposition is crucial:

Proposition 18. Let SN =
∑N

n=1 zn then:

SN =
N∑

n=1

[
ηn

2
⊙ (pn − gn) − εn ⊙ zn

]
+

N∑

n=1

r̃n +
1

c
(z1 − ωz0 + ωzN − zN+1) .

Under assumptions A2

1√
N

N∑

n=1

r̃n →P 0.

Besides when A1 holds (the x′
ns are almost surely bounded) then SN/

√
N converges weakly if

and only if:

1√
N

N∑

n=1

[
ηn

2
⊙ (pn − gn) − εn ⊙ zn

]

converges weakly too.
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Proposition 18 shows that the limiting distribution of SN is completely determined by the
limiting distribution of

∑N
n=1

[ηn

2 ⊙ (pn − gn) − εn ⊙ zn
]
. If a Central Limit Theorem holds

for the previous series, then the limiting distribution will depend on the covariance matrix of
ηn

2 ⊙ (pn − gn) − εn ⊙ zn. The latter will be decomposed in several terms. The next Proposition
focuses on:

ΓN,z =
1

N

N∑

n=1

zn ⊗ zn,

whose convergence is a key step towards Theorem 2.

Proposition 19. Under assumption A3 denote:

H =
c2

24

(
2c

(
1 − ω

1 + ω

)(
1 + ω − c

2

)
− c2

6

)−1

,

then when N tends to +∞
ΓN,z − H

N

N∑

n=1

diag
(
δ⊙2

n

)
→P 0,

with δn = pn − gn.

The proofs of proposition 18 and 19 are postponed to section 5.1.3. We are now ready to
turn to the proof of Theorem 2.

Proof of Theorem 2: Starting from:

1

N

N∑

n=1

xn − 1

N

N∑

n=1

Epn + Egn

2
=

1

N

N∑

n=1

zn +
1

N

N∑

n=1

(
Exn − Epn + Egn

2

)
,

we see from the proof of Lemma 17 that
(
1/

√
N
)∑N

n=1 [Exn − (Epn + Egn) /2] → 0 as N tends

to infinity. Following Proposition 18, the Theorem 2 comes down to proving:

1√
N

N∑

n=1

[
ηn

2
⊙ (pn − gn) − εn ⊙ zn

]
→֒ N (0, Γ) .

We can first remark that un = ηn

2 ⊙ (pn − gn) − εn ⊙ zn is a vector-valued martingale difference
sequence with respect to the filtration Fs

n = Fn. We confine ourselves to proving a Levy-
Lindeberg version of the CLT for the series of un in two steps (Theorem 2.1.9 p. 46 and its
corollary 2.1.10 in Duflo, 1997): first ensuring convergence of the conditional covariance struc-

ture of
(
1/

√
N
)∑N

n=1 un, then checking the Lyapunov condition holds (hence the Lindeberg’s

uniform integrability that ensures uniform tightness of the sequence).

First step: The conditional covariance sequence of un is the sequence of matrices defined by
1
N

∑N
n=1 E (un ⊗ un|Fn). We show in this first step that this sequence converges in probability
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to Γ. We start with elementary calculations:

1

N

N∑

n=1

E (un ⊗ un|Fn) =
1

N

N∑

n=1

E

(
ηn

2
⊙ (pn − gn) ⊗ ηn

2
⊙ (pn − gn) |Fn

)

+
1

N

N∑

n=1

E ((εn ⊙ zn) ⊗ (εn ⊙ zn) |Fn)

− 1

2N

N∑

n=1

E ([ηn ⊙ (pn − gn)] ⊗ [εn ⊙ zn] |Fn)

− 1

2N

N∑

n=1

E ([εn ⊙ zn] ⊗ [ηn ⊙ (pn − gn)] |Fn)

=
Eε2

1

N
I ⊙

{
N∑

n=1

1

4
[(pn − gn) ⊗ (pn − gn)] + zn ⊗ zn

}

=
1

6
I ⊙

[
1

4
ΓN,p,g + ΓN,z

]
,

where we used Lemma 15 and denoted ΓN,p,g = 1
N

∑N
n=1 [(pn − gn) ⊗ (pn − gn)] .

By Proposition 19, ΓN,z − H
N ΓN,p,g tends in probability to zero. Hence whenever the limit

in the r.h.s below exists:

lim
N→+∞

1

N

N∑

n=1

E (un ⊗ un|Fn) =

(
1

24
+

H

6

)
lim

N→+∞
I ⊙ ΓN,p,g.

Under assumption A1−2 limN→+∞ ΓN,p,g − ΓN,p,g = 0 in matrix norm, where

ΓN,p,g =
1

N

N∑

n=1

E [(pn − gn) ⊗ E (pn − gn)] .

To prove this it suffices to write:

ΓN,p,g − ΓN,p,g =
1

N

N∑

n=1

(νn − ξn) ⊗ (pn − gn) +
1

N

N∑

n=1

E (pn − gn) ⊗ (νn − ξn) ,

and apply the bounds derived from the proof of Proposition 19, for instance:

1

N

∥∥∥∥∥

N∑

n=1

(νn − ξn) ⊗ (pn − gn)

∥∥∥∥∥
∞

≤ 1

N

N∑

n=1

‖(νn − ξn) ⊗ (pn − gn)‖∞

≤ 1

N

N∑

n=1

‖νn − ξn‖ ‖pn − gn‖

≤ sup
n

‖pn − gn‖ 1

N

N∑

n=1

(‖νn‖ + ‖ξn‖) →P 0.

Finally, the convergence of ΓN,p,g to Γ is a consequence of the adaptation of Cesaro’s Lemma
for tensor products.
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Second step: A Lyapunov condition holds almost trivially here. Namely we are going to
prove that:

1

N2

N∑

n=1

E ‖un‖4 →N→+∞ 0.

Simple calculations provide:

‖un‖2 ≤ 2

∥∥∥∥
ηn

2
⊙ (pn − gn)

∥∥∥∥
2

+ 2 ‖εn ⊙ zn‖2

≤ 1

2
sup
n,i

{(pn,i − gn,i)
2} ‖ηn‖2 + 2 sup

n,i
{z2

n,i} ‖εn‖2

≤ 2 |Ω|2∞
[
‖ηn‖2 + ‖εn‖2

]
,

with |Ω|∞ = sups∈Ω |s| hence
E ‖un‖4 ≤ C |Ω|4∞ ,

for some constant C then
(
1/N2

)∑
n≤N E ‖un‖4 tends to zero when N tends to infinity. This

completes the proof of Theorem 2.

5.1.3 Derivations of auxiliary results

Proof of Proposition 18: The first equation is obtained by summing from n = 1
to N both sides of Equation (4). Then we are going to prove that 1√

N

∑N
n=1 r̃n →P 0 by

Markov inequality which will be enough to get the rest of the Proposition. We start from

r̃n = εn

(
Epn+Egn

2 − Exn

)
+ 1+εn

2 (pn − Epn + gn − Egn). By the first part of assumption A2

1√
N

N∑

n=1

(pn − Epn) →P 0
1√
N

N∑

n=1

(gn − Egn) →P 0.

We turn to:

E

∥∥∥∥∥

N∑

n=1

εn

(
Epn + Egn

2
− Exn

)∥∥∥∥∥

2

= Eε2
1

N∑

n=1

∥∥∥∥
Epn + Egn

2
− Exn

∥∥∥∥
2

because εn is an i.i.d. centered sequence. The proposition now follows from Lemma 17. This
completes the proof of the Proposition.

Proof of the Proposition 19: We take advantage of Equation (4) and note that

(εn ⊙ zn) ⊗ (εn ⊙ zn) = (εn ⊗ εn) ⊙ (zn ⊗ zn)

=
[
(εn ⊗ εn) − σ2

εI
]

⊙ (zn ⊗ zn) + σ2
εI ⊙ (zn ⊗ zn) ,

where σ2
ε = 1/6 by Lemma 15 and I stands for identity matrix. After some tedious calculations

we obtain:

zn+1 ⊗ zn+1 = (1 + ω − c)2 (zn ⊗ zn) + ω2zn−1 ⊗ zn−1 (7)

+ c2σ2
ε [I ⊙ (zn ⊗ zn)] +

c2

4
[ηn ⊙ (pn − gn)] ⊗ [ηn ⊙ (pn − gn)]

− ω (1 + ω − c) [zn ⊗ zn−1 + zn−1 ⊗ zn] + Cn.
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For the sake of completeness, we list now all the eleven terms contained in Cn. In order to
simplify notations let [[u : v]] = u ⊗ v + v ⊗ u. Notice for further use:

‖[[u : v]]‖∞ ≤ 2 ‖u‖ ‖v‖ .

Then:

Cn = c (1 + ω − c)

{
[[zn : r̃n]] − [[zn : εn ⊙ zn]] +

1

2
[[zn : ηn ⊙ (pn − gn)]]

}
(8)

+ ωc

{
[[zn−1 : εn ⊙ zn]] − [[zn−1 : r̃n]] − 1

2
[[zn−1 : ηn ⊙ (pn − gn)]]

}

− c2
{

[[cεn ⊙ zn : r̃n]] +
1

2
[[εn ⊙ zn : ηn ⊙ (pn − gn)]] − 1

2
[[r̃n : ηn ⊙ (pn − gn)]]

}

+ c2r̃n ⊗ r̃n + c2
[
(εn ⊗ εn) − σ2

εI
]

⊙ (zn ⊗ zn) .

From 7 we sum over all indices n in {1, ..., N} we get:

(
1 − (1 + ω − c)2 − ω2

) N∑

n=1

zn ⊗ zn = c2σ2
ε

N∑

n=1

[I ⊙ (zn ⊗ zn)]

+
c2

4

N∑

n=1

[ηn ⊙ (pn − gn)] ⊗ [ηn ⊙ (pn − gn)]

− ω (1 + ω − c)
N∑

n=1

[zn ⊗ zn−1 + zn−1 ⊗ zn]

+
N∑

n=1

Cn + z1 ⊗ z1 − zN+1 ⊗ zN+1

+ ω2 (z0 ⊗ z0 − zN ⊗ zN ) .

Now we need to go slightly further in the computations and to find a recurrent equation for
zn ⊗ zn−1. Let us start again from (4):

zn+1 ⊗ zn = (1 + ω − c) zn ⊗ zn − ωzn−1 ⊗ zn − c (εn ⊙ zn) ⊗ zn + cr̃n ⊗ zn

+
c

2
[ηn ⊙ (pn − gn)] ⊗ zn,

zn ⊗ zn+1 = (1 + ω − c) zn ⊗ zn − ωzn ⊗ zn−1 − czn ⊗ (εn ⊙ zn) + czn ⊗ r̃n

+
c

2
zn ⊗ [ηn ⊙ (pn − gn)] .

Summing over all indices n in {1, ..., N} above we come to

(1 + ω)
N∑

n=1

[zn ⊗ zn−1 + zn−1 ⊗ zn]

= z1 ⊗ z0 + z0 ⊗ z1 − zN ⊗ zN+1 − zN+1 ⊗ zN + 2 (1 + ω − c)
N∑

n=1

[zn ⊗ zn]

+ c
N∑

n=1

{
[[r̃n : zn]] − [[(εn ⊙ zn) : zn]] +

1

2
[[ηn ⊙ (pn − gn) : zn]]

}
.
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Plugging the last equation in line (7) we get finally:

(
1 − (1 + ω − c)2 − ω2

) N∑

n=1

zn ⊗ zn

= c2σ2
ε

N∑

n=1

[I ⊙ (zn ⊗ zn)] +
c2

4

N∑

n=1

[ηn ⊙ (pn − gn)] ⊗ [ηn ⊙ (pn − gn)]

− 2ω
(1 + ω − c)2

1 + ω

N∑

n=1

[zn ⊗ zn] + ωc
(1 + ω − c)

1 + ω

N∑

n=1

[[(εn ⊙ zn) : zn]]

− ωc
(1 + ω − c)

1 + ω

N∑

n=1

[[r̃n : zn]] − ωc
(1 + ω − c)

(1 + ω)

N∑

n=1

1

2
[[ηn ⊙ (pn − gn) : zn]] +

N∑

n=1

Cn.

Denoting κ =
(
1 − (1 + ω − c)2 − ω2 + 2ω (1+ω−c)2

1+ω

)
= 2c

(
1−ω
1+ω

) (
1 + ω − c

2

)
:

κ
N∑

n=1

zn ⊗ zn =
c2

6

N∑

n=1

[I ⊙ (zn ⊗ zn)] +
c2

4

N∑

n=1

[ηn ⊙ (pn − gn)] ⊗ [ηn ⊙ (pn − gn)] + RN ,

with

RN = −ω
(1 + ω − c)

1 + ω
([[z1 : z0]] − [[zN : zN+1]]) + z1 ⊗ z1 − zN+1 ⊗ zN+1 (9)

+ ω2 (z0 ⊗ z0 − zN ⊗ zN ) +
N∑

n=1

Cn

+ ωc
(1 + ω − c)

1 + ω

N∑

n=1

{
[[(εn ⊙ zn) : zn]] − [[r̃n : zn]] − 1

2
[[ηn ⊙ (pn − gn) : zn]]

}
.

It is proved in Lemma 20 that RN /N →P 0. First, let us unravel the matrix:

TN =
κ

N

N∑

n=1

zn ⊗ zn − c2

6

1

N

N∑

n=1

[I ⊙ (zn ⊗ zn)] .

Denote [TN ]ij the (i, j) cell of matrix Tn. It is simple to see that:

[TN ]ii =

(
κ − c2

6

)[
1

N

N∑

n=1

(zn ⊗ zn)

]

ii

, [TN ]ij = κ

[
1

N

N∑

n=1

zn ⊗ zn

]

i,j

(10)

for i 6= j. Now denote:

ΛN =
1

N

N∑

n=1

[ηn ⊙ (pn − gn)] ⊗ [ηn ⊙ (pn − gn)]

=
1

N

N∑

n=1

(ηn ⊗ ηn) ⊙ [(pn − gn) ⊗ (pn − gn)] .

Taking conditional expectation w.r.t Fn we get -all non diagonal term vanish:

E (ΛN |Fn) =
1

N

N∑

n=1

[E (ηn ⊗ ηn)] ⊙ [(pn − gn) ⊗ (pn − gn)]

=
Eη2

1

N

N∑

n=1

I ⊙ [(pn − gn) ⊗ (pn − gn)] ,
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with I the identity matrix. Noting that the difference:

ΛN − E (ΛN |Fn) =
1

N

N∑

n=1

[
(ηn ⊗ ηn) −

(
Eη2

1

)
I
]

⊙ [(pn − gn) ⊗ (pn − gn)]

vanishes when N tends to infinity by applying Lemma 16 we get with Landau notation in
probability:

TN =
c2

24N

N∑

n=1

I ⊙ [(pn − gn) ⊗ (pn − gn)] + oP

(
1

N

)
.

From (10) we obtain simultaneously that [TN ]ij →P 0 for i 6= j and

[TN ]ii − c2

24
(

κ − c2

6

) 1

N

N∑

n=1

I ⊙ [(pn − gn) ⊗ (pn − gn)] →P 0

which is precisely the statement of Proposition 19.

Lemma 20. RN/N →P 0 in matrix norm.

Proof: Let us start from (9). First by assumption A1:

1

N
([[z1 : z0]] − [[zN : zN+1]]) + z1 ⊗ z1 − zN+1 ⊗ zN+1 + ω2 (z0 ⊗ z0 − zN ⊗ zN ) →P 0.

It must be also noticed that:

ωc
(1 + ω − c)

1 + ω

N∑

n=1

{
[[(εn ⊙ zn) : zn]] − [[r̃n : zn]] − 1

2
[[ηn ⊙ (pn − gn) : zn]]

}

involves three terms between double brackets that already appear in Cn, up to constants. Proving
that each term of (1/N)

∑N
n=1 Cn tends in probability to 0 will be sufficient to complete the proof

of the Lemma.
Our aim is to perform successive applications of Lemma 16. For the sake of completeness

we remind now the eleven terms contained in Cn and mentioned earlier.

Cn = c (1 + ω − c)

{
[[zn : r̃n]] − [[zn : εn ⊙ zn]] +

1

2
[[zn : ηn ⊙ (pn − gn)]]

}

+ ωc

{
[[zn−1 : εn ⊙ zn]] − [[zn−1 : r̃n]] − 1

2
[[zn−1 : ηn ⊙ (pn − gn)]]

}

− c2
{

[[cεn ⊙ zn : r̃n]] +
1

2
[[εn ⊙ zn : ηn ⊙ (pn − gn)]] − 1

2
[[r̃n : ηn ⊙ (pn − gn)]]

}

+ c2r̃n ⊗ r̃n + c2
[
(εn ⊗ εn) − σ2

εI
]

⊙ (zn ⊗ zn) .

In the list above terms numbered 2, 3, 4, 6, 11 vanish by applying successively (2) and
Lemma 16. Take for instance term 1, get rid of the constants and focus on the first tensor
product in the double bracket namely:

zn ⊗ (εn ⊙ zn) = (e ⊙ zn) ⊗ (εn ⊙ zn) = (e ⊗ εn) ⊙ (zn ⊗ zn) .

Recall that e is the vector with all components valued at 1. Then we can apply Lemma 16 which
shows that (1/N)

∑N
n=1 (e ⊗ εn) ⊙ (zn ⊗ zn) vanishes in probability. It is not hard to see that

terms 3, 4, 6 and 11 may be treated the same way.
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Term number 8 namely depends on both εn and ηn. An application of (2) leads to consid-
ering, up to a constant and commutation to:

(ηn ⊗ εn) ⊙ (zn ⊗ (pn − gn)) .

The reader can check that the matrix En = (ηn ⊗ εn) is stochastically independent from zn ⊗
(pn − gn), that the sequence of matrices En are independent and centered. Lemma 16 applies
here.

The terms numbered 1, 5, 7, 9, 10 depend on r̃n. Now consider

r̃n = εn ⊙
(
Epn + Egn

2
− Exn

)
+

e + εn

2
⊙ (ξn + νn) = rn1 + rn2,

and the five terms containing them in Cn. We split r̃n and deal separately with rn1 and rn2 to
derive the needed bounds in probability.

First, let us focus on rn1 = εn ⊙
(
Epn+Egn

2 − Exn

)
only. Once again Lemma 16 may be

invoked for the specific halves of terms 1, 5 and 9 by using the same methods as above. The
half part of terms 7 and 10 of (8) containing εn may be bounded the following way (denote
βn = Epn+Egn

2 − Exn):

‖[[εn ⊙ zn : εn ⊙ βn]]‖∞ ≤ 2 ‖zn‖ ‖βn‖ ,

‖(εn ⊙ βn) ⊗ (εn ⊙ βn)‖∞ ≤ 2 ‖βn‖2 .

Lemma 17 ensures that both right hand side above tend to zero (since supn ‖zn‖ is almost surely
bounded) and Cesaro’s Lemma terminates this part.

We should now inspect the terms numbered 1, 5, 7, 9, 10 in (8) with respect to
rn2 = e+εn

2 ⊙ (ξn + νn). Terms 7 and 9 may be controlled by Lemma 17 and Lemma 16
respectively. Let us deal with term 1:

∥∥∥∥∥

N∑

n=1

[[zn : rn2]]

∥∥∥∥∥
∞

≤ 2
N∑

n=1

‖zn‖ ‖rn2‖

≤ 2

(
sup

n
‖zn‖

) N∑

n=1

‖rn2‖

≤ 2 sup
n

‖zn‖
N∑

n=1

[‖νn‖ + ‖ξn‖] .

Take for instance
∑N

n=1 ‖νn‖. Applying Markov inequality:

P

(
1

N

N∑

n=1

‖νn‖ > ε

)
≤ 1

N

N∑

n=1

E ‖νn‖ ,

then Assumption A2 together with Cesaro’s Lemma again ensure that 1
N

∑N
n=1 ‖νn‖ →P 0 as

well as 1
N

∑N
n=1 ‖ξn‖ hence 1

N

∥∥∥
∑N

n=1 [[zn : rn2]]
∥∥∥

∞
. Term 5 vanishes in probability with the

same technique at hand. Now term 10 gives:

∥∥∥∥∥
1

N

N∑

n=1

r2n ⊗ r2n

∥∥∥∥∥
∞

≤ 1

N

N∑

n=1

‖r2n ⊗ r2n‖∞ =
1

N

N∑

n=1

‖r2n‖2
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which also tends to zero in probability under A1−2. By the way we mention that the cross-
product [[r1n : r2n]] in term 10 vanishes due to Lemma 17. Our task is almost done. Let us deal
now with the remaining terms of RN . Both:

1

N

N∑

n=1

[(εn ⊙ zn) ⊗ zn + zn ⊗ (εn ⊙ zn)] ,

1

N

N∑

n=1

[ηn ⊙ (pn − gn)] ⊗ zn + zn ⊗ [ηn ⊙ (pn − gn)]

tends to 0 in probability by Lemma 16 and 2. At last, the remaining [[r̃n : zn]] is basically the
same as term 1 in (8) and may be addressed the same way. This terminates the proof of the
Lemma.

5.2 Second case: non-oscillatory

5.3 Risk

Proof of the Proposition 5:
The first fact Eyn = 0 is plain since the random vector (x0, x1) is independent from all the

εn’s. Basic computations give:

cov (yn) = σ2
E [SnSn−1...S2S∗

2...S∗
n]

= σ2
E {Sn...E [S3E (S2S∗

2) S3] ...S∗
n}

Denote

cov (yn) =

[
An Bn

Bn Dn

]

then

cov (yn+1) = E
[
Sn+1cov (yn) S∗

n+1

]
=

[
An+1 Bn+1

Bn+1 Dn+1

]
.

From which we immediately get the following linear recurrent equations (denote γ =

√(
λ2 + c2

6

)
):





An+1 = γ2An − 2λωBn + ω2Dn

Bn+1 = λAn − ωBn

Dn+1 = An

who are driven by the matrix:

M =




γ2 −2λω ω2

λ −ω 0
1 0 0


 .

We show below that the largest eigenvalue of M in modulus is bounded by r∗ which will yield
max {|An| , |Bn| , |Dn|} ≤ c · (r∗)n hence the desired result. It takes two steps. First, we provide
a sufficient condition for PM the characteristic polynomial of M to have a single real eigenvalue.
Second we ensure that this real eigenvalue is the largest of three and strictly below 1.

Simple calculations give:

PM (x) = det (M − xI) = −x3 +
(
λ2 − ω + c2/6

)
x2 + ω

(
ω − λ2 + c2/6

)
x + ω3.
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Denote β = ω − λ2. When B1 within the Proposition holds, β > c2/6 and the discriminant
of PM is:

∆PM
= ∆1 + ∆2 + ∆3 + ∆4 + ∆5,

∆1 = ω2
(
β + c2/6

)2 (
−β + c2/6

)2
, ∆2 = −18ω4

(
β + c2/6

) (
−β + c2/6

)
,

∆3 = −27ω6, ∆4 = 4ω3
(
β + c2/6

)3
, ∆5 = −4ω3

(
−β + c2/6

)3
.

Clearly ∆1, ∆2, ∆4 and ∆5 are positive whereas ∆3 is negative. A sufficient condition for a
single real root for PM is that ∆PM

< 0 hence

∆1 + ∆2 + ∆4 + ∆5 < −∆3 (11)

From

∆1 = ω2
(
β2 − c4/36

)2
, ∆2 = 18ω4

(
β2 − c4/36

)

∆4 + ∆5 = 4ω3
[(

β + c2/6
)3

+
(
β − c2/6

)3
]

= 8β3ω3

[
1 +

c4

12β2

]
,

we compute:

∆1 + ∆2 + ∆4 + ∆5 = ω2β4

(
1 − c4

36β2

)2

+ 18ω4β2

(
1 − c4

36β2

)
+ 8β3ω3

(
1 +

c4

12β2

)
.

Hence

∆1 + ∆2 + ∆4 + ∆5

ω6
=

(
β

ω

)4
(

1 − c4

36β2

)2

+ 18

(
β

ω

)2
(

1 − c4

36β2

)

+ 8

(
β

ω

)3
(

1 +
c4

12β2

)
,

with β/ω = 1− λ2/ω. We just need a condition under which the right hand side in the equation
above is upper-bounded by 27.

Denote u = λ2/ω and h = c4/
(
36β2

)
then under B1 both h < 1 and u < 1 and:

∆1 + ∆2 + ∆4 + ∆5

ω6
≤ (1 − u) (27 + Λ) ,

Λ = 4h − 9u − 22uh + h2.

If Λ < 0 then we are done. Suppose not, then:

∆1 + ∆2 + ∆4 + ∆5

ω6
≤ 27 − 27u + Λ

−27u + Λ = −36u + 4h − 22uh + h2

is negative whenever
h2 + 4h < 36u + 22uh.

At this point, we could propose maybe optimal but intricate solutions by considering in the
previous equations an order 2 polynomial in h. We prefer to go through a simpler though

25



weaker way. Assume that 4h < 36u then it is easy to see that h2 < 22uh and the condition
rewrites:

c4

36β2
< 9

λ2

ω
⇐⇒ c2

6
< 3

|λ|√
ω

β

Now we know that PM has a single real root say r∗. We have to ensure that the three roots
of PM have moduli in accordance with (6). Remind that z and z are the two complex conjugate
roots. We know that r∗ |z|2 = ω3 hence that r∗ > 0. Consequently we just have to check the two
following facts in order to complete the proof of the Proposition. First that r∗ < 1. It suffices to
check that PM (1) < 0. Second that |z| < r∗. It is not hard to see that we may confine ourselves
to proving that PM (ω) = c2/3. This means that ω < r∗ and from r∗ |z|2 = ω3, |z| < ω < r∗.
Then we turn to:

PM (1) = −1 +
(
λ2 − ω + c2/6

)
+ ω

(
ω − λ2 + c2/6

)
+ ω3

= −1 + λ2 − ω + c2/6 + ω2 − ωλ2 + ωc2/6 + ω3.

The latter will be negative when:

c2

6
(1 + ω) < 1 − λ2 + ω − ω2 + ωλ2 − ω3

= (1 + ω)
(
1 + λ2

)
− (1 + ω) ω2 − 2λ2

which gives finally in accordance with B1:

c2

6
< 1 + λ2 − ω2 − 2

λ2

1 + ω
.

This terminates the proof of the Proposition 5.

5.4 Weak Convergence

Denote P (t, x) the transition kernel of Xn. It is plain that P (t, x) coincides with the density
of the uniform distribution on the set Ex =

[
1 + ω − 2c − ω

x , 1 + ω − ω
x

]
. The Theorem 8 is a

consequence of the two Lemmas below coupled with the above-mentioned Theorem 1 p.302 in
Jones [2004].

Lemma 21. Take Mτ = ω/ (c − τ) with any 0 < τ < c then the set C = (−∞, −Mτ ]∪[Mτ , +∞)
is a small set for the transition kernel of Xn.

Proof:
We have to show that for all x ∈ C and Borel set A in R:

P (A, x) ≥ εQ (A) ,

where ε > 0 and Q is a probability distribution. The main problem here comes from the
compact support of P (t, x). Take x such that |x| ≥ M then:

1 + ω − c − ω

M
+ cεn ≤ 1 + ω − c − ω

x
+ cεn ≤ 1 + ω − c +

ω

M
+ cεn,

where εn has compact support [−1, +1]. It is simple to see that with M = Mτ = ω/ (c − τ) the
above bound becomes:

1 + ω − 2c + τ + cεn ≤ 1 + ω − c − ω

x
+ cεn ≤ 1 + ω + τ + cεn.
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The intersection of the supports of 1 + ω − 2c + τ + cεn and 1 + ω − 2c + τ + cεn is the
set [1 + ω − c − τ, 1 + ω − c + τ ] whatever the value of x in C. The probability measure Q
mentioned above may be chosen with support [1 + ω − c − τ, 1 + ω − c + τ ].

Now we turn to the drift condition. Our task consists in constructing a function
g : R → [1, +∞[ such that for all x:

∫

R

g (t) P (t, x) dt ≤ ρ1g (x) + ρ21x∈C , (12)

where 0 < ρ1 < 1 and ρ2 ≥ 0. Besides, in order to get a CLT on log |Xn| we must further ensure
that for all x:

[log |x|]2 ≤ g (x) . (13)

Note however that, if (12) holds for g but (13) fails, then both conditions will hold for updated
function g∗ = ηg with constant η > 1 and ρ′

2 = ηρ2 such that (13) holds.

Lemma 22. Take for g the even function defined by g (x) = C1/
√

|x| for |x| ≤ Mτ and
g (x) = C2 (log |x|)2 for |x| > Mτ . Assume that:

B2 : λ < ω/c < (1 + c) /4.

Then it is always possible to choose three constants τ, C1 and C2 such that (12) holds for a
specific choice of ρ1 and ρ2.

Proof:
The proof of the Lemma just consists in an explicit construction of the above-mentioned τ ,

C1, and C2. This construction is detailed for the sake of completeness.
At this point and in order to simplify the computations below we will assume

that the distribution of εn is uniform on [−1, +1] instead of the convolution of two
U[−1/2,1/2] distributions.

Set λ = 1+ω − c, assume that λ > 0 (the case λ < 0 follows the same lines) and notice that:

∫

R

g (t) P (t, x) dt =
1

2c

∫ λ−(ω/x)+c

λ−(ω/x)−c
g (s) ds =

1

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
g (s) ds,

the last inequality stemming from parity of g. We should consider two cases x > 0 and x ≤ 0.
The proof takes 2 parts (x > 0 and x < 0 respectively). Both are given again for complete-

ness and because the problem is not symmetric. Each part is split in three steps: the two first
steps deal with x /∈ C, the third with x ∈ C = (−∞, −Mτ ] ∪ [Mτ , +∞).

Part 1: x > 0
First step: We split [0, Mτ ] in two subsets, [0, Mτ ] = [0, Aτ ] ∪ [Aτ , Mτ ] with

Aτ = ω/ (Mτ + 1 + ω)

is chosen such that 0 ≤ x ≤ Aτ implies the following inequality on the lower bound of the
integral: (ω/x) − λ − c > Mτ . Clearly Aτ ≤ Mτ because λ > 0 > −τ − Mτ . Then:

1

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
g (s) ds =

C2

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
log2 |s| ds ≤ C2 log2 |(ω/x) − λ + c| .

Let:
sup

0≤x≤ω/(c+Mτ )

√
|x| (log |(ω/x) − λ + c|)2 = K1 (ω, c, τ) < +∞.
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The strictly positive K1 (ω, c, τ) exists because
√

x log2 |(ω/x) − λ + c| is bounded on [0, Aτ ].
The first condition reads:

1

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
g (s) ds ≤ ρ1C1/

√
|x|, 0 ≤ x ≤ Aτ

whenever
C2K1 (ω, c, τ) ≤ ρ1C1 (14)

and ρ1 will be fixed after the second step.

Second step: Now we turn to Aτ ≤ x ≤ Mτ . We still have g (x) = C1/
√

|x| but we need to
focus on the bounds of the integral.

This time the lower bound of the integral (ω/x)−λ−c ∈ [−λ − τ, Mτ ] and the upper bound
(ω/x) − λ + c ∈ [2c − λ − τ, 2c + Mτ ]. We are going to require that (ω/x) − λ − c ≥ −Mτ

it suffices to take λ + τ ≤ Mτ and this comes down to the following set of constraint on τ :
{τ ≥ c − ω} ∪ {τ ≤ c − 1} . We keep the second and assume once and for all that:

τ ≤ c − 1. (15)

Then for x ∈ [Aτ , Mτ ],

1

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
g (s) ds =

1

2c

∫ Mτ

(ω/x)−λ−c
g (s) ds +

1

2c

∫ (ω/x)−λ+c

Mτ

g (s) ds (16)

≡ I1 + I2.

We want to make sure that the upper bound (ω/x) − λ + c is larger than Mτ . This will hold
if (ω/Mτ ) − λ + c ≥ Mτ hence if 2c − τ − λ ≥ Mτ . We imposed previously that λ + τ ≤ Mτ . So:

τ < c − ω

c
⇒ Mτ < c ⇒ 2c − τ − λ ≥ Mτ

but the constraint τ < c − ω/c is weaker than (15) consequently (16) holds.
Focus on the first term I1 in (16) and consider:

I1 =
1

2c

∫ Mτ

(ω/x)−λ−c
g (s) ds =

1

2c

∫ Mτ

(ω/x)−λ−c

C1√
|s|ds.

Consider the (only) two situations on the sign of (ω/x) − λ − c = (ω/x) − (1 + ω).
If x < ω/ (1 + ω) then (ω/x) − (1 + ω) > 0 and I1 ≤ C1

c

√
Mτ Notice by the way and for further

purpose that:

sup
x∈[Aτ ,ω/(1+ω)]

√
|x|I1 ≤ C1

c

√
ω

1 + ω
Mτ .

If x ≥ ω/ (1 + ω) then (ω/x) − (1 + ω) ≤ 0 and:

I1 =
1

2c

∫ Mτ

(ω/x)−λ−c
g (s) ds =

1

2c

∫ 0

(ω/x)−(1+ω)

C1√
|s|ds +

1

2c

∫ Mτ

0

C1√
|s|ds

=
C1

c

[√
|(ω/x) − (1 + ω)| +

√
Mτ

]
.

Again: √
|x|I1 ≤ C1

c

[√
|x (1 + ω) − ω| +

√
xMτ

]
.
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From the bounds above we see that:

sup
x∈[Aτ ,Mτ ]

√
|x|I1 ≤ C1

c

[√
|Mτ (1 + ω) − ω| + Mτ

]
.

The reader will soon understand why we need to make sure that the right had side in equation
above is strictly under C1. It is not hard to see that the function τ 7−→

√
|Mτ (1 + ω) − ω|+Mτ

is increasing and continuous on [0, c − 1]. If we prove that for some δ ∈ ]0, 1[:

1

c

[√
|M0 (1 + ω) − ω| + M0

]
= 1 − 3δ < 1,

then the existence of some τ+ > 0 such that:

1

c

[√
|Mτ+ (1 + ω) − ω| + Mτ+

]
= 1 − 2δ < 1 (17)

will be granted. But 1
c

[√
|M0 (1 + ω) − ω| + M0

]
= 1

c

[√
ω
c λ + ω

c

]
.

If we assume that λ < ω/c < (1 + c) /4 (assumption B2) then since c > 1:

1

c

[√
ω

c
λ +

ω

c

]
<

1

2

(
1 +

1

c

)
< 1.

We turn to I2 in (16):

I2 =
1

2c

∫ (ω/x)−λ+c

Mτ

g (s) ds =
C2

2c

∫ (ω/x)−λ+c

Mτ

(log s)2 ds ≤ C2√
|x|K2

(
ω, c, τ+

)
,

where:

K2

(
ω, c, τ+

)
= sup

x∈[Aτ ,Mτ ]

√
|x|

2c

∫ (ω/x)−λ+c

Mτ

(log s)2 ds.

Set finally ρ+
1 = 1 − δ < 1.

From (16) we get:

1

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
g (s) ds ≤ C1√

|x| . (1 − 2δ) +
C2√
|x|K2

(
ω, c, τ+

)

≤ ρ+
1

C1√
|x| ,

whenever holds the new condition:

C2K2 (ω, c, τ) ≤ C1δ. (18)

Finally comparing (14) and (18), we see that both conditions cannot be incompatible. Accurate

choices of the couple
(
C+

1 , C+
2

)
are given by the summary bound:

C+
2 ≤ C+

1 min

(
δ

K2
,

1 − δ

K1

)
. (19)

It is now basic to see that the quadruple
(
C+

1 , C+
2 , τ+, ρ+

1

)
yields the drift condition (12) for

x /∈ C.
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Third step: The remaining step is to check the inequality for some ρ2:
∫

R

g (t) P (t, x) dt ≤ ρ+
1 g (x) + ρ2,

for any x in C -that is any |x| > Mτ (rather x > Mτ here as explained above since x > 0). We
see that:

0 ≤ ω

x
≤ ω

Mτ
,

and:
1

2c

∫ (ω/x)−λ+c

(ω/x)−λ−c
g (s) ds ≤ 1

2c

∫ 2c−τ−λ

−λ−c
g (s) ds ≤ 1

2c

∫ 3c−(1+ω)

−(1+ω)
g (s) ds.

The values of the constants C1 and C2 were fixed above. Then denote:

ρ+
2 =

1

2c

∫ 3c−(1+ω)

−(1+ω)
g (s) ds > 0,

then clearly for any x in C: ∫

R

g (t) P (t, x) dt ≤ ρ+
2 ,

so that (12) holds.

Part 2 (x ≤ 0)
We go on with x < 0 and λ > 0, set y = −x ≥ 0,

∫

R

g (t) P (t, x) dt =
1

2c

∫ λ−(ω/x)+c

λ−(ω/x)−c
g (s) ds =

1

2c

∫ (ω/y)+λ+c

(ω/y)+λ−c
g (s) ds.

Since g is even and in view of the proposed C we just have to prove exactly the following drift
condition with x > 0:

1

2c

∫ (ω/x)+λ+c

(ω/x)+λ−c
g (s) ds ≤ ρ1g (x) + ρ21x∈C .

First step: Take x /∈ C. We split [0, Mτ ] in two subsets, [0, Mτ ] = [0, Bτ ] ∪ [Bτ , Mτ ] with

Bτ = ω/ (Mτ − λ + c) is chosen such that 0 ≤ x ≤ Bτ implies the following inequality on the
lower bound of the integral: (ω/x) + λ − c > Mτ . Clearly Bτ ≤ Mτ for all τ . Then:

1

2c

∫ (ω/x)+λ+c

(ω/x)+λ−c
g (s) ds =

C2

2c

∫ (ω/x)+λ+c

(ω/x)+λ−c
log2 |s| ds ≤ C2 log2 |(ω/x) + λ + c| .

Let:
sup

0≤x≤Bτ

√
|x| log2 |(ω/x) + λ + c| = K1 (ω, c, τ) < +∞.

The strictly positive K1 (ω, c, τ) exists because
√

|x| log2 |(ω/x) + λ + c| is bounded on [0, Bτ ].
The initial condition reads:

1

2c

∫ (ω/x)+λ+c

(ω/x)+λ−c
g (s) ds ≤ ρ1C1/

√
|x|, 0 ≤ x ≤ Bτ

whenever C2K1 (ω, c, τ) ≤ ρ1C1 and ρ1 will be fixed later.

Second step: Now we turn to Bτ ≤ x ≤ Mτ . We still have g (x) = C1/
√

|x| but we need to
focus on the bounds of the integral.
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This time the lower bound of the integral (ω/x) + λ − c ∈ [λ − τ, Mτ ] and the upper bound
(ω/x) + λ + c ∈ [λ + 2c − τ, Mτ + 2c]. If we assume that τ ≤ λ then (ω/x) + λ − c ≥ 0 ≥ −Mτ .
Besides in order that λ + 2c − τ ≥ Mτ we just have need that 2c ≥ Mτ or τ ≤ c − ω/ (2c) . As
a consequence the assumption:

τ ≤ min

(
λ, c − ω

2c

)
(20)

allows to write for x ∈ [Bτ , Mτ ],

1

2c

∫ (ω/x)+λ+c

(ω/x)+λ−c
g (s) ds =

1

2c

∫ Mτ

(ω/x)+λ−c
g (s) ds +

1

2c

∫ (ω/x)+λ+c

Mτ

g (s) ds

≡ I1 + I2,

with non-null I1 and I2. Focus on:

I1 =
C1

2c

∫ Mτ

(ω/x)+λ−c

1√
s

ds =
C1

c

[√
Mτ −

√
(ω/x) + λ − c

]

sup
x∈[Bτ ,Mτ ]

√
xI1 ≤ C1

c
Mτ .

At last we see that for Mτ ≤ 1 i.e. τ ≤ c − ω, supx∈[Bτ ,Mτ ]

√
xI1 ≤ C1/c. This condition

combined with (20) let us set in the sequel:

τ ≤ τ− = min (λ, c − ω) .

We turn to I2:

1

2c

∫ (ω/x)+λ+c

Mτ

g (s) ds =
C2

2c

∫ (ω/x)+λ+c

Mτ

log2 |s| ds ≤ C2√
x

K2
(
ω, c, τ−) ,

with:

K−
2 = K2

(
ω, c, τ−) = sup

x∈[Bτ ,Mτ ]

√
|x|

2c

∫ (ω/x)+λ+c

Mτ

(log s)2 ds.

Set finally ρ−
1 = (1 + 1/c) /2 < 1. From all that was done above we get:

∫

R

g (t) P (t, x) dt ≤ C1√
|x|

1

c
+

C2√
|x|K

−
2 ≤ ρ−

1

C1√
|x| ,

whenever:

C2K2

(
ω, c, τ−) ≤ 1 − 1/c

2
C1.

This will be combined with the constraint of the first step C2K−
1 ≤ ρ1C1 (we denoted re:K1 (ω, c, τ−) =

K−
1 ). The new condition:

C−
2 ≤ C−

1 min

(
ρ−

1

K−
1

,
1 − 1/c

2K−
2

)
(21)

ensures that
1

2c

∫ (ω/x)+λ+c

(ω/x)+λ−c
g (s) ds ≤ ρ−

1 g (x) for x ∈ [0, Mτ ] .

Third step: The remaining step is to check the inequality:
∫

R

g (t) P (t, x) dt ≤ ρ−
1 g (x) + ρ2,
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for any x in C -that is here any x > Mτ . Adapting the method given above is straightforward
and leads to the desired result with a given ρ−

2 .

We are ready to conclude. Take

C∗
2 = C∗

1 min

(
δ

K+
2

,
1 − δ

K+
1

,
ρ−

1

K−
1

,
1 − 1/c

2K−
2

)
.

Conditions (19) and (21) hold for the couple (C∗
1 , C∗

2 ) . For such a couple we have:

∫

R

g (t) P (t, x) dt ≤ ρ+
1 g (x) + ρ+

2 , x > 0,
∫

R

g (t) P (t, x) dt ≤ ρ−
1 g (x) + ρ−

2 , x ≤ 0,

and for all x: ∫

R

g (t) P (t, x) dt ≤ max
(
ρ+

1 , ρ−
1

)
g (x) + max

(
ρ+

2 , ρ−
2

)
.

This finishes the proof of the Lemma.
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Le Page, É. (1982). Théoremes limites pour les produits de matrices aléatoires. In Probability
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