
HAL Id: hal-01918741
https://hal.science/hal-01918741v1

Submitted on 11 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed and Parallel Asynchronous Unite and
Conquer Method to Solve Large Scale Non-Hermitian

Linear Systems with Multiple Right-hand Sides
Xinzhe Wu, Serge Petiton

To cite this version:
Xinzhe Wu, Serge Petiton. A Distributed and Parallel Asynchronous Unite and Conquer Method to
Solve Large Scale Non-Hermitian Linear Systems with Multiple Right-hand Sides. Parallel Computing,
2019, pp.102551. �10.1016/j.parco.2019.102551�. �hal-01918741�

https://hal.science/hal-01918741v1
https://hal.archives-ouvertes.fr

A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale
Non-Hermitian Linear Systems with Multiple Right-hand Sides

Xinzhe Wua,b,∗, Serge G. Petitona,b

aMaison de la Simulation/CNRS, Gif-sur-Yvette, 91191, France
bUniversité de Lille, Villeneuve d’Ascq, 59650, France

Abstract

Many problems in the field of science and engineering often require to solve simultaneously large-scale non-Hermitian sparse
linear systems with multiple right-hand sides (RHSs). Efficiently solving such problems on extreme-scale platforms requires the
minimization of global communications, reduction of synchronization points and promotion of asynchronous communications. We
develop an extension of the Unite and Conquer GMRES/LS-ERAM (UCGLE) method [1] by combining it with Block GMRES
method to solve non-Hermitian linear systems with multiple RHSs. UCGLE is a hybrid method consisting of three computing algo-
rithms with asynchronous communication that allow the use of approximate eigenvalues to accelerate to solve of linear systems and
to improve their fault tolerance. In this paper, the variant of UCGLE with novel components and manager engine implementations
is introduced. This engine is capable of allocating multiple Block GMRES at the same time, each Block GMRES solving the linear
systems with a subset of RHSs and accelerating the convergence using the eigenvalues approximated by other eigensolvers. Divid-
ing the entire linear system with multiple RHSs into subsets and solving them simultaneously with different allocated linear solvers
allow localizing calculations, reducing global communication, and improving parallel performance. Meanwhile, the asynchronous
preconditioning using eigenvalues is able to speed up the convergence and improve the fault tolerance and reusability. Numeri-
cal experiments using different test matrices on supercomputer ROMEO indicate that the proposed method achieves a substantial
decrease in both computation time and iterative steps with good scaling performance.

Keywords: Linear systems, Krylov subspace methods, unite and conquer, multiple right-hand sides, asynchronous communication
2010 MSC: 00A69, 65F10

1. Introduction

In this paper, we consider solving the system

AX = B, (1)

where A ∈ Cn×n is a large, sparse and non-Hermitian matrix
of order n, X = [x1, · · · , xs] ∈ Cn×s and B = [b1, · · · , bs] ∈5

Cn×s are rectangular matrices of dimension n × s with s ≤ n.
In this paper, the rectangular matrices such as B is also called
multi-vector, which can be seen as the combination of s vectors
bi ∀i ∈ 1, 2, · · · , s. This kind of linear systems with multiple
RHSs arise from a variety of applications in different scien-10

tific and engineering fields, such as the Lattice Quantum Chro-
modynamics (QCD) [2, 3, 4], the wave scattering and prop-
agation simulation [5], dynamics of structures [6, 7, 8], etc.
The block Krylov methods are good candidates if we want to
solve these large linear systems at the same time because the15

block methods can expand the search space associated with
each RHS and may accelerate the convergence. Another fea-
ture of block Krylov methods is that they can be implemented

∗Corresponding author at: Maison de la Simulation, CNRS USR3441,
Building 565, CEA Saclay, 91191 cedex, Gif-sur-Yvette, France. Tel: +33
169085993.
Email addresses:{xinzhe.wu.etu, serge.petiton}@univ-lille.fr.

using BLAS3, which improves the locality and reusability of
data and reduces the memory requirement on modern computer20

architectures [9]. The block Krylov methods replace the Sparse
Matrix-Vector Multiplication (SpMV) in each iterative step of
the conventional Krylov methods with the Sparse Generalized
Matrix-Matrix (SpGEMM) Multiplication.

However, nowadays, HPC cluster systems continue to scale25

up not only the number of compute nodes and central process-
ing unit (CPU) cores but also the heterogeneity of components
by introducing graphics processing units (GPUs) and many-
core processors. This results in the tendency of transition to
multi- and many cores within computing nodes, which commu-30

nicate explicitly through faster interconnection networks. These
hierarchical supercomputers can be seen as the intersection of
distributed and parallel computing. Indeed, for a large num-
ber of cores, the communication of overall reduction opera-
tions and global synchronization of applications are the bot-35

tleneck. When solving linear systems by block Krylov meth-
ods on large-scale distributed memory platforms, the cost of
using BLAS3 operations to enlarge search space and reduce the
memory requirement is apparent: the communication bound of
SpGEMM in each step of Arnoldi projection damages heavily40

their performance, which cannot be compensated by the advan-
tages of the block methods.

Even using classic Krylov methods, such as GMRES (Gen-

Preprint submitted to Parallel Computing October 15, 2018

eralized Minimal Residual method), to solve a large-scale prob-
lem on parallel clusters, the cost per iteration of them becomes45

the most significant concern, typically caused by communica-
tion and synchronization overheads. Consequently, large scalar
products, overall synchronization, and other operations involv-
ing communication among all cores have to be avoided. The
numerical applications should be optimized for more local com-50

munication, less global communication and synchronization.
That is the reason for the recent tendance to study the com-
munication avoiding techniques for linear algebra operations
[10, 11, 12] and different pipelined strategies for Krylov meth-
ods [13, 14, 15]. For benefiting the full computational power of55

such hierarchical systems, it is central to explore novel parallel
methods and models for the solving of linear systems. These
methods should not only accelerate the convergence but also
have the abilities to adapt to multi-grain, multi-level memory,
to improve the fault tolerance, reduce synchronization and pro-60

mote asynchronization.
We propose to combine the Block GMRES (BGMRES) [16]

with UCGLE [1] to solve Equation (1) in parallel on mod-
ern computer architectures. UCGLE is a hybrid method which
composes three computing components with asynchronous com-65

munication: ERAM (Explicitly Restarted Arnoldi Method), GM-
RES and LS (Least Squares) components. GMRES Compo-
nent is used to solve the systems, and LS Component performs
as a preconditioner which uses the eigenvalues approximated
by ERAM Component to speed up the convergence. LS Com-70

ponent is implemented based on the Least squares polynomial
method proposed by Saad [17] in 1987. Compared with the
traditional hybrid methods, the key features of UCGLE are its
distributed and parallel asynchronous communications and the
implementation of a manager engine among three components,75

which target at the extreme-scale supercomputing platforms.
The asynchronous communication overlaps the overhead of over-
all synchronization and improves the fault tolerance and reusabil-
ity. In this paper, firstly, we develop a block version of Least
Squares Polynomial (B-LSP) method based on [17], then re-80

place the three computing components of UCGLE respectively
by the BGMRES, Shifted Krylov-Schur (s-KS), and B-LSP.
Additionally, in order to solve linear systems with multiple RHSs
and reduce the global communication, we design and imple-
ment a new manager engine to replace the former one in UC-85

GLE. This novel engine allows to allocate and deploy multi-
ple BGMRES and/or s-KS Components at the same time and
support their asynchronous communications. Each allocated
BGMRES is assigned to solve the linear systems with a sub-
set of RHSs. This extension is denoted as multiple-UCGLE or90

m-UCGLE even though the ERAM Component is replaced by
s-KS method.

The paper is organized as follows. In Section 2, we present
the related work, including the basic Krylov methods, BGM-
RES and UCGLE. The theoretical work and algorithms inside95

m-UCGLE are presented in Section 3, especially the mathemat-
ical definitions fo B-LSP extended from the Least Squares poly-
nomial method. In Section 4, we present the implementation of
a newly designed manager engine for m-UCGLE. In Section
5, we give the information of experimental hardware/software100

and test matrices. We evaluate the convergence performance of
our m-UCGLE implementation1 compared with conventional
restarted BGMRES in Section 6 and we show that our approach
has up to 9.5× speedup against the classic method. The paral-
lel performance of m-UCGLE presented in Section 7 show its105

better strong scalability against the classic restarted BGMRES,
and the time to the solution can be significantly decreased. We
give the conclusions and perspectives in Section 8.

2. Related Work

In this section, we give a glance at the basic Krylov Sub-110

space methods, BGMRES, and UCGLE.

2.1. Krylov Subspace Methods
In linear algebra, the m-order Krylov subspace generated

by a n × n matrix A and a vector b of dimension n is the linear
subspace spanned by the images of b under the first m powers115

of A, that is

Km(A, b) = span(b, Ab, A2b, · · · , Am−1b),

The Krylov subspace methods are often used to solve large-
scale linear systems and eigenvalue problems.

GMRES is an efficient Krylov subspace method to solve120

non-Hermitian linear systems. It approximates the solution xm

of Ax = b starting from an initial guessed solution x0, with the
minimal residual in a subspace Kn(A, r0), where r0 = b − Ax0
is the initial residual and Kn is the nth Krylov subspace spanned
by A from r0. This method was developed by Saad and Schultz125

in 1986 [18]. If GMRES method is restarted after a number, say
mg, of iterations with xmg as a new initial guess, to avoid enor-
mous memory and computation requirements with the increase
of Krylov subspace projection number, it is called the restarted
GMRES. A well-known difficulty of restarted GMRES is that it130

can suffer from stagnation in convergence when the matrix A is
not positive definite as the restarted subspace is often closer to
the earlier one. The typical methods are to use preconditioning
techniques, to deflate the eigenvalues/eigenvectors, to recycle
the Krylov subspaces, etc.135

Arnoldi algorithm is a widely used Krylov subspace method
to approximate the eigenvalues of large sparse matrices under
the Krylov subspace Kn(A, v), where v is an initial given vector.
The numerical accuracy of the computed eigenpairs by Arnoldi
method depends highly on the size of Km(A, v) and the orthog-140

onality of selected basis. Generally, the larger the subspace is,
the better approximation of the eigenpairs is. The problem is
that firstly the orthogonality of the computed basis tends to de-
grade with each basis extension. Also, the larger the subspace
size is, the larger memory is required. Hence available memory145

may also limit the subspace size, and the achievable accuracy
of the Arnoldi process. In order to overcome this, it is neces-
sary to restart the Arnoldi algorithm, with explicit [19] or im-
plicit [20] deflation of the unwanted eigenvalues. Krylov-Schur
method proposed by Stewart [21] is another variant of Arnoldi150

algorithm with an effective and robust restarting scheme and
numerical stability.

1https://github.com/brunowu/m-UCGLE

2

2.2. Block GMRES

Algorithm 1 Non-Restarted Block GMRES Algorithm

1: function BGMRES(input:A,m, B, X0 ∈ C
N×s of full rank,

output: X)
2: R = B − AX0
3: V0R0 := R . QR factorization
4: for j = 1, 2, · · · ,m do
5: U j = AV j

6: for i = 1, 2, · · · , j do
7: Hi, j = VT

i U j

8: U j = U j − ViHi, j

9: end for
10: U j = V j+1H j+1, j
11: end for
12: Wm = [V1,V2, · · · ,Vm], Hm = {Hi, j}1≤i≤ j+1;1≤ j≤m

13: Find Ym, s.t. ||β − HmYm||2 is minimized
14: X = X0 + WmYm

15: end function

BGMRES is a variant of GMRES, which aims to solve sparse
non-Hermitian linear systems with multiple RHSs at the same155

time. As shown in Algorithm 1, the procedure of BGMRES
is similar to classic GMRES except replacing SpMV in the
Arnoldi projection operation with SpGEMM. Block implemen-
tation of GMRES also introduces extra scalar works comparing
with running multiple times of GMRES in sequence. Regard-160

ing numerical performance, the main attraction of BGMRES is
that it can enlarge the search space and potentially speed up the
convergence. When solving Equation (1) by BGMRES with
Krylov subspace size fixed as m, the search space would be:

Km = span(b1, Ab1, · · · , Am−1b1, · · · , bs, Abs, · · · , Am−1bs)165

As discussed in Section 1, the first limitation of BGMRES
is caused by the instability and bad parallel performance of its
SpGEMM on large-scale distributed memory platforms with
the increase of RHS number s. Secondly, for special cases, the
convergence by BGMRES cannot always be guaranteed even170

by enlarging the search spaces. Thus the techniques to deflate
of eigenpairs should be applied to accelerate the convergence.
That is the motivation for us to propose m-UCGLE which can
reduce the global communication and accelerate the conver-
gence by the deflation of eigenvalues.175

2.3. Unite and Conquer GMRES/LS-ERAM Method

UCGLE is a hybrid method implemented with asynchronous
communication. The design of UCGLE is inspired by the Unite
and Conquer (UC) approach.

2.3.1. Unite and Conquer Approach180

UC approach is proposed by Emad [22] to explore the novel
methods for modern computer architectures. It is a model for
the design of numerical methods by combining different com-
puting components using asynchronous communication, and all

these components working for the same objective. Unite im-185

plies the combination of components, and conquer represents
they work together to solve one problem. In the UC methods,
different parallel computing components work independently,
which can be deployed on various platforms such as P2P, cloud
and the supercomputer systems, or different computing units on190

the same platform.

2.3.2. UCGLE Implementation
UCGLE is a kind of UC approach. As presented in Sec-

tion 1, it composes three computing components: ERAM, GM-
RES, and LS. GMRES Component is used to solve the sys-195

tems, LS and ERAM Components work as the preconditioning
part. The asynchronous communication of this hybrid method
among three components reduces the number of overall syn-
chronization points and minimizes global communication. The
workflow of UCGLE with three computing components is given200

by Figure 1: ERAM Component computes the desired number
of dominant eigenvalues, and then sends them to LS Compo-
nent; LS Component uses these received eigenvalues to gener-
ate a new residual vector, and sends it to GMRES Component;
GMRES Component uses this residual as a new restarted initial205

vector for solving non-Hermitian linear systems. Better conver-
gence acceleration and parallel performance of UCGLE for sev-
eral test matrices compared with preconditioned GMRES are
given in [1].

The convergence acceleration of UCGLE is similar to a de-210

flated preconditioner. The difference is that the asynchronous
communication among the different computing components of
the latter reduces the global communication and synchroniza-
tion, improves the fault tolerance and the reusability of this
method. The three computing components work independently215

from each other, when errors occur inside of ERAM, GMRES
or LS Component, UCGLE can continue to work as a standard
restarted GMRES method. The materials for accelerating the
convergence are eigenvalues. These values can be improved on
the fly, introducing a continuous improvement of convergence220

while solving the linear systems. With the help of asynchronous
communications, approximated eigenvalues by ERAM Compo-
nent can be stored into a local file and reused for the other solv-
ing procedures with the same matrix. UCGLE is a distributed
and parallel method which can profit both shared memory and225

distributed memory of computational architectures with multi-
ple levels of parallelism.

UCGLE is used to solve non-Hermitian with single RHS,
thus its GMRES Component should be replaced by a BGMRES
algorithm, and a deflation technique by Least Squares polyno-230

mial should be extended to support the solving of linear systems
with multiple RHSs. Moreover, as shown in Figure 1, the man-
ager engine in [1] is static. In detail, four communicators of
MPI COMM WORLD are created for the computing compo-
nents through MPI Split using the different colors and keys.235

The asynchronous communication among them is supported
by the MPI non-blocking sending and receiving operations of
inter-communicators. This former implementation of manager
engine cannot fulfill the requirements of m-UCGLE. Indeed,
in order to reduce the global communications and localize the240

3

ERAM_COMM
GMRES_COMM

LS_COMM

Manager ProcessorResidual Vector

MPI_COMM_WORLD

Residual Vector

Some Ritz values
Parameters for the preconditioner

Coarse granularity

Medium granularity

Fine granularity

Figure 1: Workflow of UCGLE method [1].

computation, m-UCGLE should be able to allocate dynamically
different numbers of asynchronous computing components, and
each linear solver solves a subset of linear systems.

3. m-UCGLE for Multiple Right-hand Sides

The m-UCGLE proposed in this paper is an extension of245

UCGLE and is designed to solve linear systems with multiple
RHSs. The three types of components inside UCGLE are re-
spectively replaced by restarted BGMRES that we presented in
Section 2.2, s-KS, and B-LSP methods. In this section, firstly,
we introduce the s-KS used in m-UCGLE, then the mathemati-250

cal definitions of B-LSP to support for linear systems with mul-
tiple RHSs is given. Finally, we present the numerical analysis
and parameter definition of m-UCGLE.

3.1. Shifted Krylov-Schur Algorithm
UCGLE uses the dominant eigenvalues to accelerate the255

convergence of GMRES, and theoretically, the more eigenval-
ues are applied, the acceleration of Least Squares Polynomial
will be more significant [1]. In order to approximate more
eigenvalues by ERAM Component, the easiest way is to enlarge
the size of related Krylov Subspace. In m-UCGLE, we replace260

ERAM Component by s-KS method which is another variant
of the Arnoldi algorithm with an effective and robust restarting
scheme and numerical stability [21]. The Krylov subspace of
s-KS cannot be too large. Otherwise BGMRES Component is
not able to receive the eigenvalues in time to perform the B-265

LSP acceleration. With the novel developed manager engine
of m-UCGLE in this paper, several different s-KS components
can be allocated at the same time to approximate efficiently the
different part of dominant eigenvalues of matrix A, by the shift
with different values and thickly restarting with smaller Krylov270

subspace sizes. The algorithm of s-KS is given in Algorithm 2.

3.2. Least Squares Polynomial for Multiple Right-hand sides
The Least Squares polynomial method is an iterative method

proposed by Saad [17] to solve linear systems. It is applied
to calculate a new preconditioned residual for restarted GM-275

RES in UCGLE. In this section, we will present the B-LSP

Algorithm 2 Shifted Krylov-Schur Method

1: function s-KS(input: A, x1,m, σ, output: Λk with k ≤ p)
2: A← A − σI
3: Build an initial Krylov decompostion of order m
4: Apply orthogonal transformations to get a Krylov-

Schur decompostion
5: Reorder the diagonal blocks of the Krylov-Schur de-

compostion
6: Truncate to a Krylov-Schur decompostion of order p
7: Extend to a Krylov decomposition of order m
8: If not satisfied, go to step 3
9: end function

method, which is a block extension of Least Squares polyno-
mial method to solve linear systems with multiple RHSs at the
same time. The iterates of B-LSP method can be written as
Xn = X0 +Pd(A)R0, where X0 ∈ C

N×s is a selected initial guess280

to the solution, R0 ∈ C
N×s the corresponding residual multi-

vector, and Pd a polynomial of degree d − 1. We set a polyno-
mial of n degree Rn such that

Rd(λ) = 1 − λRd(λ)

.285

The residual of nth steps iteration Rn can be expressed as
equation Rn = Rd(A)R0, with the constraintRd(0) = 1. We want
to find a kind of polynomial which can minimize all ||Rd(A)R(p)

0 ||2,
with p ∈ 0, 1, · · · , s − 1, R(p)

0 the pth vector in the multi-vector
R0 and ||.||2 the Euclidean norm.290

Suppose A is a diagonalizable matrix with its spectrum de-
noted as σ(A) = λ1, · · · , λn, and the associated eigenvectors
u1, · · · , un. Expanding the each component of Rn in the basis
of these eigenvectors as as R(p)

n =
∑n

i=1 Rd(λi)ρiui, which allows
to get the upper limit of ||R(p)

n ||2 with p ∈ 0, 1, · · · , s − 1 as:295

||R(p)
0 ||2 max

λ∈σ(A)
|Rd(λ)| (2)

In order to minimize the norm of R(p)
n , it is possible to find

a polynomial Pd which can minimize the Equation (2) ∀p ∈
0, 1, · · · , s − 1.

As presented in [1], Pd can be expanded with a basis of300

Chebyshev polynomial t j(λ) =
T j

λ−c
b

T j
c
b

, where ti is constructed
by an ellipse englobing the convex hull formulated by the com-
puted eigenvalues, with c the centre of ellipse, and b the focal
distance of this ellipse. Pd is under form that Pd =

∑d−1
i=0 ηiti.

The selected Chebyshev polynomials ti meet still the three terms305

recurrence relation (3).

ti+1(λ) =
1
βi+1

[λti(λ) − αiti(λ) − δiti−1] (3)

For the computation of parameters H = (η0, η1, · · · , ηd−1),
we construct a modified gram matrix Md with dimension d × d,
and matrix Td with dimension (d + 1) × d by the three terms310

recurrence of the basis ti. Md can be factorized to be Md =

4

LLT by the Cholesky factorization. The parameters H can be
computed by a least squares problem of the formula:

min‖l11e1 − FdH‖ (4)

With the definition of Ωi ∈ RN×s by Ωi = ti(A)R0, we can315

obtain the Equation (5), and in the end iteration (6).

Ωi+1 =
1
βi+1

(AΩi − αiΩi − δiΩi−1) (5)

Xn = X0 + Pd(A)R0 = X0 +

n−1∑
i=1

ηiΩi (6)

The pre-treatement of this method to obtain the parameters
Ad = (α0, · · · , αd−1), Bd = (β1, · · · , βd), ∆d = (δ1, · · · , δd−1),320

and Hd = (η0, · · · , ηd−1) is presented in Algorithm 3, where A
is a n × n matrix, B represents the multi-vector of RHSs, d is
the degree of Least Squares polynomial, Λr the collection of
approximate eigenvalues, a, c, b the required parameters to fix
an ellipse in the plan, with a the distance between the vertex325

and centre, c the centre position and b the focal distance. The
iterative reccurence implementation of Equation (5) and (6) us-
ing the parameters gotten from the pre-treatement procedure
to construct the restarted residual for BGMRES by B-LSP is
given in Algorithm 4. In this algorithm, X0 is the temporary330

solution in BGMRES before performing the restart. Compared
with Least Squares polynomial method for single RHS, the dif-
ference in B-LSP is to replace the SpMV in each iteration step
with SpGEMM, as shown in Equation (6).

Algorithm 3 Least Square Polynomial Pre-treatement

1: function LS(input: A, B, d,Λr, output: Ad, Bd,∆d,H)
2: construct the convex hull C by Λr

3: construct ellispe(a, c, b) by the convex hull C
4: compute parameters Ad, Bd,∆d by ellispe(a, c, b)
5: construct matrix T (d + 1) × d matrix by Ad, Bd,∆d

6: construct Gram matrix Md by Chebyshev polynomials
basis

7: Cholesky factorization Md = LLT

8: Fd = LT T
9: Hd satisfies min ‖l11e1 − FdH‖

10: end function

3.3. Analysis335

Suppose that the computed convex hull by B-LSP contains
eigenvalues λ1, · · · , λm, the restarted residual for BGMRES gen-
erated by B-LSP for solving Equation (1) can be divided into
two parts:

Rn =

m∑
i=1

s∑
j=1

ρ((R(j)
d)(λi)ι)ui +

n∑
i=m+1

s∑
j=1

ρ((R(j)
d)(λi)ι)ui (7)340

The first part is constructed with the m known eigenvalues
used to compute the convex hull in B-LSP Component, and the
second part represents the residual with unknown eigenpairs.

Algorithm 4 Update BGMRES residual by LS Polynomial

1: function LSUpdateResidual(input:A, B, Ad, Bd,∆d,Hd)
2: Get X0, which is temporary solution in BGMRES
3: R0 = B − AX0, Ω1 = R0
4: for k = 1, 2, · · · , l do
5: for i = 1, 2, · · · , d − 1 do
6: Ωi+1 = 1

βi+1
[AΩi − αiΩi − δiΩi−1]

7: Xi+1 = Xi + ηi+1Ωi+1
8: end for
9: end for

10: Update GMRES restarted residual by Xd

11: end function

In the practical implementation, for each time preconditioning
by the B-LSP method, it is often repeated for several times to345

improve its acceleration of convergence, that is the meaning of
parameter l in Equation (7). The B-LSP preconditioning ap-
plies Rd as a deflation vector for each time restart of BGMRES.
The first part in Equation (7) is small since the B-LSP finds Rd

minimizing |Rd(λ)| in the convex hull, but not with the second350

part, where the residual will be rich in the eigenvectors asso-
ciated with the eigenvalues outside Hk. As the number of ap-
proximated eigenvalues k increasing, the first part will be much
closer to zero, but the second part keeps still large. This re-
sults in an enormous increase of restarted BGMRES precondi-355

tioned vector norm. Meanwhile, when BGMRES restarts with
the combination of some eigenvectors, the convergence will be
faster even if the residual is enormous, and the convergence of
BGMRES can still be significantly accelerated.

m-UCGLE is a combination of different methods. Thus it360

has a large number of parameters, which have impacts on the
convergence. These parameters are listed and classified accord-
ing to their relations with different components as follows:

I. BGMRES Component
* mg: BGMRES Krylov Subspace size365

* εg: relative tolerance for BGMRES convergence test
* Pg: number of computing units for each BGMRES
* l: number of times that polynomial applied on the resid-

ual before taking account into the new eigenvalues
* L: number of BGMRES restarts between two times of370

B-LSP preconditioning
* s: number of RHSs

II. s-KS Component
* ma: s-KS Krylov subspace size
* r: number of eigenvalues required375

* εa: tolerance for the s-KS convergence test
* Pa: number of computing units for s-KS
* σ: shifted value

III. B-LSP Component
* d: Polynomial degree of B-LSP380

4. Manager Engine Implementation

As presented in Section 2.3.2, the former implementation
of manager engine in [1] based on MPI Split cannot meet the

5

requirement of m-UCGLE. Thus, in order to extend UCGLE
method to solve non-Hermitian linear systems and to reduce385

the global communication and synchronization points, we de-
sign and implement a new manager engine for m-UCGLE. As
shown in Figure 2, the new engine allows creating a number of
different computing components at the same time. Suppose that
we have allocated ng BGMRES Components, nk s-KS Com-390

ponents and 1 B-LSP Component. The exact implementation
for s-KS, B-LSP, BGMRES Components and manager process
are respectively given in Algorithms 5, 6, 7 and 8. Denote the
BGMRES Components as BGMRES[k] with k ∈ 1, 2, · · · , ng,
and the s-KS Components as s-KS[q] with q ∈ 1, 2, · · · , na. The395

matrix B in Equation (1) can be decomposed as:

B = [B1, B2, · · · , Bk, · · · , Bng] (8)

Each BGMRES[k] will solve the linear systems with multi-
ple RHSs Bk, which is a subgroup of B:

AXk = Bk (9)400

LS

Manager Processor

MPI_SPAWN

MPI_SPAWN

MPI_SPAWN

MPI_SPAWN

MPI_SPAWN

MPI_SPAWN

BGMRES #1

BGMRES #2

BGMRES #3

s-KS #1

s-KS #2

Figure 2: Manager Engine Implementation for m-UCGLE.

Table 1 gives the comparison of memory and communica-
tion complexity of SpGEMM operation inside m-UCGLE and
BGMRES with the same number of RHSs. The factors n, nnz, s,
Pg and ng represent respectively the matrix size, the number of
non-zero entries of matrix, the number of multiple RHSs, the to-405

tal number of computing units for BGMRES Components, and
the number of BGMRES Components allocated by the man-
ager engine of m-UCGLE. The average memory requirement
for BGMRES on each computing unit is O(nnz(1+s)

Pg
). For m-

UCGLE, the matrix is duplicated ng times into different allo-410

cated linear solvers. Thus the required memory to store the ma-
trix should be scaled with the factor ng comparing with BGM-
RES. Due to the localization of computation inside m-UCGLE,
the total number global communication can be reduced with a
factor 1

ng
comparing with BGMRES. In practice, the selection415

of the number to allocate the BGMRES Components should

Table 1: Memory and Communication Complexity Comparison between m-
UCGLE and BGMRES.

m-UCGLE BGMRES ratio

Memory O(nnz(ng+s)
Pg

) O(nnz(1+s)
Pg

) ng+s
1+s

Communication O(nnzsPg
ng

) O(nnzsPg) 1
ng

Algorithm 5 s-KS Component

1: function s-KS-EXEC(input: A,ma, ν, r, εa)
2: while exit==False do
3: s-KS(A, r,ma, ν, εa, output: Λr)
4: Send (Λr) to LS
5: if Recv (exit == TRUE) then
6: Send (exit) to LS Component
7: stop
8: end if
9: end while

10: end function

make a balance between the increase of memory requirement
and the reduction of global communication.

Here we present in detail the workflow of this new engine.
In the beginning, the manager will simultaneously allocate the420

required number of three kinds of computing components. For
each BGMRES[k], it will load a full matrix A and its related
subgroup Bk, and then start to solve Equation (9) separately.
Meanwhile, each s-KS[q] load a full matrix A from local, and
start to find the required part of eigenvalues of A, through the425

s-KS method, using different parameters such as the shift value
σq, the Krylov subspace size (ma)q, etc. If the eigenvalues of
the required number are approximated on s-KS[q], these values
will be asynchronously sent to the manager process. The man-
ager process will always check if new eigenvalues are available430

from different s-KS Components, if yes, it will collect and up-
date the new coming eigenvalues together and send them to B-
LSP Component. B-LSP Component will use all the eigenval-
ues received from manager process to do the pre-treatment of
the B-LSP, the parameters gotten will be sent back to the man-435

ager process. Immediately, these parameters will be distributed
to BGMRES[k]. BGMRES[k] can use the B-LSP residual con-
structed by these parameters to speed up the convergence. If
the exit signals from all BGMRES Components are received by
manager process, it will send a signal to all other components440

to terminate their executions.
The allocation of a different number of computing compo-

nents is implemented with MPI SPAWN, and their asynchronous
communication is assured by the MPI non-blocking sending
and receiving operations between the manager process and each445

computing components.
Same as UCGLE, m-UCGLE has multiple levels of paral-

lelism for distributed memory systems:

1. Coarse Grain/Component level: it allows the distribution
of different numerical components, including the precon-450

ditioning part (B-LSP and s-KS) and the solving part

6

Algorithm 6 B-LSP Component

1: function B-LSP-EXEC(input: A, b, d)
2: if Recv(Λr) then
3: LS(input: A, b, d,Λr, output: Ad, Bd,∆d,Hd)
4: Send (Ad, Bd,∆d,Hd) to GMRES Component
5: end if
6: if Recv (exit == TRUE) then
7: stop
8: end if
9: end function

Algorithm 7 BGMRES Component

1: function BGMRES-EXEC(input: A,mg, X0, B, εg, L, l,
output: Xm)

2: count = 0
3: BGMRES(input: A,m, X0, B, output: Xm)
4: if ||B − AXm|| < εg then
5: return Xm

6: Send (exit == TRUE) to manager process
7: Stop
8: else
9: if count | L then

10: if recv (Ad, Bd,∆d,Hd) then
11: LSUpdateResidual(input:A, B, Ad, Bd,∆d,Hd)
12: count + +

13: end if
14: else
15: set X0 = Xm

16: count + +

17: end if
18: end if
19: if Recv (exit == TRUE) then
20: stop
21: end if
22: end function

(BGMRES) on different platforms or processors;
2. Medium Grain/Intra-component level, BGMRES and s-

KS components are both deployed in parallel;
3. Fine Grain/Thread parallelism for shared memory: the455

OpenMP thread level parallelism, or the accelerator level
parallelism if GPUs or other accelerators are available.

5. Hardware/Software Settings and Test Sparse Matrices

After the implementation of m-UCGLE, we test it on the
supercomputer with selected test matrices. The purpose of this460

section is to give the details about the hardware/software set-
tings and test sparse matrices.

5.1. Hardware and Software Settings
Experiments were obtained on the supercomputer ROMEO2,

a system located at University of Reims Champagne-Ardenne,465

2https://romeo.univ-reims.fr

Algorithm 8 Manger of m-UCGLE with MPI Spawn

1: function Master(Input : ng, na)
2: for i = 1 : ng do
3: MPI Spawn executable BGMRES-EXEC[i]
4: end for
5: for j = 1 : nk do
6: MPI Spawn executable s-KS-EXEC[j]
7: end for
8: MPI Spawn executable B-LSP-EXEC
9: for j = 1 : nk do

10: if Recv array[j] from s-KS-EXEC[j] then
11: Add array[j] to Array
12: end if
13: end for
14: if Array , NULL then
15: Send Array to B-LSP-EXEC
16: end if
17: if Recv LS Array from B-LSP-EXEC then
18: for i = 1 : ng do
19: Send LS Array to BGMRES-EXEC[i]
20: end for
21: end if
22: for i = 1 : nk do
23: if Recv f lag[i] for BGMRES-EXEC[i] then
24: if f lag[i] == exit then
25: f lag=true
26: else
27: f lag= f alse
28: end if
29: end if
30: end for
31: if f lag == true then
32: Kill B-LSP-EXEC
33: for i = 1 : ng do
34: Kill BGMRES-EXEC[i]
35: end for
36: for j = 1 : nk do
37: Kill s-KS-EXEC[j]
38: end for
39: end if
40: end function

Figure 3: SMG2S example [23].

7

𝐴𝑋 = 𝐵

……𝐴𝑋& = 𝐵& 𝐴𝑋' = 𝐵' 𝐴𝑋&(= 𝐵&(𝐴𝑋&) = 𝐵&) 𝐴𝑋& = 𝐵& 𝐴𝑋' = 𝐵' 𝐴𝑋* = 𝐵* 𝐴𝑋+ = 𝐵+

(a) (b) (c)

Figure 4: Different strategies to divide the linear systems with 64 RHSs into subsets: (a) divide the 64 RHSs into to 16 different components of m-UCGLE, each
holds 4 RHSs; (b) divide the 64 RHSs into to 4 different components of m-UCGLE, each holds 16 RHSs; (c) One classic BGMRES to solve the linear systems with
64 RHSs simultaneously.

France. Made by Atos, this cluster relies on totally 115 the
Bull Sequana X1125 hybrid servers, powered by the Xeon Gold
6132 (products formerly Skylake) and NVidia P100 cards. Each
dense Bull Sequana X1125 server accommodates 2 Xeon Scal-
able Processors Gold bi-socket nodes, and 4 NVidia P100 cards470

connected with NVLink. In total, this supercomputer includes
3,220 Xeon cores and 280 Nvidia P100 accelerators.

The MPI (Message Passing Interface) used is the OpenMPI
3.1.2, all the shared libraries and binaries were compiled by gcc
(version 6.3.0). The released scientific computational libraries475

Trilinos (version 12.12.1) and LAPACK (version 3.8.0) were
also compiled and used for the implementation of m-UCGLE.

5.2. Test Sparse Matrices

In order to test m-UCGLE with matrices of high dimen-
sions, we use the Scalable Matrix Generator with Given Spectra480

(SMG2S) [23, 24] to generate different test matrices. SMG2S3

is an open source package implemented and optimized using
MPI and C++ templates, which allows generating efficiently
large-scale sparse non-Hermitian test matrices with customized
eigenvalues or spectral distribution by users to evaluate the im-485

pacts of spectra on the convergence of linear solvers. Figure 3
gives an example of SMG2S to generate test matrix. SMG2S
has good scalability and acceptable accuracy to keep the given
spectra. One more important benefit of SMG2S is that the ma-
trices are generated in parallel, the data are already allocated to490

different processes. These distributed data can be used directly
by the users to efficiently evaluate the numerical methods with-
out concerning the I/O operation. Various interfaces provided
by SMG2S to different programming languages and computa-
tional libraries on various computer architectures make it easier495

to do the tests and benchmarks.
In order to generate the test matrices with given dimensions

and user-defined spectral distribution, three parameters p, d and
h should be specified. The definition in detail of these param-
eters can be referred to [23]. As in shown Fig. 3, h determine500

the lower band’s bandwidth of generated matrices as the same
value, and their upper band’s bandwidth is bounded by 2pd. In
this paper, denote SMG2S(p, d, h, spec) a collection of matrix

3https://smg2s.github.io

generation suite determined by p, d, h and the prescribed spec-
tral distribution function spec, which can create sparse non-505

Hermitian test matrices with different sizes.

6. Convergence Evaluation

In this section, we evaluate the numerical performance of
m-UCGLE for solving non-Hermitian linear systems compared
with conventional BGMRES.510

6.1. Specific Experimental Setup

Table 2: Alternative methods for experiments, and the related number of allo-
cated component, Rhs number per component and preconditioners.

Method Component nb RHS nb per component Preconditioner

BGMRES(64) 1 64 None

m-BGMRES(16)×4 4 16 None

m-BGMRES(4)×16 16 4 None

m-UCGLE(16)×4 4 16 B-LSP

m-UCGLE(4)×16 16 4 B-LSP

In the experiments, the total number of RHSs of linear sys-
tems to be solved for each test is fixed as 64. As shown in
Figure 4, we propose three strategies to divide these systems
into various subgroup:515

(1) 1 group with all 64 RHSs solved by classic BGMRES (shown
by Figure 4(c));

(2) 4 allocated BGMRES Components in m-UCGLE with each
holding 16 Rhs (shown by Figure 4(a));

(3) 16 allocated BGMRES Components in m-UCGLE with each520

holding 4 Rhs (shown in Figure 4(b)).

Moreover, for m-UCGLE with 4 or 16 allocated compo-
nents, they can be applied either with or without the precon-
ditioning of B-LSP using approximate eigenvalues. Denote the
special variant of m-UCGLE without B-LSP preconditioning525

as m-BGMRES. m-BGMRES is also able to reduce the global
communications through allocating multiple BGMRES com-
ponents by the manager engine. Table 2 gives the naming of
the five alternatives to solve linear systems with 64 RHSs and

8

Table 3: Iteration steps of convergence comparison (SMG2S generation suite SMG2S(1, 3, 4, spec), relative tolerance for convergence test = 1.0 × 10−8), Krylov
subspace size mg = 40, suse = 10, d = 15, L = 1, dnc = do not converge in 5000 iteration steps).

Method spec m-BGMRES(4)×16 m-UCGLE(4)×16 m-BGMRES(16)×4 m-UCGLE(16)×4 BGMRES(64)

TEST-1 (rand(21.0, 66.0), rand(-21.0,24.0)) 239 160 102 51 51

TEST-2 (rand(0.5, 3.0), rand(-0.5,2.0)) dnc 176 187 62 78

TEST-3 (rand(0.2, 5.2), rand(-2.5,2.5)) dnc 310 dnc 81 657

TEST-4 (rand(-5.2, -0.2), rand(-2.5,2.5)) dnc 320 629 99 942

TEST-5 (rand(-0.23, -0.03), rand(-0.2,0.2)) 600 235 170 99 270

TEST-6 (rand(-9.3, -3.2), rand(-2.1,2.1)) 80 160 85 51 38

the numbers of their allocated components and the numbers of530

RHSs per component.
These 64 RHSs for the tests are all generated in random with

different given seed states. All the test matrices from TEST-1 to
TEST-6 in Table 3 are generated by SMG2S(1, 3, 4, spec), the
definition of spec functions for different tests are shown in Ta-535

ble 3. For example, the spec of TEST-1 is given as (rand(21.0,
66.0), rand(-21.0,24.0)), the first part rand(21.0, 66.0) defines
that the real parts of given eigenvalues for TEST-1 are the float-
ing numbers generated randomly in the fixed interval [21.0,
66.0], similarly its imaginary parts are randomly generated in540

the fixed interval [-21.0, 24.0]. The relative tolerance for the
convergence test is fixed as 1.0 × 10−8, the Krylov subspace
size mg is given as 40 for all tests, the number of times that
B-LSP applied in m-UCGLE l, the degree of Least Squares
polynomial in B-LSP, the number of BGMRES restarts between545

two times of B-LSP preconditioning are respectively set as 10,
15 and 1. For m-BGMRES(16)×4, m-BGMRES(4)×16, m-
UCGLE(16)×4 and m-UCGLE(16)×4, their iteration steps in
Table 3 are defined as the maximal ones among their allocated
components to solve the systems.550

6.2. Result Analysis

The iteration steps of different methods for convergence are
shown in Table 3 (dnc in this table significates do not converge
in 5000 iteration steps). In this table, the blue and red cells
represent respectively the worst and the best cases for each test.555

From Table 3, firstly we can conclude that the enlargement of
the Krylov subspace by more RHSs in BGMRES is effective to
accelerate the convergence for TEST-1, TEST-2, TEST-3, and
TEST-6. However, this acceleration cannot always be guaran-
teed. Referring to TEST-4 and TEST-5, m-BGMRES(16))×4560

converge faster than BGMRES(64). Secondly, m-UCGLE com-
ponents converge much faster than their related m-BGMRES
with the same number of RHSs, except in TEST-6. In the
TEST-2, TEST-3, TEST-4, and TEST-5 of this table, m-UCGLE
with 16 RHSs works even much better than BGMRES with 64565

RHSs. An extreme special case in TEST-4 shows that con-
vergence of m-UCGLE(4)×16 and m-UCGLE(16)×4 have the
speedup respectively 3× and 9.5× over m-BGMRES(16).

In conclusion, for most tests, the method that converges the
fastest is m-UCGLE(16)×4. The combination of enlarging the570

search space by enough number of RHSs and preconditioning

by B-LSP makes substantial acceleration on the convergence
of solving linear systems. Moreover, compared with classic
BGMRES, due to the preconditioning of B-LSP, m-UCGLE
with less RHSs and smaller search space can still have a better575

acceleration of the convergence. The potential damages caused
by the localization of computation and reduction of global com-
munications with less RHSs of each component in m-UCGLE
can be covered by the B-LSP preconditioning.

7. Parallel Performance Evaluation580

The iteration step for convergence is not the only concern
about the iterative methods. After the convergence comparison
of m-UCGLE and BGMRES, in this section, we evaluate its
strong scalability and performance on supercomputer ROMEO.

7.1. Strong Scalability Evaluation585

224 448 896 1792

CPU core number

10−1

100

101

T
im
e
(s
)

m-UCGLE(4)x16 (total CPUs)

m-UCGLE(4)x16

m-UCGLE(16)x4 (total CPUs)

m-UCGLE(16)x4

m-BGMRES(4)x16

m-BGMRES(16)x4

BGMRES(64)

Figure 5: Strong scalability test on CPUs of solving time per iteration for m-
BGMRES(4)×16, m-UCGLE(4)×16, m-BGMRES(16)×4, m-UCGLE(16)×4,
BGMRES(64); test matrix size is 1.792×106; X-axis refers to the total number
of CPUs from 224 to 1792; Y-axis refers to the average execution time per itera-
tion. A base 2 logarithmic scale is used for all X-axis, and a base 10 logarithmic
scale is used for all Y-axis.

9

Table 4: Consumption time (s) comparison on CPUs (SMG2S generation suite SMG2S(1, 3, 4, spec), the size of matrices = 1.792 × 106, relative tolerance for
convergence test = 1.0 × 10−8), Krylov subspace size mg = 40, l = 10, d = 15, L = 1, dnc = do not converge in 5000 iteration steps).

Method spec m-BGMRES(4)×16 m-UCGLE(4)×16 m-BGMRES(16)×4 m-UCGLE(16)×4 BGMRES(64)

TEST-1 (rand(21.0, 66.0), rand(-21.0,24.0)) 34.2 35.3 133.9 98.9 362.8

TEST-2 (rand(0.5, 3.0), rand(-0.5,2.0)) dnc 40.9 231.3 111.5 580.6

TEST-3 (rand(0.2, 5.2), rand(-2.5,2.5)) dnc 66.0 dnc 145.8 522.5

TEST-4 (rand(-5.2, -0.2), rand(-2.5,2.5)) dnc 68.2 768.3 178.2 6829.3

TEST-5 (rand(-0.23, -0.03), rand(-0.2,0.2)) 132.3 50.1 209.4 120.5 1959.5

TEST-6 (rand(-9.3, -3.2), rand(-2.1,2.1)) 11.4 34.1 87.8 91.7 275.8

One important concern of BGMRES is the time cost per
iteration, due to the communication bound of SpGEMM. In or-
der to evaluate the parallel performance of m-UCGLE on large
clusters, we compare the strong scaling of m-BGMRES(4)×16,
m-UCGLE(4)×16, m-BGMRES(16)×4, m-UCGLE(16)×4 and590

BGMRES(64) by their average time cost per iteration.
For the strong scaling evaluation on CPUs, the methods

tested are set up the same as in Section 6. The test matrix is gen-
erated by SMG2S(1, 3, 4, spec) with size fixed as 1.792 × 106.
No larger matrices are tested, due to the memory limitation dur-595

ing the Arnoldi projection of BGMRES. The Krylov subspace
size mg for all methods is set as 40. The average time cost for
these methods is computed by 100 iterations. Time per iteration
is suitable for demonstrating scaling behavior. The total CPU
core number for B-GMRES(64) and all BGMRES Components600

in m-UCGLE and m-BGMRES ranges from 224 to 1792. Thus
for each BGMRES Component of m-BGMRES(4)×16 and m-
UCGLE(4)×16, the number ranges from 14 to 112. Similarly,
for each BGMRES Component of m-BGMRES(16)×4 and m-
UCGLE(16)×4, this number ranges from 56 to 448. All the605

tests allocate only 1 s-KS Component which always has the
same number of CPU cores with each BGMRES Component
inside m-UCGLE.

In Figure 5, we can conclude that the strong scaling of m-
BGMRES(4)×16 and m-UCGLE(4)×16 perform very well, the610

strong scalability of the rest are bad, especially BGMRES(64).
In the beginning, the scalability of m-BGMRES(16)×4 and m-
UCGLE(16)×4 is good, but it turns bad quickly with the in-
crease of CPU number. It is demonstrated that the properties of
m-UCGLE to promote the asynchronous communication and615

localize of computation can improve significantly the parallel
performance of BGMRES for solving systems with multiple
RHSs. Additionally, for the m-BGMRES and m-UCGLE with
the same number of RHSs, the time per iteration of former is
a little less the latter, since m-UCGLE introduces the iterative620

operations (SpGEMM) by B-LSP preconditioning.
Since m-UCGLE uses additional computing units for other

components especially s-KS Component, it is unfair only to
compare the scaling performance that total CPU number of all
BGMRES Components in m-UCGLE equals to these numbers625

of m-GMRES and BGMRES(64). Thus we plot two more curves
of m-UCGLE(4)×16 and m-UCGLE(16)×14 with all their CPU
numbers (including the CPU of s-KS Component) in Figure 5.

The two additional curves are respectively the blue and green
ones with the marker set as the cross. It is shown that m-630

UCGLE(4)×16 and m-UCGLE(16)×4 can still have respectively
up to 35× and 4× speedup per iteration against BGMRES(64).

7.2. Time Consumption Evaluation

After the evaluation of parallel performance, we compare
the time consumption of all methods to solve large-scale lin-635

ear systems with multiple RHSs on CPUs. The test matrices
are generated by SMG2S(1, 3, 4, spec), the same as the con-
vergence evaluation in Section 6. The size of matrices are all
1.792 × 106 for the experiments on CPUs, the total numbers
of CPU cores for different methods (either BGMRES Compo-640

nents in m-UCGLE and m-GMRES or conventional BGMRES)
are respectively fixed as 1792, and the Krylov subspace size mg

is set as 40. The results on CPUs is given in Table 4, where the
blue and red cells represent respectively the worst and the best
cases for each test.645

We can find that for the TEST-2, TEST-3, TEST-4, TEST-4,
m-UCGLE(4)×16 take the least time to converge. For TEST-1
and TEST-6, m-BGMRES(4)×16 takes a little less time than m-
UCGLE(4)×16 to get the convergence. For an extremely spe-
cial case TEST-4, m-UCGLE(4)×16 has about 100× speedup in650

time consumption over BGMRES(64) to solve the linear sys-
tems with 64 RHSs.

7.3. Performance Analysis

In conclusion, m-UCGLE(4)×16 and m-GMRES(4)×16 with
the most decrease of global communications have the best strong655

scaling performance. m-UCGLE cost a little more time per it-
eration compared with m-BGMRES with the same number of
RHSs, but this might be made up by its decrease of iterative
steps with B-LSP preconditioning. The experiments in this sec-
tion demonstrate the benefits of m-UCGLE to reduce global660

communication and promote the asynchronization. Two more
important points that cannot be concluded from the experiments
in this paper are:

(1) The increase of memory requirement should be considered
when dividing the whole RHSs into subsets;665

(2) The number of RHSs per component of m-UCGLE to en-
large the search space and the computation time per itera-
tion should be balanced to achieve the best performance.

10

7.4. Requirement of Workflow Environment for UC Approach
After the validation of the numerical and parallel perfor-670

mance of m-UCGLE, a major difficulty to profit from UC meth-
ods including m-UCGLE is to implement the manager engine
which can well handle their fault tolerance, load balance, asyn-
chronous communication of signals, arrays and vectors, the man-
agement of different computing units such as GPUs, etc. In this675

paper, we tried to give a naive implementation of the engine
to support the management tasks on the homogeneous plat-
forms based on MPI SPAWN and MPI non-blocking sending
and receiving functionalities. Further development of this en-
gine should be done to support the manager of the computing680

algorithms and their asynchronous communication on more dif-
ferent computer architectures and platforms, such as the multi-
GPU connected with NVLink on ROMEO. The stability of this
implementation of the engine cannot always be guaranteed. Thus
we are also thinking about to select the suitable workflow/task685

based environments to manage all these aspects in the UC ap-
proach. YML4 is a good candidate, which is a workflow en-
vironment to provide the definition of the parallel application
independently from the underlying middleware used. The spe-
cial middleware and workflow scheduler provided by YML al-690

lows defining the dependencies of tasks and data on the super-
computers [25]. YML, including its interfaces and compiler
to various programming languages and libraries, will facilitate
the implementation of UC based methods with different numer-
ical components. We plan to replace the manager engine of695

m-UCGLE by YML in the future.

8. Conclusion and Perspectives

This paper presents m-UCGLE, an extension of distributed
and parallel method UCGLE to solve large-scale non-Hermitian
sparse linear systems with multiple RHSs on modern supercom-700

puters. m-UCGLE is implemented with three kinds of compu-
tational components which communicate by the asynchronous
communication. A special engine is proposed to manger the
communication and allocate multiple different components at
the same time. m-UCGLE is able to accelerate the convergence,705

minimize the global communication, cover the synchronous points
for solving linear systems with multiple RHSs on large-scale
platforms. The experiments on supercomputers prove the good
numerical and parallel performance of this method.

Various parameters have impacts on the convergence. Thus,710

the auto-tuning scheme is required in the next step, where the
systems can select the dimensions of Krylov subspace, the num-
bers of eigenvalues to be computed, the degrees of Least Squares
polynomial according to different linear systems and cluster ar-
chitectures. The fault tolerance and reusability of m-UCGLE715

and the influence of multiple s-KS components with different
shifted values need to be evaluated. Parallel performance on
heterogeneous clusters (e.g., multi-GPU) should be tested with
further development of the manager engine, and workflow based
model can be applied to replace the proposed manager engine720

in the future.

4http://yml.prism.uvsq.fr/

Acknowledgment

The authors would like to thank ROMEO HPC Center Cham-
pagne Ardenne for their support in providing the use of cluster
ROMEO. This work is funded by the MYX project of French725

National Research Agency (ANR) (Grant No. ANR-15-SPPE-
003) under the SPPEXA framework.

References

[1] X. Wu, S. G. Petiton, A distributed and parallel asynchronous unite and
conquer method to solve large scale non-hermitian linear systems, in:730

Proceedings of the International Conference on High Performance Com-
puting in Asia-Pacific Region, ACM, 2018, pp. 36–46.

[2] T. Sakurai, H. Tadano, Y. Kuramashi, Application of block krylov sub-
space algorithms to the wilson–dirac equation with multiple right-hand
sides in lattice qcd, Computer Physics Communications 181 (1) (2010)735

113–117.
[3] Y. Nakamura, K.-I. Ishikawa, Y. Kuramashi, T. Sakurai, H. Tadano, Mod-

ified block bicgstab for lattice qcd, Computer Physics Communications
183 (1) (2012) 34–37.

[4] P. Fiebach, A. Frommer, R. Freund, Variants of the block-qmr method740

and applications in quantum chromodynamics, in: 15th IMACS World
Congress on Scientific Computation, Modelling and Applied Mathemat-
ics, Vol. 3, 1997, pp. 491–496.

[5] M. Malhotra, R. W. Freund, P. M. Pinsky, Iterative solution of multiple
radiation and scattering problems in structural acoustics using a block745

quasi-minimal residual algorithm, Computer methods in applied mechan-
ics and engineering 146 (1-2) (1997) 173–196.

[6] G. Barbella, F. Perotti, V. Simoncini, Block krylov subspace methods for
the computation of structural response to turbulent wind, Computer Meth-
ods in Applied Mechanics and Engineering 200 (23-24) (2011) 2067–750

2082.
[7] F. G. Ferraz, J. M. C. Dos Santos, Block-krylov component synthesis

and minimum rank perturbation theory for damage detection in com-
plex structures, Proceeding of the IX DINAME, Florianópolis-SC-Brazil
(2001) 329–334.755

[8] B. Nour-Omid, R. W. Clough, Short communication block lanczos
method for dynamic analysis of structures, Earthquake engineering &
structural dynamics 13 (2) (1985) 271–275.

[9] E. Agullo, L. Giraud, Y.-F. Jing, Block gmres method with inexact break-
downs and deflated restarting, SIAM Journal on Matrix Analysis and Ap-760

plications 35 (4) (2014) 1625–1651.
[10] J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, Avoiding commu-

nication in sparse matrix computations, in: Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on, IEEE,
2008, pp. 1–12.765

[11] M. Hoemmen, Communication-avoiding krylov subspace methods, Ph.D.
thesis, UC Berkeley (2010).

[12] E. C. Carson, Communication-avoiding krylov subspace methods in the-
ory and practice, Ph.D. thesis, UC Berkeley (2015).

[13] P. Ghysels, T. J. Ashby, K. Meerbergen, W. Vanroose, Hiding global770

communication latency in the gmres algorithm on massively parallel ma-
chines, SIAM Journal on Scientific Computing 35 (1) (2013) C48–C71.

[14] H. Morgan, M. G. Knepley, P. Sanan, L. R. Scott, A stochastic perfor-
mance model for pipelined krylov methods, Concurrency and Computa-
tion: Practice and Experience 28 (18) (2016) 4532–4542.775

[15] S. Cools, W. Vanroose, The communication-hiding pipelined bicgstab
method for the parallel solution of large unsymmetric linear systems, Par-
allel Computing 65 (2017) 1–20.

[16] B. Vital, Etude de quelques méthodes de résolution de problemes linéaires
de grande taille sur multiprocesseur, Ph.D. thesis, Rennes 1 (1990).780

[17] Y. Saad, Least squares polynomials in the complex plane and their use
for solving nonsymmetric linear systems, SIAM Journal on Numerical
Analysis 24 (1) (1987) 155–169.

[18] Y. Saad, M. H. Schultz, Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM Journal on scientific and785

statistical computing 7 (3) (1986) 856–869.

11

[19] Y. Saad, Numerical methods for large eigenvalue problems: revised edi-
tion, Vol. 66, Siam, 2011.

[20] D. C. Sorensen, Implicitly restarted arnoldi/lanczos methods for large
scale eigenvalue calculations, in: Parallel Numerical Algorithms,790

Springer, 1997, pp. 119–165.
[21] G. W. Stewart, A krylov–schur algorithm for large eigenproblems, SIAM

Journal on Matrix Analysis and Applications 23 (3) (2002) 601–614.
[22] N. Emad, S. Petiton, Unite and conquer approach for high scale numerical

computing, Journal of Computational Science 14 (2016) 5–14.795

[23] X. Wu, S. Petiton, Y. Lu, A parallel generator of non-hermitian matri-
ces computed from given spectra, in: VECPAR 2018: 13th International
Meeting on High Performance Computing for Computational Science,
2018.

[24] X. WU, SMG2S Manual v1.0, Technical report, Maison de la Simulation800

(Sep. 2018).
[25] O. Delannoy, Yml: un workflow scientifique pour le calcul haute per-

formance, Ph.D. thesis, Université de Versailles Saint-Quentin, France
(2008).

12

	Introduction
	Related Work
	Krylov Subspace Methods
	Block GMRES
	Unite and Conquer GMRES/LS-ERAM Method
	Unite and Conquer Approach
	UCGLE Implementation

	m-UCGLE for Multiple Right-hand Sides
	Shifted Krylov-Schur Algorithm
	Least Squares Polynomial for Multiple Right-hand sides
	Analysis

	Manager Engine Implementation
	Hardware/Software Settings and Test Sparse Matrices
	Hardware and Software Settings
	Test Sparse Matrices

	Convergence Evaluation
	Specific Experimental Setup
	Result Analysis

	Parallel Performance Evaluation
	Strong Scalability Evaluation
	Time Consumption Evaluation
	Performance Analysis
	Requirement of Workflow Environment for UC Approach

	Conclusion and Perspectives

