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Many problems in the field of science and engineering often require to solve simultaneously large-scale non-Hermitian sparse linear systems with multiple right-hand sides (RHSs). Efficiently solving such problems on extreme-scale platforms requires the minimization of global communications, reduction of synchronization points and promotion of asynchronous communications. We develop an extension of the Unite and Conquer GMRES/LS-ERAM (UCGLE) method [1] by combining it with Block GMRES method to solve non-Hermitian linear systems with multiple RHSs. UCGLE is a hybrid method consisting of three computing algorithms with asynchronous communication that allow the use of approximate eigenvalues to accelerate to solve of linear systems and to improve their fault tolerance. In this paper, the variant of UCGLE with novel components and manager engine implementations is introduced. This engine is capable of allocating multiple Block GMRES at the same time, each Block GMRES solving the linear systems with a subset of RHSs and accelerating the convergence using the eigenvalues approximated by other eigensolvers. Dividing the entire linear system with multiple RHSs into subsets and solving them simultaneously with different allocated linear solvers allow localizing calculations, reducing global communication, and improving parallel performance. Meanwhile, the asynchronous preconditioning using eigenvalues is able to speed up the convergence and improve the fault tolerance and reusability. Numerical experiments using different test matrices on supercomputer ROMEO indicate that the proposed method achieves a substantial decrease in both computation time and iterative steps with good scaling performance.

Introduction

In this paper, we consider solving the system

AX = B, (1) 
where A ∈ C n×n is a large, sparse and non-Hermitian matrix of order n, X

= [x 1 , • • • , x s ] ∈ C n×s and B = [b 1 , • • • , b s ] ∈
C n×s are rectangular matrices of dimension n × s with s ≤ n.

In this paper, the rectangular matrices such as B is also called multi-vector, which can be seen as the combination of s vectors b i ∀i ∈ 1, 2, • • • , s. This kind of linear systems with multiple RHSs arise from a variety of applications in different scientific and engineering fields, such as the Lattice Quantum Chromodynamics (QCD) [START_REF] Sakurai | Application of block krylov subspace algorithms to the wilson-dirac equation with multiple right-hand sides in lattice qcd[END_REF][START_REF] Nakamura | Modified block bicgstab for lattice qcd[END_REF][START_REF] Fiebach | Variants of the block-qmr method 740 and applications in quantum chromodynamics[END_REF], the wave scattering and propagation simulation [START_REF] Malhotra | Iterative solution of multiple radiation and scattering problems in structural acoustics using a block 745 quasi-minimal residual algorithm[END_REF], dynamics of structures [START_REF] Barbella | Block krylov subspace methods for the computation of structural response to turbulent wind[END_REF][START_REF] Ferraz | Block-krylov component synthesis and minimum rank perturbation theory for damage detection in complex structures[END_REF][START_REF] Nour-Omid | Short communication block lanczos method for dynamic analysis of structures[END_REF], etc. The block Krylov methods are good candidates if we want to solve these large linear systems at the same time because the block methods can expand the search space associated with each RHS and may accelerate the convergence. Another feature of block Krylov methods is that they can be implemented up not only the number of compute nodes and central processing unit (CPU) cores but also the heterogeneity of components by introducing graphics processing units (GPUs) and manycore processors. This results in the tendency of transition to multi-and many cores within computing nodes, which commu-30 nicate explicitly through faster interconnection networks. These hierarchical supercomputers can be seen as the intersection of distributed and parallel computing. Indeed, for a large number of cores, the communication of overall reduction operations and global synchronization of applications are the bot-35 tleneck. When solving linear systems by block Krylov methods on large-scale distributed memory platforms, the cost of using BLAS3 operations to enlarge search space and reduce the memory requirement is apparent: the communication bound of SpGEMM in each step of Arnoldi projection damages heavily 40 their performance, which cannot be compensated by the advantages of the block methods. Even using classic Krylov methods, such as GMRES (Gen-eralized Minimal Residual method), to solve a large-scale problem on parallel clusters, the cost per iteration of them becomes the most significant concern, typically caused by communication and synchronization overheads. Consequently, large scalar products, overall synchronization, and other operations involving communication among all cores have to be avoided. The numerical applications should be optimized for more local communication, less global communication and synchronization. That is the reason for the recent tendance to study the communication avoiding techniques for linear algebra operations [START_REF] Demmel | Avoiding communication in sparse matrix computations[END_REF][START_REF] Hoemmen | Communication-avoiding krylov subspace methods[END_REF][START_REF] Carson | Communication-avoiding krylov subspace methods in theory and practice[END_REF] and different pipelined strategies for Krylov methods [START_REF] Ghysels | Hiding global 770 communication latency in the gmres algorithm on massively parallel machines[END_REF][START_REF] Morgan | A stochastic performance model for pipelined krylov methods[END_REF][START_REF] Cools | The communication-hiding pipelined bicgstab method for the parallel solution of large unsymmetric linear systems[END_REF]. For benefiting the full computational power of such hierarchical systems, it is central to explore novel parallel methods and models for the solving of linear systems. These methods should not only accelerate the convergence but also have the abilities to adapt to multi-grain, multi-level memory, to improve the fault tolerance, reduce synchronization and promote asynchronization.

We propose to combine the Block GMRES (BGMRES) [START_REF] Vital | Etude de quelques méthodes de résolution de problemes linéaires de grande taille sur multiprocesseur[END_REF] with UCGLE [START_REF] Wu | A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian linear systems[END_REF] to solve Equation [START_REF] Wu | A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian linear systems[END_REF] in parallel on modern computer architectures. UCGLE is a hybrid method which composes three computing components with asynchronous communication: ERAM (Explicitly Restarted Arnoldi Method), GM-RES and LS (Least Squares) components. GMRES Component is used to solve the systems, and LS Component performs as a preconditioner which uses the eigenvalues approximated by ERAM Component to speed up the convergence. LS Component is implemented based on the Least squares polynomial method proposed by Saad [START_REF] Saad | Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems[END_REF] in 1987. Compared with the traditional hybrid methods, the key features of UCGLE are its distributed and parallel asynchronous communications and the implementation of a manager engine among three components, which target at the extreme-scale supercomputing platforms. The asynchronous communication overlaps the overhead of overall synchronization and improves the fault tolerance and reusability. In this paper, firstly, we develop a block version of Least Squares Polynomial (B-LSP) method based on [START_REF] Saad | Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems[END_REF], then replace the three computing components of UCGLE respectively by the BGMRES, Shifted Krylov-Schur (s-KS), and B-LSP. Additionally, in order to solve linear systems with multiple RHSs and reduce the global communication, we design and implement a new manager engine to replace the former one in UC-GLE. This novel engine allows to allocate and deploy multiple BGMRES and/or s-KS Components at the same time and support their asynchronous communications. Each allocated BGMRES is assigned to solve the linear systems with a subset of RHSs. This extension is denoted as multiple-UCGLE or m-UCGLE even though the ERAM Component is replaced by s-KS method.

The paper is organized as follows. In Section 2, we present the related work, including the basic Krylov methods, BGM-RES and UCGLE. The theoretical work and algorithms inside m-UCGLE are presented in Section 3, especially the mathematical definitions fo B-LSP extended from the Least Squares polynomial method. In Section 4, we present the implementation of a newly designed manager engine for m-UCGLE. In Section 5, we give the information of experimental hardware/software and test matrices. We evaluate the convergence performance of our m-UCGLE implementation 1 compared with conventional restarted BGMRES in Section 6 and we show that our approach has up to 9.5× speedup against the classic method. The parallel performance of m-UCGLE presented in Section 7 show its 105 better strong scalability against the classic restarted BGMRES, and the time to the solution can be significantly decreased. We give the conclusions and perspectives in Section 8.

Related Work

In this section, we give a glance at the basic Krylov Sub-110 space methods, BGMRES, and UCGLE.

Krylov Subspace Methods

In linear algebra, the m-order Krylov subspace generated by a n × n matrix A and a vector b of dimension n is the linear subspace spanned by the images of b under the first m powers

115 of A, that is K m (A, b) = span(b, Ab, A 2 b, • • • , A m-1 b),
The Krylov subspace methods are often used to solve largescale linear systems and eigenvalue problems.

GMRES is an efficient Krylov subspace method to solve 120 non-Hermitian linear systems. It approximates the solution x m of Ax = b starting from an initial guessed solution x 0 , with the minimal residual in a subspace K n (A, r 0 ), where r 0 = b -Ax 0 is the initial residual and K n is the n th Krylov subspace spanned by A from r 0 . This method was developed by Saad and Schultz 125 in 1986 [START_REF] Saad | Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF]. If GMRES method is restarted after a number, say m g , of iterations with x m g as a new initial guess, to avoid enormous memory and computation requirements with the increase of Krylov subspace projection number, it is called the restarted GMRES. A well-known difficulty of restarted GMRES is that it 130 can suffer from stagnation in convergence when the matrix A is not positive definite as the restarted subspace is often closer to the earlier one. The typical methods are to use preconditioning techniques, to deflate the eigenvalues/eigenvectors, to recycle the Krylov subspaces, etc.
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Arnoldi algorithm is a widely used Krylov subspace method to approximate the eigenvalues of large sparse matrices under the Krylov subspace K n (A, v), where v is an initial given vector. The numerical accuracy of the computed eigenpairs by Arnoldi method depends highly on the size of K m (A, v) and the orthog-140 onality of selected basis. Generally, the larger the subspace is, the better approximation of the eigenpairs is. The problem is that firstly the orthogonality of the computed basis tends to degrade with each basis extension. Also, the larger the subspace size is, the larger memory is required. Hence available memory 145 may also limit the subspace size, and the achievable accuracy of the Arnoldi process. In order to overcome this, it is necessary to restart the Arnoldi algorithm, with explicit [START_REF] Saad | Numerical methods for large eigenvalue problems: revised edition[END_REF] or implicit [START_REF] Sorensen | Implicitly restarted arnoldi/lanczos methods for large scale eigenvalue calculations[END_REF] deflation of the unwanted eigenvalues. Krylov-Schur method proposed by Stewart [START_REF] Stewart | A krylov-schur algorithm for large eigenproblems[END_REF] is another variant of Arnoldi U j = AV j 6:

for i = 1, 2, • • • , j do 7:
H i, j = V T i U j 8:

U j = U j -V i H i, j 9:
end for 10:

U j = V j+1 H j+1, j 11:
end for 12:

W m = [V 1 , V 2 , • • • , V m ], H m = {H i, j } 1≤i≤ j+1;1≤ j≤m 13: Find Y m , s.t. ||β -H m Y m || 2 is minimized 14: X = X 0 + W m Y m 15: end function
BGMRES is a variant of GMRES, which aims to solve sparse non-Hermitian linear systems with multiple RHSs at the same time. As shown in Algorithm 1, the procedure of BGMRES is similar to classic GMRES except replacing SpMV in the Arnoldi projection operation with SpGEMM. Block implementation of GMRES also introduces extra scalar works comparing with running multiple times of GMRES in sequence. Regarding numerical performance, the main attraction of BGMRES is that it can enlarge the search space and potentially speed up the convergence. When solving Equation (1) by BGMRES with Krylov subspace size fixed as m, the search space would be:

K m = span(b 1 , Ab 1 , • • • , A m-1 b 1 , • • • , b s , Ab s , • • • , A m-1 b s )
As discussed in Section 1, the first limitation of BGMRES is caused by the instability and bad parallel performance of its SpGEMM on large-scale distributed memory platforms with the increase of RHS number s. Secondly, for special cases, the convergence by BGMRES cannot always be guaranteed even by enlarging the search spaces. Thus the techniques to deflate of eigenpairs should be applied to accelerate the convergence. That is the motivation for us to propose m-UCGLE which can reduce the global communication and accelerate the convergence by the deflation of eigenvalues.

Unite and Conquer GMRES/LS-ERAM Method

UCGLE is a hybrid method implemented with asynchronous communication. The design of UCGLE is inspired by the Unite and Conquer (UC) approach.

Unite and Conquer Approach

UC approach is proposed by Emad [START_REF] Emad | Unite and conquer approach for high scale numerical computing[END_REF] to explore the novel methods for modern computer architectures. It is a model for the design of numerical methods by combining different computing components using asynchronous communication, and all these components working for the same objective. Unite im-185 plies the combination of components, and conquer represents they work together to solve one problem. In the UC methods, different parallel computing components work independently, which can be deployed on various platforms such as P2P, cloud and the supercomputer systems, or different computing units on 190 the same platform.

UCGLE Implementation

UCGLE is a kind of UC approach. As presented in Section 1, it composes three computing components: ERAM, GM-RES, and LS. GMRES Component is used to solve the sys- vector for solving non-Hermitian linear systems. Better convergence acceleration and parallel performance of UCGLE for several test matrices compared with preconditioned GMRES are given in [START_REF] Wu | A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian linear systems[END_REF].

The convergence acceleration of UCGLE is similar to a de- mial should be extended to support the solving of linear systems with multiple RHSs. Moreover, as shown in Figure 1, the manager engine in [START_REF] Wu | A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian linear systems[END_REF] is static. In detail, four communicators of MPI COMM WORLD are created for the computing components through MPI Split using the different colors and keys.
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The asynchronous communication among them is supported by the MPI non-blocking sending and receiving operations of inter-communicators. This former implementation of manager engine cannot fulfill the requirements of m-UCGLE. Indeed, in order to reduce the global communications and localize the computation, m-UCGLE should be able to allocate dynamically different numbers of asynchronous computing components, and each linear solver solves a subset of linear systems.

m-UCGLE for Multiple Right-hand Sides

The m-UCGLE proposed in this paper is an extension of UCGLE and is designed to solve linear systems with multiple RHSs. The three types of components inside UCGLE are respectively replaced by restarted BGMRES that we presented in Section 2.2, s-KS, and B-LSP methods. In this section, firstly, we introduce the s-KS used in m-UCGLE, then the mathematical definitions of B-LSP to support for linear systems with multiple RHSs is given. Finally, we present the numerical analysis and parameter definition of m-UCGLE.

Shifted Krylov-Schur Algorithm

UCGLE uses the dominant eigenvalues to accelerate the convergence of GMRES, and theoretically, the more eigenvalues are applied, the acceleration of Least Squares Polynomial will be more significant [START_REF] Wu | A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian linear systems[END_REF]. In order to approximate more eigenvalues by ERAM Component, the easiest way is to enlarge the size of related Krylov Subspace. In m-UCGLE, we replace ERAM Component by s-KS method which is another variant of the Arnoldi algorithm with an effective and robust restarting scheme and numerical stability [START_REF] Stewart | A krylov-schur algorithm for large eigenproblems[END_REF]. The Krylov subspace of s-KS cannot be too large. Otherwise BGMRES Component is not able to receive the eigenvalues in time to perform the B-LSP acceleration. With the novel developed manager engine of m-UCGLE in this paper, several different s-KS components can be allocated at the same time to approximate efficiently the different part of dominant eigenvalues of matrix A, by the shift with different values and thickly restarting with smaller Krylov subspace sizes. The algorithm of s-KS is given in Algorithm 2.

Least Squares Polynomial for Multiple Right-hand sides

The Least Squares polynomial method is an iterative method proposed by Saad [START_REF] Saad | Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems[END_REF] to solve linear systems. It is applied to calculate a new preconditioned residual for restarted GM- If not satisfied, go to step 3 9: end function method, which is a block extension of Least Squares polynomial method to solve linear systems with multiple RHSs at the same time. The iterates of B-LSP method can be written as X n = X 0 + P d (A)R 0 , where X 0 ∈ C N×s is a selected initial guess 280 to the solution, R 0 ∈ C N×s the corresponding residual multivector, and P d a polynomial of degree d -1. We set a polynomial of n degree R n such that

R d (λ) = 1 -λR d (λ)
.

285

The residual of n th steps iteration R n can be expressed as equation

R n = R d (A)R 0 , with the constraint R d (0) = 1. We want to find a kind of polynomial which can minimize all ||R d (A)R (p) 0 || 2 , with p ∈ 0, 1, • • • , s -1, R (p)
0 the p th vector in the multi-vector R 0 and ||.|| 2 the Euclidean norm.

290

Suppose A is a diagonalizable matrix with its spectrum denoted as σ(A) = λ 1 , • • • , λ n , and the associated eigenvectors u 1 , • • • , u n . Expanding the each component of R n in the basis of these eigenvectors as as R (p) n = n i=1 R d (λ i )ρ i u i , which allows to get the upper limit of

||R (p) n || 2 with p ∈ 0, 1, • • • , s -1 as: 295 ||R (p) 0 || 2 max λ∈σ(A) |R d (λ)| (2) 
In order to minimize the norm of R (p) n , it is possible to find a polynomial P d which can minimize the Equation ( 2

) ∀p ∈ 0, 1, • • • , s -1.
As presented in [START_REF] Wu | A distributed and parallel asynchronous unite and conquer method to solve large scale non-hermitian linear systems[END_REF], P d can be expanded with a basis of

300 Chebyshev polynomial t j (λ) = T j λ-c b T j c b
, where t i is constructed by an ellipse englobing the convex hull formulated by the computed eigenvalues, with c the centre of ellipse, and b the focal distance of this ellipse. P d is under form that P d = d-1 i=0 η i t i . The selected Chebyshev polynomials t i meet still the three terms 305 recurrence relation [START_REF] Nakamura | Modified block bicgstab for lattice qcd[END_REF].

t i+1 (λ) = 1 β i+1 [λt i (λ) -α i t i (λ) -δ i t i-1 ] (3) 
For the computation of parameters H = (η 0 , η 

H d = (η 0 , • • • , η d-1
) is presented in Algorithm 3, where A is a n × n matrix, B represents the multi-vector of RHSs, d is the degree of Least Squares polynomial, Λ r the collection of approximate eigenvalues, a, c, b the required parameters to fix an ellipse in the plan, with a the distance between the vertex and centre, c the centre position and b the focal distance. The iterative reccurence implementation of Equation ( 5) and ( 6) using the parameters gotten from the pre-treatement procedure to construct the restarted residual for BGMRES by B-LSP is given in Algorithm 4. In this algorithm, X 0 is the temporary solution in BGMRES before performing the restart. Compared with Least Squares polynomial method for single RHS, the difference in B-LSP is to replace the SpMV in each iteration step with SpGEMM, as shown in Equation [START_REF] Barbella | Block krylov subspace methods for the computation of structural response to turbulent wind[END_REF]. 

R n = m i=1 s j=1 ρ((R ( j) d )(λ i ) ι )u i + n i=m+1 s j=1 ρ((R ( j) d )(λ i ) ι )u i (7)
The first part is constructed with the m known eigenvalues used to compute the convex hull in B-LSP Component, and the second part represents the residual with unknown eigenpairs. Get X 0 , which is temporary solution in BGMRES 3:

R 0 = B -AX 0 , Ω 1 = R 0 4: for k = 1, 2, • • • , l do 5: for i = 1, 2, • • • , d -1 do 6: Ω i+1 = 1 β i+1 [AΩ i -α i Ω i -δ i Ω i-1 ]
7:

X i+1 = X i + η i+1 Ω i+1 8:
end for 9:

end for 10:

Update GMRES restarted residual by X d 11: end function In the practical implementation, for each time preconditioning by the B-LSP method, it is often repeated for several times to 345 improve its acceleration of convergence, that is the meaning of parameter l in Equation [START_REF] Ferraz | Block-krylov component synthesis and minimum rank perturbation theory for damage detection in complex structures[END_REF]. The B-LSP preconditioning applies R d as a deflation vector for each time restart of BGMRES. The first part in Equation ( 7) is small since the B-LSP finds R d minimizing |R d (λ)| in the convex hull, but not with the second 350 part, where the residual will be rich in the eigenvectors associated with the eigenvalues outside H k . As the number of approximated eigenvalues k increasing, the first part will be much closer to zero, but the second part keeps still large. This results in an enormous increase of restarted BGMRES precondi-355 tioned vector norm. Meanwhile, when BGMRES restarts with the combination of some eigenvectors, the convergence will be faster even if the residual is enormous, and the convergence of BGMRES can still be significantly accelerated.

m-UCGLE is a combination of different methods. Thus it 360 has a large number of parameters, which have impacts on the convergence. These parameters are listed and classified according to their relations with different components as follows:

requirement of m-UCGLE. Thus, in order to extend UCGLE method to solve non-Hermitian linear systems and to reduce 1) can be decomposed as:

B = [B 1 , B 2 , • • • , B k , • • • , B n g ] (8) 
Each BGMRES[k] will solve the linear systems with multiple RHSs B k , which is a subgroup of B: Table 1 gives the comparison of memory and communication complexity of SpGEMM operation inside m-UCGLE and BGMRES with the same number of RHSs. The factors n, nnz, s, P g and n g represent respectively the matrix size, the number of non-zero entries of matrix, the number of multiple RHSs, the to-405 tal number of computing units for BGMRES Components, and the number of BGMRES Components allocated by the manager engine of m-UCGLE. The average memory requirement for BGMRES on each computing unit is O( nnz(1+s)

AX k = B k (9 

P g

). For m-UCGLE, the matrix is duplicated n g times into different allo-410 cated linear solvers. Thus the required memory to store the matrix should be scaled with the factor n g comparing with BGM-RES. Due to the localization of computation inside m-UCGLE, the total number global communication can be reduced with a factor 1 n g comparing with BGMRES. In practice, the selection of the number to allocate the BGMRES Components should end while 10: end function make a balance between the increase of memory requirement and the reduction of global communication.

Here we present in detail the workflow of this new engine. In the beginning, the manager will simultaneously allocate the 420 required number of three kinds of computing components. For each BGMRES[k], it will load a full matrix A and its related subgroup B k , and then start to solve Equation ( 9) separately. Meanwhile, each s-KS[q] load a full matrix A from local, and start to find the required part of eigenvalues of A, through the 425 s-KS method, using different parameters such as the shift value σ q , the Krylov subspace size (m a ) q , etc. If the eigenvalues of the required number are approximated on s-KS[q], these values will be asynchronously sent to the manager process. The manager process will always check if new eigenvalues are available 430 from different s-KS Components, if yes, it will collect and update the new coming eigenvalues together and send them to B-LSP Component. B-LSP Component will use all the eigenvalues received from manager process to do the pre-treatment of the B-LSP, the parameters gotten will be sent back to the man-435 ager process. Immediately, these parameters will be distributed to BGMRES [k]. BGMRES[k] can use the B-LSP residual constructed by these parameters to speed up the convergence. If the exit signals from all BGMRES Components are received by manager process, it will send a signal to all other components 440 to terminate their executions.

The allocation of a different number of computing components is implemented with MPI SPAWN, and their asynchronous communication is assured by the MPI non-blocking sending and receiving operations between the manager process and each if Recv(Λ r ) then 

count = 0 3: BGMRES(input: A, m, X 0 , B, output: X m ) 4: if ||B -AX m || < g then 5:
return X m 6:

Send (exit == T RUE) to manager process 

Hardware/Software Settings and Test Sparse Matrices

After the implementation of m-UCGLE, we test it on the supercomputer with selected test matrices. The purpose of this section is to give the details about the hardware/software settings and test sparse matrices.

Hardware and Software Settings

Experiments were obtained on the supercomputer ROMEO 2 , a system located at University of Reims Champagne-Ardenne, France. Made by Atos, this cluster relies on totally 115 the Bull Sequana X1125 hybrid servers, powered by the Xeon Gold 6132 (products formerly Skylake) and NVidia P100 cards. Each dense Bull Sequana X1125 server accommodates 2 Xeon Scalable Processors Gold bi-socket nodes, and 4 NVidia P100 cards connected with NVLink. In total, this supercomputer includes 3,220 Xeon cores and 280 Nvidia P100 accelerators.

The MPI (Message Passing Interface) used is the OpenMPI 3.1.2, all the shared libraries and binaries were compiled by gcc (version 6.3.0). The released scientific computational libraries Trilinos (version 12.12.1) and LAPACK (version 3.8.0) were also compiled and used for the implementation of m-UCGLE.

Test Sparse Matrices

In order to test m-UCGLE with matrices of high dimensions, we use the Scalable Matrix Generator with Given Spectra (SMG2S) [START_REF] Wu | A parallel generator of non-hermitian matrices computed from given spectra[END_REF][START_REF] Wu | SMG2S Manual v1.0[END_REF] to generate different test matrices. SMG2S 3is an open source package implemented and optimized using MPI and C++ templates, which allows generating efficiently large-scale sparse non-Hermitian test matrices with customized eigenvalues or spectral distribution by users to evaluate the impacts of spectra on the convergence of linear solvers. Figure 3 gives an example of SMG2S to generate test matrix. SMG2S has good scalability and acceptable accuracy to keep the given spectra. One more important benefit of SMG2S is that the matrices are generated in parallel, the data are already allocated to different processes. These distributed data can be used directly by the users to efficiently evaluate the numerical methods without concerning the I/O operation. Various interfaces provided by SMG2S to different programming languages and computational libraries on various computer architectures make it easier to do the tests and benchmarks.

In order to generate the test matrices with given dimensions and user-defined spectral distribution, three parameters p, d and h should be specified. The definition in detail of these parameters can be referred to [START_REF] Wu | A parallel generator of non-hermitian matrices computed from given spectra[END_REF]. As in shown Fig. 3, h determine the lower band's bandwidth of generated matrices as the same value, and their upper band's bandwidth is bounded by 2pd. In this paper, denote SMG2S(p, d, h, spec) a collection of matrix generation suite determined by p, d, h and the prescribed spectral distribution function spec, which can create sparse non-505 Hermitian test matrices with different sizes.

Convergence Evaluation

In this section, we evaluate the numerical performance of m-UCGLE for solving non-Hermitian linear systems compared with conventional BGMRES. In the experiments, the total number of RHSs of linear systems to be solved for each test is fixed as 64. As shown in Figure 4, we propose three strategies to divide these systems into various subgroup: Moreover, for m-UCGLE with 4 or 16 allocated components, they can be applied either with or without the preconditioning of B-LSP using approximate eigenvalues. Denote the special variant of m-UCGLE without B-LSP preconditioning 525 as m-BGMRES. m-BGMRES is also able to reduce the global communications through allocating multiple BGMRES components by the manager engine. Table 2 gives the naming of the five alternatives to solve linear systems with 64 RHSs and 3 are generated by SMG2S(1, 3, 4, spec), the definition of spec functions for different tests are shown in Table 3. For example, the spec of TEST-1 is given as (rand(21.0, 66.0), rand(-21.0,24.0)), the first part rand(21.0, 66.0) defines that the real parts of given eigenvalues for TEST-1 are the floating numbers generated randomly in the fixed interval [21.0, 66.0], similarly its imaginary parts are randomly generated in the fixed interval [-21.0, 24.0]. The relative tolerance for the convergence test is fixed as 1.0 × 10 -8 , the Krylov subspace size m g is given as 40 for all tests, the number of times that B-LSP applied in m-UCGLE l, the degree of Least Squares polynomial in B-LSP, the number of BGMRES restarts between two times of B-LSP preconditioning are respectively set as 10, 15 and 1. For m-BGMRES(16)×4, m-BGMRES(4)×16, m-UCGLE(16)×4 and m-UCGLE(16)×4, their iteration steps in Table 3 are defined as the maximal ones among their allocated components to solve the systems.

Result Analysis

The iteration steps of different methods for convergence are shown in Table 3 (dnc in this table significates do not converge in 5000 iteration steps). In this table, the blue and red cells represent respectively the worst and the best cases for each test.

From Table 3, firstly we can conclude that the enlargement of the Krylov subspace by more RHSs in BGMRES is effective to accelerate the convergence for TEST-1, TEST-2, TEST-3, and TEST-6. However, this acceleration cannot always be guaranteed. Referring to TEST-4 and TEST-5, m-BGMRES( 16))×4 converge faster than BGMRES(64). Secondly, m-UCGLE components converge much faster than their related m-BGMRES with the same number of RHSs, except in TEST-6. In the TEST-2, TEST-3, TEST-4, and TEST-5 of this table, m-UCGLE with 16 RHSs works even much better than BGMRES with 64

RHSs. An extreme special case in TEST-4 shows that convergence of m-UCGLE(4)×16 and m-UCGLE(16)×4 have the speedup respectively 3× and 9.5× over m-BGMRES [START_REF] Vital | Etude de quelques méthodes de résolution de problemes linéaires de grande taille sur multiprocesseur[END_REF].

In conclusion, for most tests, the method that converges the fastest is m-UCGLE( 16 
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The iteration step for convergence is not the only concern about the iterative methods. After the convergence comparison of m-UCGLE and BGMRES, in this section, we evaluate its strong scalability and performance on supercomputer ROMEO. One important concern of BGMRES is the time cost per iteration, due to the communication bound of SpGEMM. In order to evaluate the parallel performance of m-UCGLE on large clusters, we compare the strong scaling of m-BGMRES(4)×16, m-UCGLE(4)×16, m-BGMRES( 16)×4, m-UCGLE(16)×4 and BGMRES(64) by their average time cost per iteration.

For the strong scaling evaluation on CPUs, the methods tested are set up the same as in Section 6. The test matrix is generated by SMG2S(1, 3, 4, spec) with size fixed as 1.792 × 10 6 . No larger matrices are tested, due to the memory limitation during the Arnoldi projection of BGMRES. The Krylov subspace size m g for all methods is set as 40. The average time cost for these methods is computed by 100 iterations. Time per iteration is suitable for demonstrating scaling behavior. The total CPU core number for B-GMRES( 64 In Figure 5, we can conclude that the strong scaling of m-BGMRES(4)×16 and m-UCGLE(4)×16 perform very well, the strong scalability of the rest are bad, especially BGMRES(64). In the beginning, the scalability of m-BGMRES(16)×4 and m-UCGLE(16)×4 is good, but it turns bad quickly with the increase of CPU number. It is demonstrated that the properties of m-UCGLE to promote the asynchronous communication and localize of computation can improve significantly the parallel performance of BGMRES for solving systems with multiple RHSs. Additionally, for the m-BGMRES and m-UCGLE with the same number of RHSs, the time per iteration of former is a little less the latter, since m-UCGLE introduces the iterative operations (SpGEMM) by B-LSP preconditioning.

Since m-UCGLE uses additional computing units for other components especially s-KS Component, it is unfair only to compare the scaling performance that total CPU number of all BGMRES Components in m-UCGLE equals to these numbers of m-GMRES and BGMRES(64). Thus we plot two more curves of m-UCGLE(4)×16 and m-UCGLE( 16)×14 with all their CPU numbers (including the CPU of s-KS Component) in Figure 5.

The two additional curves are respectively the blue and green ones with the marker set as the cross. It is shown that m-630 UCGLE(4)×16 and m-UCGLE( 16)×4 can still have respectively up to 35× and 4× speedup per iteration against BGMRES(64).

Time Consumption Evaluation

After the evaluation of parallel performance, we compare the time consumption of all methods to solve large-scale lin-635 ear systems with multiple RHSs on CPUs. The test matrices are generated by SMG2S(1, 3, 4, spec), the same as the convergence evaluation in Section 6. The size of matrices are all 1.792 × 10 6 for the experiments on CPUs, the total numbers of CPU cores for different methods (either BGMRES Compo-640 nents in m-UCGLE and m-GMRES or conventional BGMRES) are respectively fixed as 1792, and the Krylov subspace size m g is set as 40. The results on CPUs is given in Table 4, where the blue and red cells represent respectively the worst and the best cases for each test.
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We can find that for the TEST-2, TEST-3, TEST-4, TEST-4, m-UCGLE(4)×16 take the least time to converge. For TEST-1 and TEST-6, m-BGMRES(4)×16 takes a little less time than m-UCGLE(4)×16 to get the convergence. For an extremely special case TEST-4, m-UCGLE(4)×16 has about 100× speedup in 650 time consumption over BGMRES(64) to solve the linear systems with 64 RHSs.

Performance Analysis

In conclusion, m-UCGLE(4)×16 and m-GMRES(4)×16 with the most decrease of global communications have the best strong 655 scaling performance. m-UCGLE cost a little more time per iteration compared with m-BGMRES with the same number of RHSs, but this might be made up by its decrease of iterative steps with B-LSP preconditioning. The experiments in this section demonstrate the benefits of m-UCGLE to reduce global 660 communication and promote the asynchronization. Two more important points that cannot be concluded from the experiments in this paper are:

(1) The increase of memory requirement should be considered when dividing the whole RHSs into subsets;
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(2) The number of RHSs per component of m-UCGLE to enlarge the search space and the computation time per iteration should be balanced to achieve the best performance.

Requirement of Workflow Environment for UC Approach

After the validation of the numerical and parallel perfor-670 mance of m-UCGLE, a major difficulty to profit from UC methods including m-UCGLE is to implement the manager engine which can well handle their fault tolerance, load balance, asynchronous communication of signals, arrays and vectors, the management of different computing units such as GPUs, etc. In this paper, we tried to give a naive implementation of the engine to support the management tasks on the homogeneous platforms based on MPI SPAWN and MPI non-blocking sending and receiving functionalities. Further development of this engine should be done to support the manager of the computing algorithms and their asynchronous communication on more different computer architectures and platforms, such as the multi-GPU connected with NVLink on ROMEO. The stability of this implementation of the engine cannot always be guaranteed. Thus we are also thinking about to select the suitable workflow/task based environments to manage all these aspects in the UC approach. YML 4 is a good candidate, which is a workflow environment to provide the definition of the parallel application independently from the underlying middleware used. The special middleware and workflow scheduler provided by YML al-690 lows defining the dependencies of tasks and data on the supercomputers [START_REF] Delannoy | Yml: un workflow scientifique pour le calcul haute performance[END_REF]. YML, including its interfaces and compiler to various programming languages and libraries, will facilitate the implementation of UC based methods with different numerical components. We plan to replace the manager engine of 695 m-UCGLE by YML in the future.

Conclusion and Perspectives

This paper presents m-UCGLE, an extension of distributed and parallel method UCGLE to solve large-scale non-Hermitian sparse linear systems with multiple RHSs on modern supercom-700 puters. m-UCGLE is implemented with three kinds of computational components which communicate by the asynchronous communication. A special engine is proposed to manger the communication and allocate multiple different components at the same time. m-UCGLE is able to accelerate the convergence, minimize the global communication, cover the synchronous points for solving linear systems with multiple RHSs on large-scale platforms. The experiments on supercomputers prove the good numerical and parallel performance of this method.

Various parameters have impacts on the convergence. Thus, the auto-tuning scheme is required in the next step, where the systems can select the dimensions of Krylov subspace, the numbers of eigenvalues to be computed, the degrees of Least Squares polynomial according to different linear systems and cluster architectures. The fault tolerance and reusability of m-UCGLE and the influence of multiple s-KS components with different shifted values need to be evaluated. Parallel performance on heterogeneous clusters (e.g., multi-GPU) should be tested with further development of the manager engine, and workflow based model can be applied to replace the proposed manager engine

Algorithm 1 for j = 1 , 2 ,

 112 Non-Restarted Block GMRES Algorithm 1: function BGMRES(input:A, m, B, X 0 ∈ C N×s of full rank, output: X) • • • , m do 5:

  195 tems, LS and ERAM Components work as the preconditioning part. The asynchronous communication of this hybrid method among three components reduces the number of overall synchronization points and minimizes global communication. The workflow of UCGLE with three computing components is given 200 by Figure 1: ERAM Component computes the desired number of dominant eigenvalues, and then sends them to LS Component; LS Component uses these received eigenvalues to generate a new residual vector, and sends it to GMRES Component; GMRES Component uses this residual as a new restarted initial 205

210

  flated preconditioner. The difference is that the asynchronous communication among the different computing components of the latter reduces the global communication and synchronization, improves the fault tolerance and the reusability of this method. The three computing components work independently 215 from each other, when errors occur inside of ERAM, GMRES or LS Component, UCGLE can continue to work as a standard restarted GMRES method. The materials for accelerating the convergence are eigenvalues. These values can be improved on the fly, introducing a continuous improvement of convergence 220 while solving the linear systems. With the help of asynchronous communications, approximated eigenvalues by ERAM Component can be stored into a local file and reused for the other solving procedures with the same matrix. UCGLE is a distributed and parallel method which can profit both shared memory and 225 distributed memory of computational architectures with multiple levels of parallelism.UCGLE is used to solve non-Hermitian with single RHS, thus its GMRES Component should be replaced by a BGMRES algorithm, and a deflation technique by Least Squares polyno-

  230

Figure 1 :

 1 Figure 1: Workflow of UCGLE method [1].

5 :

 5 275RES in UCGLE. In this section, we will present the B-LSP Algorithm 2 Shifted Krylov-Schur Method 1: function s-KS(input: A, x 1 , m, σ, output: Λ k with k ≤ p)2:A ← A -σI 3: Build an initial Krylov decompostion of order m 4: Apply orthogonal transformations to get a Krylov-Schur decompostion Reorder the diagonal blocks of the Krylov-Schur decompostion 6: Truncate to a Krylov-Schur decompostion of order p 7:Extend to a Krylov decomposition of order m 8:

Algorithm 3

 3 Least Square Polynomial Pre-treatement 1: function LS(input: A, B, d, Λ r , output: A d , B d , ∆ d , H) 2: construct the convex hull C by Λ r 3: construct ellispe(a, c, b) by the convex hull C 4: compute parameters A d , B d , ∆ d by ellispe(a, c, b) 5: construct matrix T (d + 1) × d matrix by A d , B d , ∆ d 6: construct Gram matrix M d by Chebyshev polynomials basis 7: Cholesky factorization M d = LL T 8: F d = L T T 9: H d satisfies min l 11 e 1 -F d H 10: end function 3.3. Analysis Suppose that the computed convex hull by B-LSP contains eigenvalues λ 1 , • • • , λ m , the restarted residual for BGMRES generated by B-LSP for solving Equation (1) can be divided into two parts:

Algorithm 4

 4 Update BGMRES residual by LS Polynomial 1: function LSUpdateResidual(input:A, B, A d , B d , ∆ d , H d ) 2:
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  the global communication and synchronization points, we design and implement a new manager engine for m-UCGLE. As shown in Figure2, the new engine allows creating a number of different computing components at the same time. Suppose that we have allocated n g BGMRES Components, n k s-KS Components and 1 B-LSP Component. The exact implementation for s-KS, B-LSP, BGMRES Components and manager process are respectively given in Algorithms 5, 6, 7 and 8. Denote the BGMRES Components as BGMRES[k] with k ∈ 1, 2, • • • , n g , and the s-KS Components as s-KS[q] with q ∈ 1, 2, • • • , n a . The matrix B in Equation (

# 1 s-KS # 2 Figure 2 :

 122 Figure 2: Manager Engine Implementation for m-UCGLE.
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  computing components. Same as UCGLE, m-UCGLE has multiple levels of parallelism for distributed memory systems: 1. Coarse Grain/Component level: it allows the distribution of different numerical components, including the precon-450 ditioning part (B-LSP and s-KS) and the solving part Algorithm 6 B-LSP Component 1: function B-LSP-EXEC(input: A, b, d) 2:

  2 https://romeo.univ-reims.fr Algorithm 8 Manger of m-UCGLE with MPI Spawn 1: function Master(Input : n g , n a )

Figure 4 :

 4 Figure 4: Different strategies to divide the linear systems with 64 RHSs into subsets: (a) divide the 64 RHSs into to 16 different components of m-UCGLE, each holds 4 RHSs; (b) divide the 64 RHSs into to 4 different components of m-UCGLE, each holds 16 RHSs; (c) One classic BGMRES to solve the linear systems with 64 RHSs simultaneously.

510 6 . 1 .

 61 Specific Experimental Setup

515( 1 )

 1 1 group with all 64 RHSs solved by classic BGMRES (shown by Figure 4(c)); (2) 4 allocated BGMRES Components in m-UCGLE with each holding 16 Rhs (shown by Figure 4(a)); (3) 16 allocated BGMRES Components in m-UCGLE with each 520 holding 4 Rhs (shown in Figure 4(b)).

Table 3 :

 3 Iteration steps of convergence comparison (SMG2S generation suite SMG2S(1, 3, 4, spec), relative tolerance for convergence test = 1.0 × 10 -8 ), Krylov subspace size m g = 40, s use = 10, d = 15, L = 1, dnc = do not converge in 5000 iteration steps). Method spec m-BGMRES(4)×16 m-UCGLE(4)×16 m-BGMRES(16)×4 m-UCGLE(16)×4 BGMRES(64) TEST-1 (rand(21.0, 66.0), rand(-21.0,24.their allocated components and the numbers of RHSs per component. These 64 RHSs for the tests are all generated in random with different given seed states. All the test matrices from TEST-1 to TEST-6 in Table

  )×4. The combination of enlarging the search space by enough number of RHSs and preconditioning by B-LSP makes substantial acceleration on the convergence of solving linear systems. Moreover, compared with classic BGMRES, due to the preconditioning of B-LSP, m-UCGLE with less RHSs and smaller search space can still have a better 575 acceleration of the convergence. The potential damages caused by the localization of computation and reduction of global communications with less RHSs of each component in m-UCGLE can be covered by the B-LSP preconditioning.

  ) and all BGMRES Components in m-UCGLE and m-BGMRES ranges from 224 to 1792. Thus for each BGMRES Component of m-BGMRES(4)×16 and m-UCGLE(4)×16, the number ranges from 14 to 112. Similarly, for each BGMRES Component of m-BGMRES(16)×4 and m-UCGLE(16)×4, this number ranges from 56 to 448. All the tests allocate only 1 s-KS Component which always has the same number of CPU cores with each BGMRES Component inside m-UCGLE.

  LL T by the Cholesky factorization. The parameters H can be computed by a least squares problem of the formula:min l 11 e 1 -F d H(4)With the definition of Ω i ∈ R N×s by Ω i = t i (A)R 0 , we can and

, • • • , η d-1 ), we construct a modified gram matrix M d with dimension d × d, and matrix T d with dimension (d + 1) × d by the three terms

Table 1 :

 1 Memory and Communication Complexity Comparison between m-UCGLE and BGMRES.

			m-UCGLE	BGMRES	ratio
		Memory	O(	nnz(ng+s) Pg	)	O( nnz(1+s) Pg	)	ng+s 1+s
		Communication	O(	nnzsPg ng )		O(nnzsP g )	1 ng
	Algorithm 5 s-KS Component		
	1: function s-KS-EXEC(input: A, m a , ν, r, a )
	2:	while exit==False do		
	3:	s-KS(A, r, m a , ν, a , output: Λ r )
	4:	Send (Λ r ) to LS			
	5:	if Recv (exit == T RUE) then
	6:	Send (exit) to LS Component
	7:	stop					
	8:	end if					
	9:						

3 :

 3 LS(input:A, b, d, Λ r , output: A d , B d , ∆ d , H d )

	4:	Send (A d , B d , ∆ d , H d ) to GMRES Component
	5:	end if
	6:	if Recv (exit == T RUE) then
	7:	stop
	8:	end if
	9: end function
	Algorithm 7 BGMRES Component
	1: function BGMRES-EXEC(input: A, m g , X 0 , B, g , L, l,
		output: X m )
	2:	

Table 2 :

 2 Alternative methods for experiments, and the related number of allocated component, Rhs number per component and preconditioners.

	Method	Component nb	RHS nb per component	Preconditioner
	BGMRES(64)	1	64	None
	m-BGMRES(16)×4	4	16	None
	m-BGMRES(4)×16	16	4	None
	m-UCGLE(16)×4	4	16	B-LSP
	m-UCGLE(4)×16	16	4	B-LSP

  BGMRES(64); test matrix size is 1.792 × 10 6 ; X-axis refers to the total number of CPUs from 224 to 1792; Y-axis refers to the average execution time per iteration. A base 2 logarithmic scale is used for all X-axis, and a base 10 logarithmic scale is used for all Y-axis.

	585	7.1. Strong Scalability Evaluation
			m-UCGLE(4)x16 (total CPUs)	m-BGMRES(4)x16
			m-UCGLE(4)x16	m-BGMRES(16)x4
			m-UCGLE(16)x4 (total CPUs)	BGMRES(64)
			m-UCGLE(16)x4
			10 1	
		Time (s)	10 0	
			10 -1	
			224	448	896	1792
				CPU core number
		Figure 5: Strong scalability test on CPUs of solving time per iteration for m-
		BGMRES(4)×16, m-UCGLE(4)×16, m-BGMRES(16)×4, m-UCGLE(16)×4,

Table 4 :

 4 Consumption time (s) comparison on CPUs (SMG2S generation suite SMG2S(1, 3, 4, spec), the size of matrices = 1.792 × 10 6 , relative tolerance for convergence test = 1.0 × 10 -8 ), Krylov subspace size m g = 40, l = 10, d = 15, L = 1, dnc = do not converge in 5000 iteration steps).

	Method	spec	m-BGMRES(4)×16	m-UCGLE(4)×16 m-BGMRES(16)×4 m-UCGLE(16)×4 BGMRES(64)
	TEST-1 (rand(21.0, 66.0), rand(-21.0,24.0))	34.2	35.3	133.9	98.9	362.8
	TEST-2	(rand(0.5, 3.0), rand(-0.5,2.0))	dnc	40.9	231.3	111.5	580.6
	TEST-3	(rand(0.2, 5.2), rand(-2.5,2.5))	dnc	66.0	dnc	145.8	522.5
	TEST-4	(rand(-5.2, -0.2), rand(-2.5,2.5))	dnc	68.2	768.3	178.2	6829.3
	TEST-5	(rand(-0.23, -0.03), rand(-0.2,0.2))	132.3	50.1	209.4	120.5	1959.5
	TEST-6	(rand(-9.3, -3.2), rand(-2.1,2.1))	11.4	34.1	87.8	91.7	275.8

algorithm with an effective and robust restarting scheme and numerical stability. 1 https://github.com/brunowu/m-UCGLE

recurrence of the basis t i . M d can be factorized to be M d =

https://smg2s.github.io
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obtain the Equation [START_REF] Malhotra | Iterative solution of multiple radiation and scattering problems in structural acoustics using a block 745 quasi-minimal residual algorithm[END_REF], and in the end iteration [START_REF] Barbella | Block krylov subspace methods for the computation of structural response to turbulent wind[END_REF].

The pre-treatement of this method to obtain the parameters in the future. 4 http://yml.prism.uvsq.fr/