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ON THE CHAPMAN-ENSKOG ASYMPTOTICS FOR A
MIXTURE OF MONOATOMIC AND POLYATOMIC RAREFIED
GASES

CELINE BARANGER, MARZIA BISI, STEPHANE BRULL,
AND LAURENT DESVILLETTES

ABSTRACT. In this paper, we propose a formal derivation of the Chapman-
Enskog asymptotics for a mixture of monoatomic and polyatomic gases. We
use a direct extension of the model devised in [8, 16] for treating the inter-
nal energy with only one continuous parameter. This model is based on the
Borgnakke-Larsen procedure [6]. We detail the dissipative terms related to the
interaction between the gradients of temperature and the gradients of concen-
trations (Dufour and Soret effects), and present a complete explicit computa-
tion in one case when such a computation is possible, that is when all cross
sections in the Boltzmann equation are constants.

1. INTRODUCTION

In the computations of the flow around a shuttle in the context of reentry in the
upper atmosphere, it is necessary to use a kinetic description (that is, Boltzmann
equations) since the Knudsen number Kn (defined as the mean free path of a
molecule of the gas divided by a characteristic length of the shuttle) is of order 1
(or larger) at high altitude. It is also necessary to couple this kinetic description
with a coherent macroscopic description used at lower altitudes where the Knudsen
number becomes much smaller than 1.

Such a coupling is well understood for one monotamic gas thanks to the estab-
lishment of the Chapman-Enskog asymptotics, which clarifies (at the formal level,
cf. [2], [11], and, in a perturbative context, also at the rigorous level, cf. [24])
the relationships between the Boltzmann equation and the compressible Navier-
Stokes(-Fourier) equations of one perfect monoatomic gas. The link between the
cross section in the Boltzmann equation and the dependence of the transport co-
efficients (viscosity and heat conductivity) w.r.t. temperature is related to the
resolution of a specific linear Boltzmann equation (cf. [15] for example), which can
be solved in some specific situations, including the case of Maxwell molecules (cf.
[11]). A survey on recent advances on fluid-dynamic limits of kinetic models, with
both formal and rigorous proofs, may be found in [22].

It is however important to perform the Chapman-Enskog asymptotics in situa-
tions much more complicated than the ones in which is considered only one single
monoatomic gas. Indeed, the main chemical species found in the upper atmosphere
of the earth are the molecular oxygen (Oz) and the molecular nitrogen (Nz), which
are both diatomic. Moreover, due to the chemical (dissociation/recombination)
reactions taking place in the heated air surrounding a shuttle, one should also
(at least) take into account the atomic oxygen O, the atomic nitrogen N (both
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are obviously monoatomic) and the diatomic nitrogen monoxide NO. As a con-
sequence, it is important to be able to treat mixtures of several monoatomic and
polyatomic gases with different masses (note that it is possible to approximate the
masses of No, Oy and NO by a common value, but this cannot be generalized if
one takes into account the (atomic) argon Ar, whose concentration in the upper
atmosphere is not unsignificant). Other interesting physical applications involving
polyatomic gases are discussed in the monographs [34], where transport phenomena
in multi-component plasmas are examined, and [29], where the authors investigate
conditions of a strongly vibrational and chemical non—equilibrium state, developing
methods of kinetic theory in the approximation of the state-to-state kinetics.

Our goal is to present in detail the Chapman-Enskog asymptotics in a model
as simple as possible fulfilling the assumptions described above (that is, taking
into account a mixture of several monoatomic and polyatomic gases with different
masses), and which enables to recover at the macroscopic level a set of compressible
Navier-Stokes equations for perfect gases with general energy laws. The model
proposed in [8, 16] almost fulfills those assumptions. It uses as unknowns the
number densities in the phase space f(i)(t,xw,l) of particles of the i-th species
which at time ¢ and point x move with velocity v and have a one-dimensional
internal energy parameter I > 0. The choice of one parameter in the model enables
to get quite general energy equations, but unfortunately not the energy equation
of monoatomic gases (which can be recovered only as a limit of the model). In
order to integrate the possibility of having mixtures of monoatomic and polyatomic
species, we introduce therefore in the model of [16] collision kernels for monoatomic-
diatomic collisions (these kernels are described in section 2). For some applications
of such models we refer to [25], [32], [20]. In particular in [25], the authors highlight
different types of shock profiles which are specific to the polyatomic setting by using
the model given in [1], [10], [26]. In [17], a numerical model for polyatomic gases
using the reduced distribution technique is derived.

In order to test the compatibility of numerical (usually DSMC) codes used at the
kinetic level with fluid mechanics codes used at the macroscopic level, it is useful
to have one example in which the transport coefficients can be explicitly derived
from the cross sections used in the Boltzmann equation. We provide in this paper
such an explicit computation (that is, when the cross sections are constants). This
computation can be seen as an extension of classical computations of transport
coefficients for monoatomic gases with a cross section of Maxwell molecules type
(cf. [11]).

We notice that in [18], [21], [19], [33] the authors describe the internal energy
variable with a discrete parameter. In [18], [21], [19], a Chapman-Enskog expan-
sion is performed starting from the Boltzmann collision operator given in [33].
This way of modelling has been adopted in [23], [4], where kinetic equations of
Boltzmann or BGK-type are built up for mixtures of gases undergoing also a bi-
molecular reversible chemical reaction. In [4] the hydrodynamic limit of the BGK
model for a fast reactive mixture of monatomic gases is derived, at both Euler and
Navier-Stokes levels, by a Chapman-Enskog procedure in terms of the relevant hy-
drodynamic variables. This BGK model has been recently generalized in [3] to a
mixture of polyatomic gases (inert or reacting), each one having a set of discrete
energy levels; the relevant asymptotic limit is available only for a single gas, and
its comparison with phenomenological results obtained in the frame of Extended
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Thermodynamics seems to be promising [5]. Suitable fluid-dynamic closures for
a single polyatomic gas have been achieved in the case of a continuous internal
energy [30], and the state of the art on the matter may be found in the book [31].
However, for the reasons explained above, in view of practical applications, it is
important to provide a complete Navier—Stokes description for a mixture involving
monoatomic and polyatomic species, and this is the aim of our work.

The paper is organised as follows. In section 2, the kinetic model for mixtures
of monoatomic and polyatomic gases is introduced, Boltzmann kernels are writ-
ten down together with the corresponding linear operators, and conservations laws
associated to the kernels are recalled. In section 3, the asymptotic expansion is
performed, and the various transport terms appearing in the Navier Stokes system
are described and linked to the cross sections of the Boltzmann kernels. Then,
section 4 is devoted to the complete treatment of the case when all cross sections
are constant: in this case all transport terms can be made explicit, obtaining thus
Navier—Stokes equations consistent with the physical expectations (see [28], [21]).
Some basic integrals widely used in the procedure are finally listed in a short Ap-
pendix A, and some steps of the computations needed in Section 4 are detailed in
Appendix B.

2. BOLTZMANN KERNELS FOR A MIXTURE OF RAREFIED MONOATOMIC AND
POLYATOMIC GASES

In this section, we present a direct extension of the model devised in [16] to the

case of a mixture of monoatomic and polyatomic gases.

2.1. General definitions. We consider a mixture of A monoatomic gases and
B polyatomic gases. The distribution function (at time ¢, point x and velocity

v) of each monoatomic species i € {1,...,A} is denoted by f®(t,z,v), where
(t,z,v) € Ry x R3 x R3. Then, we introduce for the polyatomic species i € {A +
1,..., A+ B} a unique continuous energy variable I € R, collecting rotational

and vibrational energies. Therefore the polyatomic species are represented by the
quantity f@(t,x,v,I), where (t,z,v,I) € Ry x R? x R® x R,. Following [8] and
[16], we introduce (for each poyatomic species i = A+ 1,..., A 4+ B) a function
wi(I) > 0, which is a parameter of the model. This function is related to the
energy law obtained at the macroscopic level for the considered species i (cf. [14]),
for example ;(I) = 1 for the energy law of diatomic gases e = gT (e being
the macroscopic internal energy by unit of mass, and T being the temperature,
computed in a unit such that the constant of perfect gases is 1).

In the following, the quantity f(*¢; represents the classical distribution function
(see Remark 1).

Note that the discrete internal energy levels obtained from quantum mechanics
enable a much more detailed description of the rotational and vibrational states
of a polyatomic molecule than the crude Borgnakke-Larsen procedure used in this
paper.

The interest of using this procedure (and of considering one single continuous
internal energy parameter) resides in the very simple way in which it can then be
implemented in (already existing) DSMC numerical codes used in an engineering
context.
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Finally we define the mass m; of a molecule of species i, and recall the definition
of macroscopic quantities:

The (macroscopic) mass of monoatomic species i € {1,..., A} (at time ¢ and
point x):

p(l) =m; n(z)(tam) = / f(Z)(t7x7v) m; dv.
R3

The (macroscopic) mass of polyatomic species i € {A+1,..., A+ B} (at time
t and point z):

P =m;n9(t,z) = / / FO 2,0, 1) m; @i (1) dIdv.
Rr3 Jo
The momentum of monoatomic species ¢ € {1,..., A} (at time ¢ and point z):
min D (¢, ) u? (¢, z) = FOt, z,0)m; v do.
R3

The momentum of polyatomic species i € {A+ 1,..., A+ B} (at time ¢t and
point x):

o
minD (t, z) u?(t, z) ::/ / FO(t, 2,0, 1) msv s (I) dIdv.
r3 Jo

The (macroscopic, internal) energy of monoatomic species ¢ € {1,..., A} (at
time ¢ and point x):

m; n(’)(t,x) e (t,z) := / @ (t, 2, v) m; M

R 2

dv.

The (macroscopic, internal) energy of polyatomic species i € {A+1,..., A+ B}
(at time ¢ and point z):

min (t,z) e (t, ) := /

oo _ @ 2
/ FO(t, 2,0, <m,»|”“(t’$)+1> i(1) dIdv.
R3 JO

2

Since in this work we do not study chemically reactive collisions, we do not
introduce the formation energies Y. These energies should of course be introduced
if chemically reactive collisions were considered. They would enable to recover the
form of the Navier-Stokes systems which are used in combustion theory.

2.2. Collision operators. In this subsection, we define the collision operators
enabling to treat the collisions between the various types of gases (monoatomic and
polyatomic).

2.2.1. Collision operator for monoatomic species. We write here the usual Boltz-
mann kernel, for collisions between species i and j (4,7 € {1,..., A}).
We define (for f := f(v) > 0,9 := g(v) > 0):

(1)

@t = [ [ {9t - 50 a0 | 8y (1o = 0l 22

with

) dodv,,

e

U4 m .
(2) o = MU e, T v — vy 0,
m; +m; m; +m;
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mM; U+ M Uy my;
(3) v, = — I - — v — vy 0.
m; +m; m; +m;
The cross section B;; satisfies the symmetry constraint B;; = Bj;. As a con-
sequence, the operator satisfies the following weak formulation: For v; := 1;(v),
wj = wj (U)’

/me, 0) (v dv+/ Qi(g. )(0) 5 (v) do

5 L L L Area s} < () + 0560 - 00 - w0

X Bii| |v — v, V"% 5 dodv.dv.
J |'U—

o

This weak formulation implies the conservation of momentum and kinetic energy:

/RSQij(f,g)(U) ( 7::@ ) dv+/R$jS(g,f)(v) ( mﬁ ) dv = ( 8 )

together with the entropy inequality:
/ sz fr9)(v) In f(v dU"’/ Q]z g, f)(v) Ing(v) dv < 0.

2.2.2. Collision operators between monoatomic and polyatomic molecules. We write
here the asymmetric operator enabling to treat the collisions between a polyatomic

molecule (of mass m;, with ¢ € {A+1,..., A+ B}), and a monoatomic one (of mass
mj, with j € {1,..., A}). This operator is inspired from the operators presented
n (8], [14], [16].

We define (for f := f(v,I) and g := g(v)):

W auown= [ [ [ - renoe)

Bi; (\/7 E,R'? v — vl —— > R'/? ei(l )71de0'dv*,

o — o]
with
(5) U,:miv—i—mju* + m; 2RE0
m; +m; m; +m; ij ’

(6) U,:miv—i—mjv*_ m; 2REU

* m; + m; m; + m; i ’
(7) = (-R)E,
where p;; = - +mJ is the reduced mass, E = 2 wij [v —vi]? + 1 is the total energy

of the two molecules in the center of mass reference frame, and the parameter R
lies in [0, 1].
We also define the symmetric operator (with the same cross section)

uto 0= [ [ [ [ {o0) 5601 - ot e}
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x Bij (x/E RY2 |y — |, . a> RY? dRdodv, I,

v — vl
with
0 o o TavE i i J2RE,
m; +m; m; +m; Mg
©) o= mavEmiee _my  [2RE
m; +m]‘ m; +mj Hij
(10) I.=(1-R)E,
where p;; = m_::ii and E = % p; [v — v.]? + L.

These operators satisfy the following weak formulation (note that by symmetry,
the same cross section B;; appears in @Q;; and Qj;): for ¢; := ¥;(v,I) > 0, ¥, :=
Pi(v) =

/ | @utr o D eanr + [ Qo v do
R3 JO R3

:_%/RS / /W/S /01{f(v’J’)g(vi)—f(v,f)g(v*)}

x (wi(v’, I3 (1)~ (o, I)—wjm)) B, (VE RV [u—u,), |ja> RV2 dRdodv.dldv.

The weak formulation implies the conservation of momentum and total energy:

L[ astrawnen( e 1 ) atavt [ Quto o) (7 e Jar= (7).

together with the entropy inequality:
L] @stoenmen @i [ Qs He) mgw <o,
3.J0 3

2.2.3. Collision operators for polyatomic molecules. We finally present the operator
enabling to treat the collisions between two polyatomic molecules of respective mass
m; and m; (i,j € {A+1,..., A+ B}). This operator is extracted from [16] (in the
case when no chemical reactions are considered).

We define (for f := f(v,I) > 0,g9:=g(v,I) > 0):

v Qo= [ [T [ [ {emeen - g

x By, (f E,RY? v —v,], ﬁ ) (1 — R) RM? p,(I)~\drdRdodI,dv.,
with
(12) o - m; v+ m; v m; 2RE -,
m; +m; m; +m; ij
(13) U,*:mivamjv*_ m; 2RE0,

mi + m; mi+m; \ g
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(14) I'=r(1-RE, I.=(1-r)(1-R)E,

mi m;

migm; s the reduced mass, E' = 1 pij|v — ve|? + I+ I, is the total

energy of the two molecules in the center of mass reference frame, and r, R lie in
[0,1].

where fi;; =

Remark 1. The collision operator defined in (11) can be rewritten as

utrnyen=[ [*[ [ {200 o0 eune

(D) fi(o, 1) @j(f*)fj(v*,l*)}

By (\ﬁ B, RV2 |0 — v, {22t

’)
X (1 — R) R? ¢;(I)~*drdRdodl,dv,.
ei(I)e; (L)

In this expression, ¢; f; represents the effective distribution function and %
i J

corresponds to the effective collision cross section. Note that using this description
of QQ;j, we recover the general shape of the collision operators presented for example

n (8], [18], [21].

Note also that the microreversibility property of B;; (cf. [16]) is consistent with
the one appearing in [33].

Using the symmetry constraints B;; = Bj;, one can show that these operators
satisfy the following weak formulation: for v; := ¥, (v,I), ¥; = v, (v, I),

L] esttownutnemdrs [ 7 Qe nw .0 e
R3 3

S L LT L et - sensenn)
(1) 4 00 1) = i) = w0 1) )

x Bi;(VE, RM? |v — v,], |” % 4)(1 - R) RY? drdRdwdl.dv.dIdv.
v

—

This weak formulation implies the conservation of momentum and total energy:

L[ estrawn (15 ) e i
+/Ra /Ooowg,f)(v,f) ( ﬁf”ﬂ ) (1) dIdv = ( g )

together with the entropy inequality:

(15) L] st miw et

+/]R3/0 jS(Q,f)(v,I) lng(U7I)SDj(I)dIdv <0.
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2.3. Linearized operators. We now introduce the Maxwellian distributions
n(?) mi|v—ul?+2r; I
exp| — ,
(27 T/m;)3/2 ¢;(T) 2T
withr; =0fori=1,...,Aandr;=1fori=A+1,..., A+ B.
In the formula above, ¢;(T) =1fori=1,..., A and

(17) 4i(T) := / 1) e T dr

fori=A+1,..., A+ B. We refer to [14] and [16] for those formulas in the case
when r; = 1. In the framework of [21], [19], this term is considered as an internal
energy partition of species i.

(16) M® .=

For any family of functions g( := ¢(9(v,I) withi = A+1,..., A+ B, one can
write

(18)
[MO) Quy(MD, M) o) + MO} Quy (MW g0, MO) | (VTV + 1 T)

=D K ((0, 1) = ¢ (VT +u, IT), (v,I) = g9 (v VT 4 u, I T))(V, J),
where K;; is defined below. Formulas very close to (18) can be written down when
at least one of the molecules is monoatomic (the only difference being that the
dependence w.r.t. the second variable of g(¥ and/or g does not appear).

We define now the global linearized operator (around a centered reduced Maxwellian,
and with a rescaled cross section) as

R Zj n@ Klj(h(l), h(j))
(19) K: ' —
L(A+B) 3, 0D Kappj (hA+5) 30))
This operator will play an important role in the study of the Chapman-FEnskog
asymptotics described in next section, and components K;; vary according to what

type of interactions we are dealing with (among monatomic molecules, or poly-
atomic molecules, or pairs of a monatomic and a polyatomic molecule).

Thanks to the entropy inequalities satisfied by the Q;; (such as (15)), it is possible
to show that /C is symmetric and semi-definite negative (so that often, one considers
—K), w.r.t to a scalar product defined below.

Note also that K is Galilean-invariant (isotropic w.r.t. the velocity variable) in
the following sense: for all isometric transformation R in O(3,R), one has (denoting
by o the composition w.r.t the velocity variable only),

(20) KW oR, ..., "B oR) (v, 1) = K(AWY, ... hA+B))(Ru, I).

We refer for example to [15] for a complete proof of these properties in the case of
one single monoatomic gas.

We begin the description of the Kj;; in the monoatomic-monoatomic case. For
i=1,...,A,j=1,..., A

(21) Kij(h9, h9)) (v / / e P
R3 JS2 27T/mj 3/2
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% [hD @)+ hD (') — kD (v,) — h@(v)] Bi;(VT v — .|, % . 0) do dv,
v — Uy
where v, v/, are defined in (2), (3).
We then turn to the monoatomic-polyatomic case. For i =1,... A, j = A+

A+ B,

——\v*\ —1I,
99 O, RO (v / / / /
( ) ( R3 S2 27T/mj 3/2

X [h(j) <v;, (1-R) E) + D @) = b9 (v,, L) — hD(v)
T - Ux
x —— Bi;(VTVENT RV?|v — v.|, ——* . ¢) RY* dR do dI. dv.,
q;(T) v — v,
with E =  j155 [v — v.|? + I, and v/, v/, defined in (5), (6).

Symmetrically, we write down the polyatomic-monoatomic case. For ¢ = A +
LA+B j=1,... A

——|v*
23 R RO (v, 1) / / /
( ) ( U R3 J§2 27T/mj 3/2

< B0 410 (0= R E) < h () < 100, 1)
Bi;(VTVE,VT R"? v — v.], ﬁ;v*l o) RY2 o;(I) " dR do dv.,
v — Uy
with E = 3 ;5 [v — v,]? + I and v/, v}, are defined in (8), (9).

Finally, we consider the polyatomic-polyatomic case. For i = A+ 1,..., A+ B,
j=A+1,...,A+ B,

I N =

X [h(j) <v;,(1 —7)(1-R) E) + h@ (U’,r(l —R) E>
Bi,(NTVENTRY? v — v,], —— . &)

T

_h(J)(U* L) — R (v, ])}
(IJ( )

x (1 — R) RY? p;(I)"Y dR dr do dI, dv,,
with E = 1 pu;; [v — v.|? + I + I, and v/, v/, are defined in (12), (13).

The Galilean invariance (isotropy in the space of velocities) can be seen on each
of the operators K;;. Namely for all isometric transformation R in O(3,R), one
has (denoting by o the composition w.r.t the velocity variable only),

(25) Kij(h oR, b9 oR)(v, I) = Kij (R, h9) (R, I).

We introduce now the scalar product that will be used throughout the pa-
per. Given two vectors k = (KW, ... kA+B)) and [ = (IM,... 1A+5E) with
EO k@ 1@ (A functions of V, and kATD L g(A+B) (A4 0 1(A+B)
functions of V, J, we define

V)2

@ [ T iy o
(k|1) Zn / 2w/mz)3/2k (1D W) av

RS

ol <
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A+B —(m; 2 + T) T ©.
e , , wi(JT)
26)  + ) / / OV, )19V, J) =2 dvd.
(26) vl RS 27r/m C(2r/my)3% (V. IRV, J) q:(T)

We observe that the operator I defined in (19) is symmetric w.r.t. the scalar
product (-|-), so that (admitting that it satisfies Fredholm’s property, which we
do here since we work at the formal level), its image is the orthogonal of its kernel.

We refer to [7], [12] and [9] for the Fredholm property in the case of a mixture
of monoatomic gases (with the same or different masses).

The kernel K of K can easily be found (provided that all cross sections B;; are
strictly positive). We refer for this to a computation done in [16].

It is constituted by the vectors [*7 (j =1,..., A+ B), 1Y% (z=1,2,3) and IZ,
defined as

1(1)7A7j 0
0
. 0
(27) 1A = OARAY; =11,
0
. 0
[(A+B).A.j 0
l(l),U,z my V'Z
(28) éUZ = - )
Z(A+B),U,z mayp V.,
l(l)’E mq VTQ +rJ
(29) ¥ = ' =
[(A+B).E MA+B VTZ +7ra4BJ

All of these properties will be useful for the description of the transport coeffi-
cients in the Navier-Stokes systems obtained in next section.

3. CHAPMAN-ENSKOG EXPANSION FOR A MIXTURE OF MONO- AND POLY-
ATOMIC GASES

We perform in this section the Chapman-Enskog expansion for a mixture of
mono- and poly- atomic gases, when the collision operators are defined by the
formulas developed in the previous section of this paper. The expansion is done
at the formal level, we do not try here to present a functional setting which would
be adapted for obtaining a rigorous expansion. We recall nevertheless that such a
setting exists in the case of one single monoatomic gas (cf. [24]).
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3.1. Principle of the expansion. We present in this subsection the basic ideas
underlying the Chapman-Enskog expansion. As in the previous section, we intro-
duce a mixture of A monoatomic gases and B polyatomic gases. We systematically
use the notations of subsections 2.1 to 2.3.

We start by writing the Chapman—-Enskog expansion for our mixture. We first
define the rescaled (w.r.t the Knudsen number) system of Boltzmann equations:

) ) A+B
(30) 0V v Vo fO = Z Qi (f9, f9),
where the operators @;; are defined by formulas (1), (4), (11).
We then look for solutions of the Boltzmann equation (30) under the form
() FO = M9 (14 e g00),

where M is a Maxwellian distribution of (number) density n{ = n® (t,z) >0,
macroscopic velocity u. = u.(t,x) € R3, and temperature T, := T, (t7 x) > 0, that

is (cf. (16))

(1) 2
. o — +2r; 1
5 20 Ne m; |v — ue| i
(32) & (2n T./m;)3/2 q;(T) exp( 2T, ’

withr; =0fori=1,...,Aand r; =1fori =A+1,..., A+ B. We also assume

(this is done without loss of generality, since one can perform a modification of the
parameters of the Maxwellian distribution by adding terms of order e, cf. [13] for

example) that the vector of perturbed distributions g = (gél), . 7gé’LH_B)), with

functions géi) = géi) (t,z,v) e Rfori=1,..., A, and géi) = gé )(t,x,v,I) € R for
i=A+1,...,A+ B, satisfies the conditions

(33) Vi=1,...,A+B, (g|I*") =0,
(34) Vze=1,...,3, (g|1"%) =0,
(35) (guE) =0,

where (-|-) is the scalar product defined in (26) and vectors [~7, 1Y% ¥

vided in (27), (28), (29).
Introducing (31) in equation (30), we get the (approximated) system of linear

are pro-

equations satisfied by ggi) fori=1,..., A+ B:
+
(MO)-1 (atMgn . szeu)) _ Z Qi (MD, MO g0

(36) + Qu(ML é% M),
Then for i =1,..., A, thanks to (18),
(37)

A
(M1 (&Mg(i)—i—vVIME(i)) = anj) Kij(v = gD (v /Tetus),v = g9 (v /Tetu))

Jj=1
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A+B
+ Z nl) Kij(v— gD (T +ue), (v, 1) = g9 (v Tz + ue, I T.)),
j=A+1

and for i = A+1,..., A+ B, thanks to (18) again,

(38) (M)~1 (&ME@ +v- va;”)

A
Z (j)KU ) = gD (0T + ue, IT), v g9 (0 /T2 + u))

A+B
+ Z n9 Kij((0, 1) = gD (v /Te +ue, [T, (v, 1) = g9 (0 /Tz +ue, ['TL))
j=A+1

where the linear operators K;; are defined by (21) — (23).
We can at this level write down the compressible Navier-Stokes equations (ne-
glecting terms of order £2) of the mixture under the following abstract form:

e Mass conservation for each monoatomic species: i =1,..., A

)

(39) 0O Ma(i) m; dv + V- Me(i) m;vdv = —eVy - Mg(i) ggi) m; v dv;

R3 R3 R3
e Mass conservation for each polyatomic species: i = A+ 1,..., A+ B,
(40) 8t/ Ma(i) m; (1) dIdv+V, - Ma(i) m; v (1) dIdv
r3 JR, RS JR,
=—eVy- M g8 m; v oi(I) dvdl;
R3 JR,

e Momentum conservation of the mixture (we consider the components k =
1,...,3):
A A+B

(41) 5}(2 MY m; vy, dv + Z / MY my; vy, s (1 )d]dv)
1=A+1
(Z M( mzvkvdv—&— // M()mzvkvgoz(f)dfdv)
i=A+1 RS JR4

A+B
=—eVg- (Z/ M9 ¢ my; v 0 do+ Z/ Mg(i)géi)mivkvgoi(l)dldv)

i=A+1
e Total energy conservation of the mixture:

A+B

(Z/ 2, P gy 3 // Mgﬂ( i > dIdv)
R3 i=A+1 3 IRy
( /M() Udv—I— // M()< )vgpz dIdU)
i=A+1 7R Ry
_ @ o) . P m, 2P |
= —£V, Z MO g m, vdv+ M ¢ i) vei(I)dIdv ).
i=1 /R 2 7A+1 RS JRy 2
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Next subsections are devoted to computations enabling to write these abstract
equations in such a way that they clearly appear as a system of compressible Navier-
Stokes equations for our mixture (with dissipative terms of order £, as always when
Chapman-Enskog expansions are concerned). In subsection 3.2, we compute the
Lh.s. of equations (39) — (42), which amounts to identifying the terms of order
0 in the expansion, corresponding to the system of compressible Euler equations
for the mixture. Then subsection 3.3 is devoted to the computation of the r.h.s,
of equations (39) — (42), which amounts to identifying the terms of order € in the
expansion, corresponding to the dissipative terms in the system of compressible
Navier-Stokes equations for our mixture.

3.2. Euler system. We present here as announced the computations for the 1.h.s.
of equations (39) — (42). We denote

7:(T) :/ Toi(I) e_I/TdI,
0

and do not write anymore the dependence w.r.t. ¢ of the various considered terms.
In the formalism of [21], [19], the term 7;(T")/q;(T) appearing in (50) corresponds to
the average internal energy of the i*" species. We first compute moments relations

for Maxwellian distributions (in the formulas below, components are labeled by
kl=1,...,3):

(43) Vi=1,..., A, MD m; dv =m;n®,
R3

(44) Vi=A+1,...,A+ B, / M m; @i (I) dIdv = m; n®,
R’ JR,

(45) sz]"‘7A7 M(Z)mlvkdq}:mzn(z)Uk,
R3

(46) Vi=A+1,...,A+ B, / M(i)mivkgoi(l)dldv:min(i)uk,
R JR,

(47) Vi=1,...,A, MDD m; v, v, dv = m; n™® ukul+n(i)T5kl,
R(}

(48)
Vi=A+1,...,A+B, / M(i)mivkvlg@i(l)dfdv:min(i)ukul—i—n(i)T(Skl,
Rs JR,

2 2
, . 3 .
(49) Vi=1,...,A, M(z)mi@dv:min(’)M—&—fn(z)T,
- 2 2 "2

2
Vi=A+1,...,A+ B, // M(i)<milv+l>cpi(l)dldv
R3 JR, 2

2
@l @[3, m(T)
(50) mint) =—+n |:2T+Qi(T) 7

: W ) lul? 5 G
(51) Vi=1,...,A, / MDD m, B vpdo = my n® 2 gy + =09 Ty,
s 2 2 2
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Vi=A+1,...,A+ B, // <Z>( ||+I)vk@i(1)dldv
RS JR, 2

: y, [95p, m(T)
59 o 1P @)y |2 MWD
(52) m;n 5 u +n'" uy 5 +q¢(T)
Using identities (43) - (52), we get as announced the Euler system in conservative
form (up to terms of order €) (remember that we use for the components the
notation k =1,...,3):

(53) i=1,...,A+B,  8(minD)+V, (m;n¥u) =0,
(54)

A+B A+B ) .
k= 1, ( Z m; n Uk> +Z@Il ( Z (Z) U U +n(Z)T6k:l]> :0,

1=1
A 2 A+B 2
INON NI P o 1w 3, m(T)

(55) 8t<;[mm 5ty ]+i§r1[mln o+ +ql(T)]

o lwl? 5 )
+Z&”l (Z [m; n® %ul +§n(’)Tul]
i=1

A+B

+ > [mint o [ | w + n® IBTJFZ:EQ}]):O

=A+1

Note that in these equations, one could introduce the formation energy at zero
temperature €Y of the i-th species. This term would in fact be unavoidable in the
equations if we also had considered chemically reactive collisions.

These equations can be rewritten under the following non conservative form,
which is useful for the computation of the dissipative terms (of order ¢) appearing
in the Chapman-Enskog asymptotics:

(56) i=1,..., A+ B, o' 4 (u-Vy)n® +nW v, .u=0,
Y 9, (0O T)

(57) k=1,...,3, Oyug, + (u - Vy)ug + Z?;Bmin(“ =0,

o8 T+ (u-Vy) T+2AT)TVy-u=0,

(58)

with

A+B L (5)
(59) A(T) = 2

.
A+B A+B Ny
300 42 S0 () (1)

3.3. Navier-Stokes system. In this subsection, we provide the dissipative terms
(viscosity, Soret and Dufour terms, etc.) of order ¢ which are typical of the
Chapman-Enskog asymptotics.
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3.3.1. Computation of the Lh.s of the linear equations (37), (38). We start with
the quantity

(MY [o,MD vV, MD],

which appears in the Lh.s. of (37), (38). Skipping all intermediate computations
and using identities (56) — (58) to eliminate temporal derivatives, we finally get

(60) (M(i))—l @tM(i) Fu- va(i)]
VT n(® Z;‘;B m; () Z;AJEB m; ) VT

() ()
n (’; —uf? (; - A(T)) ) % ri A(T) + 2 (3 T qg;) A(T) — 1) (Vpou)

+(mi |v7u|2+ I <5Jr qu(T)>) v—u VT
- 7 trimz— |5t : )
2 T T \2 a(T) VT VT

with
1
Pv)=v®v-— 3 |v|? Id.

We now wish to point out the specificities of the formulas above. First, the

term in P (%‘) is identical to the same term in the case of one monoatomic

gas. The term in % in the second term of identity (60) is typical of mixtures,
it does not appear when only one gas is considered. The term involving V,

appears only when at least one polyatomic gas is part of the mixture (since in a
mixture of monoatomic gase, one has A(T) = %). Finally, the last term has a

shape which depends on the monoatomic or polyatomic character of the species
i. When i € {1,...,A}, we recover the usual term (sometimes denoted by Q)

2
(% |v}“| - g) iﬁ , which is typical of monoatomic gases.

3.3.2. Orthogonality properties. In order to solve the linear system (37), (38), taking
into account (60), we need to use orthogonality properties.

We then introduce the following families (we indicate the dependences w.r.t. the

components by indices p =1,...,3, and sometimes ¢ =1,...,3 ):
kP Ppq(V)ma
PP = ' = ' :
KA+D)Ppa Poo(V) st
D@ vy (BVI g - G+nTER)
EQVP — _
L(A+D).Qp

m ! T
Vo (B2 V2 4 raen T - G+ rasn T 12))
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L(D,W sy
kY = =
k(AJr.B),W S(A+].3) Vv

for all families of three-dimensional vectors s(*) = (s%i), e ng)) (i=1,...,A+B)
such that
(61) s 4 4 AFB) p(A+B) —
and

J(1.D my V2 (3 = A(T)) = 2r1 JA(T) + (3 + 21 T S A(T) — 1

kP = ' =

A+B).D ) .

kA+B) masp V(5 = MT)) = 2rapp JAT) + (3+ 2rarp T BB A(T) — 1

where A(T) has been defined in (59).
Moreover, by computing ¢.(T") defined in (17), we get ¢.(T) = n;(T)/T?. Hence
by setting E; = n,(T)/qi(T), we get

) . 5 E.
9 .Qp — Miv2 g (24 .20
(62) k Vp<2V + i (2+7"ZT) ,

63) kDD — 2 A(T) (J; - J) 12 (; - A(T)) (m‘; - 2) .

Remembering that in the case of monoatomic mixtures, A(T) = %, we see that the
term (63) is non-zero in the case of the presence of a polyatomic component. With
these notations, the terms (62), (63) can be connected to terms appearing in [19],
[21].

In the sequel, use will be made also of the global matrices, collecting all compo-
nents for indices p,q = 1,...,3, which will be denoted by k” = (E"P9)
EQ = (EQ’p)pzl ..... 3.

In these families, the first A components only depend on V' (and not on J). Note
also that the families k9 and kP depend on T

One can check that the subspace

Span (kPP 9P BV ED)

p,q=1,...,3»

is orthogonal, with respect to the scalar product (-|-) defined in (26), to the
subspace

Span(1*7,19%,17).

In the case of kP 4 it is a direct consequence of the evenness properties and of
changes of variables of the type (V1, Vo, V3) — (V1, V3, V).

For k9" and k", the properties of evenness enable to consider only LU’Z, and for
p = z only. This last case can be treated by a direct computation.

Finally for ED , one needs to perform a direct computation for lA’j and LE , the
case of {V* being treated by evenness properties.

Still assuming the Fredholm property, notice that the families (k"7"7, k9P W kP )
belong to the image of K defined in (19), so that it is possible to find families of
functions such that their image by K is one of the functions of (k©77, k9P " EP).
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Moreover such a family of functions is unique if we also impose that it belongs to
the orthogonal of the kernel of K.

In other words, for all family of tridimensional vectors s, i = 1,..., A + B,
such that the relation (61) is satisfied, we can find the functions
BY = (hOWyisy ars,  BPPO= (RO ayp,
hP = (hDP), Ly avp, R9P = (K9P, aip, p,gq=1...3

(whose components depend on V fori =1,...,Aandon V, J fori = A+1,..., A+
B), satisfying the linear integral equations

(64) K(AY) = k", K(L"P7) = KPP K(hP) =k, K(A9P) = K97,
and the orthogonality relations:
Vi=1,...,A+B, (h|I®") =0,
Vz=1,...,3, (h|IY?) =0,
(n|17) =0,

with a generic notation b = h7P4, B@P BV pP,

3.3.3. Galilean invariance and computation of ¢). We now notice that thanks to
the Galilean invariance (25), we can write (cf. [15]) fori=1,..., A :

BOEPAV) = ROT(V]) Pg(V),  BOLR(V) = BOC (V) VP (V) = B2 (V)
and fori=A+1,...,A+ B:
WOPPaV, J) = RO (V] J) Pyg(V),  BOP(VT) = hDC(V], )V,
ROP(v, J) = RDP(|V], ).

Thanks to (37), (38), and the computations (60), we see that the previous defi-
nitions lead to the following formula for the perturbation ¢(*):

. T
65 i=1,...,A4 g(i)(Vﬁ+u)h(’)’P(V|)P(V):(W2vIu>

- - T )
+ APV Vs - u+ RDLGV) V- Vol | VT hOW(v),
VT
(66)

) . T
i=A+1,..., A+B ¢V VT+u, JT) = hOP(|V],J) P(V) : (W)
V.T
VT

with vectors s(V) appearing in £V (thus affecting h(i)’W) provided by

B A+B i A+B i
(67) s = Van® _mi 3y Vant ( Mo nm) el
T

n@ B g n0) S my )

+hOP(|V], D) Vo u+ ROV, )V - e+ VT ROW(V, ),

Note that the vectors s(*) satisfy the relation (61).
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Note also that performing some elementary manipulations, s can be rewritten

as
) ) ) . X (@) v
68 s =g g —g By B P VP
with
A+B ‘ A+B
n*ana pPi =My n ()7 plzn(l)Tv pzzpu
i=1

which is consistent with [19], [21]. The quantities d*) are the diffusion driving
forces.

3.3.4. Computation of the dissipative terms. We can then make explicit the com-
putation of the diffusion terms in the Chapman-Enskog expansion, that is the
quantities appearing as derivatives in the r.h.s of (39) — (42).

We begin by considering, fori=1,...,Aand k=1,...,3:
D,(:) = M® g(i) m; Vg dv.
R3
Hence by using a change of variables, we get

o 2

) ) mi—— V.. T
D — T “)/ L RORV) V-, Vi dV
k n - (27T/mi)3/2 (| |) \/T k

2
4l

T L h(i),W . '
VTl /]Rd (21 /m;)3/2 (V)VT m; Vi dV.

Hence according to evenness properties, it comes that

V|2

() _ (@) e 2 =0 IV 2
D;’ = T
B n /RS CSEE h ( = V2 dV 0y,

_m_mz
i

A0) / e Wy :
(69) +T'n'" m o @ )3/211 (V) Vi dV.

In the same way, fori=A+1,..., A+ Band k=1,...,3:

) +oo
D,(j) = / M ¢O v, i (1) dodI
0 R3

_ g [T 7‘37#7]7#)@ VI ) ve2YD 4y g0, 1
= /0 L (rmz ) vi iy v o

+oo _m@ ‘ JT)
70 T2 n i h(z V. NV oi( .

In the previous relation, the term A" depends on a linear combination of
the terms s(), i € {1; A + B} defined in (67). Hence, we recover in this way the
interspecies diffusion terms (Fick) and the terms corresponding to the Soret effect.
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We then compute, for k,l =1,...,3,
A+B

/M(l)g m; Vg v dv + Z/ M(’)g )mlvkvl%( ) dvdl.
i=A+1

By using again a change of variable, and taking into account evenness properties
and the fact that for any function a := a(|V]),

/ a([V]) (Vf v1v2>dV—2/a<|V|>va§dv,
R3 R3

we get
A (i) 14
_ " j,(0).P \4
Fkl—< ‘/]RS 3/2 ( /7m1/ 3V1 av
A+B _
n . \4! 2 4pi(JT)
+ T2 A0 ( ,J) ~yh dvdJ
i ;1 g (27) 3/2 Vi 370 a(T)
, al o1
X{W_vm.wd]
2 3 Kl
: e v
TV, -ud @) / AP VEav
+ U kl(;n s (27)32 I, 1
A+B _
7 V] 2 ¢i(JT)
71 + O / / p(-D ( ) v dvdJ
7D Z;ﬂ Rs (2m)3/2 NG a:(T)
so that viscosity terms are recovered.
We finally compute (for k =1,...,3)
A+B o2
Z/RBM“ g® ml—vkdv—k Z / M@ g® (mi2—|—l> vk i (I) dodlI.
1=A+1

With the same change of variables as before and by using the expression of g(*) (cf.
(65) and (66)) and evenness properties, we get

n(?) |4 V|2
Gk—Zszuz—&-T{Zml /Rs 3/2 ()Q<||>| | V2 dV}&sz

i=1 V1 2
A+B (z) 7| |V| |V|2
(1),Q 2
{ > / /]R O hz (\/nTJ) (2+J> V2 0, (JT) dVdJ} 0, T
e—mi 'V‘Q |V|2
2 7 1
+T {ZM /Rs%/m)mhﬂ (V)m VdV}

A+B 2 Ve
’ @ ROAL VP
o { Z " / /Rs 27r/ml 3/2%( ) (V. J) [mz 5 + J:|

i=A+1
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In the previous formula, the terms h()'" contain a linear combination of the
gradients of the concentrations. Hence, this final computation shows the dissipative

terms corresponding to the (Fourier) diffusion of temperature, and those related to
the Dufour effect.

We finally write down the system (39) — (42) in the following semi-explicit form:

(73) 1=1,..., A+ B 8t(min(i))+vw~ (minDu) = —eV, - D,

(74)
A+B ‘ A+B ‘ ‘
k=1,...,3 8t< Z m; n(® uk) +ZBIZ( Z [min(” U Uy Jrn(l)T(Skl])
i—1 1 i=1
=—cY O Fu,
1
A 2 A+B 2
ORI 0 o @[3, mT)
(75) 8,5(2[771,71 5 —|—2n T]—|—‘Z [m;n 5 +n 2T+qi(T) ]
i=1 1=A+1
A 2 A+B 2
: 5 G iy |ul L i (T)
+> 0. ( min(l)mu += 0D T+ m; n® w4y {T—l—
2O i Syl 2 fran® e 5 T )
=—eV,-G.

In those equations, the terms D), Fjy and G are given by formulas (69), (70),
(71) and (72) in terms of the functions h()-@, hOW R)P and p)-P,

Before writing comments about the above equations, we explain some symmetry
properties between dissipative terms.

3.3.5. Symmetry of the Dufour et Soret terms. In this part, we perform a connection
with the formalism developed in [19], [21]. By introducing the specific enthalpy of
the it" species h; by

) —. 1
hi = (2T + riEy)—,
(76) (5T +7iE)—

i
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G, writes
V2
Gy = Faw+T) n / R W OQk () KD QK (V) aV 8, T
k Z kL W Z s 27r/m) V) V) k
A+B () ( T)
+ T // h()QkVJ @@k T dvV dJ d,, T
zzA;rl R3 JRy QW/mz ( ) ( )T %(T) §
—miVr _
+ T2 n%)/ eih(Z),W V) E@OQk (v dv
Z o T (V) (V)
A+B (JT)
+ 1) <>// h()W(VJ)k()Qk(VJ) v dJ
Paywit R JR, 27r/ml qi(T)
A+B

+ Z hiD](:)
i—1

Using relations (64), we get

3 A+B

Gr =Y Fuw +TK (k%) k9%)0,, T+ THK 1 (E"), k) Z hiDy".
=1

Next, by using the symmetry of the linearized Boltzmann operator, one obtains

2

—m, 2
(KTHEY), BN = znw Ls()h(”Qk(V)deV
k
r3 (2m/m;)?
A+B
(JT
+ // <Z>Q’€(VJ)V,€T‘/"(‘] ) av dJ
i= A+1 R3 /R4 27"/mz a:(T)

The first term of the right-hand side of this identity can be rewritten as

2

n(i)/ %h(i)’Q’k(V) ViedV = (h@* 50y = (h* (1d — Pe)b®),
3 (2m/m;)?

where b € R4*5 | and its components are defined by
(77) b = Vi by

Moreover, Pk is the projection on the kernel of K defined by (27), (28) and (29).
In the same way, we write, for i = A+ 1,..., A+ B,

—miTm— (JT i :
(Z)/ / 2 h(z) Q, k(V J) VkTLp ( )dVdJ — (QQ’k,b(Z)> — (hQ’k,wDZ%
rR3 JR, 27T/mZ

ai(T)
with
PP i= (Id = P)b®, ¢ = (855 — ntm, Wi, j=1.A+B, p:= gp“).
j=1
Hence by setting
(18) 6= (KTHEOM), 0P, A= TR (O4), K%,



22 C. BARANGER, M. BISI, S. BRULL, AND L. DESVILLETTES

we get
A+B A+B
(79) Gk—ZFklul Ao, T —p > 0,dD + 3" DY
=1 =1 =1

In this identity, the third term represents the Dufour effect.

Next we compute D( D a

D](gl = mzasz<hQ7k7 d}Dl> + mZT<hW7 ¢Dl>

Moreover, by using the definition A" and the symmetry of K=, we get
A+B

WY 9Py = mT 2 pPi L (P dD)
(WP = m ;njw (")

A+B

_ Z Cji dW,
j=1

with
Cji = —miT = <1/1D K= pP9).
Therefore,
A+B
(80) DY = b0y, In(T) = > Cj3d.

The first term represents the Soret effect whereas the terms C}; correspond to the
multicomponent flux diffusion coefficients. By comparison with the third term in
(79), we recover the symmetry property between Soret et Dufour effects, cf. [19],
[21].

3.4. Remarks on the result of the Chapman-Enskog computation. We
explain here the main differences between the system of Navier-Stokes equations
written in this work and the corresponding system for a mixture of monoatomic
gases:

e First, the energy equation makes use of the internal energy 3 3T + mgT)

instead of 3 7' (this of course would already be seen at the level of Euler
equations),

e Secondly, in the viscosity term FJ;, the second part (proportional to V- u)
only appears when polyatomic gases are considered (cf. comments at the
end of subsection 3.3.1).

4. EXPLICIT COMPUTATIONS IN THE CASE OF CONSTANT CROSS SECTIONS

The quantities A} which appear in the definition of ¢() and therefore in the
dissipative quantities D,(;), Fy; and Gy (which are part of the Navier-Stokes system
of compressible monoatomic and polyatomic gas mixtures) cannot in general be
explicitly computed.

As in the case of a single monotaomic gas, it is however possible to compute
them when the cross sections (here denoted by B;;) appearing in the collision
operators ();; are very simple. Therefore, in this section, we shall systematically
use the assumption that B;; is constant (and B;; = Bj;). Moreover, in order to be
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coherent with the fact that in the air, the main polyatomic species (that is, Oy and
Ny) are in fact diatomic, we also shall assume that foralli = A+1,..., A+ B, one
has p;(I) =1, and ¢;(T) =T.

In that specific case, the quantities EW, EP, ED7 and EQ can be written in the
following way:
EOW — () v, L().Ppa — mi Poy(V),
V[* 5

E@Qp — <mi2 - 2) Vp+7i (J— 1)V,

) 1
kD = (m;|V)? = 3) (3 - A) —2r; A(J —1).

Note that using the formalism of [33], [27] and [18], they can be rewritten as

LW _ () (;511000@‘7 L) Ppa — ¢>?000i|pq,
E(D.Qp — ¢210101|p i (blmoulp’ LD _ 9 (?1) _ A) @)0101 _ 2TiA¢?001i_

In the case when the B;; are not constant (and even if they only depend upon

‘Z:Z*l - 0), one needs to solve the linear (spatially homogeneous) integral problems

K(RY) = kY, etc., together with suitable orthogonality conditions. This can of
course be done only at the numerical level. It requires then a lot of care in the
effective implementation and a significant amount of computational time, even after
the isotropy properties of the kernels have been exploited.

The next four subsections are respectively devoted to the computation of A"V,
i (hp’p’q)%q:lw,g, hP and h® = (QQ’p)p:L___73. Then, subsection 4.5 contains
the computation of D,(f), Fy; and Gy, starting from the values obtained for |
AP and h?. In the procedure, use will be made of integrals reported in Appendix A.
Since these computations are quite long, only the main results are displayed in

subsections 4.1 to 4.4. Detailed computations can be found in Appendix B.
4.1. Computation of 1. We want to solve the problem
(51) o) = K",
with
EOW = () .y
and with the orthogonality constraints
Vi=1,...,A+B, GWYVI|I*") =0,
Vz=1,...,3, WY ]IV% =0,
(B 11"y =0

(with scalar product defined in (26) and 1%, 1Y% 1¥ defined in (27), (28), (29)).
We test for that the effect of K;; on combinations of m; v;. Skipping all details
(that the interested reader may find in Appendix B), we finally get

(82) Kl-j(v — Wl(z) m; v,V — Wl(J) m; ’Ul) = Bij Hij (Wl(J) — Wl(z)) V1,
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where Wl(i), Wl(j ) € R are constants, and By; are defined in terms of the constant
cross sections B;; as

Bi; if i,j=1,...,A,

2Bi; if i=1,...,A, j=A+1,...,A+ B,

2Bi; if i=A+1,...,A+B,j=1,...,A,

A Bij if i=A+1,...,A+B,j=A+1,..., A+ B.

Therefore, after exchanging the variable 1 with any of the variables p, we get the
solution

ij

ROV (VY =m, Wi ., i=1,...,A,
ROW Ty =m; W@ .V, i=A+1,...,A+ B,

where the tridimensional constants W () must satisfy the system

(83) Z n9) Bij iy (WO — WOy = 5@
j=1
(84) > min W <o,
=1

Note that the first part of the system only contains A+ B—1 independent equations.
It can be solved only under the constraint E;}B n( s = 0.

We finish the computation by noticing that in the special case of a mixture of
two gases, the system above can be solved very easily (remember that 312 = Bgl)I

W = mas
(mq n) +my TL(2)) Big p12 ’
W — —ms®
(m1n® +man®@) Bia p1a’
with
SO V,nM B my(Ven 4 V,n(2) ( B my(n 4 n(2)) ) Vv.T
n) man) + mqn(2) min + mon(2) T’
NOR V,n2 B ma(Ven 4 V,n(2) ( B ma(n 4 n(2)) ) \VN/ &
n(2) min + mon(2) minM +mon ) T

4.2. Computation of h"". We now solve the problem
(55) () = P
with (for each p,g=1,...,3)
Vi=1,...,A+ B, (hPP9|I®% =0,
Vz=1,...,3, (h"P11Y%) =0,
(P |L") = 0.

‘We recall that )
k(z),P,Paq — qu(V) m; .

The computation of KT follows the same lines as the computation of h'V'. We
consider the component p = 1, ¢ = 2 of the tensor. With the notations of the
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previous paragraph for Bij, fori=1,...,A+B,j=1,...,A+ B, and Hg, H(ljé)
real constants, we get (all details are reported in Appendix B):
; _ ~ o9 _omp@®
Kij(v—=m; ng) V1 V2,V = My H(1J2) v1v2) = Bjj M?j <12ml - W?) V1 V2.
J %
All other components of the tensor can be treated in the same way, thanks to
the isotropy properties of K.
The solution to the problem (85) is thus
hOPra vy =m Y PO(V),  i=1,...,A,

p.q
hOPa(y gy =m, Y PO(V),  i=A+1,...,A+B,
where the constants HEZQ) are defined by the system

A+B () (4) ()
Z n) Bij N?j (Hm_QHl _4 ) =m,.
j=1

m; m;

We denote from now on 1) := Hgg Using the Galilean invariance again, we

get hOP (V) = ROP(|V]) P(|V]), with
ROP (V) = m; T, i=1,...,A,
ROP(V], ) =mI®,  i=A+1,... A+B.

4.3. Computation of h”. We recall that we consider here a mixture of monoatomic
and diatomic gases, so that p;(I) =1fori = A+1,..., A+ B. Then, the quantity
A(T) defined in (59) simplifies very much, and turns out to be independent of T":
A+B i
B ijl n)
= A+B _(; A+B N
3 Ej:l n() +2 Zj:AJrl nd)

(86)

Note that for a completely monoatomic mixture, A = %, while for a completely

diatomic mixture, A = %
We have to solve the problem
(87) K(h") = E”,

where

with
Vi=1,...,A+B, (h”[1*" =0,
szL...,?), <ﬁD|£U7Z>:0a
(" 1%) = 0.

In each computation of this subsection, the objective will be to try to cast the
final results as proper combinations of m;|v|?>—3 and I—1. We will skip intermediate
steps, which are detailed in Appendix B.

_ We introduce indeterminate constant coefficients AW fori=1,...,A+ B and
A fori=A+1,...,A+ B.
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e Fori=1,....,Aandj=1,..., A, we get

By Ky (v AD(mifuf? = 3), v A (mylof? — 3)) (0) =

- _ ﬂ(A(i) — ADY (i |u]? — 3).
mi +m;

e Fori=1,...,Aandj=A+1,...,A+ B, we get

B3 K (v AO@malo = 3),  (0,1) = AD (my|ol? = 3) + AD(T 1)) (v) =

_ _AG) 8

2 m; 2A@)5m1 —|—mj
m; +m; mi + m;

_Z _ AW o2 — 3).
15 mi—l—mj :|(m1|v| )

e Fori=A+1,....,A+Bandj=1,..., A, we get

By ((0,1) = ADGnfo? = 3) + AT = 1), v s AD(myfof? = 3)) (0,1) =

2 _my |:2A(i)5mi+mj_A(j) 8mi

-= — AD| (my|v]* = 3)
15 m; +m; m; +m; m; + my;

+2(A<i> 25 AG) 2 —N”)(I—l).
5 m; +m; m; +m;

e Fori=A+1,...,A+Band j=A+1,...,A+ B, we get

B K, ((v, 1) = AD (o2 = 3) + ADT = 1), (v, 1) = A9 (mv]2 = 3) + AD (T — 1)) (v,1) =

oA m [N@2Tmit2my) g 10m Ko D R0 o —3)
105 m; + m; m; +m; m; +m;
8 N 3my Nodmy O %Xy . w(i
2 (AO 27 L AG) 2T A@) L AG) ) (T = 1),

In conclusion, system (87) can be rewritten as :

-fori=1,... A,
A ..
Zgn(j) B — i (AG) — A
- * m; + m;
Jj=1 J
(88) 4 Aig nt By, {16 m; i AG) 4 2™ RG)
Pyt 15 mi—l—mlj m; +m; 15 m; +m;
_Ami(mitsmy) o 1,
3 (m; +m;)? 3 ’
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-fori=A+1,...,A+ B,

(89)
an g JX6_#i  a_ A my dmidmyoae 2 M x6)
& 15mz+m3 15 m; +m; m; + m; 15 m; +m;
A+B
Y a9 B, {8”’“”12 AL A M Re 4 ””‘J(QW—JFZ‘J)AO
j=A+1 21 (ml + mj) 105 m; + m; 15 (mz —+ mj)
4 m; ~ (i 1
I RN O G ¥
* 105 m; 4 m; } 3
(90)
- 4 4 2
an B oM A L2 T AG) 2R
— J 5mi+mj 5mi—|—mj 5
j=1
A+B
‘ 4 , 4~
nY) B. _ M AG) AG) —7A(l) — AL _9p.
+J§1 9 {35m1—|—mj +1() +35ml—|—m] 21

We can note that a suitable combination of the right hand sides of the system
(88)—(90) vanishes. One can check that the same linear combination vanishes when
one considers the left hand sides of the equations (88)—(90), yielding that one of
these A+ 2B equations is redundant (more precisely, exactly A+ 2B — 1 equations
are independent).

The solution to problem (87) is therefore

KODP(VYy = AD(mg|V|?=3), i=1,...,4,

KOPV, Iy = AD(m V]2 =3)+ AD(J—1), i=A+1,...,A+B,
which, as expected from the Galilean invariance, depends on the vector V' only
through its modulus |V|. The coefficients A® | A are defined by any A+ 2B — 1
among the equations (88)—(90).

4.4. Computation of h%. We recall that we wish to solve the problem
(o) K%)= KO,
where
KOQP = LV~ 5V, 4 1l — 1)V,
with (for each p=1,...,3)
Vi=1,...,A+ B, (h9?|1*") =0,
Vz=1,...,3, (9P |1Y%) =0,
(L7 |1%) =0
We test for that the effect of K;; on combinations of |v|?v1 and v1. We introduce

indeterminate constant coefficients Q® for i = 1,...,A + B and QW for i =
A+1,...,A+ B.

e Fori=1,....,Aandj=1,..., A, we get

Bl-;lKij (v = QWmylv|?vy, v Q(j)mj|v|2v1) (v) =
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_oW___ ™ 8 o 2 2, 2 2
—Q —— | =mSm;lv|“v1 + 5 m;+m5 — —mym; | g
(mi—l-mj)?’ 3 ]| | ¢ 730
m;

(1)
+Q (mi + mj)?’

2 2, 4 2 1
—m; Smi—i—mj—i—gmimj [v]*v1 + 10m; mi—gmj v .

From the computations relevant to h"Y (see Subsection 4.1), we easily get:

1 (miQm _ ija))UL

B;lKZ] (v — Q(i)vl7 vV Q(])Ul) ('U) = m
2 J

Thus, combining the two previous results, we finally get

BiglKij (v — Q(i) (mi|v|2 _ 5)1)1’ U= Q(j) (mj|v|2 _ 5),01) (v) =

8 o i 9 4 2 m; 2
= {Q(]) 3Mi QW <3mi + gmim; +mj>} W(mi\vl = 5)u1.

e Fori=1,...,Aand j=A+1,...,A+ B, we get
BiglKl-j (v = QUmylvPur, (v, 1) = QWmy|v|?v, + @(j)fvl) (v) =

) 2 m; 2 2 2 2 ~0) 2 mzz 1 2
= Q(]) 5 W {Zmzmﬂv\ 1)1+5(m1- +mj)v1} +Q(7) § W g mj\v| U1 + V1
N2 MM ;
+QW 3 m [ — (sz2 +2mym; + m?)\v|21)1 + 10m; U1}.

From Subsection 4.1, we easily get

B, K (U = QWuy, v Q(])U1> (v) = 3 m(miQ(J) - ij(l))'Ul
(and this allows to compute also K;; (v —0, v — @(j)vl) (v)). Thus, combin-
ing the results, we obtain

BiglKij (U = QW (mgv]* =5)vy, v Q(j)(mj|v|2 —5)vy + QUI(I — 1)1;1) (v) =
2

. ) ms 1~ 2 MM
=220D m; — QW [ 3m; +2m, J — QY (m, A e
{ Q m Q m; + m; + m + 5 Q (m +mj) 3 (mi +mj)3

(milv]? — 5)v;.

e Fori=A+1,...,A+Bandj=1,..., A, we get
B;;'Kij ((UJ) e QWmylvor + QW Ty, v Q(j)mj|v|2v1) (v,1) =

, i 4 4 2 5
—Qu) M { mim;|v|?vy + = mi(m; +mj) Ty + 2 (mf — - mymj + - m2> v1}

(m,-+mj)3 3 3 3 3 J
. m;m; 4 2 4 4
+QW m [— <2m? + 3 M + 3 mf) [v[?vy + g(mi +m;) vy + §(4mi - mj)vl]
1 J
~ 2
+ Q(l)B W [m?mj|v|2v1—(3 mZ+8m;m;+5 m?)fv1+(3 m;—2 mj)mﬂh} .
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From Subsection 4.1, we have
1

) . 2
B'K; (v = QWuy, v Q(J)Ul> W) =3 — m

(mQW =m0 o,
therefore

BiglKij (v — QW (mi|v|2 — 5)1}1 + @(i)(l — Dy, v QY (mj|v|2 - 5)7)1) (v,I)=

. ; 2 1 1 ~.
= {?), QY m? — QW (mf +-m;m; + < m?) + ' QY my(m; + mj)}

3 3
.
Xx2—9 miv2—5v
(mi+mj)3( ‘ | ) 1
+ 2Q<J'>m?+2Q(i>mim-—1@(i>(3m2+8mim-+5m2.) 2;(1—1)1;1
i 75 ¢ J 7713 (my +m;)?

e Fori=A+1,..., A+ Band j=A+1,...,A+ B, we get

BZ?KU ((1},1) = QWmylvlPv + QW Ivy, (v, 1) = QWmylv|?v, + @(j)Im) (v, I)=

16
(m; + m]) 35

Q(])

8 20 4
=QU ms mj|v|2111 + —m;(m; +mj)lv, + ( m? 4+ - m2) vl]

21 21 3
M
105 (mi +mj)?
4

6
W[—W(mmmmﬁ

1 5
[2 mimj|v|2v1 + (m; +mj)Ivy + 3 mivl}

1 8 16
+ QW ms ) B — 51 m;(m; +mj;)Ivy + — - mimjvl}

3

~ 8 1 1 1 5
+Q( ) ﬁ W |:2 m?mj|v|2111 — 5(571% + 7mJ)(mZ + mj)Ivl + 5 m?vl] .

From Subsection 4.1, we have
, . 4 1
Bl-glKij (v = QWuy, v Q(])vl) (v)=—

A0l _ . <z‘))
5 o (@ = miQ® o

therefore

B 'Ky (v = QW (mylv]2 = 5)vy + QO (I = 1y, v QY (myv]? = 5)vy + QU (I — 1)1}1) (v,1) =

4 i 16 1 1 N
= {7 QW m?2 — QW (m + 57 MM + 3 m; ) +ﬁ(Q(]) +Q())mi(mi+mj)}
4 m; 9
L —
x 5 (m; +m;j)3 (mifo] Jor

) , 1 ~ 1~ 8 1

D m2 4+ 0D mems + L (me - m) (0D ms — L8O (5ms +7ma VS L 1y
+{Q mi +Q mzmj+5(m1+m])<Q m; 2@ (5m; + m])>}21 (mi+mj)2( Ju1
In conclusion, the solution of problem (81) is thus
ROQP(V) = QW (my|V2 = 5)V,,  i=1,..., 4,

KDRQP(V J) = QWD (my| V]2 =5V, + QW (I —1)V,, i=A+1,...,A+B,
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and we note that, as already anticipated owing to the Galilean invariance, h():Q?(V, .J) =
hD:R(|V|, )V}, where

ROQVY) = QU VIE = 5), =1, A,
ROQ(V], ) = QUmVE —5)+ QU ~1),  i=A+1,.. A+B.

The coefficients QY and @(i) are defined as solutions of the system

-fori=1,... A,
A 8 4 m
) B.. @) 22 _ 0 24 2. 2 "

j;nﬁ Bij {QJ gm; — Q" (3mi +3mzmj+mj>} .

A+B ) ) ) m2 1 ~,.

+ Z n(J)Bij {QQ(J)mi—Q(’) <3mi+2mj ]> +5Q(])(mz+m])}
m;g
j=A+1

m;m; 1
J I

2
xii
3 (mi+m; )3 2
-fori=A+1,...,A+ B,

My
(mi +m;)?

A
. 2 . . 2 1 1~
j=1

A+B

+ Z n') By { QY m? —Q()(m +;(13mm]+;) ) (Q(J)—I—Q(Z) (mi+mj)}
J=A+1

4 mj 1
X oo =,
5 (mi+mj)3 2
A . . 1~ 2 1

j=1
oy 1 ~ 1~
+ > Y By { D mi + QW mym; + 5 (mi+my) (Q(” mi =5 QW (5m; + 7mj))}
j=A+1
8 1
X— — =
21 (mz + mj)2
4.5. Obtention of the viscosity coefficients in the case of constant cross
sections. We recall here the Navier-Stokes system obtained at the end of subsec-

tion 3.3.4: now write down egs. (73) - (75) in the special case which is considered
here:

(92) i=1,...,A+ B, dr(min) +V, - (minWu) = —eV, - DO,

(93)

A+B A+B
k=1,...,3, 8,5( Z min(i) uk> + Zaﬁ ( Z [min(i) Uk Uy + n® T(Sk)l])
i=1

l i=1
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= —82%1}%7
]

S P UN ] G DO PR o QSR ON ] G T
(94) Oy ( Z[mi n® - t3 n@T) + Z [m; n®) - t3 n(® T])
i=1 i=A+1
A 9 A+B 9
+Z§xl (Z[mZ n® % u; + gn(i) T w] + ‘ Z [m; n® % up + ;n(i) Tul]>
l i=1 i=A+1
= —eV,-G.

The viscous terms D,ii) (fori=1,..., A+ B), Fy; and G, have been computed
in Subsection 3.3.4, in formulas (69) — (72).

When the cross sections B;; are constant, the functions h(DW ﬁ(i)’P, h(-P and
h():Q have been computed in subsections 4.1 to 4.4 and may be cast in compact
form, fori=1,..., A+ B, as

BEOW — m; W@ . V,
R@.P m; H(i),

(95) - , .
AOL = AW (V2 = 3) +r; AD (T - 1),

ROQ = QW (my|V|* = 5) + 7 QU (T — 1),

where the constant coefficients W@, TI), A A® Q@ QW fulfil suitable linear

systems pointed out in subsections 4.1 to 4.4.

The integrals appearing in coeflicients D,(f)7 Fy; and G can be then computed

owing, whenever necessary, to integrals reported in Appendix A, and bearing in
mind that we are assuming here that ¢;(I) = 1, so that ¢;(T') = T. Skipping all
intermediate computations, viscosity terms turn out to be

(96) DY = m, W T, i=1,...,A+ B,

where coeflicients W,gi) are combinations of the quantities s, (so that they contain
gradients of number densities and of temperature), while

(97)
A+B T A+B
) N Vaeu+ Viau 1 . )
_ () () | Ve T Vo' 1o . (i) AD)
Fkl_2TZn I [ 5 3 Va uld]kl—i—Qva uéklZn AD)
i=1 i=1
and finally
(98)
3 A+B n(z) A+B 5 0
_ @) o . O6) 2 (2 4. i
Gk—;Fklul—i—Taka; o (5Q 410 )+T Z;n <2+T1>Wk ,

where II, A® W& Q) and é(i) are computed in subsections 4.1 to 4.4. Note
that Fj; may be cast as

Fkl:_ﬂ M_fvxu_[d _va.udkl’
2 3 Kl
where
A+B

p=-=2T Z n(® 11

i=1
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represents the shear viscosity, while the term — x V,, - u is the so—called dynamical
pressure, an additional contribution to the classical scalar pressure which is typical
of the polyatomic structure of molecules [31, 5]. The bulk viscosity « is provided

by the formula
A+B

k=—2T% n®A®.
=1

Moreover, G can be written as

3 A+B ) 5 )
Ge=Y Fuu— A0y, T +T% Y n (2 —|—ri> W,
=1 i=1

where
A+B @) _

A=-T 3 2 (5Q0 +1,Q0)
i=1 v

is the partial thermal conductivity, while the last term provides the dependence of

the heat flux w.r.t. the gradients of number densities (through coefficients W ).
It is also possible to rewrite G within the formalism of equation (79). Indeed,

in the Maxwellian case, E; = T, so that h; = (% + m) m% Therefore, by using the

expression (96) of D,(f), we see that

3 A+B )
Gv=Y Fuu— A0, T+ Y hDy.
=1 i=1

Hence by comparison with (79), we see that the Dufour effect is equal to zero in
the case of constant cross sections. Moreover, by using the relations (79), (80), we
also see that the Soret effect is equal to 0 in this case.

To conclude, the system of Navier-Stokes equations which are obtained by the
Chapman-Enskog procedure from a system of Boltzmann equations corresponding
to a mixture of monoatomic and polyatomic gases with constant cross sections, can
be written down explicitly thanks to equations (92) — (94), together with formulas
(96) — (98), and the linear finite-dimensional systems defined in subsections 4.1 to
4.4.
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APPENDIX A: SOME INTEGRALS

Integrals over the variable R:

s 2 ! 1/2 4
RV2dR = = 1— R)RY2dR = =
/0 2 /0< ) =,
16

1 4 1
1— 3/2d —_ / 1— 2 1/2d =
/O( RYRPAR= 2. [0 R? RV R = g
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Integrals over the angular variable:

1
do =1, / lo|*do =1, / (01)%do = =.
S2 S2 S2 3

Integrals over the velocity variable:

- llv*‘2 |'U*|
e 2 - 9 e 2 o
/]R:s (27)3/2 dU* =1 ’ / |U*| 3/2 ’U* B 3’

1 2
46_51}*‘ _ 66 zlv _
/Rg [vs] G dv, =15, / [V S dv, =105,

or, in case of particle masses m; # 1,

. 3/2 . 3/2 1
(@) / e 2 7ml‘v*‘ dv, = 1, (%> / mi|'U*|2 e Emilv*ﬁ dv, = 3.
2w R3 2m R3

Use will be made also of some of the following relations:

[ adehas =5 [ 0P agelyd
[ @t adelyd / ol A(Jol) d
[ e Ao do = 2 [l Agua
[ " Ao :;/ ol (o] do
[ @) Agel) o = o / (ol A(lo]) d

[ R Ao = 1oz [ ol Agl)a

APPENDIX B: SOME DETAILS ON COMPUTATIONS FOR CONSTANT CROSS
SECTIONS

In this Appendix, we collect some details about the computations of families of
functions QW, hP , hP , QQ in case of constant cross sections, the final results being
given in Subsections 4.1 - 4.4. We recall that those families of functions allow to
construct the viscosity coefficients of Navier—Stokes equations computed in Subsec-
tion 4.5.

B.1. Details on computations for K. We present here the computations to
solve the problem IC(@W) = k", with kW = s() .V presented in Subsection 4.1.
We begin by computing for all 4,5 = 1,..., A + B the quantity
Ki]'(’l) — Wl(l) m; v,V — Wl(J) m; 1}1),
where Wl(i), Wl(j ) € R are constants.
Fori=1,...,A,j=1,..., A,

. —f\v*l
g @) ()
Kij(v = WY mivr,0 = W7 myvp)( /RS/S? @xjmy) (I EE
ml—l—mj m; +m;
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i m; v m;v mi
+W1(7) m; ( U1+ j Ulx + j |’U . 'U*| 0_1>
m; +m; m; +m;

—m]- Wl(]) Vg — My Wl(z) 1)1:| Bij do d’l)*
= By iy Wy = Wi v

Fori=1,...,4,j=A+1,..., A+ B,

ML
K”(Ul—>W1()mzvl,v»—>Wl( m; v)( /RS/ /S?/ @ jmy) 3/2

: ; U1 ; 2R FE
" [ijfJ) (ml vitmive  my U1>
m; + mj my + mj ,uij
; i P U1 s i 2RE
.y Wl(l) (ml v1 +mj v n m; 01)
m; +m; m; +m; Mg

—m; W vy, —m; W vl] RY2dRdo dI, dv,

2

= 5 Bij g W = W) v,

Fori=A+1,...,A+B,j=1,...,A,

ol

(4) (7)
Kij(v = WY myvr, 00 Wi mj 1) (v, 1) /RS/SQ/ W
" |:mj Wf”(ml V1 + My U1 _ m; 2RE0_1)
m; +m; mi+m; \ i
o (i v, : 2RE
+min)<m DT T 01)
m; +m; mi +my o\ fij

—m; W vy, —m; W ul] Bi; RY? dR do dv.

2 , ,
= 5 Bij g W = W) v,

Fori=A+1,...,A+B,j=A+1,...,A+ B,

= val* =1
(4) (4)
Kz](”’_)Wl mi vy, v = Witimgvi)(v, 1) /]RB/ /Sz/ / W

i i P U1x i 2RE
" [mj Wl(j) (m vitmivi.  m 01)
m; +m; m; +m; Mij
; ) ULy ) 'RE
g W ) <Tnz v1 +m; vy n m; 01>
m; + mj m; + mj ,Ufij

—m; W vy, —m; W vl} Bi; (1 — R)RY?dR dr do dlI, dv,
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4 : ;
= 15 Bii wai W = wi) v

B.2. Details on computations for hP. We present here the computations con-
cerning the problem K(h”) = k¥ (see Subsection 4.2).

We consider only the component p = 1,¢q = 2, the other ones being obtained
thanks to the isotropy properties.

Fori=A+1,,...,A+B,j=A+1,...,A+ B, and Hg?, ngz) real constants,
K, () I3 e 2 Il
1, '_) (2 Y ’_>
i (v = mi L5 v1 va, v my Il 21)11)2 v, /RS/ /32// @rjmy) 3/2
Nz U1, ; 9RE
" {mj H(1J2) (m vitmive  m Ul)
mi + my mi +my \[ i
<m7; Vg + M V2x m; 2RE )
X — g2
mi +m; m+m;\ i
i ; V1% i 2RE
—|—miH§2) (mz vy +mj vy n m; 01)
mi +m; mi g\
y <m7; Vg + My Vg L 2RFE 0_2>
mi + m; mi + m; i

—m; Hg) Vs Vo — My H§’2) 1 vg} B;; (1 -R) RY?dRdr do dI, dv,

15 g mj m; '

In the same way, fori=1,..., A, j=1,..., A,

1, | 0o _op®
Kij(v e m; IS5 vy v, 0 0 my 1) 0y 02)(v) = Bij i <H - 12) v1 v,

gl m; m;
fori=1,...,A,j=A+1,...,A+ B,

Kij(v = m; ngQ) V1 V2,V — M H%) V1 ’Ug)(v) = = Bij ,uij oy

2 5 (H&J;—m@_m@)v
1V2,
3 m;

fori=A+1,...,A+B,j=1,...,A,

1, | N 09 _op® @
Kl'j('l} = m; ng) V1 V2,V — My ngZ) V1 ’Ug)(U,I) = = Bij 2 (1212—12) V1 V2.

3 Mij m; m;
Finally, with the notations of Subsection 4.1 for Bij, fori =1,..., A+ B, j =
LA+ B,

i . - H(]) _ H(l H(l)
Kij(v — my; Hg; V1 V2,V > My H§]2) V1 U2) = By ,Uzzj <12 . 12 _ 7722 > V1 V2.
g i
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B.3. Details on computations for h”. We present here the computations con-
cerning the problem K (k) = kP (see Subsection 4.3). We skip a lot of intermediate

steps, that may be recovered using the integrals reported in Appendix A, analo-
gously to previous paragraphs.

_ We introduce indeterminate constant coefficients AW fori=1,...,A+ B and
AW fori=A+1,...,A+B.

e Fori=1,...,Aand j=1,..., A, we get
B K (0 AD (mafof? = 3), v AW (mylof? — 3)) (v) =

2
:// (@)3/26—%mjlv*|2 AG) m; MU+ Mjvs m; lv—uv.|o| —3
rs Jg2 \ 2 m; +m; m; +m;
. m;v + m;v m; 2 i
+AD L my | I v —v,fo| =37 — AV (mylv.|* - 3)
m; +m; m; +m;

—A(i)(ml—|v|2 _ 3)] do dv, = 2Lj‘(A(j) _ A(i))(mi|v|2 —3).

m; +m;

e Fori=1,...,Aand j=A+1,...,A+ B, we get
BglKij (v = AD (mv]2 = 3), (v,I) — A(j)(mj|v|2 —-3)+ A(j)(I— 1)) (v) =

2
1
:/ / /OO/ (&)3/2 e—%mj‘U*P_I* A(J) - mi'U"_mj/U* . m; 2RE0’
r:Js2Jo  Jo \27 1 my 4+ m; mi+my\|
2
MV + MV n m; 2RE o
m; +m; m; +m; hij

— A (myv,* = 3) = AU(I, — 1) — AD (o) — 3)] VRARdI, do dv,

2 ; . i ~
2 mi (aG) _8mi + AD ) (mylo]? - 3)
15 m; + m; m; +m;

-3

+ A1 =RE-1)+AD {m,

-3

4 m;

. 1
" [ 3 (mq +my)? <m "5 mJ)] (mafol” = 3)
e Fori=A+1,..., A+ Bandj=1,..., A, we get
B Ky (0,1) = A (mafof? = 3) + AD(1 = 1), v AD (my o] = 3)) (v,1) =

2
1
_/ / / (@)3/2 e*%mj|v*|2 A(J) .. MU + MUy _ m; 2RE ol —3
r3 Js2 Jo 21 J m; +m; m; +m; Mij
I 2
+ A | gy, | TV Ui, RE gV L A0 - BB — 1]
m; +m; m; +m; Mij

— A9 (m;v,|* = 3) — ADmy(|v]? = 3) — AD (T — 1)] VRdR do dv,
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N (16 i 4 i
SN CO B - o P ST N § R
15mi—|—mj 5mi+mj
2 m; (2 A dm; +m;

ij
15 mierj mierj

- M)) (mi|v|2—3)+§ (A@‘) - Ni)) (I-1).

mierj

e Fori=A+1,...,A+Band j=A+1,...,A+ B, we get
B;;' K ((U,I) = A (mglof? = 3) + AD(T = 1), (v,1) = AD (myv]? - 3) + AD (T — 1)) (v,1) =

2
[e%e) 1 1
:/ // //(@)3/267%7”_””*‘27]* AD L miv+mive  my 2RE(7
reJs2Jo Jo Jo \27 Tl mi 4 my mi+my\[ i

2
<0 , ; 0, . [2RE
—3}+A(J)[(1—r)(1—R)E—1}+A(’) mi’m“mﬂ’ y T RE
m; +m; m; +m; Mij

-3
+ AD[r(1=R)E-1]=AY) (m;]v,]2=3) = AU (I, —1) = ADm(jv|*=3)—AD) (1—1)]

x(1 — R)VRdARdrdl. do dv.

4 m]' . 1~
_ = 2 A ; ZA@ ; ) o2 =3
21 (m; +m;)? ( m; + 5 (mi +my) | (mlv] )
8 ; m; 1~
I N €) I T N () I S A |
+ 35 ( m; +m; + 3 ( )
4 mj ; 4 1~
—— 9 _|AD(2m;+ —m; ) — = AD(m;, . i|v]? —
15 (m; + m;)? [ ( mi+ 7mJ> 7 (mi +my)| (mafv]” = 3)

4 /2 . ; 1~
4 (5A(l)m1_3A(1)> (I—1).

7 mierj

B.4. Details on computations for he. We present here the computations con-
cerning the problem K(h?) = k% (see Subsection 4.4).
We test for that the effect of K;; on combinations of |v|?v; and v;.

_ We introduce indeterminate constant coefficients QW fori=1,...,A+ B and
QW fori=A+1,...,A+B.

e Fori=1,....,Aandj=1,..., A, we get
Bi;IKij (v = QWmylv|?vy, v Q(j)mj|v|2v1) (v) =

.\ 3/2 _ ) ) .

m 1 12 miv + m;v m

:/ / (—J> emzmilv T | QU | — = v — v.|o
R3 Jg2 \2m m; +m; m; +m;

m;v1 + MU« m; ;
X - v — v.lor | +QWm;
m; +m; m; +m;

2

2
MU + MUy m

v —wv,|o
m; +m; m; +m;

X (mi};izﬂ:vl* + mlnijml v — v*|01> — QYmj|v, 201, — Q(i)mi|1121)1} do dv,
% 9 ? J
. m; 8 2
= Q(j)m |:3 m?mj|v|2v1 +5 (’I’I”LZ2 + m? — g mimj) Ul]
i j

my;

() "M
4
@ (mz + mj)?’

4 1
{— m; <3m$ +m? + 3 mimj> [v]?v1 + 10m; <mi ~3 mj) vl} .
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e Fori=1,....,Aand j=A+1,...,A+ B, we get
B K, (vHQ(i)mi|v|2v1, (v, 1) =~ QW |v[?v, + QU Ivl)():

2
/ / / / 3/2 v =1 ) MV + M,V m; 2RE
7 1Ux * Q mj _
R3 J 52 m; +m; m; + Mg\ i
o m;vy + M1 _ 2RE ]) (1— R)E m;U1 + MjU1x B m; 2RE o1
m; +m; my; —|— m; m; +m; m; +m; Wij
—|—Q(i)m- m;v _|_ij* 2RE m;v1 + M1« 4 m; 2RE o1
! mi + m; mz —|— m; m; +m; m; +m; Hij
— Q(j)mj|v*|2v1* — @(j)l*vl* — Q(i)miv|2v1} VRAR I, do dv,
N2 m; 2 m? 1
oWz ____ " I S o PN
= QU 3 Gmn )P [Qm m|v[Pv1+5(m; +m3 )m]—&—Q 3 (i my)? L,) mj|v| v —|—v1]
m;m;
+QW gm[ (3m +2mym; +m3) vl v1+10mtv1}
e Fori=A+1,....,A+Bandj=1,..., A, we get
Bi;IKZ-j ((U,I) = QWmylv|?vy + QWIvy, v Q(j)mj|v|2v1> (v,I)=
2
/ / / 3/2 ~Lnjle.)? ) MV + MV m; 2RE
J * Q mJ —
R3 J$2 mitmy o mi g\
o mivy + myvi. m; 2RE +Q MU + MU, m; 2RE o
m; +m; m; +m; Mij m; +my; m; +m; Hij

o + mjvy N m; o +Q(Z)(17R)E <m v1 + mjuy
m; + m; m; + m; Mg m; + m;
Mg+ Mg\l i

Ul) — QW oy Pore — QWinglv] o, — @@)m] VRdR do dv,

4 2 )
= QY 7(7”2 ) {3 mim;lo*vy + 3 ma(mi + mj)Ivy + 2 ( - mim; + g m2> 'U1:|
i MM ; 4 2 4 4
+QW (s —l—rrJLj)3 { <2m + = 3 i, + = 37 ) |v]2vy + S(mi +m;j) vy + §(4mi — mj)vl]
~\ 2 1
+ Q(Z)B W [mfmj|v|2v1— (3 mZ+8m;m;+5 m?)[vﬁ-(?) m;—2 mj)mﬂh} .

o Fori=A+1,....,A+Bandj=A+1,...,A+ B, we get

BiglKij ((U,I) — Q(i)mi|v|2v1 + é(i)lvl, (U,I) — Q(j)mj|v\21)1 + @(j)lvl) (’U,I) =
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/ / / / / 3/2 o hmy o P~ 1. QW m,; miv +mjve My 2REJ
r3 Js2 J m; +m; m; +m; i

M;U1 + MjV14 m; 2RE

500 (1 — (1 — )
+ 1—7)(1—-R)E
2
' i j Vs j 2RE o~
[ QU |y +QWr(1 - R)E
m; +mj my; erj
m;vy +mjv1* 2RE
mi +m] mz +m]
= QVm;lo. Por — QY Ly, — QWmioPor — @mm} R)VRARdr dI. do dv,
m; 16 8 A
o (m; +m;)? {35m mjlof” vi+ 5y mi(mi +mg) vy + < m? tgm 5) vl]
s & me U T
+Q 105 (m’L + mj)2 |:2 mim]|v| V1 + (ml +m]) U1 _|_ 2 m;v1
: 0 ! 8 16
+QW W [_ 5 M (m + oy mimg + o m; ) DI — 57 " (ma +my) T + = mim]"l}1:|
+Q ; lQO'|U|21) —1(5m+7m)(m_~_m)jv +§m2v
105 (mq+my)? |27 P A J)EPLT G L
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