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Arithmetic approaches for rigorous design of
reliable Fixed-Point LTI filters
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Abstract—In this paper we target the Fixed-Point (FxP) implementation of Linear Time-Invariant (LTI) filters evaluated with state-space
equations. We assume that wordlengths are fixed and that our goal is to determine binary point positions that guarantee the absence of
overflows while maximizing accuracy. We provide a model for the worst-case error analysis of FxP filters that gives tight bounds on the output
error. Then we develop an algorithm for the determination of binary point positions that takes rounding errors and their amplification fully into
account. The proposed techniques are rigorous, i.e. based on proofs, and no simulations are ever used.
In practice, Floating-Point (FP) errors that occur in the implementation of FxP design routines can lead to overestimation/underestimation of
resulting parameters. Thus, along with FxP analysis of digital filters, we provide FP analysis of our filter design algorithms. In particular, the core
measure in our approach, Worst-Case Peak Gain, is defined as an infinite sum and has matrix powers in it. We provide fine-grained FP error
analysis of its evaluation and develop multiple precision algorithms that dynamically adapt their internal precision to satisfy an a priori absolute
error bound. Our techniques on multiple precision matrix algorithms, such as eigendecomposition, are of independent interest as a contribution
to Computer Arithmetic. All algorithms are implemented as C libraries, integrated into an open-source filter code generator and tested on
numerical examples.

Index Terms—Floating-Point Arithmetic, Fixed-Point Arithmetic, Multiple Precision, Interval Arithmetic, Digital Filters, Reliable Computations,
Eigendecomposition, Gershgorin circles, Table Maker’s Dilemma
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1 Introduction

L inear Time-Invariant (LTI) digital filters are ubiquitous in
digital signal processing and control. Their applications vary

from the simplest audio filters and equalizers to biomedical and
autonomous driving systems. LTI filters are often implemented
for embedded systems with Fixed-Point (FxP) arithmetic and
have strong performance and cost constraints in terms of latency,
throughput, area, power consumption, etc. Filter designers make
various compromises and simplifications of filter algorithms
to achieve satisfactory results. In particular, choices related to
the finite-precision arithmetic have strong influence on system
performance, e.g. in terms of throughput and area. In this work we
are interested in the accuracy vs. performance trade-off.

When implementing signal processing systems with high
safety standards, a filter designer must provide guarantees on
the numerical quality of the implemented systems: absence of
overflows, bounds on the output time-domain errors, etc. Usually
such numerical guarantees, if at all provided, come at relatively high
cost: algorithms are often implemented with more computational
resources than are actually needed.

In this paper we aim at providing numerical guarantees for
the implementation of LTI filters at the lowest cost (in terms
of performance of the implemented algorithm). In particular,
we consider implementation of recursive LTI filters with FxP
arithmetic and study the rounding errors that occur in the finite-
precision implementation. Our goal is to develop a generic approach
that: 1/ provides tight bounds on rounding errors that occur in
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finite-precision computations; 2/ determines in a reliable way
efficient parameters for a FxP implementation (i.e. the most and
the least significant bit positions for variables) while fully taking
into account the impact of rounding errors.

We demonstrate our approach on LTI filters that are evaluated
using the state-space algorithm [1, Chapter 6, pp.391]. This
algorithm makes the notion of the feedback loop explicit: internal
states are updated at each iteration and outputs are computed with
the states and input signals. Analysis of recursive filters is highly
non-trivial since errors may accumulate and can be amplified at
each iteration. Hence, the impact of rounding errors must be taken
into account when choosing data formats for all variables.

Existing approaches to LTI filter implementation either cannot
provide strong enough guarantees or do not fully support feedback
loop systems, mainly because these approaches are based on
statistical measures which describe the impact of errors only in
terms of mean and variance and not in its absolute value. For details
see related work and positioning in section 2.3.

In this work we measure rounding errors in their absolute value
to provide tight and guaranteed bounds. We provide a model that
rigorously takes into account the error propagation through the
feedback loop. This model is based on the so-called Worst-Case
Peak Gain (WCPG) measure [2] which provides a bound on a
filter’s output for stable filters. In contrast to existing approaches
that straightforwardly use Floating-Point (FP) arithmetic and
generic computation environments such as Matlab, we demonstrate
that FP rounding errors themselves represent an additional source
of errors that must be dealt with. Overall, we provide two levels
of algorithms and error analysis: 1/ a high-level analysis of FxP
computations and rounding errors, algorithms for the computation
of reliable FxP data formats; and 2/ low-level algorithms for the
reliable floating-point evaluation of measures needed for the FxP
error analysis, controlling the impact of FP errors upon computed
FxP formats.
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To summarize the contributions of this paper, we extend the
results of [3] and [4] and
• propose a new iterative algorithm which, given a stable

recursive filter and wordlength constraints, determines the
FxP formats that guarantee absence of overflows;

• prove that the FP evaluation of the FxP formats is, in most
cases, exact (formats are overestimated in some rare cases but
at most by one bit) and underestimation never occurs;

• enable the above contributions by introducing the first algo-
rithm for arbitrarily accurate evaluation of the WCPG;

• develop multiple precision FP algorithms, such as complex
matrix arithmetic that dynamically adapt their precision to
satisfy a priori given accuracy; all error bounds are proven;

• develop a technique for multiple precision eigendecomposition
and for matrix inversion based on Newton-Raphson iteration;

• identify the FxP format overestimation problem as a Table
Maker’s Dilemma and propose to solve it using Integer Linear
Programming.

Our approaches are integrated into the open-source filter code
generator FiXiF1. In this paper we demonstrate algorithms on a
state-space algorithm but extend them upon any LTI filter in the
FiXiF tool.

The paper is organized as follows. We start with recalling
basic information on LTI digital filters evaluated with the state-
space algorithm. Then, we give definitions related to Fixed-Point
arithmetic for filter implementation and justify the choices of
arithmetics for analysis. Section 2.3 briefly reviews the related
work and clarifies the positioning of the current work w.r.t. existing
approaches. In Section 3 we give the error-analysis of the FxP
implementation of state-space systems and provide an iterative
algorithm for the FxP format choice. Then, in Section 4 we provide
an FP rounding error analysis of the iterative algorithm itself.
In the core of our approach lies the reliable evaluation of the
WCPG measure. We present in Section 5 our core algorithm, for
arbitrarily accurate evaluation of the WCPG. Then, in Section 6
we demonstrate efficiency of our approach on numerical examples.
Finally, Section 7 gives an overview for applications of the WCPG
for new hardware implementations and filter verification before
conclusion.

Notation
Throughout this article scalar quantities, vectors and matrices are in
lowercase, lowercase boldface and uppercase boldface, respectively
(e.g. x, x and X). Unless otherwise stated, all matrix absolute values,
inequalities and intervals are applied element-by-element. Norms,
such as Frobenius norm, notated ‖A‖F , stay of course norms on
matrices and are not to be understood element-by-element. The
conjugate transpose of a matrix A is denoted by A∗, and vector
transpose by x>. Operators ⊗ and ⊕ denote Floating-Point (FP)
multiplication and addition, respectively, F the set of radix-2 FP
numbers. An interval [x] is defined with its lower and upper bounds
[x] := [x, x]. An interval matrix is denoted by [M] := [M, M],
where each element [Mi j] is an interval [Mi j] = [Mi j, Mi j]. If
x ∈ Rn, then 2x denotes the vector (2x1 , . . . , 2xn ).

2 Background and RelatedWork
2.1 LTI filters
The main objects of this paper are Linear Time Invariant (LTI)
digital filters. LTI filters are specified in frequency-domain via

1. https://github.com/fixif

Z-transform [1, Chapter 3, pp.105]. For a given frequency-domain
description of a digital filter there exist numerous ways to evaluate
it in the time domain. However, the questions of choice of the best
algorithm are out of scope of this paper.

Without loss of generality, we consider LTI digital filters
evaluated via state-space equations, which are presented just
below. Indeed, in [5], [6] the authors showed that state-space
based approaches can be extended to any linear filter algorithm
using a unifying framework.

An nth order state-space system H with q inputs and p outputs
is described with

H

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) , (1)

where k = 0, 1, . . . is the time instance, u(k) ∈ Rq is the input,
y(k) ∈ Rp is the output and x(k) ∈ Rn is the state vector; matrices
A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n and D ∈ Rp×q are the state matrices
of the system. In the case of a Single Input Single Output (SISO)
system, B and C are vectors, and D is a scalar, which we shall
indicate appropriately as b, c and d.

In practice, one is interested in Bounded-Input Bounded-Output
(BIBO) stable systems, i.e. those that guarantee bounded output
sequences for bounded inputs. These systems satisfy the following
property:

ρ(A) = max
i
|λi| < 1, (2)

where λi are the eigenvalues of A and ρ(A) is its spectral radius.
Throughout the paper we deal only with stable filters.

The output of stable filters can be bounded using the following
classic theorem.

Theorem 1 (Worst-Case Peak Gain [1], [2]). Let H be a BIBO-
stable nth order state-space system with q inputs, p outputs. If an
input signal is bounded in magnitude, as |u(k)| ≤ ū for all k ≥ 0,
then the output y(k) is bounded by

∀k ≥ 0, |y(k)| ≤ 〈〈H〉〉ū (3)

where 〈〈H〉〉 ∈ Rp×q is the Worst-Case Peak Gain (WCPG)
matrix [2] of the system and can be expressed as:

〈〈H〉〉 = |D| +
∞∑

k=0

∣∣∣CAk B
∣∣∣ . (4)

Remark 1. For each component yi(k) of the output it is possible
to find a finite input signal {u(k)}0≤k≤K that makes yi(k) arbitrarily
close to the bound 〈〈H〉〉ū. In the SISO case, such a the worst-case
input signal is

u( j) =

ū · sign(d) for j = 0
ū · sign

(
cAK− j−1b

)
for 0 < j < K.

(5)

where sign(x) returns ±1 or 0 depending on the value of x.

2.2 Arithmetics

We consider the implementation of digital filters on processors that
do not have an FP unit and only use Fixed-Point (FxP) arithmetic.
Implementation in this case involves the choice of the FxP formats
for algorithm parameters (e.g. coefficients of the state-space) and
for algorithm variables. We leave the questions of format choice
for filter coefficients out of the scope of this paper and deal here
only with the impact of rounding errors in the computations, thus
look for the formats for filter variables.
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Fig. 1. Fixed-point representation (here, m = 5 and ` = −4).

2.2.1 Target arithmetic: Fixed-Point
A radix-2 two’s complement FxP number system [7] is a subset
of signed real numbers whose elements are w-bit integers scaled
by a fixed factor. Such elements have the form T · 2`, where
T ∈ [−2w−1; 2w−1 − 1] ∩ Z is an integer mantissa and 2` is an
implicit quantization factor.

Let t be a signed FxP number. It is written as

t = −2mtm +

m−1∑
i=`

2iti, (6)

where ti is the ith bit of t, and m and ` are the Most Significant Bit
(MSB) and Least Significant Bit (LSB) positions of t (see Fig. 1)
respectively. The wordlength w is related with the MSB and LSB
positions via

w = m − ` + 1. (7)

The range of numbers that can be represented with the
wordlength w and quantization factor ` is the interval [−2m; 2m−2`],
called dynamic range.

When determining FxP formats for variables in an algorithm,
we need to rigorously determine their ranges. Otherwise, an
overflow may occur, which means that some integer mantissa
would exceed the range [−2w−1; 2w−1 − 1].

A common practice is to suppress overflows using techniques
such as wrap-around mode, or saturation that replaces the positive
or negative overflows with the largest positive or largest negative
representable values of the target format [8], accordingly. Saturated
values may give an impression to be correct but introduce non-
linear distortions to the output and their impact on the output cannot
be analyzed without knowledge of the magnitude of the overflows.

In this paper we claim that one can reliably an efficiently
implement filters with a “by construction” guarantee that no
overflow occurs.

2.2.2 Toolkit: Floating-Point, Multiple Precision and Interval
arithmetics
Classically, in signal processing the attention is brought to the
determination of FxP formats, while rounding errors in the
evaluation of the MSB and LSB positions themselves are ignored.
We use Floating-Point (FP) arithmetic as our main instrument for
computation of parameters of filter implementation. In most cases,
errors due to FP computations pass unnoticed but can have a drastic
effect upon the filter implementation process, leading to incorrect
parameters. For instance, as we will see in Section 4, FP errors can
easily lead to an off-by-one error in MSB computation.

According to the IEEE 754 [9] standard for FP arithmetic and
classical books [10], [11], a normal binary FP number is written as

x = (−1)s · M · 2e−p+1, (8)

where s ∈ {0, 1} is the sign bit; the exponent e and the normalized
significand M is a p-bit integer such that 2p−1 ≤ M ≤ 2p − 1. Any
result of FP computation is prone to rounding errors; these can be
controlled by varying the compute precision p.

In this paper we will reason in terms of absolute errors, whereas
FP arithmetic is optimized for achieving relative error bounds. The
issue is that in our FP algorithms we will refer to outputs being
computed with an absolute a priori error bound. To connect the
relative nature of FP arithmetic and these absolute error bounds,
we will use a Multiple Precision (MP) floating-point arithmetic,
together with ways to dynamically adapt the compute precision p.
We use the GNU MPFR2 library [12] for all implementations.

We will also require error bounds on the solutions of some
linear algebra problems, such as eigendecomposition. Bounding
errors on those is a highly non-trivial task. We deal with this by
employing Interval Arithmetic (IA) that permits us to compute safe
intervals around approximated values that guarantee to contain the
exact result.

We denote by [x] = [x, x] an interval, which is a closed and
bounded nonempty set

{
x ∈ R|x ≤ x ≤ x

}
. When we compute a

function on the interval argument, we seek to determine the
intervals around the output such that the inclusion property is
satisfied. We use the MPFI [13] library that safely implements
IA and ensures that the inclusion property for basic arithmetic
operations are maintained even when using FP numbers.

2.3 Related work and positioning

When implementing algorithms in FxP arithmetic, two issues
should be addressed:
• range analysis, which consists in studying data ranges and

choosing MSB to avoid overflows;
• rounding error analysis, which consists in studying impact

of rounding errors to bound the output error or to choose the
LSB positions

A possible overestimation of the MSB leads to an increased
implementation cost. Any underestimation of the MSB position,
however, may lead to an overflow at some point of the execution
and consequently lead to unexpected behavior and modify the
signal shape.

Most works in the literature can be seen as either analytical/s-
tatistic, or simulation-based.

Simulation-based methods [14], [15] are slower, requiring
extensive data sets, and do not provide guarantee beyond the data
sets used. Since we aim at providing guarantees for any possible
input, we do not use any simulations in our approaches.

A common analytical approach [1, 6.9, pp.454] for rounding
error analysis is to view rounding errors as white additive noise
uncorrelated with the filter’s variables and to analyze their mean
and variance. This assumption is not strictly correct but somehow
realistic when the number of rounded bits is reasonable with respect
to the total wordlength [16]. Then the Signal Quantization Noise
Ratio (SQNR), defined as the ratio of the variance of the output
signal by the variance of the output noise, serves as a measure of
errors [1], [17]. SQNR does not provide a precise measure for the
accuracy but merely estimates the power of the noises propagated
to the output, and gives an idea of the number of meaningful bits
in the result. In [18] authors focus on the noise power analysis
and influence of the rounding errors on the frequency-domain
behavior.To obtain bounds on the output errors in the time-domain
and determine the number of correct bits, rounding errors should
be measured by their absolute value instead.

Range analysis and measuring rounding errors by their mag-
nitude can be done using Interval Arithmetic [19], [20], [21],

2. http://www.mpfr.org/
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Affine Arithmetic [22], [23], [24], [25] and its generalization to
higher-order error polynomials [26] and even SAT-modulo theory
(SMT) [20] (IA and AA mostly for rounding error analysis, and
SMT and IA for range analysis). The problem is that many previous
analytical methods either do not fully support recursive filters
(intervals explode due to the wrapping effect, or the number of error
terms in affine form is based on heuristic) [21], [24], [25].Generic
techniques such as abstract interpretation [27] combined with IA
or AA may be used to provide guarantees on programs with loops,
but these guarantees will be very pessimistic for sensitive recursive
filters.

State-of-the-art work on wordlength optimization, such as work
by Sarbishei and Radecka [24], is based on the combination of IA
and the WCPG theorem presented in Section 2.1. However, the
infinite series in (4) is truncated in a heuristic (and, for sensitive
filters, completely unreliable) way and then evaluated in Matlab
in FP arithmetic without accuracy guarantees. Besides, the model
they use for rounding error analysis is specific to their hardware
model and a particular filter evaluation scheme.

In [28], in order to evaluate the WCPG measure Monniaux
translates a SISO filter equation to the frequency domain and
proposes an approach to bound the rational transfer function using
power series development. For the actual evaluation he uses interval
arithmetic but to practically bound the tail of the series he stops
the computation when the tail term has an indefinite sign, which is
an experimentally-based assumption. This approach provides only
an a posteriori error bound for the evaluation, not permitting an
arbitrarily accurate evaluation (necessary to, for example, provide
tight error bounds) and is applicable only to the SISO case.

In our work we also base range analysis on the WCPG theorem
but provide the first method on the reliable FP evaluation of the
WCPG measure with a priori given accuracy that is guaranteed to
be satisfied. This contribution is detailed in Section 5. We provide a
complete and general methodology in which we measure rounding
errors by their absolute values and capture their propagation through
the filters using a simple but rigorous model. Our approach provides
tight (not uselessly pessimistic) and strong (worst-case) guarantees
on the results of LTI filters with feedback loop, even for sensitive
filters.

3 Fixed-Point implementation of recursive filters

3.1 Problem statement

The problem of determining the Fixed-Point Formats (FxPF) for
an implementation of a filter H can be formulated under various
different hypotheses. Here we formulate it as follows.

Let H be a filter in a state-space representation (1). Suppose
all the inputs to be exact and in an interval bounded by ū. Given
the wordlength constraints vector wx for the state and wy for the
output variables we look for a FxPF for x(k) and y(k) such that
for any possible input no overflow occurs. Obviously, we seek to
maximize the accuracy of computations, so we search for the least
(element-by-element) MSB vectors my and mx such that

∀k ≥ 0, y(k) ∈ [−2−my ; 2my − 2my−wy+1], (9)

∀k ≥ 0, x(k) ∈ [−2−mx ; 2mx − 2mx−wx+1]. (10)

Since the filter H is linear and the input interval is centered at
zero, the output interval is also centered in zero. Therefore, it will

be sufficient to determine the least my and mx such that

∀k ≥ 0, |y(k)| ≤ 2my − 2my−wy+1, (11)

∀k ≥ 0, |x(k)| ≤ 2mx − 2mx−wx+1. (12)

3.2 Applying WCPG to compute MSB

The idea is to apply the WCPG theorem to compute the ranges
of variables. However, WCPG acts only upon the filter’s outputs.
To extend the result for the state variables, we modify the filter’s
model by incorporating state variables into the output, as if they
were not only stored from one iteration to another, but also given
out each time.

Let ζ(k) :=
(
x(k)
y(k)

)
be a new output vector. Then the state-space

relationship in 1 takes the form:

Hζ


x(k + 1) = Ax(k) + Bu(k)

ζ(k) =

(
I
C

)
x(k) +

(
0
D

)
u(k)

. (13)

This new filter Hζ serves only as a model to apply the WCPG
theorem, it is never actually implemented.

Now the corresponding vector wζ ∈ Zn+p of wordlength
constraints is just a concatenation of wx and wy.

Applying the WCPG theorem toHζ yields the following bound:

∀k ≥ 0, |ζ i(k)| ≤
(
〈〈Hζ〉〉ū

)
i
, i = 1, . . . , n + p. (14)

We look for the least MSB positions mζ such that

∀k ≥ 0, |ζ(k)| ≤ 2mζ − 2mζ−wζ+1. (15)

By applying the above bound on (14), we obtain a simple formula
for the computation of MSB positions:

mζi =
⌈

log2

(
(〈〈Hζ〉〉ū)i

)
− log2

(
1 − 21−wζi

)⌉
(16)

for i = 1, . . . , n + p.

3.3 Taking rounding errors of the implemented filter into
account

Problem (16) is usually the one that is solved in wordlength
optimization. However, the rounding errors that are induced with
each computation may propagate up to the MSB position, changing
the dynamic range of signals. This effect should be accounted for.

Due to rounding in finite-precision computations, we model the
implemented filter as H♦

ζ :

H
♦
ζ


x♦(k + 1) = ♦`x

(
Ax♦(k) + Bu(k)

)
ζ♦(k) = ♦`ζ

((
I
C

)
x♦(k) +

(
0
D

)
u(k)

)
, (17)

where the Sums-of-Products (accumulation of scalar products on
the right-hand side) are computed with some rounding operator ♦`.
Suppose this operator ensures faithful rounding [10] so that:

|♦`(x) − x| < 2`, (18)

where ` is the LSB position of the operator’s output. It was shown
in [29] that such an operator can be implemented using a few guard
bits for the accumulation.

Let the error vectors due to ♦` be denoted as εx(k) and εy(k) for
the state and output vectors, respectively. Essentially, the vectors
εx(k) and εy(k) may be associated with the noise induced by the
filter implementation but in contrast to statistical approaches, we
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Hζ

H∆

u(k)
ζ(k)

∆ζ(k)

ζ♦(k)mζ

(
εx (k)
εy (k)

)

Fig. 2. Implemented filter decomposition.

measure them as intervals. The implemented filter can be rewritten
as

H
♦
ζ


x♦(k + 1) = Ax♦(k) + Bu(k) + εx(k)

ζ♦(k) =

(
I
C

)
x♦(k) +

(
0
D

)
u(k) +

(
0
I

)
εy(k)

, (19)

where

|εx(k)| < 2`x ,
∣∣∣εy(k)

∣∣∣ < 2`y .

Remark that since the operator ♦` is applied, εx(k) , x(k) −
x♦(k) and εy(k) , y(k) − y♦(k). As the rounding also affects the
filter state, the x♦(k) drifts away from x(k) over time, whereas with
εx(k) we consider the error due to one step only.

At each instance of time both input and error vectors are
propagated through the filter. Thanks to the linearity of filters, we
model the output of the implemented filter H♦

ζ as the sum of the
output of the exact filter and a special “error-filter”, denoted by
H∆, which describes the propagation of the error vectors. This
decomposition is illustrated in Figure 2. Note that this “error-filter”
is an artificial one; it is not required to be implemented and serves
exclusively for error-analysis purposes.

More precisely, the filter H∆ is obtained by computing the
difference betweenH♦

ζ andHζ . This filter takes the rounding errors

ε(k) :=
(
εx(k)
εy(k)

)
as input and returns the result of their propagation

through the filter:

H∆


∆x(k + 1) = A∆x(k) +

(
I 0

)
ε(k)

∆ζ(k) =

(
I
C

)
∆x(k) +

(
0 0
0 I

)
ε(k)

, (20)

where ε(k) is guaranteed to be bounded by ε̄ := 2`ζ .
Once the decomposition is done, we can apply the WCPG

theorem on the “error-filter” H∆ and deduce the output interval of
the computational errors propagated through the filter:

∀k ≥ 0,
∣∣∣∆ζ(k)

∣∣∣ ≤ 〈〈H∆〉〉ε̄. (21)

Hence, the output of the implemented filter is bounded with∣∣∣ζ♦(k)
∣∣∣ =

∣∣∣ζ(k) + ∆ζ(k)
∣∣∣ ≤ |ζ(k)| +

∣∣∣∆ζ(k)
∣∣∣ . (22)

Remark 2. When applying the triangle inequality in (22) we
actually overestimate the bound. From a practical point of view, it
can be interpreted as an assumption that the input signal that leads
to the worst-case output also leads to the worst-case rounding
errors. This is not generally true. Also, the error inputs themselves
cannot be exercised concurrently but only element-wise. Thus, the
triangle inequality bound is not generally attained. Consequently,
the “least” MSB positions that we compute further are not the least
possible but the least for our way to model the errors and their
propagation. In Section 4.2 we propose an approach for dealing
with this potential overestimation.

Applying the WCPG theorem to the implemented filter and
using (22) we can computed the MSB vector m♦

ζ as

m♦
ζi

=
⌈
log2

( (
〈〈Hζ〉〉ū

)
i
+ (〈〈H∆〉〉ε̄)i

)
− log2

(
1 − 21−wζi

)⌉
, (23)

for i = 1, . . . , n + p.

Therefore, the FxP formats (m♦
ζ , `

♦
ζ ), where the LSB `♦ζ is

computed via (7), guarantee that no overflows occur for the
implemented filter.

3.4 Complete algorithm for reliable MSB

Since the input of the error filter H∆ depends on the error-bound
vector εζ of the FxP formats chosen for implementation, we cannot
directly use (23). The idea is to first compute the FxP formats of
the variables in the exact filter Hζ , where computational errors are
not taken into account, and then use them as an initial guess for the
implemented filter H♦

ζ . Hence, we obtain the following two-step
algorithm:
Step 1: Determine the FxP formats (mζ , `ζ) for the exact filter Hζ

Step 2: Construct the “error-filter” H∆, which gives the prop-
agation of the computational errors induced by format
(mζ , `ζ); then, using (23) compute the FxP formats
(m♦

ζ , `
♦
ζ ) of the actually implemented filter H♦

ζ .
The above algorithm takes into account the filter implementation
errors. However, the MSB computation via (23) itself is imple-
mented in finite-precision and can suffer from rounding errors,
which influence the output result.

All operations in the MSB computation may induce errors,
so the quantities we actually compute are only floating-point
approximations m̂ζ and m̂ζ

♦. In Section 4 we propose an error-
analysis of the approximations in (23) and (16). We prove that by
controlling the accuracy of the WCPG evaluation, we can compute
mζ

♦ exactly in most cases, otherwise overestimate by one, while
being sure that we never underestimate.

In most cases the MSB vectors m̂ζ (computed at Step 1) and
m̂♦
ζ (computed at Step 2) are the same. When they are not, it is

because one of the following happened:
• the accumulated rounding errors due to the initially computed

FxPF (m̂ζ ,̂̀ζ) makes the magnitude output of the implemented
filter require one more bit; or

• the floating-point approximation m̂♦
ζ is off by one due to our

use of the triangle inequality in (22).
Moreover, if the MSB position is increased, then the LSB

position moves along and increases the error (since the wordlengths
are fixed here). Consequently, the modified format must be re-
checked to be valid. Obviously, there is a risk that the check fails
and the MSB position is to be increased yet again. To avoid an
infinite loop we propose to use a rather natural exit condition:
when the LSB position of the actually implemented filter reaches
the position of the initially determined MSB position, nothing but
noise is computed by the implemented filter. An interpretation
of the above situation is that the filter simply cannot be reliably
implemented with the given wordlengths. This information is quite
helpful for the filter designers and, to the best of our knowledge, is
not provided in state-of-the-art tools like Matlab.

We formalize the complete iterative approach in Algorithm 1.

4 Error analysis of the MSB computation formula
In this Section we state the requirements on the accuracy of the
WCPG such that the computed MSB positions are either computed
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Algorithm 1: Reliable determination of the MSBs
Input: system H = (A, B,C, D);

input interval bound ū;
wordlength constraints wx,wy

Output: Formats (mx,my) or an error
wζ ←− concatenate wx and wy

Hζ ←− incorporate states into the filter via (13)
H∆ ←− model of the error filter via (20)

Step 1: for i = 1, . . . , n + p do
[mζi ]←− interval evaluation of MSB via (16)
mmaxi ←− mζi + wζi + 1

end
do

Step 2: for i = 1, . . . , n + p do
εζi ←− 2mζi−wζi +1

[m♦
ζi

]←−interval evaluation of MSB via (23)
end

Check: if [m♦
ζi

] == [mζi ] for i = 1, . . . , n + p then
return mζ

end
else

[mζi ]←− [mζi ] + 1 for i = 1, . . . , n + p
end

while m♦
ζ < mmax;

return “Impossible to implement”

exactly or overestimated by one. In the rare cases of overestimation
by one, we face an instance of a Table Maker’s Dilemma [10]. We
shall propose an approach to overcome this issue.

4.1 Controlling the accuracy of the Worst-Case Peak Gain

Let us consider the case of m̂ζi
♦. For readability, let

m := log2

( (
〈〈Hζ〉〉ū

)
i
+ (〈〈H∆〉〉ε̄)i

)
− log2

(
1 − 21−wζi

)
. (24)

The approach described below can be applied to the computation
of m̂ζi with the terms concerning filter H∆ set to zero.

Handling floating-point analysis of multiplications and addi-
tions in (23) is trivial using a Higham’s [11] approach. The difficulty
comes from the approximations to WCPG matrices, which cannot
be computed exactly. Both approximations 〈̂〈Hζ〉〉 and 〈̂〈H∆〉〉,
even if computed with arbitrary precision, bear some errors εWCPGζ

and εWCPG∆
that satisfy

0 ≤ 〈̂〈H∆〉〉 − 〈〈H∆〉〉 ≤ εWCPGζ
(25)

0 ≤ 〈̂〈Hζ〉〉 − 〈〈Hζ〉〉 ≤ εWCPG∆
(26)

Introducing the errors on the WCPG computations into the
formula (23) we obtain that what we actually compute is

m̂ζi
♦
≤


m + log2

1 +

εWCPGζ

q∑
j=1

ū j + εWCPG∆

n+p∑
j=1
ε̄ j(

〈〈Hζ〉〉ū
)

i
+ (〈〈H∆〉〉ε̄)i

︸                                           ︷︷                                           ︸
δ


. (27)

The error term δ in (27) cannot be zero (apart from trivial
case with zero ū). However, assuming that we can control the
accuracy of the WCPG matrices, we can deduce conditions for the
approximation m̂ζi

♦ to be off by at most one.

Lemma 1. [4] If the WCPG matrices 〈〈Hζ〉〉 and 〈〈H∆〉〉 are
computed such that (25) and (26) hold with

εWCPG∆
<

1
2

(
〈〈H∆〉〉 · ε̄

)
i∑p+n

j=1 ε̄ j
, ∀i (28)

εWCPGζ
<

1
2

(
〈〈Hζ〉〉 · ū

)
i∑q

j=1 ū j
, ∀i (29)

where 〈〈H〉〉 := |D| + |CB| + |CAB| is a very low-accuracy lower
bound on 〈〈H〉〉, then

0 ≤ m̂ζi
♦
− mζi

♦ ≤ 1, ∀i. (30)

We propose to perform arithmetic operations in (23) and (16)
in multiple precision interval arithmetic in order to account for
floating-point rounding errors. In most cases, the interval evaluation
[̂m] of (24) is not going to contain an integer, thus the final ceil
operation will yield a point-interval. However, when it does, we
have to choose between two possible MSB positions that are off

by one. In the following section we discuss on how to refine the
computations in order to overcome this potential overestimation.

4.2 Off-by-One problem and Table Maker’s Dilemma

Let [̂m] be an interval estimation of (24), where the WCPG matrices
were computed with the error bounds deduced in Lemma 1. The
integer MSB positions are computed as [mζ] =

⌈
[̂m]

⌉
. However,

if the exact value m is very close to the integer
⌈
m
⌉
, rounding the

interval’s bounds up to the nearest integer may yield and interval
that will contain both

⌈
m
⌉

and
⌈
m
⌉
+ 1 and one must choose between

two possible MSB positions. Then, we need to determine the
smallest accuracy of the WCPG such that we do not overestimate
the MSB position, i.e. the upper bound of interval

⌈
[̂m]

⌉
is the same

as
⌈
m
⌉
. This problem is an instance of the Table Maker’s Dilemma

(TMD) [10], which usually occurs during the implementation of
transcendental functions.

One of the strategies of solving the TMD is performing Ziv’s
iteration [30]. In this approach we reduce the width of the interval
[̂m] by iteratively increasing the accuracy of the WCPG computation.
However, even after numerous iterations the interval may still
contain the integer

⌈
m
⌉
. This may be due to the following:

• the interval is still too large due to the rounding errors;
• the propagation of the rounding errors indeed yields the larger

MSB position.
Thus, we cannot simply continue increasing the precision of the
computations. We propose the following strategy:

(i) increase the accuracy of the WCPG several times;
(ii) if the interval [̂m] still contains the integer z, try to find whether

there exist a state and input vector that yield an overflow if
the eventual MSB position is set to z. Roughly said, we try
to use the smaller format and prove that an overflow is not
possible nevertheless.

To prove that an overflow is not possible, we solve an instance
of the following Integer Linear Programming [31] problem.

4.2.1 Integer Linear Programming as a way to solve the TMD
Let the input signal u be represented in some FxP Format. Suppose
that we determine the FxP Formats for the state and output variables
and, in case of the off-by-one problem, we choose the smaller MSB
positions. Let x, y, u be the minimal and x, y, u the maximum
authorized values for the state, output and input vectors respectively.
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Then, our goal is to find
(
x
u

)
that are in the deduced FxP formats

but for which (
A B
C D

) (
x
u

)
=

(
x
y

)
+

(
δx
δy

)
(31)

with
(
δx
δy

)
≥ 0. In other words, we search for x, y, δx, δy such that(

A B
C D

) (
x
u

)
≤

(
x
y

)
+

(
δx
δy

)
(
A B
C D

) (
x
u

)
≥

(
x
y

)
+

(
δx
δy

)
(
I 0
0 I

) (
x
u

)
≤

(
x
u

)
(
I 0
0 I

) (
x
u

)
≥

(
x
u

)
(32)

Denote x := x + x′ and u := u + u′. To formalize the optimization
problem, we need to bring the above inequalities to the canonical
form, i.e. bring all inequalities to the direction “≤”.

Then, the optimization problem is the following:

maximize t>ξ (33)

subject to the following constraints:

Fξ ≤ r (34)

where

ξ =


x′
u′
δx
δy

 ≥ 0, t =


0
0
1
1

 (35)

F =



A B −I 0
C D 0 −I
−A −B I 0
−C −D 0 I
I 0 0 0
0 I 0 0


, r =



((
x
y

)
−

(
A B
C D

) (
x
y

))
((

A B
C D

) (
x
y

)
−

(
x
y

))
(
x − x
u − u

)


. (36)

In our case we are actually interested in existence of a state and
an output in the feasible set constrained by (34), hence the cost
function essentially does not matter. We chose the cost function
that, among feasible results, if they exist, selects the one with an
average overflow. Another possible cost function, for example, is
maximization of individual δxi and δyi . Then, one could solve n + p
instances of such optimization problem in order to obtain, if they
exist, maximal errors that are possible.

Since filter implementation is performed in FxP arithmetic,
A, B,C, D are actually integer matrices scaled by some factor.
Thus, the above optimization problem becomes an instance of an
Integer Linear Programming (ILP) problem.

To ensure that the exact solution is found and not just an
approximation, we suggest using a solver over the rational numbers,
such as the SCIP Optimization Suite3 [32].

If there does not exist any solution to the above problem, then
the overestimation of the MSB position was due to the application
of triangular inequality in (22) (see Remark 2) and it is safe to take
the smaller MSB positions, i.e.

⌈
m
⌉

instead of
⌈
m
⌉

+ 1.
Neither of our experiments showed that the ILP instance had

feasible solutions. Thus, we were actually able to solve the TMD
in our cases and return the smaller formats.

3. http://scip.zib.de/
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Fig. 3. The approximations of the WCPG with the increase of truncation order
for a certain SISO filter.

5 Accurate evaluation of theWorst-Case Peak Gain
As we have seen in Section 3, the WCPG measure is required not
only for bounding the dynamics of the variables in a digital filter,
but also for bounding the impact of the rounding errors that occur
in FxP implementation. In this section we present an algorithm for
the floating-point evaluation of the WCPG matrix with an a priori
given error bound.

5.1 Problem statement

Given an LTI filter as in (1) and a small ε > 0, we seek to evaluate a
FP approximation S on the WCPG matrix 〈〈H〉〉 such that element-
by-element

|〈〈H〉〉 − S| ≤ ε. (37)

5.2 Naive approach and related work

Of course, we need to first truncate the sum in (4) to some finite
number of terms N (further called truncation order). In other
approaches [33], some “sufficiently large” truncation order is
often chosen, e.g. 500 or 1000 terms. The following example
demonstrates that this may be very dangerous.

Example 1. Consider a certain stable 5th order random SISO
filter4. A naive computation of the WCPG in double precision with
1000 terms in the sum (4) yields 〈〈H〉〉naive = 105.66. Suppose all
the inputs are in the interval [−1, 1]. Then, according to the WCPG
theorem, outputs must be in the interval [−105.66, 105.66].
Now, consider the input signal from Remark 1, i.e. the one that
yields the worst-case output. With this input signal, the output of
a double-precision FP filter reaches the value 192.2 in just 2000
iterations. Obviously, the WCPG was underestimated.

In [2] Balakrishnan and Boyd propose lower and upper bounds
on the truncation order. Their iterative algorithm is proven to work
in exact arithmetic, however its implementation in FP arithmetic
does not. First, it is based on matrix exponentiation, which would
require a non-trivial error analysis. Second, on each iteration (the
quantity of which may reach a high order) solving Lyapunov
equations [34] is required for which there exists no ready-to-
use solution with rigorous error bounds on the result. Therefore,
numerically computing a guaranteed lower bound on the truncation
order N seems to be difficult with this approach as it is.

A competing approach, similar to the one in [28], would be
not to start with truncation order determination but to immediately

4. Its double-precision coefficients are given in appendix.
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Algorithm 2: Floating-point evaluation of the WCPG
Input: A ∈ Fn×n, B ∈ Fn×q,C ∈ Fp×n, D ∈ Fp×q, ε > 0
Output: SN ∈ Fp×q such that |〈〈H〉〉 − S| ≤ ε

Step 1: Compute N
Step 2: Compute V from an eigendecomposition of A

T ← inv(V) ⊗ A ⊗ V
if ‖T‖2 > 1 then return ⊥

Step 3: B′ ← inv(V) ⊗ B
C′ ← C ⊗ V
S−1 ← |D|, P−1 ← In

for k from 0 to N do
Step 4: Pk ← T ⊗ Pk−1

Step 5: Lk ← C′ ⊗ Pk ⊗ B′
Step 6: Sk ← Sk−1 ⊕ abs(Lk)

end
return SN

go for summation and to stop when adding more terms does not
improve accuracy. For example, if we increase the truncation order
in Example 1, we obtain the dynamic of the WCPG approximations
shown in Figure 3.

However, naive computation of the terms in (4) with FP
arithmetic in some precision, set at the start of the algorithm,
may yield significant rounding errors and would not allow the
final approximation error to be bounded in an a priori way by an
arbitrary ε.

Therefore, in the following we propose a new approach on
the evaluation of the WCPG in multiple precision. Our goal is
to not only perform rigorous error analysis of approximations
but also to deduce the required accuracy for each computation
in the evaluation of the WCPG. By adapting the precision of
intermediate computations we achieve an a priori bound on the
overall approximation error.

5.3 Algorithm for the Worst-Case Peak Gain evaluation

In this Section we give an overview of the proposed algorithm and
detail our analysis in Sections 5.4, 5.5 and 5.6.

We propose a new direct formula for the bound on the truncation
order N. Then, instead of directly computing the infinite sum∣∣∣CAk B

∣∣∣ for any k < N, we will use an approximate eigenvalue
decomposition of A (i.e. A ≈ VTV−1) and compute the floating-
point sum

∣∣∣CVTkV−1B
∣∣∣ for 0 ≤ k ≤ N. We assume A to be

diagonalizable with simple eigenvalues.
Our approach to compute the approximation SN of 〈〈H〉〉 is

summarized in algorithm 2 where all matrix operations (⊗, ⊕, inv,
abs, etc.) are floating-point multiple precision operations done at
various precisions to be determined such that the overall error is at
most ε.

The overall error analysis is decomposed into 6 steps, where
each one expresses the impact of a particular approximation
(or truncation), and provides the accuracy requirements for the
associated operations.

Step 1: Let 〈〈H〉〉N be the truncated sum

〈〈H〉〉N := |D| +
N∑

k=0

∣∣∣CAk B
∣∣∣ . (38)

We compute a truncation order N of the infinite sum 〈〈H〉〉 such
that the truncation error is less than ε1:

|〈〈H〉〉 − 〈〈H〉〉N | ≤ ε1. (39)

Step 2: Error analysis for computing the powers Ak of a full
matrix A, when the k reaches several hundreds, is a significant
problem, especially when the eigenvalues of A are close to the
unit circle. However, if A can be represented as A = XEX−1 with
E ∈ Cn×n strictly diagonal and X ∈ Cn×n, then powering of A
reduces to powering an approximation to E.

Suppose we have a matrix V approximating X. We require
this approximation to be just quite accurate so that we are able
to discern the different associated eigenvalues and be sure their
absolute values are less than 1.

We may then consider the matrix V to be exact and compute an
approximation T to V−1 A V with sufficient accuracy such that the
error of computing VTkV−1 instead of matrix Ak is less than ε2:∣∣∣∣∣∣∣〈〈H〉〉N −

N∑
k=0

∣∣∣CVTkV−1B
∣∣∣∣∣∣∣∣∣∣ ≤ ε2. (40)

Step 3: We compute approximations B′ and C′ to V−1B and
CV, respectively. We require that the propagated error committed
in using B′ instead of V−1B and C′ instead of CV be less than ε3:∣∣∣∣∣∣∣

N∑
k=0

∣∣∣CVTkV−1B
∣∣∣ − N∑

k=0

∣∣∣C′Tk B′
∣∣∣∣∣∣∣∣∣∣ ≤ ε3. (41)

Step 4: We compute in Pk the powers Tk of T with a certain
accuracy. We require that the propagated error be less than ε4:∣∣∣∣∣∣∣

N∑
k=0

∣∣∣C′Tk B′
∣∣∣ − N∑

k=0

∣∣∣C′Pk B′
∣∣∣∣∣∣∣∣∣∣ ≤ ε4. (42)

Step 5: We compute in Lk each summand C′Pk B′ with an
error small enough such that the overall approximation error
induced by this step is less than ε5:∣∣∣∣∣∣∣

N∑
k=0

∣∣∣C′Pk B′
∣∣∣ − N∑

k=0

|Lk |

∣∣∣∣∣∣∣ ≤ ε5. (43)

Step 6: Finally, we sum Lk in SN with enough precision so
that the absolute error bound for summation is bounded by ε6:∣∣∣∣∣∣∣

N∑
k=0

|Lk | − SN

∣∣∣∣∣∣∣ ≤ ε6. (44)

By ensuring that each step verifies its bound εi, and taking
εi = 1

6ε, we get ε1 + ε2 + ε3 + ε4 + ε5 + ε6 = ε, hence (37) will be
satisfied if inequalities (39) through (44) are.

Our approach hence determines first a truncation order N
and then performs summation up to that truncation order, whilst
adjusting precision in the different summation steps.

5.4 Truncation order

In this Section we propose a direct formula for the lower bound on
N along with a reliable evaluation algorithm.
Step 1: The goal is to determine a lower bound on the truncation
order N of the infinite sum (4) such that its tail is smaller than
the given ε1. Obviously, 〈〈H〉〉N is a lower bound on 〈〈H〉〉 and
increases monotonically to 〈〈H〉〉 with increasing N. Hence the
truncation error is

|〈〈H〉〉 − 〈〈H〉〉N | =
∑
k>N

∣∣∣CAk B
∣∣∣ . (45)
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Many simple bounds on (45) are possible. For instance, if the
eigendecomposition of A is computed

A = XEX−1 (46)

where X ∈ Cn×n is the right hand eigenvector matrix, and E ∈ Cn×n

is a diagonal matrix holding the eigenvalues λl, the terms CAk B
can be written

CAk B = ΦEkΨ =

n∑
l=1

Rlλ
k
l (47)

where Φ ∈ Cp×n, Ψ ∈ Cn×q and Rl ∈ Cp×q are defined by

Φ := CX, Ψ := X−1B, (Rl)i j := ΦilΨl j. (48)

In this setting, we obtain

|〈〈H〉〉 − 〈〈H〉〉N | ≤=
∑
k>N

n∑
l=1

∣∣∣Rlλ
k
l

∣∣∣ . (49)

As only stable filters are considered, it is guaranteed that
all eigenvalues λl of matrix A lie in the unit circle. We may
therefore notice that the outer sum is in geometric progression with
a common ratio |λl| < 1. So the following bound is possible:

|〈〈H〉〉 − 〈〈H〉〉N | ≤

∞∑
k=N+1

n∑
l=1

|Rl|
∣∣∣λk

l

∣∣∣ (50)

≤

n∑
l=1

|Rl|

∣∣∣λN+1
l

∣∣∣
1 − |λl|

= ρ(A)N+1
n∑

l=1

|Rl|

1 − |λl|

(
|λl|

ρ(A)

)N+1

. (51)

Since |λl |

ρ(A) ≤ 1 holds for all terms, we may leave out the powers.
Let be

M :=
n∑

l=1

|Rl|

1 − |λl|

|λl|

ρ(A)
∈ Rp×q. (52)

The tail of the infinite sum is hence bounded by

|〈〈H〉〉 − 〈〈H〉〉N | ≤ ρ(A)N+1 M. (53)

In order to get (53) bounded by ε1, it is required that element-
by-element

ρ(A)N+1 M ≤ ε1.

Solving this inequality for N leads us to the following bound:

N ≥
⌈

log ε1
m

log ρ(A)

⌉
(54)

where m is defined as m := min
i, j

Mi, j.

However we cannot compute exact values for all quantities
occurring in (54) when using finite-precision arithmetic. We only
have approximations for them. Thus, in order to reliably determine
a lower bound on N, we must compute lower bounds on m and
ρ(A), from which we can deduce an upper bound on log ε1

m and a
lower bound on log ρ(A) to eventually obtain a lower bound on N.

Due to the implementation of (46) and (48) with finite-
precision arithmetic, only approximations on λ, X,Φ,Ψ, Rl can
be obtained. To provide guaranteed inclusions on the results of
these computations, we combine LAPACK floating-point arithmetic
with Interval Arithmetic enhanced with Rump’s Theory of Verified
Inclusions [35], [36] which provide guaranteed inclusions on the
solutions of various linear algebra problems. The verification

process is performed by means of checking an interval fixed point
and yields to a trusted interval for the solution. Then, the intervals
for (48), (52) and (54) are computed with Interval Arithmetic. Our
complete algorithm to determine a reliable lower bound on N can
be found in [3] (Algorithm 3).

5.5 Multiple precision eigendecomposition

As seen, in each step of the summation, a matrix power, Ak, must
be computed. In [11] Higham devotes a chapter to error analysis of
matrix powers but this theory is in most cases inapplicable for state
matrices A of linear filters, as the requirement ρ(|A|) < 1 does not
necessarily hold here. Therefore, despite taking A to just a finite
power k, the sequence of computed matrices may explode in norm
since k may take an order of several hundreds or thousands. Thus,
even extending the precision is not a solution, as an enormous
number of bits would be required.

For stable systems, the state matrices are diagonalizable , i.e.
there exists a matrix X ∈ Cn×n and diagonal E ∈ Cn×n such
that A = XEX−1. Then Ak = XEk X−1. A good choice of X
and E are the eigenvector and eigenvalue matrices obtained using
eigendecomposition (46). However, with LAPACK we can compute
only approximations of them and we cannot control their accuracy.
Therefore, we propose the following method to almost diagonalize
matrix A. The method does not make any assumptions on V except
for it being some approximation to X. Therefore, for simplicity of
further reasoning we treat V as an exact matrix.
Step 2: Using our multiprecision algorithms for matrix inverse and
multiplication we may compute a T ∈ Cn×n:

T := V−1 AV − ∆2, (55)

where V ∈ Cn×n is an approximation to X, ∆2 ∈ Cn×n is a matrix
representing the element-by-element errors due to the two matrix
multiplications and the inversion of matrix V.

Although the matrix E is strictly diagonal, V is not exactly the
eigenvector matrix and consequently T is a dense matrix. However
it has its prevailing elements on the main diagonal. Thus T is an
approximation to E.

We require for matrix T to satisfy ‖T‖2 ≤ 1. This condition is
stronger than ρ(A) < 1, and Section 5.5.1 provides a way to test it.
In other words, this condition means that there exists some margin
for computational errors between the spectral radius and 1.

Let Ξk := (T + ∆2)k − Tk. Hence Ξk ∈ Cn×n represents the error
matrix which captures the propagation of error ∆2 when powering
T. Since

Ak = V(T + ∆2)kV−1, (56)

we have
CAk B = CVTkV−1B + CVΞkV−1B. (57)

Thus the error of computing VTkV−1 instead of Ak in (38) is
bounded by ∣∣∣∣∣∣∣

N∑
k=0

∣∣∣CAk B
∣∣∣ − N∑

k=0

∣∣∣CVTkV−1B
∣∣∣∣∣∣∣∣∣∣ ≤ (58)

N∑
k=0

∣∣∣CAk B − CVTkV−1B
∣∣∣ ≤ N∑

k=0

∣∣∣CVΞkV−1B
∣∣∣ . (59)

Here and further on each step of the algorithm we use
inequalities with left side in form (59) rather than (58), i.e. we
will instantly use the triangular inequality

∣∣∣ |a| − |b| ∣∣∣ ≤ |a − b| ∀a, b
applied element-by-element to matrices.
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In order to determine the accuracy of the computations on this
step such that (59) is bounded by ε2, we need to perform detailed
analysis of Ξk, with spectral-norm. Using the definition of Ξk the
following recurrence can be easily obtained:

‖Ξk‖2 ≤ ‖Ξk−1‖2 + ‖∆2‖2 (‖Ξk−1‖2 + 1) (60)

If ‖Ξk−1‖2 ≤ 1, which must hold in our case since Ξk represent
an error-matrix, then

‖Ξk‖2 ≤ ‖Ξk−1‖2 + 2 ‖∆2‖2 (61)

In the following, we bound the matrices with respect to their
Frobenius norm, which is easy to compute and has the following
useful properties:

∣∣∣Ki j

∣∣∣ ≤ ‖K‖F and ‖K‖2 ≤ ‖K‖F ≤
√

n ‖K‖2 for
K ∈ Cn×n.

As ‖Ξ1‖2 = ‖∆2‖2 we can get the desired bound capturing the
propagation of ∆2 with Frobenius norm:

‖Ξk‖F ≤ 2
√

n(k + 1) ‖∆2‖F . (62)

Substituting this bound to (59) and folding the sum, we obtain
N∑

k=0

∣∣∣CVΞkV−1B
∣∣∣ ≤ β ‖∆2‖F ‖CV‖F

∥∥∥V−1B
∥∥∥

F , (63)

with β =
√

n(N + 1)(N + 2). Thus, we get a bound on the error
of approximation to A by VTV−1. Since we require it to be less
than ε2 we obtain a condition for the error of the inversion and two
matrix multiplications:

‖∆2‖F ≤
1
β

ε2

‖CV‖F
∥∥∥V−1B

∥∥∥
F

. (64)

Using this bound we can deduce the desired accuracy of our
multiprecision algorithms for complex matrix multiplication and
inverse as a function of ε2.

5.5.1 Checking whether ‖T‖2 ≤ 1
Since ‖T‖22 = ρ(T∗T), we study the eigenvalues of T∗T. According
to Gershgorin’s circle theorem [37], each eigenvalue µi of T∗T is
in the disk centered in (T∗T)ii with radius

∑
j,i

∣∣∣(T∗T)i j

∣∣∣.
Let us decompose T into T = F + G, where F is diagonal

and G contains all the other terms (F contains the approximate
eigenvalues, G contains small terms and is zero on its diagonal).
Let be Y := T∗T − F∗F = F∗G + G∗F + G∗G. Then∑

j,i

∣∣∣(T∗T)i j

∣∣∣ =
∑
j,i

∣∣∣Yi j

∣∣∣
≤ (n − 1) ‖Y‖F
≤ (n − 1)

(
2 ‖F‖F ‖G‖F + ‖G‖2F

)
≤ (n − 1)

(
2
√

n + ‖G‖F
)
‖G‖F . (65)

Each eigenvalue of T∗T is in the disk centered in (F∗F)ii+(Y)ii with
radius γ, where γ is equal to (n− 1)

(
2
√

n + ‖G‖F
)
‖G‖F , computed

in a rounding mode that makes the result become an upper bound
(round-up).

As G is zero on its diagonal, the diagonal elements of Y are
equal to the diagonal elements of G∗G. They can hence be bounded
as follows:

|Yii| = |(G∗G)ii| ≤ ‖G‖2F . (66)

Then, Gershgorin circles enclosing the eigenvalues of F∗F can
be increased, meaning that if (F∗F)ii is such that

∀i, |(F∗F)ii| ≤ 1 − ‖G‖2F − γ, (67)

it holds that ρ(T∗T) ≤ 1 and ‖T‖2 ≤ 1.
This condition can be tested by using floating-point arithmetic

with directed rounding modes (round-up for instance).
After computing T out of V and A according to (55), the

condition on T should be tested in order to determine if ‖T‖2 ≤
1. This test failing means that V is not a sufficiently accurate
approximation to X or that the error ∆2 committed when computing
(55) is too large, i.e. the accuracy of our multiprecision algorithm
for complex matrix multiplication and inverse should be increased.
The test is required for rigor only. We do perform the test in the
implementation of our WCPG method, and, on the examples we
tested, never saw it give a negative answer. In case where the matrix
T does not pass the check, our algorithm is designed to return an
error message.

5.6 Summation

Now that the truncation order is determined and A is replaced by
VTV−1, we must perform floating-point matrix operations with an
a priori absolute error bound.
Step 3: we compute approximations to the matrices CV and V−1B
with a certain precision and need to determine the required accuracy
of these multiplications such that the overall error of this step is
less than ε3.

Let C′ := CV + ∆3C and B′ := V−1B + ∆3B , where ∆3C ∈ Cp×n

and ∆3B ∈ Cn×q are error matrices containing the errors of the two
matrix multiplications and the inversion.

Using the Frobenius norm, we can bound the error in the
approximation to CV and V−1B by C′ and B′ as follows:

N∑
k=0

∣∣∣CVTkV−1B − C′Tk B′
∣∣∣ ≤

N∑
k=0

∥∥∥∆3C Tk B′ + C′Tk∆3B + ∆3C Tk∆3B

∥∥∥
F . (68)

Since ‖T‖2 ≤ 1 holds we have∥∥∥∆3C Tk B′ + C′Tk∆3B + ∆3C Tk∆3B

∥∥∥
F ≤ (69)

√
n
(∥∥∥∆3C

∥∥∥
F

(∥∥∥B′
∥∥∥

F +
∥∥∥∆3B

∥∥∥
F

)
+

∥∥∥C′
∥∥∥

F

∥∥∥∆3B

∥∥∥
F

)
.

This bound represents the impact of our approximations for
each k = 0 . . .N. If (69) is bounded by 1

N+1 · ε3, then the overall
error is less than ε3. Hence, bounds on the two error-matrices are:∥∥∥∆3C

∥∥∥
F ≤

1
3
√

n
·

1
N + 1

ε3

‖B′‖F
(70)∥∥∥∆3B

∥∥∥
F ≤

1
3
√

n
·

1
N + 1

ε3

‖C′‖F
. (71)

Therefore, using bounds on
∥∥∥∆3C

∥∥∥
F and

∥∥∥∆3B

∥∥∥
F , we can deduce

the required accuracy of our multiprecision matrix multiplication
and inversion according to ε3.
Steps 4 to 6: we proceed in a similar manner, each time bounding
the propagated error and expressing the requirements for the
accuracy of matrix operations. We refer the reader to [3] for more
details.

5.7 Matrix arithmetic with a priori accuracy

5.7.1 Basic brick methods
In order for our WCPG evaluation algorithm to work, we require the
following three basic floating-point algorithms: multiplyAndAdd,
sumAbs and inv, computing, respectively, the product followed
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by a sum (AB + C), the accumulation of an absolute value in a
sum (A + |B|) and the inverse of matrices (A−1). Each of these
operators was required to satisfy an absolute error bound |∆| < δ to
be ensured by the absolute-error matrix ∆ with respect to scalar δ,
given in argument to the algorithm.

Ensuring such an absolute error bound is not possible in general
when fixed-precision floating-point arithmetic is used. Any such
algorithm, when returning its result, must round into that fixed-
precision floating-point format. Hence, when the output grows
sufficiently large, the unit in the last place of that format and hence
the final rounding error in fixed-precision floating-point arithmetic
grows larger than a previously set absolute error bound.

We develop algorithms that will generically determine the
output precision of the floating-point variables they return their
results in, such that a user-given absolute error bound is guaranteed.
In contrast to classical floating-point arithmetic, such as Higham’s
analyzes, there is no longer any clear, overall compute precision,
though. Variables just bear the precision that had been determined
for them by the previous computation step. This preliminary
clarification being made, a general description of our three basic
bricks sumAbs, inv and multiplyAndAdd is easy.

For sumAbs(A, B, δ) = A + |B| + ∆, we can reason element by

element. We need to approximate Ai j +

√(
<Bi j

)2
+

(
=Bi j

)2
with

absolute error no larger than δ, where <z and =z are the real and
imaginary parts of the complex number z. This can be ensured by
considering the floating-point exponents of each of Ai j, <Bi j and
=Bi j with respect to the floating-point exponent of δ.

For multiplyAndAdd(A, B,C, δ) = A ·B+C+∆, we can reason
in terms of scalar products between A and B. The scalar products
boil down to summation of products which, in turn, can be done
exactly, as we can determine the precision of the Aik and Bk j. As a
matter of course the very same summation can capture the matrix
elements Ci j. Finally, multiple precision floating-point summation
with an absolute error bound can be performed with a modified,
software-simulated Kulisch accumulator [38], which does not need
to be exact but bear just enough precision to satisfy the absolute
accuracy bound δ.

Finally, once the multiplyAndAdd operator is available, it is
possible to implement the matrix inversion algorithm inv using a
Newton-Raphson-like iteration [39]:

U0 ← some seed inverse matrix for V−1

Rk ← VUk − In (72)

Uk+1 ← Uk − Uk R

where the iterated matrices Uk converge to V−1 provided certain
conditions are met. See [3] and the appendix for details.

5.7.2 Error analysis of MP basic bricks

One of the core algorithms in our approach is the sum of the
elements of a real vector with an a priori given absolute error
bound. The idea is first to provide a Higham-like error analysis of
computations and to determine the bound on the rounding error;
and then to use just enough additional precision in computations
to account for that error. We give an example of the proof for a
simple basic brick algorithm: summation of vector elements.

Let v be a vector of n MP positive floating-point numbers (no
NaNs or Infinities) whose exponents are bounded by ē and let

s =
n∑

i=1
vi be the sum of its elements.

Lemma 2. Let p = ē + 2
⌈

log2 n
⌉

+ k + 1. If the MP floating-point
approximation ŝ to s is computed with the precision at least p bits,
then |s − ŝ| ≤ 2−k.

In addition, the only case when the precision of the final result
ŝ is larger than the precision psum of the original sum variable is
when the exponent e of ŝ satisfies e > psum − k − 1.

Proof. Since |vi| < 2ē, the sum is bounded as |s| ≤ n2ē ≤ 2
ē+

⌈
log2 n

⌉
.

When performing one addition in MP with precision p, an error
of at most 2−p |s| is induced. When performing n additions, we
obtain [40]:

|s − ŝ| ≤ n2−p |s| ≤ 2
⌈

log2 n
⌉
−p+ē+

⌈
log2 n

⌉
≤ 2−k−1. (73)

Thus, the accumulated sum ŝ satisfies

ŝ = s + δ, |δ| ≤ 2−k−1. (74)

Let psum be the precision of the original sum variable in the
summation algorithm. It may happen that p > psum, i.e. we need
to round ŝ to the precision closest to psum while maintaining the
original error bound 2−k.

Let e be the exponent of the accumulated sum ŝ. Then, when
rounding ŝ to psum bits, we obtain the value ŝ′ such that∣∣∣ŝ − ŝ′

∣∣∣ ≤ 2e−psum . (75)

Thus we actually obtain

ŝ′ = ŝ + δ′ = s + δ + δ′ (76)

and ∣∣∣s − ŝ′
∣∣∣ ≤ |δ| + ∣∣∣δ′∣∣∣ ≤ 2k−1 + 2e−psum . (77)

If e − psum ≤ −k − 1, then |s − ŝ′| ≤ 2−k−1 + 2−k−1 = 2−k.
Otherwise, we round ŝ to e + k + 1 bits, inducing an error δ′

bounded by 2−k−1 but still maintaining the overall error bound 2−k.
This is the only case where the final precision of the sum variable
is not equal to the original precision. �

6 Numerical examples
The algorithms discussed above were implemented in C, using GNU
MPFR version 3.1.12, GNU MPFI5 version 1.5.2 and CLAPACK6

version 3.2.1. A Python ctypes wrapper was also provided in
order to integrate the libraries into the FiXiF tool. All the code is
released as open-source.

We use FiXiF (and Python 2.7.10) as a front end providing the
necessary infrastructure for LTI filter manipulation. The timings
reported are those measured for the C code.

Experiments were done on a laptop computer with an Intel
Core i5 processor running at 2.8 GHz and 16 GB of RAM.

Here we demonstrate our tool on the following three examples:
• H1 comes from Control Theory: the LTI system is extracted

from an active controller of vehicle longitudinal oscillation [41].
• H2 is a highly sensitive lowpass filter. It has very short passband

(between 0 and 1e-3 in normalized frequencies) and short transition
band (stopband starts at 1.8e-3) with minimum attenuation of 40dB.
• H3 is a simple lowpass MIMO filter (with 3 outputs).

Table 1 gathers the evaluations of corresponding WCPG
measures (first with a fixed δWCPG = 2−53) and numerical results

5. https://gforge.inria.fr/projects/mpfi/

6. http://www.netlib.org/clapack/
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TABLE 1
Experimental results for two SISO and one MIMO filters (q = 3).

filter n 1 − ρ(A) 〈〈H〉〉 (fixed δWCPG = 2−53) w=10 w=16
time N 〈〈H〉〉 δWCPG # steps ∆̄ζ time δWCPG # steps ∆̄ζ time

H1 10 1.39e-2 1.17 s 2147 0.8584939 1.81e-3 2 8.85e-03 3.06 s 6.10e-4 2 2.77e-4 0.76 s

H2 5 4.13e-4 5.95 s 90169 1.5118965 1.16e-4 9 - 20.32 s 2.33e-4 4 2.07e-1 14.94 s

H3 6 7.49e-2 0.06 s 395
4.9136028
7.2209045
2.0428813

2.57e-2 3
3.41e-1
5.31e-1
1.32e-1

0.05 s 1.03e-2 2
1.43e-3
3.70e-3
5.78e-3

0.03 s

for implementations with wordlength constraints (homogeneously)
set to 10 and 16 bits. Here δWCPG is the smallest a priori error
for WCPG evaluation, ∆̄ζ is the bound on the output errors and
“# steps” denotes number of steps in Algorithm 1 (2 steps + possibly
additional iterations).

Our algorithm successfully captures when, for a given
wordlength, implementation guaranteeing the absence of overflows
is impossible. For the filter H2 and w = 10, it took 9 iterations for
our algorithm to determine that implementation is impossible, due
to condition as in Section 3.4.

We observe that the WCPG truncation order N varies signifi-
cantly for different filters, when WCPG is evaluated accurately to
double precision. However, the FxP format determination algorithm
in most cases does not actually require low error bound on the
approximations of the WCPG matrices (Table 1 gathers maximum
target precisions). Still, Algorithm 1 is highly dependent on the
WCPG evaluation time. In case of H1 and w = 16, it takes 0.76s
for our algorithm to determine reliable formats after evaluating
WCPG up to 6.10e-4 for a 10th order system. In the meantime,
for H1 our algorithm takes relatively more time, around 15s, to
evaluate the WCPG measures to roughly the same accuracy for a
twice smaller, yet much more sensitive, system. In our experiments,
the internal precision during the WCPG evaluation is set to at most
a few hundred bits: maximum 174 bits, for the case δWCPG = 2−53.

Overall, our algorithm is quite fast and can be used in a design
space exploration. A straightforward exploration is by iteration over
increasing wordlengths in order to find an implementation with a
suitable error bound. We discuss a better approach on exploiting
our algorithms to directly determine minimum wordlengths for a
required error bound in Section 7.2.

7 Other applications of WCPG: hardware generation
and frequency checks

Our new algorithm for the reliable evaluation of the WCPG that
guarantees an a priori error bound opens up numerous possibilities
for the design and verification of new arithmetic hardware dedicated
to signal processing.

7.1 Numerical verification of frequency specifications

A posteriori validation of the frequency behavior of implemented
filters is an integral part of the design of reliable systems. In
practice, filter coefficients are rounded to lower precision, which
inherently influences the frequency-domain behavior of the filter [1,
Chapter 6.7, pp.433]. Then, in order to rigorously prove that a filter
with coefficients expressed with given precision satisfies certain
frequency specifications for any frequency (and not just on a finite
subset), the WCPG can be used to bound the error of approximation
to the filter’s frequency response, as done in [42].

7.2 Design of faithfully-rounded hardware implementa-
tions

Consider the following problem: given filter coefficients and FxP
formats for input and output signals, generate at minimal cost a
hardware implementation that guarantees that the output is always
faithfully rounded. Thus, the precision of internal computations
must be chosen in a way that guarantees an a priori bound on the
output error while not wasting area. These precision choices must
rely on worst-case rounding error analysis but not be uselessly
pessimistic. WCPG plays a central role for such hardware design.

Indeed, if the errors due to arithmetic operations must be
bounded by a certain value 2`, then in (21) we get

〈〈H∆〉〉2`ζ ≤ 2`. (78)

This can be easily transposed into requirements on the precision of
internal computations, namely

`ζ ≤ log2〈〈H∆〉〉 − ` (79)

We use the above relation in our recent work [43] to deduce an
accuracy constraint for a new Sum-of-Product-based hardware
code generator for recursive filters. In this context, WCPG is key to
deducing architectures guaranteeing faithful rounding at minimal
hardware cost.

7.3 Input-aware rigorous FxP design

FxP filter design based on the WCPG does not make any
assumptions on the spectrum of the input signal and provides
worst-case bounds. However, often a digital filter’s input signal is
the output of an existing signal processing system, or describes
particular physical process, dynamics of which can be expressed as
frequency (spectrum) specifications. For example, an input signal
that describes temperature usually lies in low frequencies (assuming
high enough sampling rate), with higher frequencies dedicated to
possible measurement noise.

Taking into account this information on the input spectrum
can result in a lower WCPG measure and, hence, yield smaller
hardware designs.

We will model the frequency specification by a function G of
the normalized frequency ω bounding the Discrete-Time Fourier
Transform U(eiω) of the input signal:

|U(eiω)| ≤ G(ω), ∀ω ∈ [0, π]. (80)

Our idea is to model the initial filter as a cascade of two filters:
(1) a system G that produces an output with frequency response
G(ω); (2) the initial filter. While the first filter is not going to be
actually implemented, it permits to take into account the dynamics
of the initial input signal when the WCPG theorem is applied upon
the cascaded system.
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We propose to proceed along following steps:
Step 1. Using some classical approach [44], design a digital filter
G∗ that corresponds to the specifications G(ω) relaxed by a small
margin ∆ (to account for approximation errors in the filter design);
Step 2. Use our WCPG-based verification algorithm [42] to ensure
that G∗ satisfies G(ω) + ∆;
Step 3. Cascade G∗ with the initial filter and apply the WCPG
theorem to deduce the ranges of variables of the initial filter;
Step 4. Apply our FxP algorithm (or, for FPGA implementations,
our techniques from [43]) upon the cascaded filter. We slightly
modify our approaches to account for the fact that G∗ will not be
part of the implemented filter, and thus no errors will propagate
through it.

8 Conclusion
We have proposed an algorithm for the reliable determination of
the FxP formats for all the variables involved in a recursive filter.
We assume that the wordlength constraints and a bound on the
input interval are given. We take computational errors as well as
their propagation over time fully into account. We achieve this by
decomposing the actually implemented filter into a sum of the exact
filter and a special error-filter. By applying the WCPG theorem
upon the error filter we get a bound on the worst-case error. We
take this bound into account while computing the MSB positions
for the variables.

We provided an error analysis of the MSB computation formula
and showed that by adjusting the accuracy of the WCPG, the
computed positions are either exact or overestimated by one. Our
approach is fully reliable and we do not use any simulations
anywhere in our algorithms. We identified the off-by-one problem
as an instance of a Table Maker’s Dilemma and proposed an
Integer Linear Programming-based approach to deal with it. Even
with the off-by-one issue, to our knowledge, our algorithm is the
first existing approach that given wordlength constraints provides
reliable MSB positions along with a rigorous bound on the
computational errors. Moreover, it is straightforward to turn the
problem the other way around and, given some output error bound,
determine the least MSB positions that ensure this bound. We also
support multiple wordlength paradigm, i.e. wordlengths are not
necessarily the same for all variables.

The core algorithm that enables our approach is the evaluation
of the WCPG measure to arbitrary precision. Our reliable algorithm
relies on multiple precision eigendecomposition to perform matrix
powering, some multi-precision basic bricks developed to satisfy
a priori absolute error bounds and detailed step-by-step error
analysis. We consider that our techniques for multiple precision
approximation to eigenvalues are of interest independently of the
context. We demonstrated that our multiple precision MPFR/MPFI-
based implementation does not usually use precisions beyond a
few hundred bits and is quite fast for our needs.

The execution time of our algorithm for FxP formats is
dominated by the computation of the WCPG. In most cases, we do
not require high accuracy for the WCPG. On the contrary, we often
need the WCPG to be accurate to even less than double precision
which speeds up the computations. Overall, the execution time of
our algorithm permits us to use it repeatedly, for instance as part
of optimization routines.

Accurate WCPG evaluation opens up numerous possibilities
for the design of new hardware arithmetic and verification. In [42],
[43] we present mature work on the application of the WCPG to the

verification of digital filters against frequency specifications and
on the automatic generation of optimal architectures for faithfully-
rounded recursive filters. We also propose in this paper a four-step
procedure that can be used for the input-aware FxP implementation.

Some efforts are still required on both the FxP error-analysis
and FP error analysis sides. First, we left the question of quan-
tization of filter coefficients out of scope. In the future we plan
to extend the work in [45] to adapt our FxP format algorithm
to consider both computational and quantization errors. Second,
integrating a multiple precision eigenvalue decomposition such as
the one available in mpmath 7 could accelerate our matrix powering
techniques. Finally, we leave to future work further development of
our input-aware FxP design techniques for the design of efficient
arithmetic operators on reconfigurable hardware.
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