
HAL Id: hal-01918650
https://hal.science/hal-01918650v1

Preprint submitted on 12 Nov 2018 (v1), last revised 4 Dec 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic approaches for rigorous design of reliable
Fixed-Point LTI filters

Anastasia Volkova, Thibault Hilaire, Christoph Lauter

To cite this version:
Anastasia Volkova, Thibault Hilaire, Christoph Lauter. Arithmetic approaches for rigorous design of
reliable Fixed-Point LTI filters. 2018. �hal-01918650v1�

https://hal.science/hal-01918650v1
https://hal.archives-ouvertes.fr

1

Arithmetic approaches for rigorous design of
reliable Fixed-Point LTI filters

Anastasia Volkova, Thibault Hilaire, and Christoph Lauter

Abstract—In this paper we target the Fixed-Point (FxP) implementation of Linear Time-Invariant (LTI) filters evaluated with state-space
equations. We assume that wordlengths are fixed and that our goal is to determine binary point positions that guarantee the absence of
overflows while maximizing precision. We provide a model for the worst-case error analysis of FxP filters that gives tight bounds on the output
error. Then we develop an algorithm for the determination of binary point positions that takes rounding errors and their amplification fully into
account. The proposed techniques are rigorous, i.e. based on proofs, and no simulations are ever used.
In practice, Floating-Point (FP) errors that occur in the implementation of FxP design routines can lead to overestimation/underestimation of result
parameters. Thus, along with FxP analysis of digital filters, we provide FP analysis of our filter design algorithms. In particular, the core measure
in our approach, Worst-Case Peak Gain, is defined as an infinite sum and has matrix powers in it. We provide fine-grained FP error analysis of
its evaluation and develop multiple precision algorithms that dynamically adapt their internal precision to satisfy an a priori absolute error bound.
Our techniques on multiple precision matrix algorithms, such as eigendecomposition, are of independent interest as a contribution to Computer
Arithmetic. All algorithms are implemented as C libraries, integrated into an open-source filter code generator and tested on numerical examples.

Index Terms—Floating-Point Arithmetic, Fixed-Point Arithmetic, Multiple Precision, Interval Arithmetic, Digital Filters, Reliable Computations,
Eigendecomposition, Gershgorin circles, Table Maker’s Dilemma

F

1 Introduction

Linear Time-Invariant (LTI) digital filters are ubiquitous in
digital signal processing and control. Their applications vary

from the simplest audio filters and equalizers to biomedical and
autonomous driving systems. LTI filters are often implemented
for embedded systems with Fixed-Point (FxP) arithmetic and have
strong performance constraints in terms of speed, area, power
consumption, etc. Filter designers make various compromises and
simplifications of filter algorithms to achieve satisfactory results.
In particular, choices related to the finite-precision arithmetic have
strong influence on the system’s performance, e.g. in terms of
throughput and area. In this work we are interested in the accuracy
vs. performance trade-o↵.

When implementing signal processing systems with high
safety standards, a filter designer must provide guarantees on
the numerical quality of the implemented systems: absence of
overflows, bounds on the output time-domain errors, etc. Usually
such numerical guarantees, if at all provided, come at relatively high
cost: algorithms are often implemented with more computational
resources than it is actually needed.

In this paper we aim at providing numerical guarantees for
the implementation of LTI filters at the lowest cost (in terms
of performance of the implemented algorithm). In particular,
we consider implementation of recursive LTI filters with FxP
arithmetic and study the rounding errors that occur in the finite-
precision implementation. Our goal is to develop a generic approach
that: 1/ provides tight bounds on rounding errors that occur in finite-

• A. Volkova is with Univ Lyon, Inria, CNRS, ENS de Lyon, Université Claude
Bernard Lyon 1, LIP UMR 5668, France.
E-mail: see http://www.avolkova.org/

• T. Hilaire is with Sorbonne Université, Paris, and with Inria and LRI
Université Paris-Saclay, Orsay, France.
E-mail: see http://www.docmatic.fr/

• C. Lauter is with Department of Computer Science & Engineering, UAA
College of Engineering, University of Alaska Anchorage, USA.
E-mail: see http://www.christoph-lauter.org/

precision computations; 2/ determines arithmetical parameters for
a FxP implementation (i.e. the most and the least significant bit
positions for variables) in the most e�cient way (under certain
constraints) while fully taking into account the impact of rounding
errors.

We demonstrate our approach on LTI filters that are evaluated
using the state-space algorithm [1]. This algorithm explicits the
notion of the feedback loop: internal states are updated at each
iteration and outputs are computed with the states and input signals.
Analysis of recursive filters is highly non-trivial since errors may
accumulate and can be amplified at each iteration. Hence, impact
of rounding errors must be taken into account when choosing data
formats for all variables.

Existing approaches to FxP implementation of LTI filters can
be divided into simulation-based and analytical. Simulation-based
ones [2], [3] rely on test data-sets and cannot provide guarantees
beyond them. Analytical approaches often model rounding errors
as white noise [4] and estimate its mean and variance. While
perfectly satisfying needs of fault-tolerant systems, these statistical
approaches cannot provide strong enough guarantees. Analytical
approaches based on Interval Arithmetic (IA) [5], [6], [7] and A�ne
Arithmetic (AA) [8], [9], [10] measure errors in their absolute
values instead of variances. However, they either do not support
systems with a feedback loop (intervals “explode” due to strong
decorrelation) or are based on heuristic loop unrolling [6], [9], [10]
which cannot provide guarantees.

In this work we measure rounding errors in their absolute value
to provide bounds instead of variances. We provide a model that
rigorously takes into account the error propagation through the
feedback loop. This model is based on the so-called Worst-Case
Peak Gain (WCPG) measure [11] which provides a bound on a
filter’s output for stable filters.

In practice, Floating-Point (FP) arithmetic is used during the
design for the computation of error bounds and choice of FxP
data formats. Usually, errors due to FP evaluations pass unnoticed

2

by filter designers but can sometimes have drastic e↵ects on the
designed implementation. For instance the positions of binary
points can be underestimated/overestimated, in particular when
based on the WCPG: it is expressed as an infinite sum and its
naive evaluation easily leads to wrong FxP formats. In contrast to
existing approaches, we claim that reliable implementations call
for reliable tools and that there is need for FP error analysis of FxP
design approaches.

Overall, we provide two levels of error analysis: 1/ high-level,
analysis of FxP computations and rounding errors, computation
of reliable FxP data formats; 2/ low-level, reliable floating-
point evaluation of measures needed for the FxP error analysis,
controlling the impact of FP errors upon computed FxP formats.

To summarize the contributions of this paper1, we
• propose a new iterative algorithm which, given a stable

recursive filter and wordlength constraints, determines the
FxP formats that guarantee absence of overflows;

• prove that the FP evaluation of the FxP formats is, in most
cases, exact (formats are overestimated in some rare cases but
at most by one bit) and underestimation never occurs;

• enable the above contributions by introducing the first algo-
rithm for arbitrarily accurate evaluation of the WCPG;

• develop multiple precision FP algorithms, such as complex
matrix arithmetic that dynamically adapt their precision to
satisfy a priori given accuracy; all error bounds are proven;

• develop a technique for multiple precision eigendecomposition
and for matrix inversion based on Newton-Raphson iteration;

• identify the FxP format overestimation problem as a Table
Maker’s Dilemma and propose to solve it using Integer Linear
Programming.

Our approaches are integrated into the open-source filter code
generator FiXiF2. In this paper we demonstrate algorithms on
a state-space algorithm but extend them upon any LTI filter in
the FiXiF tool. We extensively tested all our algorithms on both
artificial and real-life examples.

The paper is organized as follows. We start with recalling
basic information on LTI digital filters evaluated with the state-
space algorithm. Then, we give definitions related to Fixed-Point
arithmetic for filter implementation and justify the choices of
arithmetics for analysis. Section 2.3 briefly reviews the related
work and clarifies the positioning of the current work w.r.t. existing
approaches. In Section 3 we give the error-analysis of the FxP
implementation of state-space systems and provide an iterative
algorithm for the FxP format choice. Then, in Section 4 we provide
an FP rounding error analysis of the iterative algorithm itself.
In the core of our approach lies the reliable evaluation of the
WCPG measure. We present in Section 5 our core algorithm, for
arbitrarily accurate evaluation of the WCPG. Then, in Section 6
we demonstrate e�ciency of our approach on numerical examples.
Finally, in Section 7 give an overview for applications of the WCPG
for new hardware implementations and filter verification before
conclusion.

Notation
Throughout this article scalar quantities, vectors and matrices are in
lowercase, lowercase boldface and uppercase boldface, respectively

1. This paper is based on [12] and [13]. It improves and extends the results
previously published by the authors, provides a deeper discussion and a o↵ers
complete open-source experimental framework.

2. https://github.com/fixif

(e.g. x, x and X). Unless otherwise stated, all matrix absolute values,
inequalities and intervals are applied element-by-element. Norms,
such as Frobenius norm, notated kAkF , stay of course norms on
matrices and are not to be understood element-by-element. The
conjugate transpose of a matrix A is denoted by A⇤, and vector
transpose by x>. Operators ⌦ and � denote Floating-Point (FP)
multiplication and addition, respectively, F the set of radix-2 FP
numbers.
An interval [x] is defined with its lower and upper bounds [x] :=
[x, x]. An interval matrix is denoted by [M] := [M,M], where
each element [Mi j] is an interval [Mi j] = [Mi j,Mi j]. If x 2 Rn,
then 2x denotes the vector (2x1 , . . . , 2xn).

2 Background and RelatedWork
2.1 LTI filters
The main objects of this paper are Linear Time Invariant (LTI)
digital filters. LTI filters are specified in frequency-domain via
Z-transform [1]. For a given frequency-domain description of
a digital filter there exist numerous ways to evaluate it in time
domain. However, the questions of choice of the best algorithm are
out of scope of this paper.

Without loss of generality, we consider LTI digital filters
evaluated via state-space equations, which are presented just below.
Indeed, in [14], [15] the authors showed that state-space based
approaches can be extended to any linear filter algorithm using a
unifying framework.

An nth order state-space system H with q inputs and p outputs
is described with

H

(
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) , (1)

where k = 0, 1, . . . is the time instance, u(k) 2 Rq is the input,
y(k) 2 Rp is the output and x(k) 2 Rn is the state vector; matrices
A 2 Rn⇥n, B 2 Rn⇥q, C 2 Rp⇥n and D 2 Rp⇥q are the state matrices
of the system. In the case of a Single Input Single Output (SISO)
system, B and C are vectors, and D is a scalar, which we shall
indicate appropriately as b, c and d.

In practice, one is interested in Bounded-Input Bounded-Output
(BIBO) stable systems, i.e. those that guarantee bounded output
sequences for bounded inputs. A state-space system H is BIBO
stable i↵ the all eigenvalues of A lie inside the unit circle:

⇢(A) = max
i
|�i| < 1, (2)

where �i are the eigenvalues of A and ⇢(A) is its spectral radius.
Throughout the paper we deal only with stable filters.

The output of BIBO-stable filters can be bounded using the
following theorem.

Theorem 1 (Worst-Case Peak Gain [1], [11]). Let H be a BIBO-
stable nth order state-space system with q inputs, p outputs. If an
input signal is bounded in magnitude, as |u(k)|  ū for all k � 0,
then the output y(k) is bounded by

8k � 0, |y(k)|  hhHiiū (3)

where hhHii 2 Rp⇥q is the Worst-Case Peak Gain (WCPG)
matrix [11] of the system and can be expressed as:

hhHii = |D| +
1X

k=0

���CAk B
��� . (4)

3

m + 1 �`w

�2m 20 2�12m�1 2`

Fig. 1. Fixed-point representation (here, m = 5 and ` = �4).

Remark 1. An important remark is that for each component yi
of the output it is possible to find a finite input signal {u(k)}0kK
that makes yi(k) arbitrarily close to the bound hhHiiū. In the SISO
case, such a the worst-case input signal is

u(j) =

8>><
>>:

ū · sign(d) for j = 0
ū · sign

⇣
cAK� j�1b

⌘
for 0 < j < K.

(5)

where sign(x) returns ±1 or 0 depending on the value of x.

2.2 Arithmetics

We consider the implementation of digital filters on processors that
do not have an FP unit and only use Fixed-Point (FxP) arithmetic.
Implementation in this case involves the choice of the FxP formats
for algorithm parameters (e.g. coe�cients of the state-space) and
for algorithm variables. We leave the questions of format choice
for filter coe�cients out of the scope of this paper and deal here
only with the impact of rounding errors in the computations, thus
look for the formats for filter variables.

2.2.1 Target arithmetic: Fixed-Point

A radix-2 two’s complement FxP number system [16] is a subset
of signed real numbers whose elements are w-bit integers scaled
by a fixed factor. Such elements have the form T · 2`, where
T 2 [�2w�1; 2w�1

� 1] \ Z is an integer mantissa and 2` is an
implicit quantization factor.

Let t be a signed FxP number. It is written as

t = �2mtm +
m�1X

i=`

2iti, (6)

where ti is the ith bit of t, and m and ` are the Most Significant Bit
(MSB) and Least Significant Bit (LSB) positions of t (see Fig. 1)
respectively. The wordlength w is related with the MSB and LSB
positions via

w = m � ` + 1. (7)

The range of numbers that can be represented with the
wordlength w and quantization factor ` is the interval [�2m; 2m

�2`],
called dynamic range.

When determining FxP formats for variables in an algorithm,
we need to rigorously determine their ranges. Otherwise, an
overflow may occur, which means that some integer mantissa
would exceed the range [�2w�1; 2w�1

� 1].
A common practice is to suppress overflows using techniques

such as wrap-around mode, or saturation that replaces the overflow
with the largest (in absolute value) representable value of the target
format [17]. Saturated values may give an impression to be correct
but introduce non-linear distortions to the output and their impact
on the output seems hard to be rigorously analyzed.

In this paper we claim that one can reliably an e�ciently
implement filters with a “by construction” guarantee that no
overflow occurs.

2.2.2 Toolkit: Floating-Point, Multiple Precision and Interval
arithmetics
Classically, in signal processing the attention is brought to the
determination of FxP formats, while rounding errors in the
evaluation of the MSB and LSB positions themselves, are ignored.
We use Floating-Point (FP) arithmetic as our main instrument for
computation of parameters of filter implementation. In most cases,
errors due to FP computations pass unnoticed but can have a drastic
e↵ect upon the filter implementation process, leading to incorrect
parameters. For instance, as we will see in Section 4, FP errors can
easily lead to an o↵-by-one error in MSB computation.

According to the IEEE 754 [18] standard for FP arithmetic and
classical books [19], [20], a normal binary FP number is written as

x = (�1)s
· M · 2e�p+1, (8)

where s 2 {0, 1} is the sign bit; the exponent e and the normalized
significand M is a p-bit integer such that 2p�1

 M  2p
� 1. Any

result of FP computation is prone to rounding errors; these can be
controlled by varying the compute precision p.

In this paper we will reason in terms of absolute errors, whereas
FP arithmetic is optimized for achieving relative error bounds. The
issue is that in our FP algorithms we will refer to outputs being
computed with an absolute a priori error bound. To connect the
relative nature of FP arithmetic and these absolute error bounds,
we will use a Multiple Precision (MP) floating-point arithmetic,
together with ways to dynamically adapt the compute precision p.
We use the GNU MPFR3 library [21] for all implementations.

We will also require error bounds on the solutions of some
linear algebra problems, such as eigendecomposition. Bounding
errors on those is a highly non-trivial task. We deal with this by
employing Interval Arithmetic (IA) that permits us to compute safe
intervals around approximated values that guarantee to contain the
exact result.

We denote by [x] = [x, x] an interval, which is a closed and
bounded nonempty set

n
x 2 R|x  x  x

o
. When we compute a

function on the interval argument, we seek to determine the
intervals around the output such that the inclusion property is
satisfied. We use MPFI [22] library that safely implements IA and
ensures that the inclusion property for basic arithmetic operations
are maintained even when using FP numbers.

2.3 Related work and positioning
When implementing algorithms in FxP arithmetic, two issues
should be addressed:
• range analysis, which consists in studying data ranges and

choosing MSB to avoid overflows;
• rounding error analysis, which consists in studying impact

of rounding errors to bound the output error or to choose the
LSB positions

A possible overestimation of the MSB is pretty harmless: when the
wordlengths are assumed to be fixed, MSB overestimation increases
the rounding errors just a little bit, and, when the wordlengths are
allowed to be adapted to achieve error goals, MSB overestimation
just leads to increased implementation cost. Any underestimation
of the MSB position however may have tremendous impact on the
filter, as allowing for underestimation means taking the risk that
overflows occur in the filter evaluation. These overflows may false
the signal completely.

3. http://www.mpfr.org/

4

Most works in the literature can be seen as either analyti-
cal/statistic, or simulation-based.

Simulation-based methods [2], [3] are slower, requiring exten-
sive datasets, and do not provide guarantee beyond the datasets
used. Since we aim at providing guarantees for any possible input,
we do not use any simulations in our approaches.

A common analytical approach [1] for rounding error analysis
is to view rounding errors as white additive noise uncorrelated
with the filter’s variables. Strictly speaking, this assumption is not
correct but somehow realistic when the number of rounded bits is
reasonable with respect to the total wordlength [4]. The output error
is viewed as a random variable, for which its mean and variance
are analyzed. Then the Signal Quantization Noise Ratio (SQNR),
defined as the ratio of the variance of the output signal by the
variance of the output noise, serves as a measure of errors [1], [23].
This measure does not provide the accuracy but merely the power
of the noises propagated to the output, and an idea of the number
of meaningful bits in the result. To obtain bounds on the output
errors and determine the number of correct bits, rounding errors
should be measured by their absolute value instead.

Range analysis and measuring rounding errors by their mag-
nitude can be done using Interval Arithmetic (IA) [5], [6], [7],
A�ne Arithmetic (AA) [8], [10], [24], [25] and its generalization
to higher-order error polynomials [26] and even SAT-modulo theory
(SMT) [7] (IA and AA mostly for rounding error analysis, and
SMT and IA for range analysis).

Many previous analytical methods either do not fully support
recursive filters (intervals explode due to the wrapping e↵ect, or
the number of error terms in a�ne form is based on heuristic) [6],
[10], [25], or support them only for noise error models [23], [27].
Generic techniques such as abstract interpretation [28] combined
with IA or AA may be used to provide guarantees on programs with
loops, but these guarantees will be very pessimistic for sensitive
recursive filters.

State-of-the-art work on wordlength optimization, such as work
by Sarbishei and Radecka [25], is based on the combination of
IA and the WCPG theorem presented in Section 2.1. However, the
infinite series in (4) is truncated in a heuristic (and, for sensitive
filters, completely unreliable) way and then evaluated in Matlab
in FP arithmetic without accuracy guarantees. Besides, the model
they use for rounding error analysis is specific to their hardware
model and a particular filter evaluation scheme.

In our work we also base range analysis on the WCPG theorem
but provide the first method on the reliable FP evaluation of
the WCPG measure. This contribution is detailed in Section 5.
We provide a complete and general methodology in which we
measure rounding errors by their absolute values and capture their
propagation through the filters using a simple but rigorous model.
Our approach provides tight (not uselessly pessimistic) and strong
(worst-case) guarantees on the results of LTI filters with feedback
loop, even for sensitive filters.

3 Fixed-Point implementation of recursive filters
3.1 Problem statement
The problem of determining the Fixed-Point Formats (FxPF) for
an implementation of a filter H can be formulated under various
di↵erent hypotheses. Here we formulate it as follows.

Let H be a filter in a state-space representation (1). Suppose
all the inputs to be exact and in an interval bounded by ū. Given
the wordlength constraints vector wx for the state and wy for the

output variables we look for a FxPF for x(k) and y(k) such that
for any possible input no overflow occurs. Obviously, we seek to
maximize the precision of computations, so we search for the least

(element-by-element) MSB vectors my and mx such that

8k � 0, y(k) 2 [�2�my ; 2my � 2my�wy+1], (9)
8k � 0, x(k) 2 [�2�mx ; 2mx � 2mx�wx+1]. (10)

Since the filter H is linear and the input interval is centered at
zero, the output interval is also centered in zero. Therefore, it will
be su�cient to determine the least my and mx such that

8k � 0, |y(k)|  2my � 2my�wy+1, (11)
8k � 0, |x(k)|  2mx � 2mx�wx+1. (12)

3.2 Applying WCPG to compute MSB
The idea is to apply the WCPG theorem to compute the ranges
of variables. However, WCPG acts only upon the filter’s outputs.
To extend the result for the state variables, we modify the filter’s
model by incorporating state variables into the output, as if they
were not only stored from one iteration to another, but also given
out each time.

Let ⇣(k) :=

x(k)
y(k)

!
be a new output vector. Then the state-space

relationship in 1 takes the form:

H⇣

8>>><
>>>:

x(k + 1) = Ax(k) + Bu(k)

⇣(k) =

I
C

!
x(k) +

0

D

!
u(k) . (13)

This new filter H⇣ serves only as a model to apply the WCPG
theorem, it is never actually implemented.

Now the corresponding vector w⇣ 2 Zn+p of wordlength
constraints is just a concatenation of wx and wy.

Applying the WCPG theorem toH⇣ yields the following bound:

8k � 0, |⇣ i(k)| 
⇣
hhH⇣iiū

⌘
i
, i = 1, . . . , n + p. (14)

We look for the least MSB positions m⇣ such that

8k � 0, |⇣(k)|  2m⇣ � 2m⇣�w⇣+1. (15)

By applying the above bound on (14), we obtain a simple formula
for the computation of MSB positions:

m⇣i =
l

log2

⇣
(hhH⇣iiū)i

⌘
� log2

⇣
1 � 21�w⇣i

⌘m
(16)

for i = 1, . . . , n + p.

3.3 Taking rounding errors of the implemented filter into
account
Problem (16) is usually the one that is solved in wordlength
optimization. However, the rounding errors that are induced with
each computation may propagate up to the MSB position, changing
the dynamic range of signals. This e↵ect should be accounted for.

Due to rounding in finite-precision computations, we model the
implemented filter as H⌃

⇣ :

H
⌃
⇣

8>>>><
>>>>:

x⌃(k + 1) = ⌃`x

⇣
Ax⌃(k) + Bu(k)

⌘

⇣⌃(k) = ⌃`⇣

I
C

!
x⌃(k) +

0

D

!
u(k)

!
, (17)

where the Sums-of-Products (accumulation of scalar products on
the right-hand side) are computed with some rounding operator ⌃`.
Suppose this operator ensures faithful rounding [19] so that:

|⌃`(x) � x| < 2`, (18)

5

H�

H�

u(k)
�(k)

��(k)

�⌃(k)m�

�
�x (k)
�y (k)

�

Fig. 2. Implemented filter decomposition.

where ` is the LSB position of the operator’s output. It was shown
in [29] that such an operator can be implemented using a few guard
bits for the accumulation.

Let the error vectors due to ⌃` be denoted as "x(k) and "y(k) for
the state and output vectors, respectively. Essentially, the vectors
"x(k) and "y(k) may be associated with the noise induced by the
filter implementation but in contrast to statistical approaches, we
measure them as intervals. The implemented filter can be rewritten
as

H
⌃
⇣

8>>><
>>>:

x⌃(k + 1) = Ax⌃(k) + Bu(k) + "x(k)

⇣⌃(k) =

I
C

!
x⌃(k) +

0

D

!
u(k) +

0

I

!
"y(k) , (19)

where

|"x(k)| < 2`x ,
���"y(k)

��� < 2`y .

Remark that since the operator ⌃` is applied, "x(k) , x(k) �
x⌃(k) and "y(k) , y(k) � y⌃(k). As the rounding also a↵ects the
filter state, the x⌃(k) drifts away from x(k) over time, whereas with
"x(k) we consider the error due to one step only.

At each instance of time both input and error vectors are
propagated through the filter. Thanks to the linearity of filters, we
model the output of the implemented filter H⌃

⇣ as the sum of the
output of the exact filter and a special “error-filter”, denoted by
H�, which describes the propagation of the error vectors. This
decomposition is illustrated in Figure 2. Note that this “error-filter”
is an artificial one; it is not required to be implemented and serves
exclusively for error-analysis purposes.

More precisely, the filter H� is obtained by computing the
di↵erence betweenH⌃

⇣ andH⇣ . This filter takes the rounding errors

"(k) :=

"x(k)
"y(k)

!
as input and returns the result of their propagation

through the filter:

H�

8>>>><
>>>>:

�x(k + 1) = A�x(k) +
⇣

I 0

⌘
"(k)

�⇣(k) =

I
C

!
�x(k) +

0 0

0 I

!
"(k)

, (20)

where "(k) is guaranteed to be bounded by "̄ := 2`⇣ .
Once the decomposition is done, we can apply the WCPG

theorem on the “error-filter” H� and deduce the output interval of
the computational errors propagated through the filter:

8k � 0,
����⇣(k)

���  hhH�ii"̄. (21)

Hence, the output of the implemented filter is bounded with
���⇣⌃(k)

��� =
���⇣(k) + �⇣(k)

���  |⇣(k)| +
����⇣(k)

��� . (22)

Remark 2. When applying the triangle inequality in (22) we
actually overestimate the bound. From a practical point of view, it
can be interpreted as an assumption that the input signal that leads
to the worst-case output also leads to the worst-case rounding

errors. This is not generally true. Thus, the triangle inequality
bound is not generally attained. Consequently, the “least” MSB
positions that we compute further are not the least possible but
the least for our way to model the errors and their propagation. In
Section 4.2 we propose an approach for dealing with this potential
overestimation.

Applying the WCPG theorem to the implemented filter and
using (22) we can computed the MSB vector m⌃

⇣ as

m⌃
⇣i
=

l
log2

⇣ ⇣
hhH⇣iiū

⌘
i
+ (hhH�ii"̄)i

⌘
� log2

⇣
1 � 21�w⇣i

⌘m
, (23)

for i = 1, . . . , n + p.

Therefore, the FxP formats (m⌃
⇣ , `

⌃
⇣), where the LSB `⌃⇣ is

computed via (7), guarantee that no overflows occur for the
implemented filter.

3.4 Complete algorithm for reliable MSB

Since the input of the error filter H� depends on the error-bound
vector "⇣ of the FxP formats chosen for implementation, we cannot
directly use (23). The idea is to first compute the FxP formats of
the variables in the exact filter H⇣ , where computational errors are
not taken into account, and then use them as an initial guess for the
implemented filter H⌃

⇣ . Hence, we obtain the following two-step
algorithm:
Step 1: Determine the FxP formats (m⇣ , `⇣) for the exact filter H⇣
Step 2: Construct the “error-filter” H�, which gives the prop-

agation of the computational errors induced by format
(m⇣ , `⇣); then, using (23) compute the FxP formats
(m⌃
⇣ , `

⌃
⇣) of the actually implemented filter H⌃

⇣ .
The above algorithm takes into account the filter implementation
errors. However, the MSB computation via (23) itself is imple-
mented in finite-precision and can su↵er from rounding errors,
which influence the output result.

All operations in the MSB computation may induce errors,
so the quantities we actually compute are only floating-point
approximations cm⇣ and cm⇣⌃. In Section 4 we propose an error-
analysis of the approximations in (23) and (16). We prove that by
controlling the accuracy of the WCPG evaluation, we can compute
m⇣⌃ exactly in most cases, otherwise overestimate by one, while
being sure that we never underestimate.

In most cases the MSB vectors bm⇣ (computed at Step 1) and
bm⌃
⇣ (computed at Step 2) are the same. When they are not, one of

the following happened:
• the accumulated rounding errors due to the initially computed

FxPF (bm⇣ ,b̀⇣) makes the output of the implemented filter pass
over to the next binade; or

• the floating-point approximation bm⌃
⇣ is o↵ by one due to our

use of the triangle inequality in (22).
Moreover, if the MSB position is increased, then the LSB

position moves along and increases the error (since the wordlengths
are fixed here). Consequently, the modified format must be re-
checked to be valid. Obviously, there is a risk that the check fails
and the MSB position is to be increased yet again. To avoid an
infinite loop we propose to use a rather natural exit condition:
when the LSB position of the actually implemented filter reaches
the position of the initially determined MSB position, nothing but
noise is computed by the implemented filter. An interpretation
of the above situation is that the filter simply cannot be reliably
implemented with the given wordlengths. This information is quite

6

Algorithm 1: Reliable determination of the MSBs
Input: system H = (A, B,C, D);

input interval bound ū;
wordlength constraints wx,wy

Output: Formats (mx,my) or an error
w⇣ � concatenate wx and wy
H⇣ � incorporate states into the filter via (13)
H� � model of the error filter via (20)

Step 1: for i = 1, . . . , n + p do

[m⇣i] � interval evaluation of MSB via (16)
mmaxi � m⇣i + w⇣i + 1

end

do

Step 2: for i = 1, . . . , n + p do

"⇣i � 2m⇣i�w⇣i+1

[m⌃
⇣i

] �interval evaluation of MSB via (23)
end

Check: if [m⌃
⇣i

] == [m⇣i] for i = 1, . . . , n + p then

return m⇣
end

else

[m⇣i] � [m⇣i] + 1 for i = 1, . . . , n + p
end

while m⌃
⇣ < mmax;

return “Impossible to implement”

helpful for the filter designers and, to the best of our knowledge, is
not provided in state-of-the-art tools like Matlab.

We formalize the complete iterative approach in Algorithm 1.

4 Error analysis of the MSB computation formula

In this Section we state the requirements on the accuracy of the
WCPG such that the computed MSB positions are either computed
exactly or overestimated by one. In the rare cases of overestimation
by on, we face an instance of a Table Maker’s Dilemma [19]. We
shall propose an approach to overcome this issue.

4.1 Controlling the accuracy of the Worst-Case Peak Gain

Let us consider the case of cm⇣i
⌃. For readability, let

m := log2

⇣ ⇣
hhH⇣iiū

⌘
i
+ (hhH�ii"̄)i

⌘
� log2

⇣
1 � 21�w⇣i

⌘
. (24)

The approach described below can be applied to the computation
of bm⇣i with the terms concerning filter H� set to zero.

Handling floating-point analysis of multiplications and addi-
tions in (23) is trivial using a Higham’s [20] approach. The di�culty
comes from the approximations to WCPG matrices, which cannot
be computed exactly. Both approximations \hhH⇣ii and \hhH�ii,
even if computed with arbitrary precision, bear some errors "WCPG⇣
and "WCPG�

that satisfy

0  \hhH�ii � hhH�ii  "WCPG⇣
(25)

0  \hhH⇣ii � hhH⇣ii  "WCPG�
(26)

Introducing the errors on the WCPG computations into the
formula (23) we obtain that what we actually compute is

cm⇣i
⌃


2
66666666666666666666666666666

m + log2

0
BBBBBBBBBBBBBB@
1 +
"WCPG⇣

qP
j=1

ū j + "WCPG�

n+pP
j=1
"̄ j

⇣
hhH⇣iiū

⌘
i
+ (hhH�ii"̄)i

1
CCCCCCCCCCCCCCA

| {z }
�

3
77777777777777777777777777777

. (27)

The error term � in (27) cannot be zero (apart from trivial
case with zero ū). However, assuming that we can control the
accuracy of the WCPG matrices, we can deduce conditions for the
approximation cm⇣i

⌃ to be o↵ by at most one.

Lemma 1. [13] If the WCPG matrices hhH⇣ii and hhH�ii are
computed such that (25) and (26) hold with

"WCPG�
<

1
2

⇣
hhH�ii · "̄

⌘
iPp+n

j=1 "̄ j
, 8i (28)

"WCPG⇣
<

1
2

✓
hhH⇣ii · ū

◆

iPq
j=1 ū j

, 8i (29)

where hhHii := |D| + |CB| + |CAB| is a very low-accuracy lower
bound on hhHii, then

0  cm⇣i
⌃
� m⇣i ⌃  1, 8i. (30)

We propose to perform arithmetic operations in (23) and (16)
in multiple precision interval arithmetic in order to account for
floating-point rounding errors. In most cases, the interval evaluation
[bm] of (24) is not going to contain an integer, thus the final ceil
operation will yield a point-interval. However, when it does, we
have to choose between two possible MSB positions that are o↵
by one. In the following section we discuss on how to refine the
computations in order to overcome this potential overestimation.

4.2 Off-by-One problem and Table Maker’s Dilemma

Let [bm] be an interval estimation of (24), where the WCPG matrices
were computed with the error bounds deduced in Lemma 1. The
integer MSB positions are computed as [m⇣] =

l
[bm]

m
. However,

we may be in trouble if the exact value m is very close to the
integer

l
m
m
, since in this case the interval after ceil operation will

contain both
l
m
m

and
l
m
m
+ 1. Then, we need to determine the

smallest accuracy of the WCPG such that we do not overestimate
the MSB position, i.e. the upper bound of interval

l
[bm]

m
is the same

as
l
m
m
. This problem is an instance of the Table Maker’s Dilemma

(TMD) [19], which usually occurs during the implementation of
transcendental functions.

One of the strategies of solving the TMD is performing Ziv’s
iteration [30]. In this approach we reduce the width of the interval
[bm] by iteratively increasing the accuracy of the WCPG computation.
However, even after numerous iterations the interval may still
contain the integer

l
m
m
. This may be due to the following:

• the interval is still too large due to the rounding errors;
• the propagation of the rounding errors indeed yields the larger

MSB position.
Thus, we cannot simply continue increasing the precision of the
computations. We propose the following strategy:

(i) increase the accuracy of the WCPG several times;

7

(ii) if the interval [bm] still contains the integer z, try to find whether
there exist a state and input vector that yield an overflow if
the eventual MSB position is set to z. Roughly said, we try
to use the smaller format and prove that an overflow is not
possible nevertheless.

To prove that an overflow is not possible, we solve an instance
of the following Integer Linear Programming [31] problem.

4.2.1 Integer Linear Programming as a way to solve the TMD
Let the input signal u be represented in some FxP Format. Suppose
that we determine the FxP Formats for the state and output variables
and, in case of the o↵-by-one problem, we choose the smaller MSB
positions. Let x, y, u be the minimal and x, y, u the maximum
authorized values for the state, output and input vectors respectively.

Then, our goal is to find

x
u

!
that are in the deduced FxP formats

but for which

A B
C D

!
x
u

!
=

x
y

!
+

�x
�y

!
(31)

with

�x
�y

!
� 0. In other words, we search for x, y, �x, �y such that

A B
C D

!
x
u

!


x
y

!
+

�x
�y

!

A B
C D

!
x
u

!
�

x
y

!
+

�x
�y

!

I 0

0 I

!
x
u

!


x
u

!

I 0

0 I

!
x
u

!
�

x
u

!

(32)

Denote x := x + x0 and u := u + u0. To formalize the optimization
problem, we need to bring the above inequalities to the canonical
form, i.e. bring all inequalities to the direction “”.

Then, the optimization problem is the following:

maximize t>⇠ (33)

subject to the following constraints:

F⇠  r (34)

where

⇠ =

0
BBBBBBBBBBBBB@

x0
u0
�x
�y

1
CCCCCCCCCCCCCA
� 0, t =

0
BBBBBBBBBBBBB@

0

0

1

1

1
CCCCCCCCCCCCCA

(35)

F =

0
BBBBBBBBBBBBBBBBBBBBBBB@

A B �I 0

C D 0 �I
�A �B I 0

�C �D 0 I
I 0 0 0

0 I 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCA

, r =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

x
y

!
�

A B
C D

!
x
y

!!

A B
C D

!
x
y

!
�

x
y

!!

x � x
u � u

!

1
CCCCCCCCCCCCCCCCCCCCCCCCA

. (36)

By maximizing in (33) we maximize the number of the entries that
we “switch on” in �x and �y.

Since filter implementation is performed in FxP arithmetic,
A, B,C, D are actually integer matrices scaled by some factor.
Thus, the above optimization problem becomes an instance of an
Integer Linear Programming (ILP) problem.

0.1 1 2 3 4 5
·104

200

400

600

800

Truncation order

N
ai

ve
ap

pr
ox

.t
o

W
C

PG

Fig. 3. The approximations of the WCPG with the increase of truncation order
for a certain SISO filter.

To ensure that we find the exact solution and not just an
approximation, we suggest using a solver over the rational numbers,
such as the SCIP Optimization Suite4 [32].

If there does not exist any solution to the above problem, then
the overestimation of the MSB position was due to the application
of triangular inequality in (22) (see Remark 2) and it is safe to take
the smaller MSB positions, i.e.

l
m
m

instead of
l
m
m
+ 1.

Neither of our experiments showed that the ILP instance had
feasible solutions. Thus, we were actually able to solve the TMD
in our cases and return the smaller formats.

5 Accurate evaluation of theWorst-Case Peak Gain
As we have seen in Section 3, the WCPG measure is required not
only for bonding the dynamics of the variables in a digital filter,
but also for bounding the impact of the rounding errors that occur
in FxP implementation. In this section we present an algorithm for
the floating-point evaluation of the WCPG matrix with an a priori
given error bound.

5.1 Problem statement
Given an LTI filter as in (1) and a small " > 0, we seek to evaluate a
FP approximation S on the WCPG matrix hhHii such that element-
by-element

|hhHii � S|  ". (37)

5.2 Naive approach and related work
Of course, we need to first truncate the sum in (4) to some
finite number of terms N (further called truncation order). In
other approaches [9], some “su�ciently large” truncation order
is often chosen, e.g. 500 or 1000 terms. The following example
demonstrates that this may be very dangerous.

Example 1. Consider a certain stable 5th order random SISO
filter5. A naive computation of the WCPG in double precision with
1000 terms in the sum (4) yields hhHiinaive = 105.66. Suppose all
the inputs are in the interval [�1, 1]. Then, according to the WCPG
theorem, outputs must be in the interval [�105.66, 105.66].
Now, consider the input signal from Remark 1, i.e. the one that
yields the worst-case output. With this input signal, the output of
a double-precision FP filter reaches the value 192.2 in just 2000
iterations. Obviously, the WCPG was underestimated.

4. http://scip.zib.de/
5. Its double-precision coe�cients are given in appendix.

8

Algorithm 2: Floating-point evaluation of the WCPG
Input: A 2 Fn⇥n, B 2 Fn⇥q,C 2 Fp⇥n, D 2 Fp⇥q, " > 0
Output: SN 2 Fp⇥q such that |hhHii � S|  "

Step 1: Compute N
Step 2: Compute V from an eigendecomposition of A

T inv(V) ⌦ A ⌦ V
if kTk2 > 1 then return ?

Step 3: B0 inv(V) ⌦ B
C0 C ⌦ V
S�1 |D|, P�1 In
for k from 0 to N do

Step 4: Pk T ⌦ Pk�1
Step 5: Lk C0 ⌦ Pk ⌦ B0
Step 6: Sk Sk�1 � abs(Lk)

end

return SN

In [11] Balakrishnan and Boyd propose lower and upper bounds
on the truncation order. Their iterative algorithm is proven to work
in exact arithmetic, however its implementation in FP arithmetic
does not. First, it is based on matrix exponentiation, which would
require a non-trivial error analysis. Second, on each iteration (the
quantity of which may reach a high order) solving Lyapunov
equations [33] is required for which there exists no ready-to-
use solution with rigorous error bounds on the result. Therefore,
numerically computing a reliable lower bound on the truncation
order N seems to be di�cult with this approach as it is.

A competing approach, similar to the one in [34], would be
not to start with truncation order determination but to immediately
go for summation and to stop when adding more terms does not
improve accuracy. For example, if we increase the truncation order
in Example 1, we obtain the dynamic of the WCPG approximations
shown in Figure 3.

However, naive computation of the terms in (4) with FP
arithmetic in some precision, set at the start of the algorithm,
may yield significant rounding errors and would not allow the
final approximation error to be bounded in an a priori way by an
arbitrary ".

Therefore, in the following we propose a new approach on
the evaluation of the WCPG in multiple precision. Our goal is
to not only perform rigorous error analysis of approximations
but also to deduce the required accuracy for each computation
in the evaluation of the WCPG. By adapting the precision of
intermediate computations we achieve an a priori bound on the
overall approximation error.

5.3 Algorithm for the Worst-Case Peak Gain evaluation

In this Section we give an overview of the proposed algorithm and
detail our analysis in Sections 5.4, 5.5 and 5.6.

We propose a new direct formula for the bound on the truncation
order N. Then, instead of directly computing the infinite sum���CAk B

��� for any k < N, we will use an approximate eigenvalue
decomposition of A (i.e. A ⇡ VTV�1) and compute the floating-
point sum

���CVTkV�1B
��� for 0  k  N. We assume A to be

diagonalizable with simple eigenvalues.
Our approach to compute the approximation SN of hhHii is

summarized in algorithm 2 where all matrix operations (⌦, �, inv,
abs, etc.) are floating-point multiple precision operations done at

various precisions to be determined such that the overall error is at
most ".

The overall error analysis is decomposed into 6 steps, where
each one expresses the impact of a particular approximation
(or truncation), and provides the accuracy requirements for the
associated operations.

Step 1: Let hhHiiN be the truncated sum

hhHiiN := |D| +
NX

k=0

���CAk B
��� . (38)

We compute a truncation order N of the infinite sum hhHii such
that the truncation error is less than "1:

|hhHii � hhHiiN |  "1. (39)

Step 2: Error analysis for computing the powers Ak of a full
matrix A, when the k reaches several hundreds, is a significant
problem, especially when the eigenvalues of A are close to the
unit circle. However, if A can be represented as A = XEX�1 with
E 2 Cn⇥n strictly diagonal and X 2 Cn⇥n, then powering of A
reduces to powering an approximation to E.

Suppose we have a matrix V approximating X. We require
this approximation to be just quite accurate so that we are able
to discern the di↵erent associated eigenvalues and be sure their
absolute values are less than 1.

We may then consider the matrix V to be exact and compute an
approximation T to V�1 A V with su�cient accuracy such that the
error of computing VTkV�1 instead of matrix Ak is less than "2:

�������
hhHiiN �

NX

k=0

���CVTkV�1B
���

�������
 "2. (40)

Step 3: We compute approximations B0 and C0 to V�1B and
CV, respectively. We require that the propagated error committed
in using B0 instead of V�1B and C0 instead of CV be less than "3:

�������

NX

k=0

���CVTkV�1B
��� �

NX

k=0

���C0Tk B0
���

�������
 "3. (41)

Step 4: We compute in Pk the powers Tk of T with a certain
accuracy. We require that the propagated error be less than "4:

�������

NX

k=0

���C0Tk B0
��� �

NX

k=0

���C0Pk B0
���

�������
 "4. (42)

Step 5: We compute in Lk each summand C0Pk B0 with an
error small enough such that the overall approximation error
induced by this step is less than "5:

�������

NX

k=0

���C0Pk B0
��� �

NX

k=0

|Lk |

�������
 "5. (43)

Step 6: Finally, we sum Lk in SN with enough precision so
that the absolute error bound for summation is bounded by "6:

�������

NX

k=0

|Lk | � SN

�������
 "6. (44)

By ensuring that each step verifies its bound "i, and taking
"i =

1
6", we get "1 + "2 + "3 + "4 + "5 + "6 = ", hence (37) will be

satisfied if inequalities (39) through (44) are.
Our approach hence determines first a truncation order N

and then performs summation up to that truncation order, whilst
adjusting precision n the di↵erent summation steps.

9

5.4 Truncation order
In this Section we propose a direct formula for the lower bound on
N along with a reliable evaluation algorithm.

The goal is to determine a lower bound on the truncation order
N of the infinite sum (4) such that its tail is smaller than the given
"1. Obviously, hhHiiN is a lower bound on hhHii and increases
monotonically to hhHii with increasing N. Hence the truncation
error is

|hhHii � hhHiiN | =
X

k>N

���CAk B
��� . (45)

Many simple bounds on (45) are possible. For instance, if the
eigendecomposition of A is computed

A = XEX�1 (46)

where X 2 Cn⇥n is the right hand eigenvector matrix, and E 2 Cn⇥n

is a diagonal matrix holding the eigenvalues �l, the terms CAk B
can be written

CAk B = �Ek =

nX

l=1

Rl�
k
l (47)

where � 2 Cp⇥n, 2 Cn⇥q and Rl 2 Cp⇥q are defined by

� := CX, := X�1B, (Rl)i j := �il l j. (48)

In this setting, we obtain

|hhHii � hhHiiN | =
X

k>N

nX

l=1

���Rl�
k
l

��� . (49)

As only stable filters are considered, it is guaranteed that
all eigenvalues �l of matrix A lie in the unit circle. We may
therefore notice that the outer sum is in geometric progression with
a common ratio |�l| < 1. So the following bound is possible:

|hhHii � hhHiiN | 

1X

k=N+1

nX

l=1

|Rl|
����k

l

��� (50)



nX

l=1

|Rl|

����N+1
l

���
1 � |�l|

= ⇢(A)N+1
nX

l=1

|Rl|

1 � |�l|

|�l|

⇢(A)

!N+1

. (51)

Since |�l |

⇢(A)  1 holds for all terms, we may leave out the powers.
Let be

M :=
nX

l=1

|Rl|

1 � |�l|

|�l|

⇢(A)
2 Rp⇥q. (52)

The tail of the infinite sum is hence bounded by

|hhHii � hhHiiN |  ⇢(A)N+1 M. (53)

In order to get (53) bounded by "1, it is required that element-
by-element

⇢(A)N+1 M  "1.

Solving this inequality for N leads us to the following bound:

N �
& log "1

m

log ⇢(A)

'
(54)

where m is defined as m := min
i, j

Mi, j.
However we cannot compute exact values for all quantities

occurring in (54) when using finite-precision arithmetic. We only

have approximations for them. Thus, in order to reliably determine
a lower bound on N, we must compute lower bounds on m and
⇢(A), from which we can deduce an upper bound on log "1

m and a
lower bound on log ⇢(A) to eventually obtain a lower bound on N.

Due to the implementation of (46) and (48) with finite-
precision arithmetic, only approximations on �, X,�, , Rl can
be obtained. To provide guaranteed inclusions on the results of
these computations, we combine LAPACK floating-point arithmetic
with Interval Arithmetic enhanced with Rump’s Theory of Verified
Inclusions [35], [36] which provide guaranteed inclusions on the
solutions of various linear algebra problems. The verification
process is performed by means of checking an interval fixed point
and yields to a trusted interval for the solution. Then, the intervals
for (48), (52) and (54) are computed with Interval Arithmetic. Our
complete algorithm to determine a reliable lower bound on N can
be found in [12] (Algorithm 3).

5.5 Multiple precision eigendecomposition

As seen, in each step of the summation, a matrix power, Ak, must
be computed. In [20] Higham devotes a chapter to error analysis of
matrix powers but this theory is in most cases inapplicable for state
matrices A of linear filters, as the requirement ⇢(|A|) < 1 does not
necessarily hold here. Therefore, despite taking A to just a finite
power k, the sequence of computed matrices may explode in norm
since k may take an order of several hundreds or thousands. Thus,
even extending the precision is not a solution, as an enormous
number of bits would be required.

For stable systems, the state matrices are diagonalizable , i.e.
there exists a matrix X 2 Cn⇥n and diagonal E 2 Cn⇥n such
that A = XEX�1. Then Ak = XEk X�1. A good choice of X
and E are the eigenvector and eigenvalue matrices obtained using
eigendecomposition (46). However, with LAPACK we can compute
only approximations of them and we cannot control their accuracy.
Therefore, we propose the following method to almost diagonalize
matrix A. The method does not make any assumptions on V except
for it being some approximation to X. Therefore, for simplicity of
further reasoning we treat V as an exact matrix.

Using our multiprecision algorithms for matrix inverse and
multiplication we may compute a T 2 Cn⇥n:

T := V�1 AV � �2, (55)

where V 2 Cn⇥n is an approximation to X, �2 2 Cn⇥n is a matrix
representing the element-by-element errors due to the two matrix
multiplications and the inversion of matrix V.

Although the matrix E is strictly diagonal, V is not exactly the
eigenvector matrix and consequently T is a dense matrix. However
it has its prevailing elements on the main diagonal. Thus T is an
approximation to E.

We require for matrix T to satisfy kTk2  1. This condition is
stronger than ⇢(A) < 1, and Section 5.5.1 provides a way to test it.
In other words, this condition means that there exists some margin
for computational errors between the spectral radius and 1.

Let ⌅k := (T + �2)k
� Tk. Hence ⌅k 2 Cn⇥n represents the error

matrix which captures the propagation of error �2 when powering
T. Since

Ak = V(T + �2)kV�1, (56)

we have
CAk B = CVTkV�1B + CV⌅kV�1B. (57)

10

Thus the error of computing VTkV�1 instead of Ak in (38) is
bounded by

�������

NX

k=0

���CAk B
��� �

NX

k=0

���CVTkV�1B
���

�������
 (58)

NX

k=0

���CAk B � CVTkV�1B
��� 

NX

k=0

���CV⌅kV�1B
��� . (59)

Here and further on each step of the algorithm we use
inequalities with left side in form (59) rather than (58), i.e. we
will instantly use the triangular inequality

��� |a| � |b|
���  |a � b| 8a, b

applied element-by-element to matrices.
In order to determine the accuracy of the computations on this

step such that (59) is bounded by "2, we need to perform detailed
analysis of ⌅k, with spectral-norm. Using the definition of ⌅k the
following recurrence can be easily obtained:

k⌅kk2  k⌅k�1k2 + k�2k2 (k⌅k�1k2 + 1) (60)

If k⌅k�1k2  1, which must hold in our case since ⌅k represent
an error-matrix, then

k⌅kk2  k⌅k�1k2 + 2 k�2k2 (61)

In the following, we bound the matrices with respect to their
Frobenius norm, which is easy to compute and has the following
useful properties:

���Ki j
���  kKkF and kKk2  kKkF 

p
n kKk2 for

K 2 Cn⇥n.
As k⌅1k2 = k�2k2 we can get the desired bound capturing the

propagation of �2 with Frobenius norm:

k⌅kkF  2
p

n(k + 1) k�2kF . (62)

Substituting this bound to (59) and folding the sum, we obtain
NX

k=0

���CV⌅kV�1B
���  � k�2kF kCVkF

���V�1B
���

F , (63)

with � =
p

n(N + 1)(N + 2). Thus, we get a bound on the error
of approximation to A by VTV�1. Since we require it to be less
than "2 we obtain a condition for the error of the inversion and two
matrix multiplications:

k�2kF 
1
�

"2

kCVkF
���V�1B

���
F

. (64)

Using this bound we can deduce the desired accuracy of our
multiprecision algorithms for complex matrix multiplication and
inverse as a function of "2.

5.5.1 Checking whether kTk2  1
Since kTk22 = ⇢(T⇤T), we study the eigenvalues of T⇤T. According
to Gershgorin’s circle theorem [37], each eigenvalue µi of T⇤T is
in the disk centered in (T⇤T)ii with radius

P
j,i

���(T⇤T)i j

���.
Let us decompose T into T = F + G, where F is diagonal

and G contains all the other terms (F contains the approximate
eigenvalues, G contains small terms and is zero on its diagonal).
Let be Y := T⇤T � F⇤F = F⇤G + G⇤F + G⇤G. Then

X

j,i

���(T⇤T)i j

��� =
X

j,i

���Yi j
���

 (n � 1) kYkF
 (n � 1)

⇣
2 kFkF kGkF + kGk2F

⌘

 (n � 1)
⇣
2
p

n + kGkF
⌘
kGkF . (65)

Each eigenvalue of T⇤T is in the disk centered in (F⇤F)ii+(Y)ii with
radius �, where � is equal to (n� 1)

⇣
2
p

n + kGkF
⌘
kGkF , computed

in a rounding mode that makes the result become an upper bound
(round-up).

As G is zero on its diagonal, the diagonal elements of Y are
equal to the diagonal elements of G⇤G. They can hence be bounded
as follows:

|Yii| = |(G⇤G)ii|  kGk2F . (66)

Then, it is easy to see that Gershgorin circles enclosing the
eigenvalues of F⇤F can be increased, meaning that if (F⇤F)ii is
such that

8i, |(F⇤F)ii|  1 � kGk2F � �, (67)

it holds that ⇢(T⇤T)  1 and kTk2  1.
This condition can be tested by using floating-point arithmetic

with directed rounding modes (round-up for instance).
After computing T out of V and A according to (55), the

condition on T should be tested in order to determine if kTk2 
1. This test failing means that V is not a su�ciently accurate
approximation to X or that the error �2 committed when computing
(55) is too large, i.e. the accuracy of our multiprecision algorithm
for complex matrix multiplication and inverse should be increased.
The test is required for rigor only. We do perform the test in the
implementation of our WCPG method, and, on the examples we
tested, never saw it give a negative answer. In case where the matrix
T does not pass the check, our algorithm is designed to return an
error message.

5.6 Summation
Now that the truncation order is determined and A is replaced by
VTV�1, we must perform floating-point matrix operations with an
a priori absolute error bound.
Step 3: we compute approximations to the matrices CV and V�1B
with a certain precision and need to determine the required accuracy
of these multiplications such that the overall error of this step is
less than "3.

Let C0 := CV + �3C and B0 := V�1B + �3B , where �3C 2 Cp⇥n

and �3B 2 Cn⇥q are error matrices containing the errors of the two
matrix multiplications and the inversion.

Using the Frobenius norm, we can bound the error in the
approximation to CV and V�1B by C0 and B0 as follows:

NX

k=0

���CVTkV�1B � C0Tk B0
��� 

NX

k=0

����3C Tk B0 + C0Tk�3B + �3C Tk�3B

���
F . (68)

Since kTk2  1 holds we have
����3C Tk B0 + C0Tk�3B + �3C Tk�3B

���
F  (69)

p
n
⇣����3C

���
F

⇣���B0
���

F +
����3B

���
F

⌘
+

���C0
���

F

����3B

���
F

⌘
.

This bound represents the impact of our approximations for
each k = 0 . . .N. If (69) is bounded by 1

N+1 · "3, then the overall
error is less than "3. Hence, bounds on the two error-matrices are:

����3C

���
F 

1
3
p

n
·

1
N + 1

"3

kB0kF
(70)

����3B

���
F 

1
3
p

n
·

1
N + 1

"3

kC0kF
. (71)

11

Therefore, using bounds on
����3C

���
F and

����3B

���
F , we can deduce

the required accuracy of our multiprecision matrix multiplication
and inversion according to "3.
Step 4 to 6: we proceed in a similar manner, each time bounding
the propagated error and expressing the requirements for the
accuracy of matrix operations. We refer the reader to [12] for
more details.

5.7 Matrix arithmetic with a priori accuracy

5.7.1 Basic brick methods
In order for our WCPG evaluation algorithm to work, we require the
following three basic floating-point algorithms: multiplyAndAdd,
sumAbs and inv, computing, respectively, the product followed
by a sum (AB + C), the accumulation of an absolute value in a
sum (A + |B|) and the inverse of matrices (A�1). Each of these
operators was required to satisfy an absolute error bound |�| < � to
be ensured by the absolute-error matrix � with respect to scalar �,
given in argument to the algorithm.

Ensuring such an absolute error bound is not possible in general
when fixed-precision floating-point arithmetic is used. Any such
algorithm, when returning its result, must round into that fixed-
precision floating-point format. Hence, when the output grows
su�ciently large, the unit in the last place of that format and hence
the final rounding error in fixed-precision floating-point arithmetic
grows larger than a previously set absolute error bound.

We develop algorithms that will generically determine the
output precision of the floating-point variables they return their
results in, such that a user-given absolute error bound is guaranteed.
In contrast to classical floating-point arithmetic, such as Higham’s
analyzes, there is no longer any clear, overall computing precision,
though. Variables just bear the precision that had been determined
for them by the previous computation step. This preliminary
clarification being made, a general description of our three basic
bricks sumAbs, inv and multiplyAndAdd is easy.

For sumAbs(A, B, �) = A + |B| + �, we can reason element by

element. We need to approximate Ai j +

q⇣
<Bi j

⌘2
+

⇣
=Bi j

⌘2
with

absolute error no larger than �, where <z and =z are the real and
imaginary parts of the complex number z. This can be ensured by
considering the floating-point exponents of each of Ai j, <Bi j and
=Bi j with respect to the floating-point exponent of �.

For multiplyAndAdd(A, B,C, �) = A ·B+C+�, we can reason
in terms of scalar products between A and B. The scalar products
boil down to summation of products which, in turn, can be done
exactly, as we can determine the precision of the Aik and Bk j. As a
matter of course the very same summation can capture the matrix
elements Ci j. Finally, multiple precision floating-point summation
with an absolute error bound can be performed with a modified,
software-simulated Kulisch accumulator [38], which does not need
to be exact but bear just enough precision to satisfy the absolute
accuracy bound �.

Finally, once the multiplyAndAdd operator is available, it is
possible to implement the matrix inversion algorithm inv using a
Newton-Raphson-like iteration [39]:

U0 some seed inverse matrix for V�1

Rk VUk � In (72)
Uk+1 Uk � Uk R

where the iterated matrices Uk converge to V�1 provided certain
conditions are met. See [12] and the appendix for details.

5.7.2 Error analysis of MP basic bricks
One of the core algorithms in our approach is the sum of the
elements of a real vector with an a priori given absolute error
bound. The idea is first to provide a Higham-like error analysis of
computations and to determine the bound on the rounding error;
and then to use just enough additional precision in computations
to account for that error. We give an example of the proof for a
simple basic brick algorithm: summation of vector elements.

Let v be a vector of n MP positive floating-point numbers
(no NaNs or Infinites) whose exponents are bounded by ē and let
s =

nP
i=1

vi be the sum of its elements.

Lemma 2. Let p = ē + 2
l

log2 n
m
+ k + 1. If the MP floating-point

approximation ŝ to s is computed with the precision at least p bits,
then |s � ŝ|  2�k.

In addition, the only case when the precision of the final result
ŝ is larger than the precision psum of the original sum variable is
when the exponent e of ŝ satisfies e > psum � k � 1.

Proof. Since |vi| < 2ē, the sum is bounded as |s|  n2ē
 2ē+

⇠
log2 n

⇡

.
When performing one addition in MP with precision p, an error

of at most 2�p
|s| is induced. When performing n additions, we

obtain [40]:

|s � ŝ|  n2�p
|s|  2

⇠
log2 n

⇡
�p+ē+

⇠
log2 n

⇡

 2�k�1. (73)

Thus, the accumulated sum ŝ satisfies

ŝ = s + �, |�|  2�k�1. (74)

Let psum be the precision of the original sum variable in the
summation algorithm. It may happen that p > psum, i.e. we need
to round ŝ to the precision closest to psum while maintaining the
original error bound 2�k.

Let e be the exponent of the accumulated sum ŝ. Then, when
rounding ŝ to psum bits, we obtain the value ŝ0 such that

���ŝ � ŝ0
���  2e�psum . (75)

Thus we actually obtain

ŝ0 = ŝ + �0 = s + � + �0 (76)

and
���s � ŝ0

���  |�| +
����0

���  2k�1 + 2e�psum . (77)

If e � psum  �k � 1, then |s � ŝ0|  2�k�1 + 2�k�1 = 2�k.
Otherwise, we round ŝ to e + k + 1 bits, inducing an error �0

bounded by 2�k�1 but still maintaining the overall error bound 2�k.
This is the only case where the final precision of the sum variable
is not equal to the original precision. ⇤

6 Numerical examples
The algorithms discussed above were implemented in C, using GNU
MPFR version 3.1.12, GNU MPFI6 version 1.5.2 and CLAPACK7

version 3.2.1. A Python ctypes wrapper was also provided in
order to integrate the libraries into the FiXiF tool8. All the code is
released as open-source.

We use FiXiF (and Python 2.7.10) as a front end providing the
necessary infrastructure for LTI filter manipulation. The timings
reported are those measured for the C code.

6. https://gforge.inria.fr/projects/mpfi/
7. http://www.netlib.org/clapack/
8. htttp://github.com/fixif/

12

TABLE 1
Experimental results for two SISO and one MIMO filters (q = 3).

filter n 1 � ⇢(A) hhHii (fixed �WCPG = 2�53) w=10 w=16
time N hhHii �WCPG # steps �̄⇣ time �WCPG # steps �̄⇣ time

H1 10 1.39e-2 1.17s 2147 0.8584939 1.81e-3 2 8.85e-03 3.06s 6.10e-4 2 2.77e-4 0.76s

H2 5 4.13e-4 5.95s 90169 1.5118965 1.16e-4 9 - 20.32s 2.33e-4 4 2.07e-1 14.94s

H3 6 7.49e-2 0.06s 395
4.9136028
7.2209045
2.0428813

2.57e-2 3
3.41e-1
5.31e-1
1.32e-1

0.05s 1.03e-2 2
1.43e-3
3.70e-3
5.78e-3

0.03s

Experiments were done on a laptop computer with an Intel
Core i5 processor running at 2.8 GHz and 16 GB of RAM.

Here we demonstrate our tool on the following three examples:
• H1 comes from Control Theory: the LTI system is extracted

from an active controller of vehicle longitudinal oscillation [41].
• H2 is a highly sensitive lowpass filter. It has very short passband

(between 0 and 1e-3 in normalized frequencies) and short transition
band (stopband starts at 1.8e-3) with minimum attenuation of 40dB.
• H3 iq a simple lowpass MIMO filter (with 3 outputs).

Table 1 gathers the evaluations of corresponding WCPG
measures (first with a fixed �WCPG = 2�53) and numerical results
for implementations with wordlength constraints (homogeneously)
set to 10 and 16 bits. Here �WCPG is the smallest a priori error
for WCPG evaluation, �̄⇣ is the bound on the output errors and
“# steps” denotes number of steps in Algorithm 1 (2 steps + possibly
additional iterations).

Our algorithm successfully captures when, for a given
wordlength, implementation guaranteeing the absence of overflows
is impossible. For the filter H2 and w = 10, it took 9 iterations for
our algorithm to determine that implementation is impossible, due
to condition as in Section 3.4.

We observe that the WCPG truncation order N varies signifi-
cantly for di↵erent filters, when WCPG is evaluated accurately to
double precision. However, the FxP format determination algorithm
in most cases does not actually require low error bound on the
approximations of the WCPG matrices (Table 1 gathers maximum
target precisions). Still, Algorithm 1 is highly dependent on the
WCPG evaluation time. In case of H1 and w = 16, it takes 0.76s
for our algorithm to determine reliable formats after evaluating
WCPG up to 6.10e-4 for a 10th order system. In the meantime,
for H1 our algorithm takes relatively more time, around 15s, to
evaluate the WCPG measures to roughly the same precision for a
twice smaller, yet much more sensitive, system. In our experiments,
the internal precision during the WCPG evaluation is set to at most
a few hundred bits: maximum 174 bits, for the case �WCPG = 2�53.

Overall, our algorithm is quite fast and can be used in a design
space exploration. A straightforward exploration is by iteration over
increasing wordlengths in order to find an implementation with a
suitable error bound. We discuss a better approach on exploiting
our algorithms to directly determine minimum wordlengths for a
required error bound in Section 7.2.

7 Other applications of WCPG: hardware generation
and frequency checks

Our new algorithm for the reliable evaluation of the WCPG opens
up numerous possibilities for the design and verification of new
arithmetic hardware dedicated to signal processing.

7.1 Numerical verification of frequency specifications
A posteriori validation of the frequency behavior of implemented
filters is an integral part of the design of reliable systems. In [42]
we proposed the first algorithm rigorously proving that a filter
with coe�cients in a given precision satisfies certain frequency
specifications for any frequency (and not just on a finite subset).
The WCPG measure plays a central role in this work: it is used to
bound the error of approximation to the filter’s frequency response.
In most cases a high-precision approximation to frequency response
is needed for a rigorous verification, thus WCPG must be computed
with high accuracy.

7.2 Design of faithfully-rounded hardware implementa-
tions
Consider the following problem: given filter coe�cients and FxP
formats for input and output signals, generate at minimal cost a
hardware implementation that guarantees that the output is always
faithfully rounded. Thus, the precisions of internal computations
must be chosen in a way that guarantees an a priori bound on the
output error while not wasting area. These precision choices must
rely on worst-case rounding error analysis but not be uselessly
pessimistic. WCPG plays a central role for such hardware design.

Indeed, if the errors due to arithmetic operations must be
bounded by a certain value 2`, then in (21) we get

hhH�ii2`⇣  2`. (78)

This can be easily transposed into requirements on the precisions
of internal computations, namely

`⇣  log2hhH�ii � ` (79)

We use the above relation in our recent work9 [43] to deduce
an accuracy constraint for a new Sum-of-Product-based hardware
code generator for recursive filters. In this context, WCPG is
key to deducing minimal-cost architectures guaranteeing faithful
rounding.

7.3 Input-aware rigorous FxP design
FxP filter design based on the WCPG does not make any
assumptions on the spectrum of the input signal and provides
worst-case bounds. However, often a digital filter’s input signal is
the output of an existing signal processing system, or describes
particular physical process, dynamics of which can be expressed as
frequency (spectrum) specifications. For example, an input signal
that describes temperature usually lies in low frequencies (assuming
high enough sampling rate), with higher frequencies dedicated to
possible measurement noise.

9. An article based on the research report [43]was submitted to IEEE TC.

13

Taking into account this information on the input spectrum
can result in a lower WCPG measure and, hence, yield smaller
hardware designs.

We will model the frequency specification by a function G of
the normalized frequency ! bounding the Discrete-Time Fourier
Transform U(ei!) of the input signal:

|U(ei!)|  G(!), 8! 2 [0, ⇡]. (80)

Our idea is to model the initial filter as a cascade of two filters:
(1) a system G that produces an output with frequency response
G(!); (2) the initial filter. While the first filter is not going to be
actually implemented, it permits to take into account the dynamics
of the initial input signal when the WCPG theorem is applied upon
the cascaded system.

We propose to proceed along following steps:
Step 1. Using some classical approach [44], design a digital filter
G
⇤ that corresponds to the specifications G(!) relaxed by a small

margin � (to account for approximation errors in the filter design);
Step 2. Use our WCPG-based verification algorithm [42] to ensure
that G⇤ satisfies G(!) + �;
Step 3. Cascade G⇤ with the initial filter and apply the WCPG
theorem to deduce the ranges of variables of the initial filter;
Step 4. Apply our FxP algorithm (or, for FPGA implementations,
our techniques from [43]) upon the cascaded filter. We slightly
modify our approaches to account for the fact that G⇤ will not be
part of the implemented filter, and thus no errors will propagate
through it.

8 Conclusion
We have proposed an algorithm for the reliable determination of
the FxP formats for all the variables involved in a recursive filter.
We assume that the wordlength constraints and a bound on the
input interval are given. We take computational errors as well as
their propagation over time fully into account. We achieve this by
decomposing the actually implemented filter into a sum of the exact
filter and a special error-filter. By applying the WCPG theorem
upon the error filter we get a bound on the worst-case error. We
take this bound into account while computing the MSB positions
for the variables.

We provided error analysis of the MSB computation formula
and showed that by adjusting the accuracy of the WCPG, the
computed MSB positions are either exact or overestimated by one.
Our approach is fully reliable and we do not use any simulations
anywhere in our algorithms. We identified the o↵-by-one problem
as an instance of a Table Maker’s Dilemma and proposed an
Integer Linear Programming-based approach to deal with it. Even
with the o↵-by-one issue, to our knowledge, our algorithm is the
first existing approach that given wordlength constraints provides
reliable MSB positions along with a rigorous bound on the
computational errors. Moreover, it is easy to turn the problem the
other way around and, given some output error bound, determine
the least MSB positions that ensure this bound. We also support
multiple wordlength paradigm, i.e. wordlengths are not necessarily
the same for all variables.

The core algorithm that enables our approach is the evaluation
of the WCPG measure to arbitrary precision. Our reliable algorithm
relies on multiple precision eigendecomposition to perform matrix
powering, some multi-precision basic bricks developed to satisfy
a priori absolute error bounds and detailed step-by-step error
analysis. We consider that our techniques for multiple precision

approximation to eigenvalues are of interest independently of the
context. We demonstrated that our multiple precision MPFR/MPFI-
based implementation does not usually use precisions beyond a
few hundred bits and is quite fast for our needs.

The execution time of our algorithm for FxP formats is
dominated by the computation of the WCPG. In most cases, we do
not require high accuracy for the WCPG. On the contrary, we often
need the WCPG to be accurate to even less than double precision
which speeds up the computations. Overall, the execution time of
our algorithm permits us to use it repeatedly, for instance as part
of optimization routines.

Accurate WCPG evaluation opens up numerous possibilities
for the design of new hardware arithmetic and verification. In [42],
[43] we present mature work on the application of the WCPG to the
verification of digital filters against frequency specifications and
on the automatic generation of optimal architectures for faithfully-
rounded recursive filters. We also propose in this paper a four-step
procedure that can be used for the input-aware FxP implementation.

Some e↵orts are still required on both the FxP error-analysis
and FP error analysis sides. First, we left the questions of
quantization of filter coe�cients out of scope. In the future we
plan to extend the work in [45] to adapt our FxP format algorithm
to consider both computational and quantization errors. Second,
integrating a multiple precision eigenvalue decomposition such as
the one available in mpmath 10 could accelerate our matrix powering
techniques. Finally, we leave to future work further development of
our input-aware FxP design techniques for the design of e�cient
arithmetic operators on reconfigurable hardware.

References

[1] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. NJ, USA: Prentice Hall Press, 2009.

[2] D. Báez-López, D. Báez-Villegas, R. Alcántara, J. J. Romero, and
T. Escalante, “Package for filter design based on MATLAB,” Comp.
Applic. in Engineering Education, vol. 9, no. 4, pp. 259–264, 2001.

[3] L. D. Coster, M. Adé, R. Lauwereins, and J. A. Peperstraete, “Code
generation for compiled bit-true simulation of DSP applications,” in
Proceedings of the 11th International Symposium on System Synthesis,
ISSS ’98, Hsinchu, Taiwan, 1998, pp. 9–14.

[4] B. Widrow and I. Kollár, Quantization Noise: Roundo↵ Error in Digital
Computation, Signal Processing, Control, and Communications. Cam-
bridge, UK: Cambridge University Press, 2008.

[5] A. Benedetti and P. Perona, “Bit-width optimization for configurable
DSP’s by multi-interval analysis,” in Asilomar Conference on Signals,
Systems & Computers, vol. 1, 2000, pp. 355–359.

[6] J. A. Lopez, C. Carreras, and O. Nieto-Taladriz, “Improved interval-
based characterization of fixed-point LTI systems with feedback loops,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 26, no. 11, pp. 1923–1933, 2007.

[7] A. B. Kinsman and N. Nicolici, “Bit-width allocation for hardware
accelerators for scientific computing using SAT-modulo theory,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 3, pp. 405–413, 2010.

[8] S. Vakili, J. M. P. Langlois, and G. Bois, “Enhanced precision analysis for
accuracy-aware bit-width optimization using a�ne arithmetic,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 12, pp. 1853–1865, 2013.

[9] O. Sarbishei, K. Radecka, and Z. Zilic, “Analytical optimization of bit-
widths in fixed-point LTI systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, no. 3, pp. 343–355,
2012.

[10] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen, “Toward e�cient
static analysis of finite-precision e↵ects in DSP applications via a�ne
arithmetic modeling,” in Design Automation Conference, 2003, pp. 496–
501.

10. http://mpmath.org

14

[11] V. Balakrishnan and S. Boyd, “On Computing the Worst-Case Peak Gain
of Linear Systems,” Systems & Control Letters, vol. 19, pp. 265–269,
1992.

[12] A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of the worst-
case peak gain matrix in multiple precision,” in IEEE Symposium on
Computer Arithmetic, 2015, pp. 96–103.

[13] ——, “Determining fixed-point formats for a digital filter implementation
using the worst-case peak gain measure,” in Asilomar Conference on
Signals, Systems & Computers, 2015, pp. 737–741.

[14] T. Hilaire, P. Chevrel, and J. F. Whidborne, “A Unifying Framework
for Finite Wordlength Realizations,” IEEE Transactions on Circuits and
Systems, vol. 8, no. 54, pp. 1765–1774, 2007.

[15] A. Volkova, “Towards reliable implementation of digital filters,” Ph.D.
dissertation, Sorbonne Universités – University of Pierre and Marie Curie,
2017.

[16] W. Padgett and D. Anderson, Fixed-Point Signal Processing, ser. Synthesis
lectures on signal processing. Morgan & Claypool, 2009.

[17] R. Oshana, DSP Software Development Techniques for Embedded and
Real-Time Systems. Elsevier Science, 2006.

[18] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[19] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, and S. Torres, Handbook of Floating-Point
Arithmetic. 2nd ed. Birkhäuser, 2018.

[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms (2 ed.).
SIAM, 2002.

[21] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-precision Binary Floating-point Library with Correct
Rounding,” ACM Transactions on Mathematical Software, vol. 33, no. 2,
2007.

[22] N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval
arithmetic and the MPFI library,” Reliable Computing, vol. 11, no. 4, pp.
275–290, 2005.

[23] G. Constantinides, P. Cheung, and L. Wayne, Synthesis and Optimization
of DSP Algorithms. Kluwer, 2004.

[24] D. U. Lee, A. A. Ga↵ar, R. C. C. Cheung, O. Mencer, W. Luk, and
G. Constantinides, “Accuracy-guaranteed bit-width optimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 10, pp. 1990–2000, 2006.

[25] O. Sarbishei and K. Radecka, “On the fixed-point accuracy analysis
and optimization of polynomial specifications,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 6,
pp. 831–844, 2013.

[26] D. Boland and G. Constantinides, “Bounding variable values and round-
o↵ e↵ects using Handelman representations,” Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 30, no. 11, pp. 1691
–1704, 2011.

[27] D. Ménard, N. Hervé, O. Sentieys, and H.-N. Nguyen, “High-level
synthesis under fixed-point accuracy constraint,” Hindawi Journal of
Electrical and Computer Engineering, 2012.

[28] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL, 1977, pp. 238–252.

[29] F. de Dinechin, M. Istoan, and A. Massouri, “Sum-of-product architec-
tures computing just right,” in IEEE 25th International Conference on
Application-Specific Systems, Architectures and Processors, 2014, pp.
41–47.

[30] A. Ziv, “Fast evaluation of elementary mathematical functions with
correctly rounded last bit,” ACM Transactions Math. Softw., vol. 17,
no. 3, pp. 410–423, 1991.

[31] I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From
Classical to Modern Approach. Springer Berlin Heidelberg, 2012.

[32] W. Cook, T. Koch, D. E. Ste↵y, and K. Wolter, “A hybrid branch-and-
bound approach for exact rational mixed-integer programming,” Konrad-
Zuse-Zentrum für Informationstechnik Berlin, Tech. Rep., 2012.

[33] S. Hammarling, “Numerical solution of the discrete-time, convergent,
non-negative definite Lyapunov equation,” Syst. Control Lett., vol. 17,
no. 2, pp. 137–139, 1991.

[34] D. Monniaux, “Applying the z-transform for the static analysis of floating-
point numerical filters,” CoRR, vol. abs/0706.0252, 2007.

[35] S. M. Rump, “Solution of Linear Systems with Verified Accuracy,” Applied
numerical mathematics, vol. 3, no. 3, pp. 233–241, 1987.

[36] ——, “Guaranteed inclusions for the complex generalized eigenproblem,”
Computing, vol. 42, no. 2-3, pp. 225–238, 1989.

[37] S. Gershgorin, “Über die Abgrenzung der Eigenwerte einer Matrix.” Bull.
Acad. Sci. URSS, no. 6, pp. 749–754, 1931.

[38] U. Kulisch and V. Snyder, “The Exact Dot Product As Basic Tool for
Long Interval Arithmetic,” Computing, vol. 91, no. 3, pp. 307–313, 2011.

[39] V. Pan and J. Reif, “E�cient Parallel Solution of Linear Systems,” in
Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing. ACM, 1985, pp. 143–152.

[40] S. M. Rump, “Error estimation of floating-point summation and dot
product,” BIT Numerical Mathematics, vol. 52, no. 1, pp. 201–220, 2012.

[41] D. Lefebvre, P. Chevrel, and S. Richard, “An H1 based control design
methodology dedicated to the active control of longitudinal oscillations,”
IEEE Transactions on Control Systems Technology, vol. 11, no. 6, pp.
948–956, 2003.

[42] A. Volkova, T. Hilaire, and C. Lauter, “Reliable verification of digital
implemented filters against frequency specifications,” in 2017 IEEE 24th
Symposium on Computer Arithmetic, 2017.

[43] A. Volkova, M. Istoan, F. de Dinechin, and T. Hilaire, “Towards Hardware
IIR Filters Computing Just Right: Direct Form I Case Study,” 2017,
https://hal.sorbonne-universite.fr/hal-01561052.

[44] T. W. Parks and J. H. McClellan, “Chebyshev Approximation for
Nonrecursive Digital Filters with Linear Phase,” IEEE Transactions on
Circuit Theory, vol. 19, no. 2, pp. 189–194, Mar 1972.

[45] B. Lopez, “Implémentation optimale de filtres linéaires en arithmétique
virgule fixe,” Ph.D. dissertation, Sorbonne Universités – University of
Pierre and Marie Curie, 2015.

Anastasia Volkova was born in Odessa, Ukraine in
1991. She obtained a master’s degree from Odessa
National I. I. Mechnikov University, Ukraine in 2014,
then a PhD in Computer Science from Sorbonne
Université, Paris, France in 2017. She is now a post-
doctoral researcher at Inria in LIP Laboratory, ENS
de Lyon, France. Her research interests include
computer arithmetic, digital signal processing and
arithmetic aspects of hardware/software implemen-
tations of signal processing algorithms.

Thibault Hilaire was born in 1977, obtained a
master’s degree from École Centrale de Nantes
in 2002, then a PhD from University of Nantes in
2006. After two postdoctoral positions at Université
de Rennes 1 and Technische Universität Wien,
he joined Sorbonne Université as an associate
professor. His research interests include fixed-point
arithmetic (and more generally computer arithmetic),
software and hardware implementation of signal
processing and control algorithms.

Christoph Lauter was born in Amberg, Germany,
in 1980. He received this Ph.D. in Computer Science
from École Normale Supérieure de Lyon, France,
in 2008. He worked as a Software Engineer in the
Numerics Team at Intel Corporation. Since 2010,
he is Maître de Conférences (Assistant Professor)
at Sorbonne Université, Paris, France. In 2018,
he joined University of Alaska Anchorage (UAA),
where he holds an Assistant Professor position. His
research interests are Floating-Point Arithmetic and
Validated Numerical Computing.

1

Appendix
Multiple precision matrix inversion

For a nonsingular matrix V 2 Cn⇥n we need to compute an
approximation U to its inverse V�1.

A certain modification of the Newton-Raphson matrix iteration
is used in our approach:

Rk = VUk � I + Kk (1)
Uk+1 = Uk � Uk Rk +Wk+1 (2)

with Kk and Wk the error matrices associated with the computation
of Rk and Uk on each step.

Let �Uk
= Uk � V�1 be the error-matrix for each iteration of

the algorithm. This is the measure which we want to evaluate.
Let |||Rk ||| = kRkkF + �k, �k � 0 be an upper-approximation of

the Frobenius norm of Rk.

Theorem 1 (On the convergence of matrix iteration towards
inverse). Assume that

kVkF  ↵ (3)
kU0kF  � (4)����U0

���
F
 � (5)

↵ · � 
1
16

(6)

Assume also that for all k,

�k 
1
4
·
�

� + �
(7)

kK0kF 
1
16

(8)

kRkkF 
1
32
·
�

� + �
(9)

kKkkF 
1
8
·

1

1 + 4
p

n(�+�)
�

(10)

kWkkF 
1
32
·

�

↵(� + �)
(11)

Then, there exists k
⇤
� 0 such that for all k � k

⇤
:

����Uk

���
F
 �.

Proof. From the assumptions it trivially follows that
���V�1

���
F
 � + �. (12)

Let us express a bound on the
����Uk

���
F

:

Rk = VUk � I + Kk (13)
)V�1Rk = Uk � V�1 + V�1Kk (14)

V�1Rk = �Uk
+ V�1Kk (15)

)�Uk
= V�1Rk � V�1Kk = V�1(Rk � Kk) (16)

Therefore,
����Uk

���
F

is bounded by
����Uk

���
F


���V�1
���

F
kRk � KkkF (17)

Since
���V�1

���
F
 �+� and we are the ones who control the error Kk,

the bound (17) implies that the study of kRkkF is required: then it
will su�ce to apply the triangle inequality on kRk � KkkF in (17).
We have

Rk+1 = VUk+1 � I + Kk+1

= V (Uk � Uk Rk +Wk+1) � I + Kk+1

= VUk � I � VUk Rk + VWk+1 + Kk+1

= Rk � VUk Rk + VWk+1 + Kk+1

= (I � VUk) Rk + VWk+1 + Kk+1 � Kk

= (Kk � Rk) Rk + VWk+1 + Kk+1 � Kk

= Kk Rk � R2
k
+ VWk+1 + Kk+1 � Kk

= Kk (Rk � I) � R2
k
+ VWk+1 + Kk+1 (18)

Therefore, the ratio between kRkkF and kRk+1kF is bounded by

kRk+1kF

kRkkF
 kKkkF ·

1 +

kIkF
kRkkF

!
+ kRkkF

+
kVkF kWk+1kF

kRkkF
+
kKk+1kF

kRkkF
(19)

It is easy to deduce that (17) will converge if (19) converges, i.e is
less than or equal to 1. In order to prove that we need to determine
lower and upper bounds on the kRkkF .

Suppose the algorithm for the function is following:

R0 = VU0 � I + K0

k 1

while |||Rk ||| >
1
2
·
�

� + �
do

Uk+1 = Uk � Uk Rk +Wk+1

Rk+1 = VUk+1 � I + Kk+1

end

In other words, the criteria for the iteration to stop is that the
approximation on the upper bound of the Frobenius norm is at
most 1

2 ·
�
�+� .

Using the definition of |||Rk ||| we observe that since after the
iteration |||Rk ||| 

1
4 ·

�
�+� we have

kRkkF 
1
2
·
�

� + �
� �k 

1
2
·
�

� + �
(20)

Substituting (20) and (9) into the bound (17) we obtain,
����Uk

���
F


���V�1
���

F
· (kRk � KkkF)



���V�1
���

F
· (kRkkF + kKkkF)

 (� + �) ·

1
2
·
�

� + �
+

1
32
·
�

� + �

!
< � (21)

Therefore, if the iteration ends up stopping, the required absolute
error bound was guaranteed.

Now we prove that the iteration converges and hence stops.
Inside the iteration, we have |||Rk ||| >

1
4 ·

�
�+� , therefore using the

bound (7) we have

kRkkF = |||Rk ||| � �k �
1
2
·
�

� + �
�

1
4
·
�

� + �
�

1
4
·
�

� + �
(22)

At the same time, we have

kR0kF = kVU0 � I + K0kF

=
����V

⇣
U0 � V�1

⌘
+ K0

����
F

 kVkF
����U0

���
F
+ kK0kF

 ↵ · � +
1
16


1
8
. (23)

2

As we have kR0kF 
1
8 , we can start a proof by induction for the

fact kRkkF 
1
8 for all k. With just the base case we can establish

the following on the ratio between kRkkF and kRk+1kF is

kRk+1kF

kRkkF


1
8
·

1

1 + 4
p

n(�+�)
�

·

0
BBBBBB@1 +

p
n

1
4 ·

�
�+�

1
CCCCCCA +

1
8

+
↵ · 1

32 ·
�

↵(�+�)
1
4 ·

�
�+�

+
1
32
·
�

� + �


1
8
+

1
8
+

1
8
+

1
8


1
2
< 1. (24)

The fact that kRkkF 
1
8 for all k follows now trivially: kRk+1kF 

kRkkF

HR


1
8 . At the same time, we have proven that the ratio

between kRkkF and kRk+1kF stays less than 1 and that converges is
achieved. ⇤

Appendix
Proof of the MSB position computation

Proof of Lemma 1

Lemma 1. [11] If the WCPG matrices hhH⇣ii and hhH�ii are

computed such that the absolute errors bounds are bounded by

"
WCPG�

<
1
2

⇣
hhH�ii · "̄

⌘
iPp+n

j=1 "̄ j

, 8i (25)

"
WCPG⇣

<
1
2

✓
hhH⇣ii · ū

◆

iPq

j=1 ū j

, 8i (26)

where hhHii := |D| + |CB| + |CAB| is a very low-accuracy lower

bound on hhHii, then

0  cm⇣i
⌃
� m⇣i⌃  1, 8i. (27)

Proof. Proof by construction, we reason as follows: since the error-
term caused by the WCPG floating-point evaluation is positive and
the ceil function is increasing, then

cm⇣i
⌃
� m⇣i⌃ � 0, (28)

i.e. the floating-point approximation cm⇣i
⌃ is guaranteed to never be

underestimated. However, it can overestimate the MSB position by

cm⇣i
⌃
� m⇣i⌃ 

2
666666666666666
m �

l
m
m

| {z }
�1<·0

+ log2

0
BBBBBBBBBBBBBB@
1 +
"

WCPG⇣

qP
j=1

ū j + "WCPG�

n+pP
j=1
"̄ j

⇣
hhH⇣iiū

⌘
i
+ (hhH�ii"̄)i

1
CCCCCCCCCCCCCCA

3
777777777777777777

. (29)

The approximation cm⇣i
⌃ overestimates at most by one bit if and

only if the error term is contained in the interval [0, 1), i.e. if

0  log2

0
BBBBBBBBBBBBBB@
1 +
"

WCPG⇣

qP
j=1

ū j + "WCPG�

n+pP
j=1
"̄ j

⇣
hhH⇣iiū

⌘
i
+ (hhH�ii"̄)i

1
CCCCCCCCCCCCCCA
< 1. (30)

Hence, using the above condition we can deduce the upper
bounds on the "

WCPG⇣
and "

WCPG�
:

0 
"

WCPG⇣

qP
j=1

ū j + "WCPG�

n+pP
j=1
"̄ j

⇣
hhH⇣iiū

⌘
i
+ (hhH�ii"̄)i

< 1. (31)

Since all the terms are positive, the left inequality is always true.
The right inequality in (31) is satisfied for instance if

"
WCPG⇣

qP
j=1

ū j

⇣
hhH⇣ii · ū

⌘
i

<
1
2

"
WCPG�

n+pP
j=1
"̄ j

(hhH�ii · "̄)i

<
1
2
. (32)

Rearranging terms we obtain the following inequalities on the
WCPG computation with error:

"
WCPG⇣

<
1
2
·

⇣
hhH⇣iiū

⌘
i

qP
j=1

ū j

"
WCPG�

<
1
2
·

(hhH�ii"̄)i

n+pP
j=1
"̄ j

. (33)

Unfortunately, the above results cannot be used in practice,
since they depend themselves on the exact WCPG matrices.

It can be shown that hhHii is a lower bound of the WCPG
matrix. We can compute this matrix exactly. Obviously,

⇣
hhH�ii · "̄

⌘
iPp+n

j=1 "̄i


(hhH�ii · "̄)iPp+n

j=1 "̄i

(34)

✓
hhH⇣ii · ū

◆

iPq

j=1 ūi



⇣
hhH⇣ii · ū

⌘
iPq

j=1 ūi

. (35)

Hence, if the WCPG matrices in the right sides of (33) are
substituted with their lower bounds, the condition (31) stays
satisfied and we obtain bounds (25) and (26).

⇤

3

Appendix
Coefficients of the filters in numerical examples
Example H1

This large system (n = 10) comes from control theory: the filter is
used as a controller for an active control of vehicle longitudinal
oscillation, it’s coe�cients are taken from [41].

Example from Section 5.2

A =

0
BBBBBBBBBBBBBBBBBB@

5349797894891737
258

5166143083671405
253

�2831854438491313
254

�5871577021383539
257

�8085167575254235
259

5166143083671405
253

�2313123528371301
253

�3726321566242771
255

�2862105117188361
253

�5198006051035051
254

�2831854438491313
254

�3726321566242771
255

�6953517292263399
253

1536770956967001
252

�6533578784721267
257

�5871577021383539
257

�2862105117188361
253

1536770956967001
252

�4578574112815079
258

�6108340260993661
254

�8085167575254235
259

�5198006051035051
254

�6533578784721267
257

�6108340260993661
254

�7406762621209713
258

1
CCCCCCCCCCCCCCCCCCA

,

b =

0
BBBBBBBBBBBBBBBBBB@

0
�5431455542039353

253
�4330832538465309

251
�2702522316192301

251
482362316509163

249

1
CCCCCCCCCCCCCCCCCCA

,
c =

⇣
5441181515794623

252 0 0 0 8170739390909991
253

⌘
,

d = �6210481900542423
252 .

Example H2

A =

0
BBBBBBBBBBBBBBBBBB@

1125884140480399
250

6101364641389871
260

2425665280207835
267

1386676433491063
275

5118299188362083
285

6101364641389871
260

562931208921397
249

3580852488780457
259

2047060572831479
267

7555813465491411
277

2425665280207835
267

3580852488780457
259

9006935642341415
253

2574528371178733
259

4751363098976395
268

5546705733964253
277

8188242291325917
269

2574528371178733
259

4503437057667067
252

1038920910124317
257

5118299188362083
285

1888953366372853
275

4751363098976395
268

1038920910124317
257

556926982145039
249

1
CCCCCCCCCCCCCCCCCCA

,

b =

0
BBBBBBBBBBBBBBBBBB@

5998394483706393
289

4427520563312555
280

87005679139317
266

1217564121782259
261

5249762380444891
255

1
CCCCCCCCCCCCCCCCCCA

c =
⇣

668755654745437
254

6719548029680649
267

4891165866085207
258

8441253007063213
268

2957154451140365
260

⌘
,

d = 6931278651127311
265 .

Example H3

A =

0
BBBBBBBBBBBBBBBBBBBBBBBB@

4418544644807977
253

2633110586935453
254

2905902623564539
255

7508473356346129
255

2522880482455933
257

3998403835570583
255

5650035948513929
255

21015484711171
246

2148901569399087
255

8675878437354599
257

6297725632523845
255

7756279422242563
257

8786414786608781
257

2255582837372239
255

8694325181428309
254

1112443151156041
254

7474606287148303
256

5436817527755701
255

7180539245879519
255

2374585953925877
256

5028467142342763
256

885826521506385
251

6840139171644347
257

8628860857244851
255

5680156022821783
258

3277863923988323
254

1891836102668779
254

8283885125788271
257

5628760943874231
253

1159217536885911
253

2243206945596225
254

2730982814037469
255

2484419741638189
254

4072839330211763
254

2580526557686275
254

1757250531404439
252

1
CCCCCCCCCCCCCCCCCCCCCCCCA

,

b =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1623772282698479
249

1866138563195003
251

0
6514321753002601

253
1389081261866901

249

0

1
CCCCCCCCCCCCCCCCCCCCCCCA

c =

0
BBBBBBBB@

4312502887981911
254 0 4821024588106637

251
5671130809168533

253
7717449386255375

253
3024788646527865

253
447237842295375

249
3937479139811515

255
6649979180978255

254
2284658076566543

256
3522751657326221

256 0
2584561782952399

257
2570582609709041

255
3798759264089249

252 0 2989147159076855
253 0

1
CCCCCCCCA ,

d =

0
BBBBBBBB@

3045667334400355
253

0
0

1
CCCCCCCCA

