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This paper studies low-aspect-ratio (A) rectangular

wings at high incidence and in side-slip. The main

objective is to incorporate the effects of high angle

of attack and side-slip into a simplified vortex model

for the forces and moments. Experiments are also

performed and are used to validate assumptions

made in the model. The model asymptotes to the

potential flow result of classical aerodynamics for an

infinite aspect ratio. TheA→ 0 limit of a rectangular

wing is considered with slender body theory,

where the side-edge vortices merge into a vortex

doublet. Hence, the velocity fields transition from

being dominated by a spanwise vorticity monopole

(A≫ 1) to a streamwise vorticity dipole (A∼ 1). We

theoretically derive a spanwise loading distribution

that is parabolic instead of elliptic, and this physically

represents the additional circulation around the wing

that is associated with reattached flow. This is a

fundamental feature of wings with a broad-facing

leading edge. The experimental measurements of the

spanwise circulation closely approximate a parabolic

distribution. The vortex model yields very agreeable

comparison with direct measurement of the lift and

drag, and the roll moment prediction is acceptable for

A≤ 1 prior to the roll stall angle and up to side-slip

angles of 20◦.

1. Introduction
The recent interest in the applications of microaerial

vehicles (MAVs) has led to a great deal of research

in several related areas, such as aerodynamic loading

[1], flight control [2–4] and vehicle design [5]. Classical
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aerodynamic techniques and analyses are typically inapplicable to the low-Reynolds-number

flight regime in which most MAVs operate (5 × 104–1 × 105), which has impeded a thorough

understanding of the resulting aerodynamics. This is largely due to the fact that the flow field

is inherently three-dimensional and often times unsteady, as well as being dominated by flow

separation and viscous effects. Furthermore, most MAVs consist of a lifting surface of low

aspect ratio (A), for which it is known that the effects of tip vortices (TVs) become increasingly

important. As a result, there is a complex interaction between the leading-edge separation region

(LESR) and the TVs, which can affect the aerodynamic loads and flight characteristics.

A flight condition that is of considerable importance to low-A wings is side-slip. This is

because these types of wings are susceptible to instability caused by disturbances. For example,

a side-slip condition can be easily induced in an energetic environment by a slight wind

gust [6]. The complexity of low-A vehicle control stems from the sensitivity of their lateral

dynamics. The fact that low-A wings have near-zero roll damping [4] amplifies the impact of

roll moments produced by lateral flow asymmetries. While a planar low-A rectangular wing is

able to generate statically stable roll moments in side-slip (i.e. Cl,β < 0), the coupling between

vortex lift and angle of attack results in an over-stabilizing dynamic derivative at increased

angles of attack. Shields & Mohseni [4] showed that for rectangular wings of sufficiently small

aspect ratio, such high levels of lateral stability, coupled with low roll damping, can result in an

under-damped dutch-roll-like stability mode. Additionally, angle of attack disturbances with a

frequency similar to this mode can result in a divergent modal response that they termed ‘roll

resonance’, and which couples the longitudinal and lateral dynamics. The lateral component is

similar to the well-known phenomenon of ‘wing rock’ observed to occur on free-to-roll delta

wings [7,8] and to the self-induced oscillations of free-to-roll rectangular, elliptical, Zimmerman

wings [9].

The majority of previous work on wings in side-slip has been applied to high aspect ratios

or to slender delta wings [10–12]. In this regard, Shields & Mohseni have conducted research on

low-A rectangular wings in side-slip [13–15]. Their static measurements showed the presence

of a few phenomena that they put under an umbrella term called ‘roll stall’. In this manuscript,

the term roll stall refers specifically to the sudden decrease of the roll moment magnitude that

occurs at a particular angle of attack, prior to which there is a monotonic increase with α; this

terminology is chosen based on the similar behaviour of the lift coefficient when lift stall occurs.

The importance of roll stall on the flight dynamics of such a wing lies in the ability of a flight

controller to accurately predict the actual control authority available. In other words, a linear

controller will not be able to account for the rapid change in the Cl,α stability derivative associated

with roll stall, and thus the wing could easily be sent into unstable flight. It should be noted that

Levin & Katz [7] found a very similar roll stall behaviour for slender delta wings, where the

roll stall event occurs simultaneously with the lift or normal force stall. This happens, because the

vortex lift of slender delta wings is due only to the two vortices generated along the highly swept

leading edges. However, inspection of the data of Shields & Mohseni reveals that, for rectangular

wings, roll stall occurs well before lift stall for aspect ratios of unity and below. Moreover, low-

A rectangular wings are different from delta wings in that there are three main wing edges and

corresponding vortices which interact to generate loads on the wing.

For delta wings, the aspect ratio is (by definition) uniquely determined from a single

parameter, namely the sweep angle Λ of the leading edges. Hence, a low-A delta wing is not

necessarily geometrically representative of other low-Awings that have more degrees of freedom

in the planform definition. While the rolling dynamics of delta and rectangular wings, indeed,

display similar traits, we believe that the different wing geometry is a fundamental difference

that leads to different flow physics and interactions that are responsible for the roll characteristics.

The main purpose of this paper is to investigate the high angle of attack flow features of low-

A rectangular wings in side-slip and to propose a simplified vortex model of the wings that

incorporates these features.

Although considerable understanding on roll stall of rectangular wings has been gained, those

studies used global measurements, namely force balance data. In this paper, we obtain local
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Figure 1. Schematic of the experimental set-up as viewed from the (a) side and (b) top of the wind tunnel test section. Also

indicated are the freestream velocity U, the angle of attackα, the angle of side-slip−β and the laboratory coordinate system

x–y–z. The laser is located below the wind tunnel, and the laser sheet is turned up into the test section with a mirror. The

cameras are tilted at the angle of attack of the plate.

measurements of the flow around low-Awings in side-slip via stereoscopic digital particle image

velocimetry (S-DPIV) to provide a more quantitative exploration of various flow phenomena. The

experimental observations will then be used to justify some assumptions in a simple model that

predicts the lift, drag and rolling moment of the wings. For the experiment, a high angle of attack

is chosen for two reasons: (i) roll stall occurs at relatively high angles of attack, 20–30◦ depending

on aspect ratio and (ii) experimental investigations of this type are fewer when compared with

those for small angle of attack for which the flow field has been well studied and the aerodynamic

forces may be reasonably predicted. In regard to the latter point, the experiments will help identify

how certain flow features, such as vortex circulations and locations, are altered at large incidences.

Lastly, knowledge of the vortex topology can aid the design of future generations of MAVs to

improve vehicle control and performance.

This paper is organized as follows. The experimental set-up is described in §2. In §3,

the three-dimensional vortex structure is presented, followed by a simplified vortex skeleton

representation. The vortex model is developed in §4 and is based on a new interpretation of a

limiting form of slender body theory, as well as the leading-edge suction analogy of Polhamus

[16]. The model is compared with direct force and moment measurements in §5, and for reference,

the main model equations are collected in appendix A.

2. Experimental set-up
The experiments are performed in a recirculating wind tunnel manufactured by Engineering

Laboratory Design, Inc. that has a cross section of 61 × 61 cm2 and a test section length of 2.44 m.

The wind speed range is 3–91 m s−1 with freestream turbulence intensity of 0.12%. A flat plate

model of aspect ratio 1 is constructed from an acrylic sheet with thickness of 3.175 mm; the

edges are left square. The chord and span are c = b = 7.5 cm, giving a thickness-to-chord ratio of

4.2%. With a freestream velocity of U = 16.15 m s−1 the chord-based Reynolds number is about

80 000. Measurements are performed at an angle of attack of α = 35◦, and side-slip angles of

β = 0◦, 10◦, 20◦ and 35◦. These large side-slip angles are studied, because a typical MAV flight

speed is approximately 10 m s−1 and with a gust speed range of 9–16 knots (4.6–8.2 m s−1), the

approximate side-slip range would be β ≈ 25–40◦. The flat plate wings are mounted on a sting that

is fixed to a linear motor, which allows the models to be translated in the cross-stream direction.

An S-DPIV system (figure 1) is used to measure the three-component velocity field within

planes of the flow (2D-3C); the laser sheet is vertically coplanar with the streamwise direction

of the wind tunnel. The mean volumetric flow field (3D-3C) is reconstructed from many closely
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spaced data planes, which is accomplished by laterally translating the plate through the laser

sheet; in the worst-case scenario, the wing is still about 2.5 chords from the tunnel walls. The wind

tunnel is seeded with olive oil particles (approx. 1 µm) generated by an atomizer. Image pairs with

an interframe time of �t = 50 µs are captured with 1 Mpx CMOS cameras (Phantom v.210/v.211,

1280 × 800 px2) and illumination of the particles is provided by a 200 mJ Nd:YAG laser (New

Wave PIV Solo XT, λ = 532 nm). The object-to-image plane mapping function [17] of the S-DPIV

system is determined with a precision-machined, dual-plane calibration target. Misalignment of

the target with the laser sheet is corrected with the disparity map method [17–19], for which 50

images (of the undisturbed freestream) are used.

The cameras are tilted at the angle of attack, so that the plate appears horizontal in the

images; this improves the data quality and yield near the plate, because the DPIV evaluation

algorithm uses rectangular interrogation windows. For each plane of S-DPIV data, a set of 50

images are captured at a rate of 15 Hz (approx. 3.25 s acquisition time). An iterative multi-

pass DPIV evaluation algorithm consisting of windowing shifting/deformation is performed

on each image pair starting from a 40 × 40 px2 interrogation window to 20 × 20 px2 with 50%

overlap. Finally, in each measurement plane, the three-component velocity vector (2D-3C) is

reconstructed. The in-plane spatial resolutions are �x = �y = 0.023c, whereas the out-of-plane

resolution is �z = 0.016c, and is chosen based on the laser sheet thickness obtained from a burn

paper measurement. The size of the measurement volume is then 2.52c × 1.46c × Zc in the x–y–z

directions, where Z = 1.6–2 depending on β, and the number of vectors is 113 × 66 × K, where

K = 100–125, again depending on the slid-slip angle.

The theoretical ratio of the out-of-plane measurement uncertainty to that of the in-plane

is δw/δu = 1/ tan(θ ), where 2θ is the total angle between the cameras. In the experimental

set-up, 2θ ≈ 55◦, which gives δw/δu ≈ 1.92. It is common to assume a δp = 0.1 px uncertainty

level for typical DPIV evaluation algorithms [20], which can be converted to a velocity

uncertainty as δu = mδp/�t, where m is the scale factor of the image. For the current set-up

m = 168.785 µm px−1 and so δu/U = 0.021. To obtain an in situ estimate of the standard error

of the mean with 50 samples, the freestream measurements used for the disparity map were

processed and analysed. Using these 50 temporal samples, the uncertainty at each S-DPIV

measurement point is estimated as twice the standard deviation of the population. For the

streamwise component, the maximum uncertainty observed in the measurement plane is

max[δu/U] = 0.030, whereas the spatial average is E[δu/U] = 0.011. For the vertical and out-

of-plane components, the max/mean values are δv/U = 0.029/0.010 and δw/U = 0.091/0.033,

respectively, and hence δw/δu ≈ 3. These in situ estimates are larger than the theoretical/empirical

ones as they account for the non-ideal conditions of the real set-up. Lastly, the max/mean

uncertainties in the vorticity are δωc/U = 0.796/0.292, and are obtained from the local circulation

method [21].

All position and velocity vectors are normalized by the chord, c, and freemstream flow, U,

respectively. Accordingly, the vorticity is normalized by U/c. We define the laboratory coordinates

to be such that the horizontal x-axis is pointing downstream, the y-axis is the cross-stream

direction and the vertical z-axis is upward (figure 1). However, for some discussions, it will be

convenient to represent quantities in the plate (or ‘body’) coordinates, for which the axes are

coincident with the plate chord, normal and span.

3. Vortex structure
This section presents visualizations of the overall vortical structure, which are intended to

familiarize the reader with the vortex topology and will help facilitate further discussions. The top

row of figure 2 shows three-dimensional vorticity isosurfaces of the streamwise (ωx) and cross-

stream (ωy) components (i.e. relative to the laboratory coordinates). We use the term ‘upstream tip

vortex’ to refer to the structure that is created from the ‘attacking’ side edge; the term ‘downstream

tip vortex’ refers to the opposite tip-edge vortex. In figure 2, these are the left/blue and right/red

isosurfaces of columnar shape.
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Figure 2. (Row 1) Vorticity isosurfaces: the components of the vorticity vector are relative to the lab coordinates (figure 1).

Green,ωyc/U = 3 (LESR); red,ωxc/U = 3 (downstream TV) and blue,ωxc/U = −3 (upstream TV). Theωyc/U isosurface

is translucent to show the structures underneath. (Row 2) Streamlines in a plane located 0.023c above the plate surface. Solid

symbols represent the locations of critical points in the flow. (Row 3) Streamwise vortex skeleton locations as a function of

downstream distance; the projection of the plate is shown for reference. (Row 4) Vertical positions of the tip vortices in the

wake at x/c = 1. The origin is at the plate centre. (a)β = 0◦, (b)β = 10◦, (c)β = 20◦ and (d)β = 35◦.

For β = 0◦, the familiar vortex structure consisting of left/right TVs and a LESR that has

been reported by other researchers [1,22,23] is observed. In particular, Jian & Ke-Qin [24]

(simulations/experiments for Re = 10 000) and Tiara & Colonius [1] (computations for Re = 300)

state that the strong downwash of the tip vortices acts to pin the LESR on the plate, thus

allowing for reattached flow. This also appears to be the case for all side-slip angles of the

current experiments. Hence, the tip vortex downwash seems to be a plausible mechanism for

reattachment for a range of Re as well as for different wing geometries and orientations. Here, we

refer to separated, but reattached flow as ‘reattached flow’, and when reattachment fails to occur

we use the term ‘massive separation’.

In the presence of side-slip, the wake is similar for each β. However, the vorticity over the

plate changes more substantially with increasing β. Near the leading edge, the vortex sheets
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from the upstream tip edge and the leading edge are comprised almost wholly of ωy vorticity

(green isosurface). These shear layers appear to ‘blanket’ the vortical structure and so represent

a boundary-layer-like transition from the freestream velocity to the underlying vortex structures.

The close proximity of the tip vortices results in a quick roll up of any trailing-edge vorticity

before it can propagate far downstream. Because the tip vortices are formed along the wing tips,

the near wake consists of columnar vortices that are already well into the roll-up process.

The second row of figure 2 plots streamlines in a plane located �x = 0.023c above the plate

surface. For the β = 0◦ case, there is a streamline that makes a spatial distinction between the LESR

and each TV. For β �= 0◦, the distinction between the LESR and downstream TV becomes more

ambiguous. At zero side-slip, three stagnation/critical points can be identified. The two points on

the right and left are connected to a third point towards the trailing edge of the wing through two

positive bifurcation lines [25,26]. As the side-slip angle increases, the right and rear critical points

disappear from the wing resulting in the divergence and disappearance of the right bifurcation

line, and by β = 35◦ another critical point on the left side of the wing appears and signifies a

locally rotating flow opposite in sense to that associated with the original left critical point. In

essence, the left and right critical points of the zero side-slip case have switched positions, the

flow along the z = 0 line is reversed. These changes in the streamline topology indicate how a

flow control device could alter the flow to perform a roll manoeuvre.

It is desirable to represent the vortex structure in figure 2 in a more simplified manner, and

in particular, we are primarily concerned with the TVs. We identify a ‘vortex skeleton’ given by

the position xv, and which is defined by vorticity-weighted centroids. The tip vortex locations

are calculated using the streamwise vorticity (i.e. ωx) in each x-plane of data to calculate the

corresponding (yv, zv) coordinates. To ‘track’ each vortex and distinguish from other, nearby

structures of the same sign vorticity, we use a clustering algorithm [27] that accumulates points

in the vortex as determined by a thresholded vortex identification field. The circulation of the

vortices is also computed in the process. Here, we are interested in the circulation generated by

each wing edge, whether it be in a rotating vortex or a shear layer. Therefore, we define the side-

edge shear layers to be part of the tip vortex structures, and we opt to use a vorticity magnitude

threshold (rather than the Q-criterion, for example). The threshold value chosen was twice the

uncertainty estimate in the vorticity, namely ωth = 2δω ≈ 1.2U/c. The calculation was repeated

with different threshold values, and it was found that around the chosen value, the vortex

locations were not dramatically affected. The calculation does, however, have some difficulty near

the leading edge where both the area of the tip vortices and their vorticity magnitudes are small.

The third row of figure 2 shows the cross-stream locations of the vortex skeleton (yv) as a

function of streamwise distance. These plots show a clearer distinction between the downstream

TV and the rolled up and tilted portion of the leading-edge shear layer. The downstream TV

remains mostly parallel to its respective tip edge until β = 35◦ where it begins separating away

from the wing at the trailing edge. The upstream TV occupies more space over the wing as the

side-slip is increased, but also remains nominally parallel to its edge. At β = 35◦, the upstream

TV and the tilted, rolled-up portion of the leading-edge shear layer resemble the well-known

leading-edge vortices of (non-slender) delta wings [28]. After a short distance into the wake, the

cross-stream locations of both tip vortices remain essentially straight.

The fourth row of figure 2 plots the vertical vortex locations (zv) at the plane x/c = 1 in the

wake. This shows that with increasing side-slip the downstream TV is shed at a higher location

into the wake, whereas the upstream TV positions are almost the same. As such, the wake

vortex structure becomes more tilted, which indicates a total torque in the vortex structure that

represents some contribution to the rolling moment on the wing.

4. Vortex model
In this section, we aim to develop a simple vortex model to predict aerodynamic loads and

moments, with the angle of attack, side-slip angle and aspect ratio as variables. There are

many successful aerodynamic models and relations for finite wings that already exist, such as
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the collected works of Prandtl et al. [29], Bollay [30], Falkner [31], Jones [32], Helmbold [33],

Küchemann [34], Brown & Michael [35], Mangler & Smith [36], Polhmaus [16], Lamar [37] and

several extensions of these models. Some models are based on slender body theory, but several

others employ lifting surface methods (e.g. Multhopp [38]) with three-dimensional spanwise and

chordwise loadings. Some of the simpler existing models that rely on slender body theory usually

have an elliptical spanwise lift distribution. For example, the pointed slender wing model of Jones

[32] assumes a two-dimensional cross-plane flow at each chord position, and it is shown that this

flow is characterized by an elliptical loading distribution across the local span. In this way, that

model is limited to low angles of attack (as well as aspect ratios of course). More involved models

use expansions to improve the range of applicability of the model, as well as to include relations

for vortex positions and strengths. The leading-edge suction analogy of Polhamus, which was

extended by Lamar, provides a nonlinear relation between forces and the angle of attack that has

been shown to be accurate at high incidences. However, as pointed out by Riley & Smith [39],

the Polhamus method does not offer insight on the actual separated flow structures; in turn, they

developed a model that incorporates these features and yields results comparable to a slender

body theory [40].

Given the vast amount of previous work, we do not intend to build up to these models, but

rather to use their common features and results as inspiration to an oversimplified representation

of the wing and vortex structure that bypasses some of the flow details addressed in the more

sophisticated approaches. The novelty of our proposed model is to adopt the nonlinear vortex

suction relation with the angle of attack of the Polhamus method and to represent the separated

flow structures by line vortices with prescribed circulation distributions that are characteristic

of large angles of attack, thus extending the range of applicability while circumventing the

specification of more detailed information of the flow features. As such, a lifting surface

calculation is not needed nor used. To make the model as simple as possible, the number of

free parameters is kept to a minimum. The circulation distributions are determined from a new

interpretation of a limiting slender-body-based potential flow model developed next in §4a and

other assumptions about the vortex system are supported by the experimental findings of the

previous sections.

In classical lifting line theory, the flow is potential in the sense that it remains attached to the

wing. Hence, the circulation around the wing is equal to the circulation of the tip vortices as

a consequence of the Helmholtz law of persistence of irrotationality. For wings with separated

but reattached flow there is an additional circulation distribution associated with the separation

region. However, the vortex lines that represent this leading-edge separation region begin and

end on the wing and thus have an ‘image’ inside the wing that satisfies the Helmholtz law.

Furthermore, they can be considered as bound vortices, because the LESR moves with the wing.

Consider a wing that has established a reattached flow as illustrated in figure 3. The circulation

representing the LESR is Γle and that of the tip vortices in the wake after the roll-up process

is Γw. The total or effective bound circulation (owing to reattachment) is Γo and is related by

Γo = Γle + Γw. Note that Γle cannot be determined independently, say by experiment, but may

be found by knowledge of Γo and Γw, both of which can be measured. The circulation of the

side-edge vortices Γse forms along the wing tip edges, and rolls up the vorticity, with circulation

Γte, shed from the trailing edge. After the roll-up process completes, the circulation of the wake

tip vortices is Γw = Γse + Γte. Next, we begin with determining the different loading/circulation

distributions. The model also requires determination of the downwash on the vortex system,

and will be found subsequent to the circulation. The results are then substituted into equations

of the Polhamus method and the remaining parameters are determined by matching limiting

behaviours with α andA to those predicted by existing, well-established models.

(a) Spanwise loading

In general, the cross-stream vorticity distribution is three-dimensional. Here we address the

spanwise loading by appealing to slender body theory. Although it may seem strange to consider
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Gw = Gse + Gte

Go = Gle + Gw

ÔGteÔ

ÔGwÔ

ÔGseÔ

Gle

Gte

Gse

Figure 3. Schematic shows the circulations associated with a finite wing with reattached flow. Γo is the effective bound

circulation, Γle is the circulation of the vortices representing the LESR; the dots represent that they are bound to the wing.

Γte is the circulation shed at the trailing edge,Γse is the circulation shed at the side edges (wing tips) andΓw is the circulation

of the fully formed wake vortices. (Online version in colour.)

this limit for the spanwise loading distribution, it will be shown that interesting results are

obtained. As such, we have technically already made the assumption that the cross-stream

vorticity distribution is confined to the wing surface: ωy = ωy(x, y). The physical implications of

this will be interpreted shortly. The variable x is now taken to represent the distance from the

leading edge as opposed to locating the centre of the plate as in the experimental portion of

this paper. For models of low-A wings, it is often assumed [34] that this ωy(x, y) distribution is

a separable product of functions, ωy(x, y) ∝ γx(x)γy(y), where the spanwise distribution of cross-

stream vorticity is γy. Under the assumptions of slender body theory, Bernoulli’s equation gives

p − p∞ = −ρUφx −
ρ

2
[φ2

y + φ2
z ], (4.1)

where p is the pressure and φ is the potential with subscripts indicating differentiation with

respect to that variable. In Jones’ [32] pointed wing model, it is supposed that the increase of

the wing span with downstream distance is responsible for φx via a corresponding increase of

added mass to be accelerated. Here, we investigate a slender wing and instead explicitly account

for side-edge vortices and their streamwise-dependent circulation Γx(x), and hence φx will be

non-zero even if the local span variation is negligible, e.g. a rectangular wing. However, slender

span variation effects can be included by adding φ′ = φ′(b(x)) to the total potential. Note that φ′

cannot be used to model a rectangular wing in side-slip, because this ‘pointed wing’ has an apex

angle of 90◦ (i.e. the rectangular corner angle) and violates the slender body assumptions.

We then consider the situation ofA→ 0 by the limit b → 0, which is depicted in figure 4 and

shows the two long side-edge vortices that will dominate the flow. Note that Jones [32] does not

explicitly consider this limit, but only implicitly through the use of slender body theory. Applying

this limit before integrating Bernoulli’s equation is a major difference in our approach, but we will

show that the results are consistent with the lifting surface calculations of Polhamus and Lamar.

As b → 0, then φ′ → 0, and the two side-edge vortices merge into a vortex doublet of strength

λ ≡ bΓx, for which the potential is

φ = Γx
z̃

π [ỹ2 + z̃2]
≡ Γxφ̃, (4.2)

where z̃ ≡ 2z/b, ỹ ≡ 2y/b are non-dimensional scaled coordinates. Figure 4 also plots the

experimental measurement of the corresponding flow for the A = 1 wing at two chordwise



9

rspa.royalsocietypublishing.org
Proc.R.Soc.A

473:20160760
...................................................

U

y y

z

x

AA

A A

l = bGx

–Gx Gx

b

y/c

z
/c

z
/c

−0.75−0.50 −0.25 0 0.25 0.50 0.75

0

0.25

0.50

0.75

1.00

(a) (b) (c)

0

0.25

0.50

0.75

1.00

−10 0 10

wxc

x/c = 0.9 x/c = 0.5

y/c
−0.75 −0.50 −0.25 0 0.25 0.50 0.75

−10 0 10U

wxc

U
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locations on the wing and shows that the flow outside the LESR is quite similar to the vortex

doublet/dipole flow despite that A = 1 is not necessarily a small value in the limiting sense.

The physical interpretation of this is that, outside of the LESR, the cross-plane flow is potential-

like and is dominated by the tip vortices. This is obviously in contrast to the A→ ∞ limit

where the flow is in a streamwise plane and is dominated by a spanwise vortex monopole

(i.e. the leading-edge vortex). Note that without multiplication with b, then Γx is technically

infinite in the vortex doublet solution. However, this is a result of assuming ωy to be bound to

the wing surface, as mentioned at the beginning of this subsection. More specifically, because

we are considering reattached flow, then it requires an infinite strength of the side-edge vortices

to suppress the separated vorticity back into the wing. Obviously, this is not the reality of the

situation, but is a limiting, idealized representation of the Γx flow bounding ωy to the wing.

Substituting equation (4.2) into equation (4.1), it is found that

p − p∞ = −ρUφ̃
dΓx

dx
−

ρ

2

(

2Γx

b

)2
φ̃2

z̃2
. (4.3)

To evaluate the pressure on the wing surface, we must take z = 0 and y ∈ [−b/2, b/2], however,

because we have also used the vortex doublet potential then b → 0. Therefore, z̃ and ỹ are allowed

to asymptote to non-zero values in the limit; these variables are essentially inner variables as

are used in perturbation methods [41]. We want to choose the scale, so that we can still ‘see’

the spanwise effects and variations. For ỹ, it is obvious that it should behave the same as y and

range linearly across the span. However, because z ≡ 0 represents the surface of the wing, then

in order to have z̃ = O(1) in the limit, this means that ỹ ∈ [−∞, ∞]. Physically, we have scaled

our coordinates, so that we can ‘see’ between the vortex doublet where the wing is located and

consequently the wing tips are at infinity. The value of z̃ must change sign in going from one side

of the wing to the other in order for lift to be generated. As such, from equations (4.2) and (4.3),

the pressure difference across the lower and upper surfaces of the wing is then

�p = pl − pu = 2ρU|φ̃|
dΓx

dx
, (4.4)

where the absolute value of φ̃ reflects the sign change in z̃ across the wing surface. Although

the pressure term containing φ̃2/z̃2 does not contribute to the total lift directly, it is an important

feature of the flow. This pressure is the dynamic pressure induced by the vortex doublet (recall

equation (4.1)), or equivalently, the side-edge vortices and physically represents the tip vortex

downwash that reattaches the leading-edge shear layer. The second chordwise location of the

experimental flow field plotted in figure 4 cuts through the LESR and clearly shows that the
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potential flow outside the LESR acts to promote reattachment. Hence, this analytical expression

could be employed to predict lift stall.

Returning to �p, we can integrate along the chord, which assuming the side-edges vortices to

have zero circulation at the leading edge, then gives the spanwise loading distribution:

∫

�p dx = 2ρU|φ̃|Γse, (4.5)

where Γse = Γx(x = c) is the fully developed circulation of the side-edge vortex. Much in the way

that Jones’ result for the spanwise lift distribution is independent of planform, the above result is

independent of Γx(x). Also, note that while the chord c should be large enough for equation (4.1)

to apply, we have not taken c → ∞ to makeA→ 0.

Because we are assuming reattached flow, the dependence of the forces on angle of attack is

represented by the trigonometric terms in the Polhamus method (see equation (4.17) in §4e). In

other words, the integration of the spanwise loading distribution in equation (4.5) would give the

lift-curve slope, say Lα , in the case ofA→ 0; the result of this is

Lα =

∫

2ρUφ̃Γse dy = ρUbΓse

∫ ∞

−∞

φ̃ dỹ = ρUbΓse, (4.6)

and it should be noted that this is independent of the value of |z̃|, because the limits on the integral

are from positive to negative infinity and z̃ is finite. Now, consider a rectangular wing and a

delta wing whose maximum spans and root chord lengths are equal, so that the rectangle of area

S = bc is the bounding box on the delta wing of area S� = bc/2. This best isolates the sweep angle

effects by creating an equal competition between the planform area and aspect ratio (A= b/c

versusA� = 2b/c). Nonetheless, the above result should be consistent with that of Jones, which

is CLα
= (π/2)A� = πA. The meaning of this is that, while Jones’ lift-curve slope is valid for all

slender wings, including delta and rectangular wings, it is so for different numerical ranges of

A. For rectangular wings the value ofA must be comparably smaller, because the assumption

of slenderness is violated otherwise; this effect of wing geometry is a fundamental difference

between delta and rectangular wings. For example, an A� = 1 delta wing has a sweep angle

of Λ ≈ 76◦ and is therefore slender. However, an A = 1 rectangular wing is not necessarily

slender and because A= b/c this obviously represents the middle ground of when spanwise

and chordwise dimensions are equally important. Therefore, the range of numerical values ofA

for which Jones’ result is valid for rectangular wings is then half that of a comparable delta wing.

Non-dimensionalizing equation (4.6) and equating it to the result that CL,α = πA gives

ρUbΓse

(1/2)ρU2S
=

2Γse

Uc
=

2Γse

Ub
A= πA →

2Γse

Ub
= π . (4.7)

In §4e, where we apply the Polhamus method, it will be seen that the right-most term in

equation (4.7) is equivalent to the coefficient of the vortex force constituent (i.e. Kv,se) asA→ 0.

Furthermore, the right-hand side, namely π , is exactly the value computed by Polhamus [16] via a

lifting surface method for delta wings asA→ 0. The same value was computed by Lamar [37] for

rectangular wings with a modified method and using impulsive chordwise loading and elliptical

span loading. Lamar explained that the reason the two limiting values are the same is because the

leading edges of the delta wing become like the side edges of a rectangular wing asA→ 0. Thus,

our model is an interpretation of the Jones slender wing model for rectangular wings and which

analytically predicts the correct behaviour in the zero-aspect-ratio limit.

Lastly, we revert back to the spanwise loading distribution, which is proportional to the

spanwise circulation distribution, γy, which, in turn, is proportional to φ̃. In order to find what

form this distribution takes, we need to find a value for z̃ and one that has physical meaning.

The expression for the spanwise velocity v = φy shows that in order for this component to be

physically consistent with a flow going around the tip from the lower to upper side then z̃ < 0;

note the exclusion of z̃ = 0, which returns the degenerate case of a singular pressure at the

origin. Although each velocity is finite, continuous and differentiable, we now satisfy a Kutta-like
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condition of zero velocity at the wing tips. It is found that v = 0 only at z̃ = 0, which is not in the

acceptable range. If we consider that a real, finite-span wing has wing tips at y = b/2, then taking

ỹ = 1, we find that w = 0 at z̃ = −1. Physically, we can interpret this to mean that the wing resides

below the side-edge vortices, which is clearly the case (e.g. figure 4). Furthermore, if the flow were

to separate at the wing tip, as it does in a real flow, then it would do so tangentially to the wing,

because w = 0 and v �= 0. Therefore, assigning |z̃| ≡ 1 the spanwise circulation distribution is

γy(y) ∝ φ̃ =
1

1 + ỹ2
= 1 − ỹ2 + O(ỹ4), (4.8)

which is nearly the equation of parabola (except very near the wing tips). The experimental

measurement (S-DPIV data) of the circulation corresponding to cross-stream vorticity (i.e. ωy) is

plotted in figure 5a. These distributions validate the parabolic shape suggested by equation (4.8).

While the integrated difference between our A→ 0 model and that of Jones’ is only a factor

of 1
2 , the geometry and physics involved are very different because of the broad-facing leading

edge of rectangular wings. The meaning of this relation is that wings with a broad-facing leading

edge, and which achieve reattachment via a tip vortex dominated flow (e.g. low-A rectangular

wings), will establish a parabolic distribution at higher angles of attack owing to circulation of the

reattached LESR, rather than an elliptic distribution of classical aerodynamics.

Based on the above result and the experimental validation from the S-DPIV measurements

(figure 5a), for our vortex model with finite-A wings, we employ the following relation for the

spanwise circulation distribution:

γy(y) = Γo

[

1 −
y2

y2
1

]

, (4.9)

where beff = 2y1 is the effective span of the cross-stream circulation distribution and is the distance

between the outermost wing tips; for β = 0 it is simply beff = b.

(b) Side-edge vortex circulation

Here, the potential flow model developed in the previous section (equation (4.2)) is used to find

the circulation distribution of the forming side-edge vortices, Γx(x). These vortices will cause a

vortex suction force in the sense of Polhamus’ method, i.e. one that is proportional to sin2 α.

Because the real velocity on the plate surface should be zero, we can interpret the value of v = φy
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near the wing tip to be the strength of a shed vortex sheet that generates the side-edge vortex

v =
dΓx

dx
= Γx

2φ̃ỹ

b
, (4.10)

with the second equality coming from equation (4.2). The exponential solution of this first-order

differential equation cannot satisfy the condition that Γx(0) = 0. This is not surprising, because this

location is the corner of the wing where the two-dimensional assumption of slender body theory

is invalid. However, if we assume that this represents the tip vortex growth rate downstream of

the leading edge, then after expanding the exponential we obtain

dΓx

dx
∼

2φ̃ỹ

b
+ O(x), (4.11)

and indicates a constant growth rate or a linear growth of Γx ∼ x. This near linear growth is also

the trend obtained by some of the simpler slender body wing models [39,40]. Hence, for our

model, we now assume that each side-edge vortex has

Γx(x) = Γse
x

c
, (4.12)

where x is the distance from the respective leading-edge corner along the chord for the case of

side-slip. This expression is further supported by our experimental measurements of the side-

edge vortex circulations, which are shown in figure 5b. Moreover, figure 5 shows that the

circulation magnitudes maintain a nominally constant value in the wake, and that these values

are the same for each TV. With increasing side-slip the circulation values decrease, which is the

same trend for the LEVs of a delta wing as the sweep angle is increased [42]. Closer observation

of the experimental circulations shows that the downstream TV experiences two different growth

rates. From the leading edge the first growth rate is slower, when compared with the upstream

TV. However, at around the mid-chord location, the rolled-up and tilted portion of the leading-

edge shear layer begins to feed into the downstream TV and constitutes the second growth rate

phase, which is comparable to the rate of the upstream TV. However, the circulation differences

are minor, and we ignore this effect in our model.

(c) Chordwise loading

For low-A wings whose aspect ratios are of order unity, the total chordwise loading will

obviously depend on the distribution of cross-stream vorticity, ωy(x, y) = γx(x)γy(y), and not just

the circulation of the side-edge vortices, Γx(x), of the previous section. It is often assumed

that γx(x) is impulsive, constant or has the ‘flat-plate’ distribution [34] also called the ‘cot(θ/2)’

distribution [37], which is given by γx ∼
√

(1 − x/c)/(x/c). When integrated over the chord this

gives a resultant force proportional to π/2 that acts at the quarter-point from the leading edge.

In a real flow, obviously, the loading will not be impulsive. Figure 6a shows the ‘flat-plate’

and constant loadings along with the chordwise distribution of the experimental cross-stream

vorticity averaged over the span of theA = 1 plate. Near the leading edge the experimental γx

shows a rapid increase to a somewhat constant value and then decreases in a fashion similar to

the flat plate distribution. Therefore, it appears the experimental data have features of both the

‘flat-plate’ and constant loading types and we now assume that the chordwise loading in our

model is a combination of the two. As a result, the integrated effect of this distribution is still a

force proportional to π/2, but which acts somewhere between the quarter-chord and mid-chord

points, because the constant loading acts at the mid-chord. Therefore, ωy = (π/2)γy(y), where the

π/2 factor will later be absorbed into γy for convenience.

(d) Downwash

In the Polhamus method, the vortex forces are affected by the downwash on the vortex system,

which we now compute using the specified the circulation distributions. Recall that the spanwise
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circulation distribution in this model is given by Γo(1 − y2/y2
1) (see equation (4.9)), which was

derived from the slender body potential flow model in §4a. Following the derivation of Prandtl’s

lifting line theory given in Milne–Thomson [43], consider two circuits C and C′ that pass around

the wing at the spanwise locations of η and η + dη. The circulations around these circuits are Γη

and Γη + dΓη. Usually, −dΓη is described as the differential amount of circulation shed into a

vortex sheet at the trailing edge. According to the relation Γo = Γle + Γw, the vortex sheet shed

at the trailing edge does not have a total circulation Γo, because Γle remains bound to the wing.

Therefore, the differential amount of shed circulation is −dΓη,te (figure 3). Then, assuming that

the distribution of shed vorticity is proportional to Γη, namely Γη,te = Γte(1 − η2/η2
1), then the

differential downwash velocity induced at a spanwise point y by the (semi-infinite) line vortex at η

is dwte = −dΓη,te/[4π (η − y)]. The circulation distribution can be written as Γθ = Γte sin2 θ . Letting

η = −y1 cos θ and y = −y1 cos φ, then upon substitution and integrating, we obtain

wte(φ) =
1

4π

∫ π

0

2Γte sin θ cos θ dθ

y1(cos θ − cos φ)
=

Γte

2πy1

[

2 + cos φ log

(

1 − cos φ

1 + cos φ

)]

(4.13)

and

wte(y) =
Γte

2πy1

[

2 +
y

y1
log

(

1 − y/y1

1 + y/y1

)]

. (4.14)

Now, owing to the finite aspect ratio of the wing, the tip vortices form along the side edges of

the wing and grow to a value of Γse at the trailing edge (recall figures 2 and 5). Therefore, there is

an additional downwash on the wing owing to the side-edge/tip vortices. For simplicity, we first

assume that the tip vortex system resides in the plane of the wing; this is the same assumption

as in lifting surface methods used in the work of Polhamus and Lamar. Second, the side-edge

vortices are assumed to remain parallel to their respective side edges. The downwash of this

system is then normal to the wing. Lastly, we neglect the induced velocity from the growing

portion of the side-edge vortex on the wing and consider the effect of Γx to be equal to a semi-

infinite line vortex extending downstream from the trailing edge at the wing tip. For moderate

side-slip angles, these latter two assumptions are supported by the vortex skeleton locations

shown in figure 2, but their validity will weaken with increasing side-slip as the vortices begin

to move further away from their respective side edges. The downwash accounting for both tip
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vortices is then simply

wse(y) =
Γse

2π

[

1

y1 + y
+

1

y1 − y

]

=
Γse

2πy1

[

1

1 − y2/y2
1

]

=
ΓseΓo

2πy1

[

1

γy(y)

]

. (4.15)

Equation (4.15) is interesting insofar as the side-edge vortex-induced velocity (i.e. between two

semi-infinite line vortices) is not directly dependent on our particular choice of γy as a parabola.

However, the limit of these two vortices approaching each other is the vortex doublet, which was

used in deriving the spanwise circulation distribution. Clearly, this downwash is not constant

along the span as it is for Prandtl’s lifting line theory, but rather it will result in a constant vortex

force distribution along the span, because this force is proportional to wseγy.

Obviously, the downwash velocities are each singular at the wing tips and at a small distance

ξ = |y1 − y| from the wing tip, we have

wse + wte ∼
Γse

4πξ
−

Γte

2πy1
log

[

ξ

y1

]

. (4.16)

Therefore, the velocity at the trailing-edge corners can be non-singular, namely zero, only if Γte is

infinitely larger than Γse. That this condition cannot be satisfied seems unavoidable, because when

the trailing-edge vorticity rolls up into the side-edge vortices the total wake vortex circulation, Γw

(figure 3), will be Γw = Γse + Γte and it is clear that for low-Awings that Γse obtains a significant

portion of Γw by the trailing edge. In other words, if A is sufficiently low, then the side-edge

vortices quickly roll up any vorticity shed from the trailing edge meaning that Γse ≈ Γw, and the

near wake consists of the well-formed columnar tip vortices; this feature is observed in the current

experiments (recall figures 2 and 5b). Nevertheless, we content ourselves with the singularity by

recalling that the circulation γy is zero at the wing tips and thus the associated induced force will

be finite.

(e) Potential and vortex forces

Here, we employ the method of Polhamus [16] to determine the potential and vortex suction

forces that act normal to the wing surface. We assume the reader is familiar with the concept of this

method and refer those that are not to the original paper. The force coefficients are normalized by

1/2ρU2S, where S is the planform area, which is S = bc for the rectangular wings. The expressions

for the force coefficients are

CN = Kp sin α cos α + Kv sin2 α → CL = CN cos α, CD = CN sin α. (4.17)

The coefficients Kp and Kv represent the potential and vortex constituents. The potential force is

obtained from integration of γy = (π/2)Γo(1 − y2/y2
1) across the effective span beff = 2y1, where the

π/2 factor represents the integrated effect of the chordwise loading (see §4c). The result is

Kp =
2π

3

Γo

Uc

beff

b
. (4.18)

Next, following Lamar, we write Kv = Kv,le + Kv,se, where the first term represents the vortex

suction force associated with the leading-edge circulation, and the second term represents the

side-edge vortex force. The leading-edge vortex force is affected by the downwash of the

wake vortex system (trailing-edge vorticity and side-edge/tip vortex), namely wte + wse. Again

integrating across the effective span gives

Kv,le = Kp

[

1 −
3

2πA

b

beff

(

Γte + Γse

Uc

)]

= Kp

[

1 −
3

2π

Γw

Ubeff

]

. (4.19)

where the second equality comes from the relation Γte + Γse = Γw (recall figure 3a).

The side-edge vortex force is obtained by integrating Γx along the chord. We assume that

the side-edge vortices do not experience a downwash from the cross-stream circulation. The

reasoning behind this is that the downwash of the tip vortex system is largely responsible for

the reattached flow and thus the latter would not exist without the former. We considered a
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mutual downwash on each side-edge vortex from the other, but it was found that this results

in a negligible reduction of their vortex suction force.

In the case of side-slip, the side-edge vortices should contribute asymmetrically to the force.

Although we have fixed the side-edge vortices to the tip edges, this asymmetry can still be

achieved by employing a result owing to Jones [32], and also adopted by Lamar [37]. Namely,

that there is no chordwise loading aft of the maximum span location; Jones gives more details on

the correctness of this assumption. The maximum span in the case of side-slipping rectangular

wings is drawn schematically in figure 7a and shows that the upstream TV always maintains a

force along the whole chord length, whereas the effective length of the downstream TV is

x1

c
=

{

1 −A tan β β < β1

0 β ≥ β1
(4.20)

When x1 reaches the leading edge at a side-slip angle of tan β1 =A−1, the downstream TV no

longer contributes any force. Finally, we obtain the side-edge vortex coefficient Kv,se as

Kv,se =
1

A

Γse

Uc

[

1 +
x2

1

c2

]

(4.21)

Note that asA→ ∞ the condition that the downstream TV does not contribute a force is reached

for any β �= 0 and thus Kv,se → 0 consistent with two-dimensional flow.

(f) Limiting values

So far, the model has represented the flow structure generated by the wing with line vortex

segments with prescribed circulation distributions. However, nothing has yet been said about the

parameters that characterize the relative circulation magnitudes of these distributions, namely

Γo, Γw, and Γse. In this section, we apply the results of other well-established wing models in

the limiting cases of α → 0 andA→ 0 to obtain estimates for these quantities. We begin with the

low-incidence limit and from equation (4.17) Kp ≡ limα→0 CL,α so that Kp is consistent with the

lift-curve slope, CL,α , at zero angle of attack. We adopt the relation for CL,α first derived by
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Helmbold [33], which is known to be accurate for low-A unswept or straight wings:

Kp =
2πA

√

A2 + 4 + 2
. (4.22)

From equation (4.18), we can now obtain a relation for Γo in terms of Kp. As an aside, if one

linearizes the Prandtl lifting line (CL = 2πAα/(2 +A)) with respect toA it is found that CL =

πAα. As a result one will find that, while this does not accurately capture the lift-curve slope at

zero angle of attack, it does better predict the lift coefficient for a larger angle of attack range for

rectangular wings than does Jones’ results (figure 6b).

Now, moving on to the zero-aspect-ratio limit, we note that Kp, Kv,le → 0 and the only

remaining term is the side-edge vortex force term. First, we define Γse ≡ kseΓo and use the limiting

value of Kv,se to obtain kse. This is done by matching the force coefficient to a slender body model

consistent with the prescribed loading, which recalling from §4a it was shown that Kv,se → π .

Therefore,

lim
A→0

Kv,se = lim
A→0

(

∂CN

∂ sin2 α

)

= kse
3

2

b

beff
= π → kse =

2π

3

beff

b
(4.23)

Lastly, we need to estimate the wake vortex circulation Γw. For low-A wings, the amount of

trailing-edge vorticity that is shed is significantly decreased by the tip vortex downwash assisting

in establishing a Kutta condition at the trailing edge [44]. Furthermore, any vorticity that is shed is

very quickly wound-up around the tip vortices. Hence, Γte ≪ Γse ≈ Γw. Therefore, we take Γw =

Γse = kseΓo. Lastly, the main equations used in the model are collected in appendix A for the

reader’s convenience.

(g) Roll moment

To compute the roll moment, we must specify where the forces act. The side-edge vortices were

assumed to remain attached to their respective tip edge, and so the lateral moment arm is simply

the semi-span of the wing, namely b/2. Also, because their circulation Γx has a linear growth

with the chord length, the longitudinal moment arm is 2c/3 for the upstream TV and 2x1/3 for

the downstream TV in side-slip. The actual point of action for the resultant of the cross-stream

vorticity is slightly more complicated. We first begin by investigating the pitching moment at

zero side-slip and then extend the result to non-zero side-slip.

In §4c, the chordwise loading was assumed to be a combination of the constant and ‘flat-plate’

loading types. As such, the integrated effect is a resultant force that acts somewhere between

the quarter-chord and mid-chord points, say xo. With zero side-slip, there is no roll moment, but

there is a pitching moment caused by the vortex structures. For simplicity, we take the point of

action to be constant, but note that the overall resultant location is weighted at the wing tips by

the side-edge vortex forces acting at 2c/3 from the leading edge. For planar, unswept wings at

low incidence, it is well-known that the moment about the quarter-chord point is nearly zero.

Expanding the expression for the pitching moment coefficient, Cm, for small α we obtain

Cm ≈

[(

1

4
−

xo

c

)

Kp

]

α +

[(

1

4
−

xo

c

)

Kv,le −
5

12
Kv,se

]

α2. (4.24)

To first order in α the potential force, Kp obviously acts at the quarter chord. To second order, the

vortex forces become appreciable, and xo will move towards the leading edge to balance the Kv,se

moment. At even larger angles of attack, the LESR will increase in size and so will cause xo to

begin to move aft and at this point we can no longer expect that the moment about the quarter

chord will be zero. Capturing the complete dependence of xo on α would introduce undue

complexity to the model, perhaps even requiring that the leading-edge potential and vortex forces

act in different locations. Therefore, we simply let these forces act at the quarter-chord point and

thus the pitching moment about this point is due solely to the side-edge vortices.

Figure 7b plots the experimentally measured pitching moment for theA = 1 wing at β = 0◦

against angle of attack and shows that Cm becomes rapidly negative after a certain incidence.
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The pitching moment estimated from the model is also plotted and shows qualitative agreement;

the slight positive Cm at small angles of attack is not captured and the prediction worsens as

α increases. However, we note that these differences are largely dependent on the assumed

longitudinal point of action of the side-edge vortices at 2c/3 from the leading edge, and this does

not affect the roll moment which depends on the lateral point of action.

Here, we use the symbol Cl for the rolling moment coefficient; however, it should not be

confused with the sectional lift coefficient, which is sometimes given by the same symbol. The

rolling moment contribution from the side-edge vortices is simply

Cl,se = −
Kp

2A

[

1 −
x2

1

c2

]

sin2 α, (4.25)

where x1 is given by equation (4.20) and the subtraction between the two terms in the brackets

represents the opposing roll moments caused by the upstream and downstream TVs.

For the contribution from the leading-edge forces, we first introduce a coordinate system,

xs–ys, that is coplanar with the wing and which is rotated by an angle βs from the body or plate

axes, xp–yp, such that the xs-direction is parallel to the freestream flow (figure 7a). The angle βs

is related to the actual side-slip angle by tan βs = cos α tan β. The leading-edge forces create a

moment about the ys axis, which is computed in the xs–ys basis, because the expression for the

cross-stream circulation γy is not relative to the plate coordinates. The component of the resultant

moment in the xp-direction then represents the rolling moment.

The resultant moment is obtained by integrating xo(ys)γys across the effective span, where

xo(ys) is the equation of the quarter-chord line relative to the xs–ys axes. This line is given by

xo = tan βsys + xo,s where xo,s = (c/4) cos βs(1 + tan2 βs). The result yields

Cl,p = −
1

A

xo,s

c
[Kp sin α cos α] sin βs and Cl,v = −

1

A

xo,s

c
[Kv,le sin2 α] sin βs. (4.26)

The total rolling moment coefficient is then Cl = Cl,p + Cl,v + Cl,se. These equations are also

collected in appendix A.

5. Model comparison and discussion
In this section, the lift, drag and rolling moment are compared with direct force/moment

transducer measurements [45]. Discussions on the various contributions to the loads, the effect of

aspect ratio and roll stall are also given. The roll moment data displayed a shift in the zero crossing

caused by the mounting strategy of the wings. Further testing showed this to be a repeatable,

known bias which was removed to align the zero crossing.

Figure 8 plots the lift and drag coefficients as a function of α for the β = 0 cases. Also shown

are the lifting line estimates with the Helmbold equation approximating the lift-curve slope as

α → 0 (equation (4.22)). There is a rather good agreement between the model and experiment,

with the former accurately capturing the vortex lift associated with the tip vortices and the

reattached leading-edge shear layer flow, which cause the lift to depart from the lifting line theory

around α = 10◦, and which is commonly observed for wings with reattached flow. The drag

coefficient begins to significantly depart from the induced-drag estimate of lifting line theory

at lower angles of attack than does the lift coefficient, and the model shows good agreement

up until massive separation and lift stall occurs. For the lift, the vortex contribution quickly

subsides with increasing aspect ratio and the lift, not surprisingly, approaches the lifting line

estimate. Higher aspect ratios cannot benefit from increased lift from vortex suction, because

the flow is unable to reattach. Because the model relies on the assumption of reattached flow,

it is not expected to capture the behaviour of the aerodynamic loads beyond the massive

separation event.

To show the relative contributions of the forces for a low-A wing, figure 9a plots the different

constituents for CL of the A = 1 wing. It is seen that each force type provides a comparable

contribution to the total at moderate angles of attack and that the side-edge vortex force becomes
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Figure 8. Comparison of force coefficients from the model with experimental measurement for β = 0◦. Also shown are

lifting line theory estimates with the Helmbold equation [33]. The left/right columns correspond to the lift/drag coefficients,

respectively. The rows from top-to-bottom correspond to aspect ratiosA = 0.75, 1, 1.5 and 3.

more significant and begins to dominate as α increases. At high angles of attack, but prior to lift

stall, the measured lift decreases slightly from the model curve. The reason for this is that the

reattached flow becomes increasingly more intermittent, and during stages of detachment strong

trailing-edge vorticity is shed and is not necessarily rolled up into the tip vortices. As such, the

total effective circulation Γo is actually lower [44] than predicted by the model, which assumes

Γo to be independent of angle of attack. Lastly, figure 9b shows a comparison of CL for the case

of β = 10◦ side-slip and for A = 0.75 and 3. There is not much change in the experimentally

measured forces from zero side-slip. The model slightly under-predicts the measured forces, but

maintains good qualitative agreement.
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the potential and vortex forces associated with the leading edge and the side-edge vortex force. (b) Comparison of the model

and experiment for β = 10◦ andA = 0.75 and 3. Data points shortly after lift stall are omitted for clarity. (Online version

in colour.)

Next, the roll moment coefficient is considered, and is plotted against side-slip angle β in

figure 10 for several different angles of attack; note that the negative of Cl is plotted. For each

A the three lower angles of attack shown occur before roll stall; the highest α corresponds to

very near or just after roll stall. Aside fromA = 3, which we consider as ‘large’, the model makes

an adequate prediction of the rolling moment for moderate side-slip angles (β < 10◦). However,

this depends on whether the flow is reattached, so that for aspect ratios larger than unity the

range of applicability is limited to small angles of attack. For low aspect ratios (A≤ 1), the model

fares better in its predictions, because the flow remains reattached up to α = 35–40◦. Despite this,

though, the roll moment from the model shows a diverging increase above experiment for β > 20◦

which is significantly exacerbated with increased angle of attack. The experimental data show a

slower rate of increase of Cl with increasing β. This implies that at least one of the roll-moment-

generating mechanisms does not maintain its effectiveness as the side-slip angle is increased.

Levin & Katz [46] showed a similar decrease or drop in the rate of increase of Cl with β for

slender delta wings. However, this is attributed to vortex burst occurring over the wing and the

aforementioned decrease is much more dramatic than that observed in the current experiments

on rectangular wings. This will be discussed further shortly, as a similar decrease in effectiveness

is observed with increasing angle of attack and is related to roll stall.

Recall that the roll stall event is similar to lift stall, whereby a near-linear increase with angle

of attack of the rolling moment suddenly ceases and Cl begins to decrease in magnitude. Levin &

Katz [7] show a very similar behaviour for slender delta wings, and the roll stall event occurs

simultaneously with lift or normal force stall. This happens, because the vortex lift of slender delta

wings is due only to the two vortices generated along the highly swept leading edges. However,

rectangular low-Awings are different in that there are three main wing edges and corresponding

vortices which interact to generate loads on the wing. The different physics involved leads to, for

example, roll stall occurring well before lift stall (figure 11a). In other words, the disruption of one

of the roll-moment-generating mechanisms for the rectangular wing such that the roll moment

suddenly decreases does not necessarily affect the lift-generating mechanism of reattachment, as

it does for slender delta wings.

Interestingly, for theA range studied here, both the lift stall and roll stall angles show only

about a 1◦–2◦ variation as the side-slip angle β is ranged up to 20◦ [45]. Figure 11a plots the
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average (w.r.t. β) lift and roll stall angles as a function of aspect ratio. Both stall angles decrease

as the aspect ratio increases. What is more interesting is that while forA≤ 1 the roll stall occurs

well below the lift stall, there is a dramatic drop in the lift stall angle byA = 1.5 and roll stall

actually occurs after lift stall byA = 3.
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Figure 11b,c plots the rolling moment coefficient Cl as a function of angle of attack for theA =

1 and 3 wings both at β = 10◦ side-slip; again note that the negative of Cl is plotted. Also shown

are the model predictions and the different contributions to the total rolling moment. ForA = 3,

the model over-predicts the measured Cl, but note that after lift stall (α ≈ 12◦) the data better align

with the roll moment contribution from just the side-edge vortex (figure 11c). This makes sense,

because at this angle of attack the leading-edge shear layer is no longer reattached and therefore

should not be expected to create potential nor vortex lift (in the sense of the Polhamus method).

The upstream side-edge vortex then generates a large moment. However, because the wing is in

side-slip, the massive separation spreads across the wing towards the upstream wing edge as α

is increased further. When this separation reaches the upstream edge or sufficiently disrupts the

side-edge vortex there, then roll stall occurs. This is the most likely explanation of roll stall for

large-aspect-ratio wings; however, the mechanism is different for low aspect ratios.

For A = 1, the model predicts the rolling moment quite well prior to roll stall (figure 11b)

and it is clear that the growth trend is dominated by the side-edge vortex moment. However,

the model obviously does not capture the roll stall occurring at α ≈ 21◦. As such, it seems that

the roll-moment-generating mechanism that should lose effectiveness is the side-edge vortex.

However, we do not believe that this loss of effectiveness is due to vortex breakdown or bursting.

The reason is because these low-A wings maintain reattached flow, and thus lift generation, up

to high angles of attack, whereas vortex breakdown typically results in a detriment to the lift [47].

Moreover, figure 2 shows fairly coherent (time-averaged) vortex structures.

Noting that roll stall is an abrupt change in rolling moment slope, we lastly considered that roll

stall is caused by either a sudden inboard movement of the upstream TV from its respective side

edge and/or a return towards lateral flow symmetry. In the case of the latter, it is possible that the

downstream TV may regain some of its roll-moment-generating effectiveness to counteract that of

the upstream TV. This seems plausible, because the vortex structures grow in strength with angle

of attack. Moreover, this might explain why the behaviour of the decrease in Cl after roll stall is

similar to the way it increases from low angles of attack (recall figure 11b). Another factor is that

locally separated flow may reattach owing to an increased downwash of the side-edge vortices

with angle of attack. However, more work is necessary to determine the exact mechanism of roll

stall for low-Awings.

6. Concluding remarks
The mean flow field around a low-A rectangular wing at α = 35◦ and Re = 80 000 for different

side-slip angles of β = 0◦, 10◦, 20◦, 35◦ was measured with S-DPIV. The side-slip condition was

studied as it has major implications on the lateral loads and dynamics of low-A fliers. The

objective was to obtain information on the local flow, particularly the vortex structure. The

experimental observations were then used to validate high-angle of attack assumptions made

in a very simplified model for the aerodynamic loads on the wings.

The development of the model begins with a new interpretation of slender body theory in

the limit as the span of a rectangular wing approaches zero and such that its side-edge vortices

merge into a vortex doublet or dipole with variable strength in the streamwise direction. From

this, we theoretically derived a parabolic spanwise loading, instead of the elliptic distribution

associated with fully attached flow in classical aerodynamics. The experimental measurements

of the spanwise circulation distribution very closely displayed this parabolic behaviour. The

physical explanation is that there is an additional circulation around the wing associated with the

reattached flow that comprises the leading-edge separation region. This is a fundamental feature

of wings with a broad-facing leading edge and represents a differentiation from delta wings as

well as rectangular wings at small incidence. Additionally, the potential solution provides an

expression for the dynamic pressure associated with the downwash of the tip vortices that acts to

reattach the leading-edge shear layer.

Another interpretation of the slender body potential flow model is to consider it as the zero-

aspect-ratio limit of a horseshoe vortex, which is perhaps the simplest representation of a wing. In
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theA→ ∞ limit, the spanwise portion of the vortex system is most important, and as such, the

velocity field is dominated by a spanwise monopole distribution of vorticity, and this corresponds

to the bound circulation of classical aerodynamics. WhenA→ 0, the velocity field is dominated

by a streamwise vortex dipole, as we have discussed in this paper. Hence, the spatial range of

influence of the flow changes from r−1 to r−2 asA= ∞ to 0. One possible ramification of this

on the flight of low-A vehicles is that conventional control surfaces and their typical location on

wings may render them ineffective because they are outside the range where they can affect a

change on the dominating vortical structures.

The model is continued by representing the vortex structures by simple line vortices with

prescribed circulation distributions motivated by the potential flow model and validated by the

experimental measurement. The model is completed by assuming the nonlinear relation between

forces and the angle of attack as given by Polhamus’ leading-edge suction analogy. The limits of

zero angle of attack and zero aspect ratio from well-established models are used to determine

remaining parameters. As such, analytical expressions for Kp, Kv,le and Kv,se are obtained. For the

lift and drag, the model shows excellent agreement with measurement for zero side-slip and a

slight under-prediction for non-zero side-slip. Good agreement is obtained as long as reattached

flow is maintained, which depends on aspect ratio.

The predicted roll moment showed marginal agreement with measurement and in general is

acceptable forA≤ 1 when α < 20◦ and up to β = 20◦. For aspect ratios above this, the range of

validity with angle of attack decreases very quickly, because massively separated flow occurs

at lower incidences. For larger aspect ratios (A≈ 3), the roll stall mechanism is related to an

increasing massive separation region that spreads towards the upstream tip edge as α is increased.

When this separation disrupts the upstream tip vortex, a sharp roll stall is observed. The roll

stall for low-A wings is ‘softer’, similar to trends in the lift stall. However, the model does not

explicitly capture roll stall, and it was presumed that roll stall is caused by a return to lateral flow

structure symmetry. Very recent work by our co-workers (Linehan & Mohseni) has confirmed this

hypothesis and elucidates more details of the roll stall mechanism. Namely, there is a spanwise

distribution in the ‘amount’ of unsteady flow reattachment. Initially, there is an asymmetry in this

distribution that causes the induced roll moment. However, as the angle of attack is increased the

strength of the tip vortex downwash also increases. At the roll stall incidence, this downwash

becomes strong enough to increase the level of reattachment on the downstream wing side. As

such, the total lift is still maintained, but the asymmetry in the distribution is reduced and thus

the roll moment begins to decrease, thus causing roll stall. Future work is required to determine

how this could be incorporated into the current model.
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Appendix A: model summary
Here, the main expressions of the model developed in §4 are collected. The expressions for Γo,

Γse, Γw and kse have all been written in terms of Kp to give

force coefficients rolling moment coefficient

CL = CN cos α Cl = Cl,p + Cl,v + Cl,se

CD = CN sin α Cl,p = −
1

A

xo,s

c
[Kp sin α cos α] sin βs



23

rspa.royalsocietypublishing.org
Proc.R.Soc.A

473:20160760
...................................................

CN = Kp sin α cos α + Kv sin2 α Cl,v = −
1

A

xo,s

c
[Kv,le sin2 α] sin βs

Kp =
2πA

√

A2 + 4 + 2
Cl,se = −

Kp

2A

[

1 −
x2

1

c2

]

sin2 α

Kv = Kv,le + Kv,se
xo,s

c
=

1

4
cos βs(1 + tan2 βs)

Kv,le = Kp(1 − KiKp) tan βs = cos α tan β.

Kv,se =
Kp

A

[

1 +
x2

1

c2

]

Ki =
1

πA

b

beff

x1

c
= 1 −A tan β,

beff

b
= cos β +

sin β

A
.

The quantity, KpKi = (2/3A)(Γo/Uc), can be considered as a constant, effective downwash on

the vortex system as in Polhamus [16]. Comparing with the Prandtl lifting line result of

(1/2A)(Γo/Uc), the downwash associated with reattached flow is 33% stronger for a given aspect

ratio, and the induced drag CD,i = KiC
2
L is the same, but the total vortex drag rapidly mounts with

increasing angle of attack.
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