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Abstract Aquatic organisms are constantly exposed to both
natural and anthropogenic stressors. Under stress conditions,
they elicit a cellular stress response, involving heat shock
proteins (HSPs). HSPs are essential to protect proteins against
aggregation and to help in the folding of native proteins or
refolding of damaged ones. Because of their conservation
among taxons and their inducibility after environmental/
chemical stress, HSPs are commonly used as ecological and
ecotoxicological biomarkers. However, the appropriate use of
such molecular tools requires the investigation of the influence
of biotic factors on their basal levels. As a first step in biomark-
er characterization, the present study aims to evaluate the
impact of the reproductive cycle on the expression of the two
major HSPs, Grp78 and Hsp90A in the estuarine copepod
Eurytemora affinis . The constitutive expression of both genes
in males was weak when compared to female levels suggesting
gender-specific stress tolerance. Transcript levels gradually
increased during oogenesis and maximal levels were recorded
in ovigerous females. The present data support the view that the
reproductive condition of individuals has to be considered as a
confounding factor in stress evaluation by HSP quantification.
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Introduction

Estuarine health has become a major research concern in
recent years, as reported by an increasing number of

publications (Sun et al. 2012). Estuaries provide essential
habitats for many species including plants, invertebrates (e.g.
crustaceans, worms) and vertebrates (e.g. birds, fish), sustain-
ing the vital biodiversity of coastal regions. They also repre-
sent hotspots for settlement of human populations due to their
strategic geographical location. Estuaries are thus highly dy-
namic ecosystems subjected to both natural pressure—such as
variations of salinity, turbidity, oxygenation, and tempera-
ture—and a wide range of toxic anthropogenic effluents from
conurbations, industry, and agriculture. Estuarine aquatic or-
ganisms are thus constantly exposed to both environmental
and chemical stressors. The Seine estuary situated in the
English Channel is one of the most important estuaries of
the European Northwest continental shelf. This estuary is
characterized by a low zooplanktonic biodiversity predomi-
nated by the calanoid copepod Eurytemora affinis which can
represent 90 to 99 % of zooplankton (Mouny and Dauvin
2002). Over the years, E. affinis has become a relevant eco-
logical and ecotoxicological bioindicator (Forget-Leray et al.
2009). Indeed, this euryhaline copepod represents an essential
basal organism in the trophic web of estuaries (Mauchline
1998; Winkler and Greve 2004) but also of salt marshes and
brackish waters all over the Northern Hemisphere from
America to Asia and Europe. It has been shown to have
remarkable adaptive capabilities to high variations of salinity
and temperature, helping it to maintain its position in these
specific environments (Bradley et al. 1988; Devreker et al.
2008; Ketzner and Bradley 1982). Moreover, E. affinis has
shown the capacity to accumulate environmental contami-
nants in both field and laboratory studies suggesting its role
in biogeochemical cycles of various pollutants such as hydro-
phobic organic compounds or synthetic steroids (Cailleaud
et al. 2007a, b, 2009, 2011a). In recent years, research studies
have focused on developing tools to evaluate the effects of
such environmental contaminants on E. affinis larval devel-
opment, mortality, swimming behavior, or enzymatic
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activities (Cailleaud et al. 2011b; Forget et al. 2002; Forget-
Leray et al. 2005; Lesueur et al. 2013). The E. affinis cope-
pods are appropriate test organisms because of their small
size, sexual dimorphism (male geniculate antenna), short gen-
eration time, and ease of culturing in the laboratory (Cailleaud
et al. 2011b; Lesueur et al. 2013; Michalec et al. 2013).

Over the past decades, heat shock proteins (HSPs) have
become common ecological and ecotoxicological biomarkers
due to (1) their key role in the cellular protective response, (2)
their substantial conservation among taxons, and (3) their
inducibility after environmental stress (Bierkens 2000).
HSPs, also known as stress proteins or chaperones, are highly
conserved proteins of varying molecular weight (10–150 kDa)
and are constitutively expressed in all organisms under non-
stress conditions (Feder and Hofmann 1999). They are essen-
tial for protecting proteins against aggregation and help in the
folding of native proteins or refolding of damaged ones. Stress
conditions suddenly increase the synthesis of HSPs, contribut-
ing to maintaining cellular homeostasis (Mallouk et al. 1999).

In order to expand the panel of biomarkers for the evaluation
of the impact of stressors on E. affinis , we recently identified
two HSP cDNAs in E. affinis , i.e., Grp78 (78-kDa glucose-
regulated protein) and heat shock protein 90A (Hsp90A ;
Xuereb et al. 2012). Grp78 and Hsp90A were shown to be
induced in E. affinis after salinity and temperature shocks in
both laboratory and field populations (Xuereb et al. 2012),
suggesting their possible use as general stress biomarkers in
this species. GRP78, also referred to as the immunoglobulin
heavy-chain-binding protein BiP is the endoplasmic reticulum
paralog of HSP70. GRP78 is evolutionarily conserved from
yeast to human (Lee 2001 for review). In vertebrates, it is
thought to be involved in unfolded protein response, oxidative
stress, calcium depletion, anti-apoptosis signaling, and defense
system (Coe and Michalak 2009; Lee et al. 1999; Liu et al.
1997; Rao et al. 2002). In crustaceans, GRP78 may be impli-
cated in protein folding and immune function (Luan et al.
2009). HSP90A is the cytosolic inducible form of HSP90.
HSP90 plays crucial roles in both vertebrates and invertebrates
in the folding of various proteins (Picard 2002), in the regula-
tion of the activity of numerous factors involved in apoptosis
and immunity (Joly et al. 2010), and in supporting various
components of the steroid hormone receptors (Echeverria and
Picard 2010). The main limitation to the reliable use of such
general stress biomarkers in monitoring studies lies in the
influence of biotic factors on their basal levels. Such confound-
ing factors could lead to misinterpretation of marker responses.
It has been shown—especially in fish and crustaceans—that the
HSP responses vary according to tissue, organism, develop-
mental stage, or reproduction (Cui et al. 2010; Iwama et al.
2004; Zhang et al. 2009; Zhao et al. 2011). In this context, we
investigated the influence of both gender and reproductive
stage on the E. affinis Grp78 and Hsp90A expression by
culturing copepods under constant optimal conditions.

Material and methods

Eurytemora affinis stabulation

Copepods were collected into the oligo-mesohaline zone (sa-
linity 4.8) of the Seine estuary (longitude 0°15′52″E, latitude
49°29′19″N; Haute-Normandie, France) using a horizontal
plankton net (200-μm mesh size) in spring 2010 (16.6 °C).
Immediately after sampling, the copepods were transferred
into insulated containers and were quickly brought back to
the laboratory. Copepods were reared in 40-L aquariums filled
with artificial brackish water (a mixture of UV-treated filtered
(1 μm) sea water and deionized water) in optimal culture
conditions, i.e., allowing high reproduction and developmen-
tal rates (Devreker et al. 2009). Briefly, copepods were kept at
15±1 °C and salinity 15 under constant aeration. The photo-
period was maintained at 12:12-h light/dark. The copepods
were fed every 2 days with a mixture of Rhodomonas marina
and Isochrysis galbana receiving a total of 20,000 cells mL−1.
Algae cultures were grown at 20 °C in 10-L tanks under 24-h
fluorescent illumination and constant aeration in Conway
medium.

After an acclimation period of 3 weeks, males and females
were sorted using a stereomicroscope (Leica Wild M3B)
according to their sexual stage. Samples of 50 individuals
(three replicates per stage, i.e., 750 individuals for all five
stages) were quickly rinsed with deionized RNase-free water
before being frozen in liquid nitrogen and stored at −80 °C
until further investigation.

Total RNA isolation and reverse transcription

Samples were ground using micro-pestles (Eppendorf, Le
Pecq, France) during 3 freeze/thaw cycles in liquid nitrogen,
and were then homogenized in 250 μL of nuclease-free ultra-
pure water (Sigma-Aldrich, Saint Quentin Fallavier, France).
Total RNAs were extracted using Tri-Reagent LS
(Euromedex, Mundolsheim, France). Genomic DNA diges-
tion and RNA purification were conducted with TURBO
DNA-free® kit (Ambion Applied Biosystems, Courtaboeuf,
France) according to the manufacturer’s recommendations.
RNA integrity was checked by electrophoresis on a 2 %
agarose gel. Quantification and purity were evaluated using
a NanoDrop® ND-1000 spectrophotometer (NanoDrop
Technologies, Thermo Scientific, Wilmington, DE, USA).
RNA samples were stored at −80 °C until used for further
experiments.

Reverse transcription was conducted from 1 μg of total
RNA with M-MLV reverse transcriptase RNase H minus
(Promega, Charbonnières, France) using oligo(dT)20 in the
presence of Recombinant RNasin® Ribonuclease Inhibitor
(Promega). Finally, complementary first-strand DNA
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(cDNA, 40 μL) were diluted in 60 μL of ultra-pure water and
stored in 5-μL aliquots at −20 °C.

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qPCR) re-
actions were conducted as previously described using qPCR-
grp78.F/qPCR-grp78.R and qPCR-hsp90A.F/qPCR-
hsp90A.R primer sets (Xuereb et al. 2012). Briefly, amplifi-
cations were carried out in duplicate on the Rotor-Gene Q 2-
plex HRM (QIAGEN, Courtaboeuf, France) from 5 μL of
cDNA using the QuantiTect® SYBR® Green Master Mix
(1X, QIAGEN) and forward/reverse primers (0.5 μM each).
Non template controls were systematically performed to
check the absence of DNA contamination. After an initial
denaturation step at 95 °C/15 min, cDNAwere amplified for
45 cycles of 94 °C/15 s, 59 °C/20 s, and 72 °C/15 s. After
thermocycling, cDNA were denatured by a rapid increase to

95 °C and hybridized again for 20 s at 68 °C. The melting
curve was finally determined during a slow temperature ele-
vation from 55 to 99 °C (0.2 °C s−1). The specificity of PCR
products and the absence of primer dimers were checked for
all amplifications using the dissociation curve.

The expression levels of target genes were calculated ac-
cording to the absolute quantification method as previously
described (Xuereb et al. 2011). Briefly, the quantification
cycle values (Cq; cycle number from which fluorescence is
detected above the noise threshold) were collected with the
Rotor-Gene Q series software (QIAGEN) using the compara-
tive quantification method. To convert Cq values into cDNA
copy number, a specific standard curve was established for
each primer pair from 10-fold serial dilutions of purified PCR
products (from 109 to 101 cDNA copies, in triplicate). For
that, grp78 and hsp90A were amplified from a cDNA sample
with HotStar HiFidelity DNA Polymerase (QIAGEN) accord-
ing to the manufacturer’s manual and purified with QIAquick
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Fig. 1 Reproductive stages of E.
affinis. a Male (ventral view; ga
geniculate antenna). b Female
stage 1, immature (dorsal view).
Any oocyte can be observed in
the oviducts (sp spermatophore).
c Female stage 2A, initiating
maturation (dorsal view). The
female presents small early
vitellogenic oocytes in thin
oviducts. d Female stage 2B,
advanced maturation (dorsal
view). The female presents
enlarged oviducts full of late-
vitellogenic ovocytes. e Female
stage 3, ovigerous (dorsal view).
The female—without any oocyte
in the oviducts—carries a cluster
of eggs
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PCR® Purification Kit (QIAGEN). cDNA concentration was
determined with a NanoDrop® ND-1000 spectrophotometer
and dilution series were performed in ultra-pure water.
Dilutions of medium range (corresponding to 105 and 104

cDNA copies) called “standard points,” were distributed in
5-μL aliquots and stored at −20 °C. These standard points
were systematically amplified during the qPCR runs to con-
firm the reliability of amplification reading and to correct the
Y-intercept of standard curve equation. The correlation coef-
ficient of standard curves was 0.999, whereas grp78 and
hsp90A PCR efficiencies were, respectively, 1.771 and 1.775.

Statistics

Statistical procedures were carried out with the SigmaStat 3.5
software (Systat Software, Chicago, USA). Normality and
equality of variances were checked using, respectively, the
Kolmogorov–Smirnov (p =0.365 and p =0.398 for Grp78
and Hsp90A . respectively) and Levene median (p =0.679
and p =0.481 for Grp78 and Hsp90A , respectively) tests.
Statistical differences between samples were assessed using
the one way ANOVA coupled with the Student–Newman–
Keuls test as post hoc analysis (p <0.05).

Results

Identification of Eurytemora affinis reproductive stages

Reproductive stages identified in E. affinis are illustrated in
Fig. 1. Only one stage was highlighted in males (Fig. 1a). Four
stages were determined in females according to their oviduct
appearance. The immature stage 1 (Fig. 1b) was characterized
by the absence of any visible oocytes in the oviducts whereas
the presence of vitellogenic oocytes was typical of stage 2
(Fig. 1c, d). This stage was subdivided into two groups ac-
cording to the maturating phase of oogenesis, i.e., stage 2A
(small early vitellogenic oocytes in narrow oviducts), and 2B
(enlarged oviducts full of late-vitellogenic oocytes). Finally,
stage 3 females were ovigerous without visible oocytes
(Fig. 1e).

Grp78 and Hsp90A expression during Eurytemora affinis
reproductive cycle

Overall, Grp78 transcript levels were ten times higher than
Hsp90A ones (Fig. 2). The lowest levels were detected in
males for both genes, i.e., 1.7×107 and 8×105 copies for
Grp78 (Fig. 2a) and Hsp90A (Fig. 2b), respectively. In fe-
males, transcript amounts gradually increased during oogene-
sis from stages 1 to 3. Thus, levels varied from 2.6×107 to
6.2×107 for Grp78 (Fig. 2a) and 2×106 to 5.2×106 for
Hsp90A (Fig. 2b).

Discussion

While the E. affinis developmental cycle and copulation were
described as early as the 1970s (Katona 1971, 1975), few data
are available regarding their reproductive stages. Recently,
Dur et al. chose to describe the reproductive cycle of E. affinis
according to spawning and hatching delay criteria in order to
model the population dynamics of egg bearing copepods (Dur
et al. 2009). In the present study, we opted to characterize
reproductive stages according to morphological criterions.
Mature males were distinguished through their geniculate
antennae. However, they were not categorized due to the
absence of other distinctive morphological feature allowing
the identification of various testicular stages. In females, the
classification was based—as previously described in
calanoids—on the observation of sexual maturation and gra-
vidity (Tourangeau and Runge 1991). We thus determined
four stages from initiating vitellogenesis to egg production.

In order to evaluate the influence of sex and reproductive
stage on Grp78 and Hsp90A expression in E. affinis , we
opted to quantify transcript levels by real-time PCR. This
approach—which benefits from specificity and sensitivity—
is particularly adapted to study gene expression in
microcrustaceans since only a small amount of biological
material is needed. The lack of E. affinis transcriptome data
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Fig. 2 Grp78 and Hsp90A expression during the reproductive cycle
of E. affinis. Grp78 (a ) and Hsp90A (b ) expression was studied
by quantitative PCR according to sexual differentiation (♂, male;
♀, female) and oogenesis stage (stages 1 to 3). Each bar represents the
mean of cDNA copy number ± standard deviation of independent
biological samples. Significant differences are indicated by different
letters (p <0.005)
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led us to quantify the target cDNAs in males and females
using the absolute method (Xuereb et al. 2012). In agreement
with previous data, the basal transcript levels of Grp78 were
higher than Hsp90A ones, irrespective of sex or reproductive
stage (Xuereb et al. 2012). Our results highlighted a lower
expression of both genes in males than in females. This
molecular sexual dimorphism may underlie gender-specific
stress tolerance. In particular, the substantial basal levels of
HSPs may give female higher tolerance to stress conditions.
Indeed, previous studies have demonstrated in fish that high
levels of HSP70 were correlated with an ability to cope with
environmental changes (Nakano and Iwama 2002).
Interestingly, E. affinis females—as shown in others copepod
species—present a higher survival rate than males after salin-
ity stress (Beyrend-Dur et al. 2009; Cervetto et al. 1999; Chen
et al. 2006). Moreover, Mikulski et al. showed that the weak
HSP constitutive expression in male Daphnia magna was
correlated with the active selection of a relatively stable envi-
ronment whereas females—who present high constitutive
HSP levels—select habitats that offer optimal conditions for
growth and offspring, even if exposed to variable environ-
mental conditions (Mikulski et al. 2011). Interestingly, male
E. affinis were shown to be particularly abundant in bottom
waters, where energetic cost for organisms is thought to be
reduced (Devreker et al. 2008). In the same way, male E.
affinis present higher locomotion capabilities than females
in osmotic stress, in order to maintain themselves in optimal
salinity condition (Michalec et al. 2010).

For both genes, we found evidence of an increase of
expression during oogenesis. Accordingly, Grp78 and
Hsp90 were shown to be strongly expressed in crustacean
ovaries (Jiang et al. 2009; Li et al. 2009, 2012; Luan et al.
2009; Zhang et al. 2009). Whereas the present study is, to our
knowledge, the first focusing onGrp78 expression during the
arthropod reproductive cycle, several studies have shown that
the Hsp90 expression tended to be enhanced during oocyte
maturation (Wu and Chu 2008; Zhao et al. 2011). Although
the role of HSP90 in the ovary physiology is not well known,
literature data suggest that HSP90 could be involved in the
regulation of vitellogenin synthesis and in the activation of the
EcR pathway in crustaceans and insects (Arbeitman and
Hogness 2000; Wu and Chu 2008). The increase of Hsp
expression during oocyte maturation and maximal levels re-
corded in ovigerous females might help to provide efficient
anti-stress machinery ensuring optimal offspring production.

Nowadays, the quantification of HSPs is commonly used
as an indicator of general stress. With the aim of developing
such biomarkers in the relevant ecotoxicological species E.
affinis , we previously showed that Grp78 and Hsp90A were
induced after salinity and temperature shocks in laboratory
and in field populations, underlying the interest of evaluating
the role of HSPs in the ecology of E. affinis during long-term
monitoring of natural populations. However, in this paper, we

have highlighted that the constitutive Grp78 and Hsp90A
expression varied according to the sex and reproductive stage
in E. affinis , and may be responsible for differential stress
tolerance. Our results underline that the reproductive condi-
tion of individuals has to be considered as a confounding
factor in E. affinis , requiring the composition of the popula-
tion to be taken into account in HSP assays. By helping to
define baseline values, this work is a first step to provide a
framework for the routine use of such general biomarkers.
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