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Nonsmooth modal analysis of a non-internally resonant finite bar
subject to a unilateral contact constraint

Carlos Yoong1 and Mathias Legrand1

1Department of Mechanical Engineering, McGill University, Montréal, Canada

Abstract
The present contribution describes a numerical technique devoted to the nonsmooth modal analysis (natural frequencies and
mode shapes) of a non-internally resonant elastic bar of length L subject to a Robin condition at x D 0 and a frictionless
unilateral contact condition at x D L. When contact is ignored, the system of interest exhibits non-commensurate linear natural
frequencies, which is a critical feature in this study. The nonsmooth modes of vibration are defined as one-parameter continuous
families of nonsmooth periodic orbits satisfying the local equation together with the boundary conditions. In order to find a few
of the above families, the unknown displacement is first expressed using the well-known d’Alembert’s solution incorporating
the Robin boundary condition at x D 0. The unilateral contact constraint at x D L is reduced to a conditional switch between
Neumann (open gap) and Dirichlet (closed gap) boundary conditions. Finally, T -periodicity is enforced. It is also assumed that
only one contact switch occurs every period. The above system of equations is numerically solved for through a simultaneous
discretization of the space and time domains, which yields a set of equations and inequations in terms of discrete displacements
and velocities. The proposed approach is non-dispersive, non-dissipative and accurately captures the propagation of waves with
discontinuous fronts, which is essential for the computation of periodic motions in this study. Results indicate that in contrast
to its linear counterpart (bar without contact constraints) where modal motions are sinusoidal functions “uncoupled” in space
and time, the system of interest features nonsmooth periodic displacements that are intricate piecewise sinusoidal functions in
space and time. Moreover, the corresponding frequency-energy “nonlinear” spectrum shows backbone curves of the hardening
type. It is also shown that nonsmooth modal analysis is capable of efficiently predicting vibratory resonances when the system is
periodically forced. The pre-stressed and initially grazing bar configurations are also briefly discussed.

Keywords: nonsmooth systems, modal analysis, internal resonance, unilateral contact constraints, wave equation

Introduction
The concept of linear modes (natural frequencies and mode shapes) has been a widely studied subject in the field of structural
dynamics [7]. A possible extension of this notion to nonlinear conservative systems sees a mode of vibration as a one-parameter
continuous family of periodic orbits displaying similar qualitative features [5]. In the phase space, nonlinear modes emerge
as invariant surfaces of periodic trajectories, referred to as invariant manifolds [10], where invariant implies that the motion
initiated on the manifold stays on it as time unfolds. To some extent, nonlinear modal analysis can be employed for predicting
vibratory resonances, computing the nonlinear spectra of vibration or performing model-order reduction. Techniques traditionally
employed for nonlinear modal analysis require a certain degree of smoothness in the nonlinearities [12] and thus fail for
systems with nonsmooth nonlinearities such as unilateral contact constraints. Certainly, an accurate characterization of the
vibratory response of these systems is essential to achieving enhanced and safer engineering applications [11]. Modal analysis
of nonsmooth mechanical systems, also called nonsmooth modal analysis, has been recently achieved for a finite elastic bar
of length L subject to a Dirichlet boundary condition at x D 0 and a unilateral contact constraint at x D L [13]. This system
satisfies a complete internal resonance condition, i.e. all linear natural frequencies are commensurate with the first one, which
has drastic consequences on the nonlinear modal response. Despite its simplicity, the computed nonsmooth modes (NSMs)
indicate highly intricate vibratory behaviour. Corresponding periodic displacements were observed to be unseparated piecewise
linear functions of space and time, as opposed to their linear counterparts which are sinusoidal functions separated in space and
time. Moreover, for certain NSMs such internal resonance generates a discontinuity between the linear and nonlinear portions of
the invariant manifold. To further explore the nonlinear dynamics of this one-dimensional contact problem, a non-internally
resonant configuration is investigated in the present work. The complete internal resonance condition is annihilated by changing
the boundary condition (BC) at x D 0 from Dirichlet type u.0; t/ D 0 to a Robin type @xu.0; t/ � ˛u.0; t/ D 0 which reflects
that the elastic bar is now connected to a rigid support through a simple linear spring1. Analytical derivations are first proposed

1In this document, operators @�.�/ and @2
��
.�/ stand for the first and second derivatives of .�/ with respect to the argument �.



to facilitate the construction of the sought NSMs. Then, a numerical scheme based on the simultaneous discretization of the
space and time domains is employed and the nonsmooth modes of vibration are constructed.

Non-internally resonant elastic bar
The system of interest is a homogeneous elastic bar of length L > 0 and constant cross-sectional area S > 0 subject to a
conservative unilateral constraint at its right end. Its left end is connected to a rigid support through a spring of stiffness � > 0,
as depicted in Fig. 1. The displacement, velocity, strain and stress fields are denoted by u.x; t/, v.x; t/, �.x; t/ and �.x; t/

�
x

u.x; t/

L

g.u.L; t//

Fig. 1: One-dimensional finite elastic bar attached to a spring at its left extremity and subject to unilateral contact constraint on
its right tip.

respectively where x is the coordinate of a point of the bar in the initial configuration and t denotes time. Young’s modulus is
denoted by E > 0 and � > 0 stands for the mass per unit volume, which are both, by assumption, space and time independent.
Hence, the propagation speed of any longitudinal wave is

p
E=�. In the framework of linear elasticity, the stresses read � D E�,

where � D @xu should be infinitesimal, that is j@xuj < 1 [1, p. 5]. The unilateral contact force r.t/ is related to the stresses by
�.L; t/ D E@xu.L; t/ D r.t/=S . Further, the signed distance between the right extremity of the bar and the rigid obstacle,
termed gap function, is defined as g.u.L; t// D g0 � u.L; t/, where g0 is the signed distance between the unrestricted resting
configuration and the obstacle: it is strictly negative in the pre-stressed configuration, for instance. Unless stated otherwise, there
is no external excitation on the system. The full formulation reads:

Local equation @2ttu.x; t/ � c2@2xxu.x; t/ D 0; 8x 2 �0 ILŒ; 8t > 0; (1)
Robin BC @xu.0; t/ � ˛u.0; t/ D 0; 8t > 0; (2)
Signorini BC g.u.L; t// � 0; r.t/ � 0; r.t/g.u.L; t// D 0; 8t > 0; (3)
Initial conditions u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; 8x 2 �0 ILŒ: (4)

where ˛ D �=.ES/. This formulation possess a unique solution which conserves the total energy [9]. It is worth noting that the
local equation (1) is the well-known wave equation (a hyperbolic partial differential equation) defined on a one-dimensional
finite domain. The natural frequencies !k and �k of the underlying linear systems are solutions to the transcendental equations:

spring–free BCs !k � ˛c cot.!kL=c/ D 0; k 2 N>0; (5)
spring–fixed BCs �k C ˛c tan.�kL=c/ D 0; k 2 N>0: (6)

The corresponding natural periods are Tk D 2�=!k and Pk D 2�=�k . In both configurations, the natural frequencies are
incommensurate, in the sense that !k and �k for k D 2; 3; : : : ;1 are not multiples of !1 nor �1, respectively [8, p. 245].
Accordingly, the complete internal resonance condition emerging when the bar is clamped at x D 0 no longer holds [13].

Non-trivial solutions of the unilateral contact problem described by Eqs. (1) to (4) are successions of free phases (open gap)
and contact phases (closed gap) [2]. Hence, these solutions can be perceived as the combination of motions satisfying the
wave equation together with a switching boundary condition at x D L between @xu.L; �/ D 0 when the gap is open, referred
to as “spring–free BCs” (or equivalently Robin–Neumann BCs), and prescribed displacement u.L; �/ D g0 which implies
v.L; �/ D 0 when the gap is closed, named “spring–fixed BCs” (or equivalently Robin–Dirichlet BCs). The nonlinearity in
the formulation arises in the dependence of the solution to the unknown switching time. To further elaborate on this statement,
consider the general solution to the local equation (1) comprising the superposition of forward h and backward f travelling
waves defined on the real line R [1, p. 91]

u.x; t/ D f .ct C x/C h.ct � x/; 8x 2 Œ0 IL�; 8t � 0: (7)
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At x D 0, the effect of the attached spring on the reflection of an incident backward wave f is computed by inserting the general
solution (7) in (2), yielding .@�f .�/ � @�h.�// D ˛.f .�/C h.�//, 8� 2 R, which in turns leads to the identity

h.�/ D f .�/C e�˛�
�
ˇ � 2˛

Z �

0

e˛sf .s/ ds
�
; 8� 2 R (8)

where ˇ D h.0/ � f .0/. Without loss of generality, it is assumed that f .0/ D h.0/ D u.0; 0/=2 such that the equality
u.0; 0/ D f .0/C h.0/ always hold, then it can be straightforwardly calculated that ˇ D 0. Incorporating (8) in (7) leads to an
integral expression of the displacement in terms of f only

u.x; t/ D f .ct C x/C f .ct � x/ � 2˛e˛.x�ct/
Z ct�x

0

e˛sf .s/ ds; 8x 2 Œ0 IL�; 8t � 0; (9)

which incorporates the reflection mechanism of the travelling waves at x D 0. At x D L, the boundary condition successively
switches from Neumann to Dirichlet and vice-versa. The corresponding reflections require additional considerations elaborated
later in the text. Moreover, the function f has yet to be defined: it depends on the initial and boundary conditions as is discussed
below.

Let us first denote by f jŒa Ib� the set of all ordered pairs .�; f .�//, 8� 2 Œa I b�, which is also referred to as the graph of function f
over the interval Œa I b�. Provided that f jŒ0 IL� is known, the boundary condition at x D L is utilized to specify f .�/ over the
remaining portions of the real axis R, that is for � 2 ��1I 0Œ and � 2 �L I1Œ. During free phases (open gap), a homogeneous
Neumann BC is active at x D L, that is @xu.L; �/ D 0. Inserting Eq. (7) into the latter yields @�f .� C 2L/ D @�h.�/, which in
turn results in f .� C 2L/ � h.�/ D f .2L/ � h.0/. Incorporating the influence of the attached spring via Eq. (8), the latter is
re-formulated in terms of the backward wave f only, that is

f .� C 2L/ � f .�/C 2˛e�˛�
Z �

0

e˛sf .s/ ds D f .2L/ � f .0/: (10)

During contact phases (closed gap), the right end of the bar satisfies a non-homogeneous Dirichlet BC, corresponding to a
prescribed displacement at x D L, which reads u.L; �/ D g0. Again, combining this boundary condition and the general
solution (7), the interaction of forward and backward travelling waves shall satisfy f .� C 2L/C h.�/ D g0, which can also be
expressed in terms of f only as follows:

f .� C 2L/C f .�/ � 2˛e�˛�
Z �

0

e˛sf .s/ ds D g0; (11)

Accordingly, if f is known in any region of length 2L, it can be expanded over the real axis, via (10) for a free phase (open gap)
and (11) for a contact phase (closed gap). It is then employed in (9) to calculate the corresponding displacement.

During each of the above phases, f jŒ0 I2L� is obtained from the associated initial and boundary conditions [4, p. 80]. For the free
phase, knowing that the displacement and velocity waves reflect at a free BC without changing signs, f jŒ0 I2L� satisfies

f jŒ0 I2L�D

8̂̂̂<̂
ˆ̂:
u0.�/

2
C 1

2c

Z �

0

v0.s/ ds � 2 Œ0 IL�;

u0.2L � �/
2

C 1

2c

Z L

0

v0.s/ ds C 1

2c

Z �

L

v0.2L � s/ ds � 2 �L I 2L�:
(12)

However, for the contact phase, knowing that u0.L/ D g0 and that the displacement and velocity waves reflect with opposite
sign, f jŒ0 I2L� shall satisfy

f jŒ0 I2L�D

8̂̂̂<̂
ˆ̂:
u0.�/

2
C 1

2c

Z �

0

v0.s/ ds � 2 Œ0 IL�;

g0 � u0.2L � �/
2

C 1

2c

Z L

0

v0.s/ ds � 1

2c

Z �

L

v0.2L � s/ ds � 2 �L I 2L�;
(13)
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Consequently, f can be completely defined over R for every phase. To summarize, the displacement of the elastic bar with
Robin BC on the left end is obtained through Eq. (9) provided that f is defined everywhere on the real axis. The successive
switches in boundary conditions at x D L, reflecting the unilateral contact constraint, are incorporated through appropriate
extensions: Equation (10) for the free phase or Equation (11) for contact phase. The following section is concerned with
analytical derivations for the computation of periodic solutions by employing the expressions (9), (10) and (11).

Periodic solutions and Nonsmooth Modal Analysis
Nonsmooth modes of vibration of the spring–bar system depicted in Fig. 1 are defined as continuous families of periodic
solutions satisfying the formulation (1)-(4) together with periodicity conditions in displacement and velocity: 9T > 0 such
that u.x; t C T / D u.x; t/ and v.x; t C T / D v.x; t/, 8x 2 Œ0 IL� and 8t > 0. Finding such solutions translates into finding
corresponding initial conditions u0 and v0 and period T which generate periodic motions. Without loss of generality, it is
assumed that within one period, over the interval t 2 Œ0 IT �, the initial time segment is a free phase that initiates at t D 0C and
the final time segment is a contact phase that ends at t D T � and switches back to the initial free phase state at t D TC. In
general, various successions of free and contact phases might arise within one period. Knowing that the motion of the bar can
be uniquely defined by a single function f , the targeted trajectory is then an unknown periodic sequence of functions u in the
form (9) where f switches between (10) and (11).

Let us consider the simplest combination of one free phase and one contact phase of duration tf and tc D T � tf, respectively.
When the gap is open, displacement and velocity satisfy the following equalities 8x 2 Œ0 IL� and 8t 2 Œ0 I tf�:

u1.x; t/ D f0.ct C x/C f0.ct � x/ � 2˛e˛.x�ct/
Z ct�x

0

e˛sf0.s/ ds; (14a)

1

c
v1.x; t/ D @tf0.ct C x/C @tf0.ct � x/ � 2 f̨0.ct � x/C 2˛2e˛.x�ct/

Z ct�x

0

e˛sf0.s/ ds; (14b)

where f0jŒ0 I2L�, calculated via Eq. (12) with the initial conditions u0 and v0, is then expanded throughout the real axis R via (10).
During gap closure, the motion is described by the composite function f1.f0. �// corresponding to a boundary condition switch.
This function arises by defining the graph f1jŒ0 I2L� with u1. � ; tf/ and v1. � ; tf/ as the “initial conditions” in Eq. (13) and then
expanding it on R via Eq. (11). During a contact phase, the displacement and velocity read 8x 2 Œ0 IL� and 8t 2 �tf IT �

u2.x; t/ D f1.c.t � tf/C x/C f1.c.t � tf/ � x/ � 2˛e˛.x�c.t�tf//
Z c.t�tf/�x

0

e˛sf1.s/ ds; (15a)

1

c
v2.x; t/ D @tf1.c.t�tf/Cx/C @tf1.c.t�tf/�x/�2 f̨1.c.t�tf/�x/C2˛2e˛.x�c.t�tf//

Z c.t�tf/�x

0

e˛sf1.s/ ds: (15b)

Accordingly, admissible T -periodic motions involving one lasting contact phase per period are described by functions f1 ı f0
and f0 that satisfy the following periodicity condition, arising from u0.x/ D u2.x; T / and v0.x/ D v2.x; T /, 8x 2 Œ0 IL�

u0.x/ D f1.ctc C x/C f1.ctc � x/ � 2˛e˛.x�ctc/
Z ctc�x

0

e˛sf1.s/ ds; (16a)

1

c
v0.x/ D @tf1.ctc C x/C @tf1.ctc � x/ � 2 f̨1.ctc � x/C 2˛2e˛.x�ctc/

Z ctc�x

0

e˛sf1.s/ ds: (16b)

together with the admissibility conditions reflecting Signorini’s conditions at x D L in Eq. (3):

� the elastic bar shall not contact the obstacle during a free phase except at gap closure when t D tf; grazing is permitted
during free phase

g0 � f0.ct C L/ � f0.ct � L/C 2˛e˛.L�ct/
Z ct�L

0

e˛sf0.s/ ds � 0; 8t 2 Œ0 I tf�; (17a)

g0 � f0.ctf C L/ � f0.ctf � L/C 2˛e˛.L�ctf/
Z ctf�L

0

e˛sf0.s/ ds D 0; (17b)
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� the contact force should be non-positive during gap closure until contact separation at t D tf C tc D T

@xf1.ct C L/ � @xf1.ct � L/C 2 f̨1.ct � L/ � 2˛2e˛.L�ct/
Z ct�L

0

e˛sf1.s/ ds � 0; 8t 2 Œ0 I tc�; (18a)

@xf1.ctc C L/ � @xf1.ctc � L/C 2 f̨1.ctc � L/ � 2˛2e˛.L�ctc/
Z ctc�L

0

e˛sf1.s/ ds D 0: (18b)

From Eq. (16), the equality c@xu0.x/C v0.x/ D c@xu2.x; T /C v2.x; T / provides an additional relationship between f0 and f1
for potential periodic motions to exist: f1.ctc C x/ � f1.ctc/ D f0.x/ � f0.0/, 8x 2 Œ0 IL�.

Finding solutions to Eqs. (16)-(18) is a noticeably challenging task. The complexity for solving such problems lies in the
difficulty of defining a simple relationship between functions f0 and f1 incorporating the BC switching mechanism. Additionally,
the effect of the spring, arising as a delay integral term in the displacement (9) further complicates the identification of admissible
periodic motions. Accordingly, a numerical approximation is proposed in the following section.

Numerical Scheme
The main objective of the proposed numerical scheme is to simultaneously discretize the space and time domains of the above
formulation in order to accurately mimic the propagation of discontinuous waves along the characteristics lines: x˙ct D constant.
The main limitation of the proposed technique is the fact that the travelling-wave solution shall be partially known (in the sense
that identities such as Eqs. (16)-(18) can be derived) before discretization.

To compute families of periodic orbits, the space and time domains of the integral equations (16) are simultaneously discretized
in order to approximate the initial conditions that generate a periodic motion. Space is divided into N intervals of identical
length �x D xiC1 � xi D L=N with i D 0; 1; : : : ; N . Since travelling waves are required to propagate along the characteristic
lines, the time-step shall satisfy �t D tnC1 � tn D �x=c for n D 0; 1; : : : ; nT , where nT satisfies nT�t D T . To approximate
f1 in Eq. (16), the discretization of the real axis emerges from the discretized space-time coupling argument x ˙ ct of the
travelling-wave solution, hence the discretized f1 function is denoted as f1j � f1.�j / such that �j D xi ˙ ctn where j D i ˙ n
for i D 0; 1; : : : ; N and n D 0; 1; : : : ; nT . Similar notations also apply to f0j . The discretization of the displacement and
velocity during free phase produces u.n/1i � u1.xi ; tn/ and v.n/1i � v1.xi ; tn/ respectively, and in a similar fashion during contact
phase for u2 and v2. The discretized initial conditions read u0i � u0.xi / and v0i � v0.xi /.

Since the duration of the free phase is tf D nf�t and the duration of the contact phase is tc D nc�t , the approximations of
f0jŒ0 I2L� and f1jŒ0 I2L� needed to approximately solve (16) are computed via a trapezoidal rule to compute the integrals:
� for a free phase via discretization of Eq. (12) with discrete initial conditions u0i � u0.xi / and v0i � v0.xi /

f0j D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
u0j

2
C 1

4c

jX
iD0

�x.v0i C v0.iC1// j D 0; 1; : : : ; N;

aC u0.2N�j /

2
C 1

4c

jX
iDNC1

�x.v0.2N�i/ C v0.2N�iC1// j D N C 2;N C 3; : : : ; 2N;
(19)

� for a contact phase via discretization of Eq. (13) with discrete “initial conditions” u.nf/
1i � u1.xi ; tf/ and v.nf/

1i � v1.xi ; tf/

f1j D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
u
.nf/
1j

2
C 1

4c

jX
iD0

�x
�
v
.nf/
1i C v.nf/

1.iC1/

�
j D 0; 1; : : : ; N;

b �
u
.nf/

1.2N�j /

2
� 1

4c

jX
iDNC1

�x
�
v
.nf/

1.2N�i/
C v.nf/

1.2N�iC1/

�
j D N C 2;N C 3; : : : ; 2N;

(20)

where 4ac DPN
iD0�x.v0i C v0.iC1// and 4bc DPN

iD0�x
�
v
.nf/
1i C v.nf/

1.iC1/

�C 4g0c. The above expressions (19) and (20)
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known for j D 0; 1; : : : ; 2N are then expanded on the real axis:

f0.jC2N/ � f0.j / C sgn.j /˛e� j̨�x

jX
kD0

.e˛�kf0.k/ C e˛�kC1f0.kC1// D f0.2N/ � f0.0/; (21)

f1.jC2N/ C f1.j / C sgn.j /˛e� j̨�x

jX
kD0

.e˛�kf1.k/ C e˛�kC1f1.kC1// D g0; (22)

where sgn.�/ is the sign function. Since the period T D tf C tc D nT�t is known, where nT D nf C nc, the approximated
displacement can be calculated for each phase as follows:

� free phase, via discretization of Eq. (14), for i D 0; 1; : : : ; N and n D 0; 1; 2; : : : ; nf

u
.n/
1i D f0.nCi/ C f0.n�i/ � sgn.n � i/˛e˛.xi�ctn/

n�iX
kD0

�x.e˛�kf0.k/ C e˛�kC1f0.kC1//; (23)

� contact phase, via discretization of Eq. (15), for i D 0; 1; : : : ; N and n D nf C 1; nf C 2; : : : ; nT

u
.n/
2i D f1.n�nfCi/ C f1.n�nf�i/ � sgn.n � nf � i/˛e˛.xi�c.tn�tf//

n�nf�iX
kD0

�x.e˛�kf1.k/ C e˛�kC1f1.kC1//: (24)

The corresponding velocity is calculated through a numerical time-differentiation scheme, such as the forward Euler method
v
.n/
i D .u.nC1/i � u.n/i /=�t . It is worth remarking that because f1j in Eq. (24) is compounded with f0j , and the latter is

computed from discrete initial conditions, then all displacements points u.n/1i and u.n/2i can be expressed in terms of u0i and v0i .

The discretization of the periodicity condition (16) together with the unilateral contact condition yields a constrained system
of linear equations written in terms of the discrete initial conditions u0i and v0i , free-phase time-steps nf and contact-phase
time-steps nc:

periodicity: u0i � u.nfCnc/
2i D 0 and v0i � v.nfCnc/

2i D 0; i D 0; 1; : : : ; N (25)

impenetrability: g0 � u.n/1N � 0; n D 0; 2; : : : ; nf (26)

compressive contact: E�
.n/
2N � 0; n D nf C 1; nf C 2; : : : ; nf C nc (27)

where �.n/2N is the strain at x D L at time tn calculated from the numerical space-differentiation of discrete displacements u.n/2i ;
for instance, the implementation of the forward Euler scheme yields discrete strains in the form of �.n/2i D .u.n/2i � u.n/2.i�1//=�x.
The discretized formulation given by Eqs. (25)-(27) is solved through the following steps:

1. Set time-steps nf and nc.
2. Calculate potential initial conditions u0i and v0i that generate a periodic motion satisfying Eq. (25) but ignore (26)-(27).
3. Verify that the generated periodic motion satisfies the conditions of impenetrability (26) and compressive contact (27): the

corresponding initial conditions are admissible.
4. If the initial conditions are admissible, compute and store the period of vibration and total energy.
5. Change values of nf and nc.

For the identification of families of periodic orbits, every feasible pair .nf; nc/ 2 N2>0 is examined. Nevertheless, verifying
among all potential combinations is computationally very inefficient. For that reason, the iteration intervals are bounded for each
family of admissible periodic motions by analyzing every possible combination of nf and nc on coarse meshes.

Spectrum of nonsmooth vibration
Three initial configurations of the bar are explored: unstressed (g0 > 0), prestressed (g0 < 0) and initially grazing (g0 D 0).
Without loss of generality, the mechanical parameters E, �, S and L are arbitrarily chosen to be unity and units are discarded.
The autonomous dynamics of the bar is investigated for two spring-bar stiffness ratios ˛. The linear natural frequencies !k.˛/
and �k.˛/ respectively calculated using Eqs. (5) and (6), now only depend on the parameter ˛. The proposed discretization
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technique with �t D �x=c D 10�3 is implemented. Modal responses were obtained with g0 D ˙10�3 in both unstressed and
prestressed configurations. The response of the autonomous elastic bar is depicted in frequency-energy plots (FEPs) where a
backbone curve (also known as branch) represents a NSM. Each point pertaining to a backbone curve represents a modal motion
whose frequency is indicated on the horizontal axis and constant total energy along the vertical axis. The frequencies in the FEPs
are not normalized while the energy is normalized with respect to the energy of the first linear mode grazing orbit.

NSMs computed for ˛ D 1 and ˛ D 1=2 are now investigated. In contrast to the results exposed in [13], the intricate dynamics
caused by the spring complicates the identification of NSM branches and a highly fine discretization is required to discern how
admissible periodic solutions organize to form a continuum. The backbone curves, emerging in the frequency range Œ!1 I�1�
are depicted in Fig. 2 as sets of scattered points supposedly belonging to NSMs. Contrary to main NSMs of the internally
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Fig. 2: Backbone curves in the frequency interval Œ!1 I�1� for ˛ D 1 and ˛ D 1=2 with bar configurations: unstressed [ ],
prestressed [ ] and initially grazing [ ]. Subharmonics frequencies [ ].

resonant bar studied in [13] where the energy continuously depends on the frequency, the depicted scattered points indicate more
complicated backbone curves. Figure 2 suggests that a “nicely” connected continuum representing a possible “main NSM” does
not exist. However, several independent branches emerge around subharmonics frequencies lying in the range for the unstressed
configuration. This agrees with NSMs in discrete systems without linear internal resonance [6, 11]. An equivalent phenomenon
occurs for the prestressed configuration where independent branches align in a seemingly softening branch. For the initially
grazing configuration, the NSMs emerge as vertical lines embedding periodic solutions with identical frequency and increasing
energy. It also appears that every given collection of scattered points represents a purely independent subharmonic vibration, as
opposed to the internally resonant bar which features subharmonic as well as internally resonant NSMs [13]. This observation
coincides with the fact that the system of interest does not satisfy the full internal resonance condition.

Figures 3 and 4 depict NSM periodic displacement fields, for ˛ D 1 and ˛ D 1=2 respectively, corresponding to points b

and c in Fig. 2. Both points b represent periodic motions belonging to backbone curves that emerge in the vicinity of the
respective !1. On the other hand, points c live in apparent NSM branches that arise in the neighborhood of linear subharmonic
frequencies. The complicated pattern of each solution is caused by an intricate interplay between various travelling waves
embedding the Robin and Signorini boundary conditions. In contrast to linear modes that are purely harmonic functions, the
nonsmooth modes of the non-internally resonant system are nonsmooth piecewise-sinusoidal functions. The velocity fields
shall present several jump discontinuities per period, which would not be accurately described by traditional semi-discretization
strategies [3]. From the reported motions, it also seems that the displacement field for t 2 Œ0 I tf� presents an axis of symmetry in
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Fig. 3: Periodic displacement fields for ˛ D 1 corresponding to points b (left) and c (right) in Fig. 2.
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Fig. 4: Periodic displacement fields for ˛ D 1=2 corresponding to points b (left) and c (right) in Fig. 2.

time located at the middle of the free phase: t D tf=2. This observation could facilitate the derivation of closed-form expressions;
this is left to future investigations.

Response to periodic external forcing
This section numerically investigates the relationships between NSMs and the system response under periodic excitation. A
slight amount of structural viscous damping is introduced in the governing equation (1) and a weak external damper is attached at
x D 0 so that the system can possibly reach a periodic steady-state with bounded energy. The system is forced via a harmonically
moving rigid wall that periodically compresses the bar, as seen in Fig. 5. The formulation for the forced spring–bar system, to be

�

�2

x
u.x; t/

L

g.u.L; T /; w.t//

w.t/

Fig. 5: Spring–bar system excited by a moving rigid wall.

compared to Eqs. (1)-(4), reads

@2ttu.x; t/C �1@tu.x; t/ � c2@2xxu.x; t/ D 0; 8x 2 �0 ILŒ; 8t > 0; (28)
@xu.0; t/ � ˛u.0; t/ � �2@tu.0; t/ D 0; 8t > 0; (29)
g.u.L; t/; w.t// � 0; r.t/ � 0; r.t/g.u.L; t/; w.t// D 0; 8t > 0; (30)
u.x; 0/ D u0.x/; v.x; 0/ D v0.x/; 8x 2 �0 ILŒ; (31)
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where �1 and �2 are respectively the structural and external damping coefficients. The moving wall excitation corresponds to
w.t/ D w0 sin!t . For an elastic bar initially at rest, the response of the periodically-forced system is constructed by computing,
when possible, the steady-state solution for each frequency of excitation. In this study, such solutions are obtained via the Wave
Finite Element Method [13]. The total energy of the steady-state solution, averaged over one forcing period, for increasing
frequencies of excitation and various damping coefficients is illustrated in Fig. 6 in the interval Œ!1 I�1�. In the frequency
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Fig. 6: Response to periodic forcing over Œ!1 I�1� of the spring–bar system under various damping coefficients: ˛ D 1 (top)
and ˛ D 1=2 (bottom). Bar configuration at rest: unstressed g0 > 0 (left), grazing g0 D 0 (center) and prestressed g0 < 0

(right). Bar damping coefficient �1: low [ ] to high [ ]. Grayed regions where NSMs were not found and forced-responses
are not periodic.

intervals where NSMs possibly do not exist2, highlighted with grayed areas in Fig. 6, the forced system does not seem to
exhibit periodic steady-states. When non-periodic forced responses are detected, corresponding portions of the response curves
in the frequency diagram consider, for each frequency of excitation, the total energy of the forced motion averaged over ten
periods of the external forcing. It is observed that forced responses with high-energy periodic steady-state align well with the
NSM backbone curves. Also, Figure 7 illustrates a steady-state displacement of the slightly-damped bar under periodic forcing
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Fig. 7: Displacement over one steady-state period due to external excitation via moving wall [ ]. Result computed with
(!; ˛/ D .1:25; 1/ and g0 > 0. It corresponds to point d in Fig. 6 in the vicinity of NSM motion b in Fig. 2 top and Fig. 3
left.

computed in the vicinity of an NSM. It clearly resembles the corresponding NSM motion, see Fig. 3. Although this forced

2The number of computable NSMs depends on the mesh size, and finer meshes should provide a more detailed spectrum.
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solution seems to be identical to the autonomous oscillation, its free phase is actually not symmetric with respect to a time axis
located in the middle of the free phase.

Conclusions
This contribution targeted the nonsmooth modal analysis of a non-internally resonant bar through a numerical strategy based on
simultaneous space-time discretization of the travelling-wave solution. The system of interest consisted of a finite elastic bar
of length L subject to a Robin boundary condition at x D 0 and a unilateral contact constraint at x D L. Such configuration
annihilates the full internal resonance condition featured by its internally resonant counterpart [13]. In addition, the Robin BC,
physically corresponding to a simple spring attachment, causes a distortion in the waveform that complicates the numerical
construction of nonsmooth modes. A semi-analytical approach is derived from the exact solution to the autonomous wave
equation together with a switch in the boundary condition where unilateral contact arises. As nonsmooth periodic solutions in
closed form are inaccessible, a discretization strategy is proposed to find families of periodic motions. The periodic nonsmooth
motions are piecewise-sinusoidal functions, as opposed to the internally resonant counterparts where modal displacements are
piecewise-linear functions. The forced response plots illustrated the capability of the Nonsmooth Modal Analysis to predict the
vibratory resonances of the one-dimensional periodically-forced elastic bar. Even though the vibratory characterization is more
challenging than for the internally resonant counterpart [13], the computed NSMs forecast most intervals involving nonlinear
resonances.
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