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1 Introduction

In this paper, A, B will be (binary) relations on some sets X, Y respectively. The diagonal of X is
A(X):={(x,z) | z€ X}. We will say that A is irreflexive, or a digraph, if A does not meet the diag-
onal (some authors call these relations simple digraphs). We set A~!:={(z,y)€ X? | (y,z) € A}.
We say that A is symmetric if A = A~!, and A is antisymmetric if AN A~' C A(X). The set
s(A):= AU A~ is the symmetrization of A. We say that A is a graph if A is irreflexive and sym-
metric, and A is an oriented graph if A is irreflexive and antisymmetric. Recall that A is a subgraph
of the digraph B if X CY and A C B. An A-path is a finite sequence (x;);<, of points of X such
that (z;, z;41) € A if i <n. We say that A is connected if for any x, y € X there is an A-path (x;)i<n,
with 29 = x and x,, = y. If A is a graph, then the connected component of z € X is the set C(x)
of points y € X for which there is an A-path (x;);<y, with 2o =2 and z,, =y. A graph A is acyclic
if there is no injective A-path (z;)i<,, with n > 2 and (z,,z0) € A. If A is an acyclic graph and
y € C(x), then we denote by pf’y the unique injective A-path (x;);<y, With zo =2 and z, =y. We say
that A is locally countable if its horizontal and vertical sections are countable.

We write (X, A) < (Y, B) when there is h: X — Y such that A C (hx h)~(B). If this holds,
then we say that h is a homomorphism from (X, A) into (Y, B). When h can be injective, we write
(X, A) =M (Y, B). The notion of injective homomorphism is very natural since it corresponds to the
basic notion of subgraph. Indeed, if % is an injective homomorphism from (X, A) into (Y, B), then
(h[X], (hx h)[A]) is a subgraph of (Y, B). Conversely, if (X, A) is a subgraph of (Y, B), then the
canonical injection is an injective homomorphism from (X, A) into (Y, B). A coloring from (X, A)
into some set Y is a map ¢: X — Y such that ¢(x) #c(a’) if (z,2’) € A, i.e., a homomorphism from
(X, A) into (Y, #).

The reader should see [K] for the standard descriptive set theoretic notions and notation. Let €

be a class of functions between Polish spaces, e.g., continuous, Borel (denoted ¢, B respectively). If

X, Y are Polish spaces and h can be in €, then we will use the notation =, jlenj respectively. The

study of definable colorings of analytic graphs was initiated in [K-S-T]. The €-chromatic number
of a digraph A on a Polish space X is the smallest cardinality of a Polish space Y for which there is
a €-coloring from (X, A) into Y.

Example. Let ¢ :w — 2<% be a natural bijection (1/(0) =0, 1(1) =0, ¥(2) =1, ¥(3) =02, ¥(4) =01,
¥(5)=10, (6)=12, ...). A crucial property of v is that 1) ~1(s) < ~!(se) if s€2<% and e €2.

Note that [)(n)| < n, so that we can define s, := 9)(n)0" [¥("]. Some crucial properties of
(sn) are that it is dense (for each s € 2<%, there is n such that s C s,,), and that |s,| = n. We set
Go:={(5n07, snl7y) | n€ew A y€2¥}. The set s(Gy) is considered in [K-S-T], where the following
is essentially proved.

Theorem 1.1 (Kechris, Solecki, Todorcevi¢) Let X be a Polish space and A be an analytic digraph
on X. Then exactly one of the following holds:

(a) (X, A) 2p (w,#) (i.e, (X, A) has countable Borel chromatic number),
(b) (2¥,Go) = (X, A).



Actually, the original statement in [K-S-T] is when A is a graph, with s(Gy) instead of Gg. But
we can get Theorem 1.1 without any change in the proof in [K-S-T].

This result had a lot of developments since. For instance, Miller developed some techniques
to recover many dichotomy results of descriptive set theory, without using effective descriptive set
theory (see [Mi]). He replaces it with some versions of Theorem 1.1. In [K-S-T], it is conjectured

that we can replace <. with jlcnj in the version of Theorem 1.1.(b) for graphs (the authors show in
Theorem 6.6 that this is the case if A is an acyclic graph or a locally countable graph, just like s(Gg);
their proof also works for digraphs with acyclic symmetrization or locally countable, with G instead
of s(Gy)). It is proved in [L4] that this is not the case.

Theorem 1.2 (Lecomte) There is no pair (Xo, Ag), where Xg is Polish and A is an analytic graph
on Xo, such that for every pair (X, A) of the same type, exactly one of the following holds:

(a) (X7 A) jB (w77£)’
(b) (X0, Ag) =7 (X, A).

In other words, there is no one-element basis for jlan among analytic graphs of uncountable
Borel chromatic number (recall that if (@, <) is a quasi-ordered space, then a basis is a subfamily F
of ) such that any element of () is <-above an element of F). This led Kechris and Marks to ask the
following in [K-Ma] (see Problem 3.39).

Questions (1) Is there a basis of cardinality < 2% for jlg‘] among analytic graphs of uncountable
Borel chromatic number?

(2) If not, is there such a basis consisting of a continuum size family of reasonably simple graphs?

Of course, we can ask the same questions with jinj instead of jgu, and for digraphs instead of
graphs. We are interested in basis as small as possible with respect to the inclusion. In other words,
we want our basis to be antichains for the quasi-order we consider (recall that a subfamily F of @ is
an antichain if the elements of F are pairwise <-incomparable). This leads to the following.

Question (3) Is there a jlqnj -antichain basis for the class of analytic digraphs of uncountable Borel
chromatic number?

In [L-Mi], it is proved that there is neither <g-antichain basis, nor Cg-antichain basis, for the class
of analytic graphs of uncountable Borel chromatic number (these two quasi-orders are defined like
<¢ and jlenj respectively, except that “A C (hx h)~!(B)” is replaced with “A= (hx h)~1(B)”). In
particular, (3) may have a negative answer. A first approach for the result in [L-Mi] was the existence
of an <¢-antichain of size 2% made of graphs <g-minimal among analytic graphs of uncountable
Borel chromatic number, essentially proved in [L.4]. This leads to the following.

Question (4) Is there a jléu-antichain of size 2% made of digraphs jlcnj -minimal among analytic
digraphs of uncountable Borel chromatic number?



The minimal elements of (@, <) are of particular importance since they have to be part of any

basis, up to equivalence. The discussion after Theorem 1.1 shows that G is < nj and < J-mlnlmal
among analytic digraphs of uncountable Borel chromatic number. The main results in th1s paper are
steps towards a positive answer to Question (4), and our paper is mentioned in the last version of
[K-Ma].

Theorem 1.3 Let € € {c, B}. There is a jl@nj-antichain {Go,G1,G '} made of digraphs jén]-
minimal among analytic digraphs of uncountable Borel chromatic number.

Thus Theorem 1.2 holds for digraphs. Note that some antichains were already present in [L4].
The main result in the present paper is the minimality of G, and thus a dichotomy result. We now
provide a construction of the digraph G;. Note that G, can be viewed as the union of the graphs of the
partial homeomorphisms h,, : Ng,_ o — N1 given by h,($,07) := s, 17. In particular, the following
picture holds if m <n and Ay, (hn (), b (a) are defined:

o ——— hy, (@)

| p
(

hn(a) —> hp, (hn(a))

>

We define ¢, € 2<% and maps g, : Ny, 0 — Ny, 1, and G1 will be the union of the graphs of the g,,’s.
One of the crucial properties of the g,,’s is that g, (gn(ct)) = gm () if m <n and g, (gn(@)), gm ()
are defined. In particular, the following picture holds and violates the previous one:

o] e

9n(@) > g (90(@)) = gim (@)

This provides some cycles, which have to exist in examples orthogonal to G, by the discussion
after Theorem 1.1. The <g-antichain mentioned before Question (4) was constructed with different
configurations of cycles. We believe that some other algebraic conditions of this type could lead to a
positive answer to Question (4). Our second main result is a weak version of this.

Theorem 1.4 Let €< {c, B}.

(a) There is a jl@nj -antichain of size 28° made of 28 digraphs of uncountable Borel chromatic
number. o

(b) There is a jl@nJ -strictly increasing chain of size No made of 39 digraphs of uncountable Borel
chromatic number.

These dlgraphs in fact differences of two closed sets, are not all minimal. In fact, we first con-

struct a < J—antlchaun of size Ny made of digraphs in the style of Gy, that could be minimal as in
Theorem 1. 3 We then consider suitable direct sums of these digraphs. This antichain of size Ng is in
fact made of pairwise incompatible digraphs, which gives our third main result (recall that p, g € Q)
are incompatible if there is no r € Q with r <p, ¢).



Theorem 1.5 Let €< {c, B}. Any jlﬁnj -basis for the class of analytic digraphs of uncountable Borel
chromatic number on Polish spaces is infinite.

We now provide a concrete description of G;. We first define a sequence (g, )new Of natural
numbers by setting go := 0 and ¢,,4+1 := 329*. Note that (gy,)ne, is strictly increasing. In particular,
[(n)] <n < gn <29, so that t, :=(n)0*" ~1¥(M)| is well-defined and has length 29", We then set
Sp:={2%.5 | j>1}, define 6,,:w— w and g,, by

_ Jkifk¢s,, _J1if k=2,
bn (k)= {2%-(2j+1) if k& =24n ., gnla)(k):= {a(&n(k)) if Jy 200
The next definition catches some of the crucial properties of the sequence (g,,) defining G1. As
noted in [L4], a great variety of very different non-potentially closed relations appear at the level
of differences of two closed sets. For the kind of examples we will consider, being non-potentially

closed and having uncountable Borel chromatic number are equivalent properties. Let us make this
more precise.

Notation. If (f,,) is a sequence of functions, then we set A/ :=]J, ., Graph(f,).

Definition 1.6 We say that (X, (f,)) is a complex situation if

(a) X is a nonempty Polish space,

(b) the f,,’s are partial continuous and open maps whose domain and range are open in X,

(c) A(X)C AT\ A7,

This kind of situations play an important role in the theory of potential complexity (see, for
example, Definition 2.2 in [L3], and also Definitions 13, 26 and 31 in [L4]). These properties are
sufficient to ensure that Af is a 329 digraph of uncountable Borel chromatic number (see Corollary
2.2). We prove a result giving some additional motivation for introducing this notion, which is in fact
very general.

Theorem 1.7 Let Y be a Polish space and B be an analytic digraph on Y. Then exactly one of the
following holds:

(a) (Y, B) has countable Borel chromatic number,

(b) there is a complex situation (X, (fn)) such that the inequality (X, AT) jinj (Y,B) or
(X, AT) <™ (v, B~1Y holds.

We prove more than the minimality of G;.

Theorem 1.8 Let (X ) ( fn)) be a complex situation satisfying the following additional property:
(d) fn (fu(2)) = fin(2) if m<nand fin(fa(2)), fin(x) are defined.
Then (29, Gy) =<2V (X, AY).

The organization of this paper is as follows. In Section 2, we provide some basic properties of
complex situations. In Section 3, we characterize when the digraph associated with a complex situa-
tion is minimal among analytic digraphs of uncountable Borel chromatic number, and prove Theorem
1.7. In Section 4, we prove a relatively general lemma ensuring the injectivity of the homomorphism
h implicitly mentioned in the statement of Theorem 1.8.



In Section 5, we show that G; comes from a complex situation, introduce some finitary objects
used in the construction of A, and prove their important properties. In particular, in many Cantor-
like constructions of homomorphisms or reductions, we construct approximations, indexed by finite
binary sequences, of the desired infinitary objects. The construction is usually made by induction
on the length of the finite binary sequences. So we consider the partitions into basic clopen sets
(Nyz)zeqr of 2¢, for each [ € w. Here it will be more convenient to replace 2! with some subset X; of
2<% containing sequences of different lengths since the g,,’s “forget” some coordinates. In Section 6,
we construct our homomorphism and prove Theorems 1.3 and 1.8. In Section 7, we prove Theorems
1.4 and 1.5, and show that our three main results also hold for graphs.

2 Some basic properties of complex situations
The next lemma is essentially Lemma 3.5 in [LL1], and the crucial point of its proof.

Lemma 2.1 Let X be a nonempty Polish space and, for n €w, Dy, Ry, be dense G5 subsets of some
open subsets of X, and f,: Dy, — R, be a continuous, open and onto map.

(a) Let G be a dense G subset of X. Then Graph( f,,) C Graph(f,) N G2.
(b) We assume that A(X) C AT\ AT, Then (X, AT) has uncountable Borel chromatic number.

Proof. (a) See Lemma 3.5 in [L1].

(b) As A(X)C A/, (X, Af) is a digraph and thus its Borel chromatic number is defined. We argue
by contradiction to see that it is uncountable, which gives a countable partition (B,,) of X into Borel
sets with Af N B2 =(). By 13.5 in [K], there is a finer Polish topology 7 on X such that the B,,’s are
clopen in (X, 7). By 15.2 in [K], the identity of X equipped with its initial topology into (X, 7) is
Borel. By 11.5 in [K] it is Baire measurable. By 8.38, in [K], there is a dense G5 subset G of X on
which the B,,’s are clopen. We pick = € G, which exists since X is Polish and nonempty. We choose
n with z € B,,. By (a), Af N G?=AT N G? N G?, so that (z,2) € AF NG2N (B, NG)% As B, NG
is clopen in G, A7 N (B,, N G)? is nonempty, which is absurd. O

Corollary 2.2 Let (X , ( fn)) be a complex situation. Then A7 is a 9 digraph of uncountable Borel
chromatic number.

Proof. Note that A¥ = |, ., Graph(f,,) is X9 since the f,’s are continuous with open domain.
Moreover, Lemma 2.1 ensures that (X, A7) has uncountable Borel chromatic number. U

Condition (d) in Theorem 1.8 is motivated by the following result, which is essentially Claim 1 in

the proof of Theorem 10 in [L4]. This condition ensures that Al is jglj -incomparable with Gy.
Notation. In the sequel, D,, will be the domain of the function f;,.
Lemma 2.3 Let X be a Polish space, and gg,q1,... : X — X be fixed point free Borel partial

functions such that gy, (gn(a:)) = gm(x) if m <n and gm, (gn(az)),gm(m) are defined. Then every
locally countable analytic subset of A9 has countable Borel chromatic number.



Proof. Suppose that H is a locally countable analytic subset of A9. By 35.13 in [K] and Lemma
2.4.(a) in [L2], there are Borel partial injections f,, on X such that H C A/ C A9, By replacing each
fn with its restrictions to the sets {z € D,, | fn(x)=gm(x)}, for m € w, we can assume that, for all
n € w, there is ky, €w such that f, =gy, b, It is easily seen that the graph of a fixed point free Borel
function has countable Borel chromatic number (see Proposition 4.5 of [K-S-T]). So, by replacing f;,
with its restriction to countably many Borel sets, we can also assume that D2 N{J,., ~ Graph(gy)=0
for all n € w. It only remains to note that D2 N | J k>k, Graph(gy) = 0. In order to see this, simply
observe that if k > ky, and z, gx(x) € Dy, then f,(z) = gi, () = gk, © gr(x) = fn © gr(x), which
contradicts the fact that f,, is a partial injection. O

Corollary 2.4 Let (X , ( fn)) be a complex situation satisfying Condition (d) in Theorem 1.8. Then
{Gy, AT, (AN }isa jglj-antichain.

Proof. Assume that Gy is jglj -below Af, with witness 7. Then (7 x 7)[Gy] is a locally countable
Borel subset of A/ with uncountable Borel chromatic number, which contradicts Lemma 2.3. A/ is
not 51];1] -below Gy since Gy is locally countable and A/ is not, by Corollary 2.2 and Lemma 2.3.

The discussion after Theorem 1.1 shows that (2“, Gy) <Y (2¥,Gg'). Thus Gg and (A7)~! are

jglj -incomparable. If (29, (Af)~1) jgu (2¢, AT with witness h, then (h x h)[(A7)~1] is a locally
countable subset of A/ since A/ has countable vertical sections, which contradicts Lemma 2.3. [

The next two lemmas will be used in the proof of Theorem 1.8.

Lemma 2.5 Let (X , ( fn)) be a complex situation satisfying Condition (d) in Theorem 1.8, Vi, V1 be
subsets of X, and m <n be natural numbers such that Vy C Dy, N D,, and V1 C f,,[Vo] N Dyy,. Then

Proof. Pick y € V1, and z € V) with y = f,,(z). Note that f,, (fn(a:)) is defined, as well as f,,(x). By
Condition (d), fy, (fn(2)) = fm(z). This implies that f,,,(y) = fm(z) € fm[Va]. O

Lemma 2.6 Let (X , ( fn)) be a complex situation such that X is zero-dimensional and the D,,’s are
clopen, V be a nonempty open subset of X, and m be a natural number. Then we can find n>m and
nonempty clopen subsets Vy, V1 of X such that Vo CV N Dy, and Vi CV N f,[ Vol

Proof. The assumption on (X, (f,)) implies that A(X) € U,,-,, Graph(f,) since the Graph(f,)’s
are closed. This gives n > m such that V2 N Graph(f,) # 0, and (x,y) in this intersection. In
particular, x € D,, and y = f,,(z). We choose a clopen subset Vj of X withx € V5 CV N D, and a
clopen subset V; of X withye Vi, CV N f,[Vo]. O

3 The characterization of the minimality

We will characterize when the set A/ associated with a complex situation (X  ( fn)) is <9
minimal among analytic digraphs of uncountable Borel chromatic number. We will need a strength-
ening of the notion of a complex situation.



Definition 3.1 We say that a complex situation (X, (f,)) is a strongly complex situation if
(a) X is a nonempty zero-dimensional perfect Polish space,
(b) the f,’s are partial continuous and open maps whose domain and range are clopen in X,

(c) the restriction of any f, to any nonempty open subset of its domain is not countable-to-one.

The reader should see [M] for the basic notions of effective descriptive set theory. Let X be a
recursively presented Polish space. The topology Ax on X is generated by Al(X). This topology
is Polish (see the proof of Theorem 3.4 in [Lo]). The Gandy-Harrington topology X'x on X is
generated by X} (X). Recall that Qy = {z € X | wf = w1CK} is Borel and X}, and (Qx, Yy)
is a zero-dimensional Polish space (in fact, the intersection of {2x with any nonempty X} set is a
nonempty clopen subset of (Q2x, Y'x)-see [L1]).

Lemma 3.2 Let (X, (fn)) be a complex situation such that (2%, Go) 20 (X, AT), P be a Borel
subset of X, and (Sy,) be a sequence of analytic subsets of X such that

A= U Graph(fns, ) cp?
new
has uncountable Borel chromatic number. Then we can find a Borel subset S of P, a finer topology
7 on S, and a sequence (Cy,) of clopen subsets of Y := (S, 7) such that (Y, ( ntCn)) is a strongly
complex situation and C,, CS N f,71(S) N S,, for each n € w.

Proof. In order to simplify the notation, we will assume as usual that X is recursively presented, (f,,)
is A% (so that Af is A% too), P is Al, and (S,) is 211 (so that A is 2’11). We set, for each n € w and
each WCX,
@, (W) & fa|p,nw is countable-to-one.

Note that ®,, is I} on X}. Indeed, let Z be a recursively presented Polish space, and & be in
YU Z x X). Then ®,(6,) & Vx € X f,1({x}) N &, is countable. Note that f, }({z}) N &, is
Yi(z,z). By 4E1in [M], f,1({z}) N &, is countable if and only if it is contained in A}(z, ) N X,
which is a I} condition (in (z, z)).

This argument shows that if X, :=(J{A € A}(X) | ®,(A)}, then (X,,) is I}, and also that we
can apply the effective version of the first reflection theorem (see 35.10 in [K]). Let us prove that if
C € ¥}(X) and C\X,, is not empty, then f;, |D,,nC 18 not countable-to-one. We argue by contradiction.
As O\X,, € £} and ®,,(C\X,,) holds, the effective version of the first reflection theorem gives A € Al
such that C\ X,, CA and ®,,(A) holds. Thus A C X, and C\ X,, C X,,\ X, is empty, which is absurd.

Note that A=, ., Graph(fmsmxn) UUnew Graph(fmsn\xn). As Upew Graph(fn‘snmxn)

is locally countable analytic, it has countable Borel chromatic number since (2, Gg) e (X, AT,
by the discussion after Theorem 1.1. Thus A":=|J, ., Graph( frisa\x,) is @ Y{ relation on X with
uncountable Borel chromatic number.

By 4D.2 and 4D.14 in [M], Dx :={x€ X | 2 € Al} is countable and IT}'. We set
— A2
S:={zeP| (ac,ac)eA’AX} NQx\Dx,
7:=Yx g and, for each ne€w, Cp,:=5 N f,,1(S) N Sy \ X



Note that S is a Borel and % subset of X. Thus the C,,’s are X and clopen subsets of Y. As
— A2
S e X1, Y is a zero-dimensional perfect Polish space. We set C:={z€ P | (z, 7)€ AAx }.

Let us check that C'\ Dx is nonempty. We argue by contradiction. Then C'is X and contained
in Dy. The effective separation result gives A € Al(X) with C CAC Dy. If z € P\ A, then there
is U, € A1(X) containing = with A’ N U2 = (). This also holds if # € A with U, := {z}. But this
contradicts the fact that A’ has uncountable Borel chromatic number.

Thus C'\ Dx is a nonempty X} subset of X, which therefore meets Qx. This shows that S is

A2 __y2 - V2
not empty. Note also that (x, ) € AXNS2=A XN 2=A NS ifreS. We proved that
(Y, ( fn|0n)> is a strongly complex situation. O

Corollary 3.3 Let (X, (fn)) be a complex situation such that (2, Gy) Y (X, AT). The following
are equivalent:

(a) AT is jénj -minimal among analytic digraphs of uncountable Borel chromatic number,
(b) for any Borel subset S of X, any finer topology T on S, and any sequence (C.,) of clopen

subsets of Y := (S, 7), (X, A7) <2V (¥Y,U,c, Graph(fuic;,)) if (Y (fuics,)) is a strongly complex
situation.

Proof. (a) = (b) By Corollary 2.2, | J,,c,, Graph(fyc,) is an analytic digraph of uncountable Borel
chromatic number. As (Y, J,,c,, Graph( fn|cn)) < (X, AT), we are done.

(b) = (a) Let Z be a Polish space, and A be an analytic digraph on Z of uncountable Borel chromatic
number. We assume that (Z, A) jglj (X, AT), with witness u : Z — X. We set P := u[Z], so
that P is a Borel subset of X. Note that A’ := (u x u)[A] C A/ is an analytic relation on P with
uncountable Borel chromatic number, which gives a sequence (.S, )ne., of analytic subsets of X with
A"=U,e, Graph(fng,). Lemma 3.2 gives a Borel subset T" of P, a finer topology o on 7, and
a sequence (Oy) of clopen subsets of W := (T',c) such that (W, ( fn\on)) is a strongly complex
situation and O,, CT' N £, 1(T) N S,,. We put A”:=J,,, Graph(fn|0,,)-

Note that b:= u‘l‘w : W —u~(W) is Borel and one-to-one. Let G be a dense G5 subset of W

such that b| is continuous. This function is a witness for the fact that (G, A” N G?) <Y (Z,A). By
Lemma 2.1, we get Graph(f, 0, ) € Graph(fn |0, ) N G2. Thus A”= A" N G2, and A(G) C A" N G2,
Let us prove that A” N G has uncountable Borel chromatic number. We argue by contradiction,
which gives a countable partition (B,) of G into Borel sets. We can find ¢ € w, a nonempty open
subset O of W, and a dense G's subset H of W with O N H C B,. The previous argument shows that
A(GNH)CA"N (G N H)? Therefore A(ONGNH)CA"N(ONGNH)2CA"NG*N B2=0),
which is absurd.

We apply Lemma 3.2 to (W, (fn0,)), G and (G N f,71(G) N O,), which gives a Borel subset
S of G, a topology 7 on S finer than o, and a sequence (C),) of clopen subsets of Y := (.S, 7) such
that (Y, ( fn|cn)) is a strongly complex situation and C,, C.S N f,71(S) N O,,. It remains to note that

(X, AT) < (¥, e, Graph(fuic,)) 2V (G, A7 1 G2) <MV (7, 4), by (b). O



Remark. This proof also shows that (b) implies that A/ is jgu -minimal among analytic digraphs of
uncountable Borel chromatic number.

Proof of Theorem 1.7. By Corollary 2.2, (a) and (b) cannot hold simultaneously. So assume that (a)
does not hold. Theorem 1.1 provides h:2% — Y continuous with (hxh)[Go] C B. Note that Gy comes
from a complex situation. By Corollary 2.2, Gg is a XY relation on the compact space 2*. Thus Gg
and (h x h)[Gg] are K, digraphs of uncountable Borel chromatic number. The canonical injection is
a witness for the fact that (Y, (h x h)[Go]) =< _mJ (Y, B). So we may assume that B is K. Let (C},)
be a sequence of closed digraphs on Y whose union is B.

We now argue essentially as in the proof of Theorem 2.3 in [L.2]. In order to simplify the notation,
we will assume as usual that Y is recursively presented and (Cy,) is Al. As in the proof of Theorem
1.1, we set X; := Y\(U{S € Z1(Y) | BN S?*=0}), so that X is a nonempty X} subset of Y,
disjoint from {y €Y | y € A1}, and satisfies the following property:

VSeZHY) (0#£SC X, = BN S?#0).

We set Z := (X1 N Qy, Xy), so that Z is a nonempty zero-dimensional perfect Polish space. We also
set :={Sec X (Z)|0#£SCZ}. If S€G, then we can find n with C,, N S?# (). Note that C,, N S?
is a closed relation on Z. Moreover, if U is an open relation on Z, then the projections of U N C,, N .S?
are open subsets of Z.

Theorem 1.13 in [L2] provides, for each S € &, dense G4 subsets Fg, GGg of some nonempty
open subsets of Z and gg Fs — Gg onto, continuous and open such that Graph(gs) € C,, N S? or
Graph(gs) C (Cp, N S?)~1. We set

Graph(gg) if Graph(gs) C C,, N S2,

Glgs)= { (Graph(gg))_1 if Graph(gs) C (C, N S?)7!

so that G(gs) C BN S2.

Let o€ 2¢ such that Z is recursively in o presented and the sequence (G(gs)) sea 18 Al(a). Let
G be a dense G and X («) subset of Z on which Xy and A% :=< Al(a)(Z) > coincide, which
exists by Lemma 2.1 in [L2]. Let ¥¢ :=< X! («)(Z) >, which gives Q% like before Lemma 3.2.
Moreover, the proof of Theorem 2.3 in [L2] shows that {27 is comeager in Z, as well as G N 2. We
set W:=(GNQ%, L7) and define, for 5 € &, a partial function fg by G(fs):=G(gs) N W2, so that

W is a nonempty zero-dimensional Polish space and (W, Jgcg G(fs)) = 1n] (Y, B). Moreover, for
each S € G, fg is a partial continuous and open map with clopen domain and range in W. We then
note that

2 a)2 W2

7 T (4 R )
wic ] Glgs) nw?=|J Glgs) ~ nw?={]J Glgs) ~ nwc ] G(fs)
Se6 Se6 Se6 Se6

We set Gg:={S €& | Graph(gs) C B}, G1:={S€& | Graph(gs) C B~} and, for e €2,

={weW | (w,w) U G(fs)}
Se6,
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Note that (W, W1) is a covering of W into closed sets, which gives a nonempty clopen subset X
of W and e €2 with X C W_. Note that X is a nonempty Polish space, G(fs) N X2 defines a partial
continuous and open map with open domain and range in X if S € &, and

X2
AX)C | G nx? \( | Gfs)nX?).

Se6e Se6.

We enumerate (fy,) := ((fs)‘mes_l(X))Segs. If e =0, then (X, (f,)) is a complex situation with

(X, A7) <Y (Y, B). If e=1, then (X, (f,,)) is a complex situation with (X, A7) <V (Y, B~1).00

4 The lemma ensuring the injectivity

Recall the set X; mentioned at the end of the introduction. An oriented graph A; on X; will
contain finite approximations of a subset of G; with acyclic symmetrization. We now isolate some
important properties of A; leading to a relatively general lemma ensuring the injectivity of the homo-
morphism in Theorem 1.8.

Notation. Let X be a set, and A be an oriented graph on X. We set, for z € X,
Succ(z):={ye X | (xz,y) € A} and maxx :={z € X | Succ(z) =0},

Pred(z):={ye X | (y,x) € A} and minx :={z € X | Pred(z)=0}.
The following oriented graphs will be of particular importance in the sequel.

Definition 4.1 An oriented graph A on a set X is unambiguously oriented if |Succ(z)| <1 for each
x € X. If moreover A has acyclic symmetrization, then we say that A is an uogas.

Lemma 4.2 Let A be an uogas on a finite set X.

(a) Let | be a natural number; (y;);<; € X' such that y; 11 € Succ(y;) if i <l. Then (y;)i<; is
injective. In particular, (y;)i<;= ng‘?l

(b) Let ye X, x€ C(y) N maxx, andp::pf,ff). Then (p(i),p(i+1)) € Aifi<|p|—1.

(¢) The intersection of maxx with each s(A)-connected component C'is a singleton {zc}.

(d) Let (y,x) € A andp::pZ(A) Then |p| >2 and p(1) =x.

TO(y)*

Proof. (a) It is enough to see that (y;);<; is injective. This is clear if [ = 0. As A is irreflexive,
Yi # Yit1 if i < 1. As A is an oriented graph, y; # yi42 if i <I—1. As s(A) is acyclic, (y;)i<; is
injective, by induction on /.

(b) We argue by induction on m:=[p|—i. For m =2, we argue by contradiction, so that (z, p(i)) € A.
Thus p(i) € Succ(x), which contradicts the fact that € maxx. So assume that

(p(Ipl=m), p(|p|=m+1)) € A.

We argue by contradiction, so that (p(|p|-m), p(|p|-m—1)) € A. Thus p(|p|-m+1) and p(|p|-m~1) are
different elements of Succ(p(|p| —m)), which contradicts the fact that A is unambiguously oriented.
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(c) Let C be a s(A)-connected component, and {x,, | m <[} be an injective enumeration of C. We
argue by contradiction to prove that max xy meets C. This means that Succ(z,,) # 0 if m <. We
define, inductively on i, a sequence (m;);<; as follows. We first set mg := 0. Assume that ¢ <[ and
m; has been defined. As Succ(zy,,) # 0, there is m 41 <[ such that z,,,,, € Succ(zy,,). By (a),
(my)i<i € I"1 is injective, which is absurd.

Assume now that, for example, xg,x7 € C' N maxx. Let pg:= pig‘?gl and p; := pi(fx)o, so that
p1(i)=po(n—i—1) if i <n:=|p1|=|pol|. By (b), (po(n—2),z1), (z1,p1(1)) € A, which contradicts
the fact that A is an oriented graph.

(d) We set yo:=y, y1 :==, and choose y;11 € Succ(y;) if this last set is not empty. After finitely many
steps, this construction stops and provides (y;);<; with [ > 1, by (a) and since X is finite. Note that
Y1=¢(y) and (y;)i<i=p, by construction and by (a) and (c). O

The homomorphism A in Theorem 1.8 will be obtained thanks to a Cantor-like construction. In
the inductive step of this construction, we will consider an uogas on a finite set X. We will associate
open sets to the elements of X. As we want h to be injective, we will have to ensure the disjunction of
these open sets. This will be achieved in Lemma 4.7 to come. Its proof will use the following objects.
Notation. Let A be an uogas on a finite set X. If y € X, then Lemma 4.2 allows us to set p, := ngf g "
We set L := | X]|, and enumerate X :={z,,|m <L} injectively in such a way that (|p,,|)m<r 18
increasing. Let Lo < L be maximal such that z,, € max x if m < Ly, so that {z,|m < Lo } enumerates
injectively maxx. The idea is to make, inductively on m, L copies of x,, if m > Ly, keeping the
A-relations. In order to do this, we will give labels to the elements of X. We set

X : *{(xk‘v( )) |k<L}

and A, := { ((wk, (0)), (21, (0))) | (zg,21) € A} if m < L. Assume that Lo <m-+1< L. We put
the elements of X,,, whose X -coordinate is not x,,+1 or one of its (iterated) predecessors in

Rmt1:= {(xk, o) € X | Tmia gpxk}

We also set, forc € L=t and j < L, X7 = {(xk, 0)EX | Tmt1 €Dy },

X7 =L (21, 05) EX XL | (24,0) € Xy A Tin1 €Dz }

(some of these sets can be empty). Then we set X, 11 :=Rpy1 U Uge L<m+l <L ngérl and

A1 ={((zg,0), (x1,7)) €An | k l<m} U
{( Tmi1,07), (x4, 0 )) E(Xerl)2 | ((merl,U)v (%’aa)) cAn /\j<L} U
{((zr,0), (x1,0)) EAm | k>m+1A Zpi1 ¢ pay } U
{((z,09), (@1,07)) € (Xms1)? | (zk,0), (21,0)) EAp A j<L A Zpi1 Epa, }-
We enumerate injectively {o € L<Y | (2,41,0) € X} by {0y, | n < N}. We set, for p < N,
XD =Rt UlUpepicr Xy U Upenen dnliy, so that XY =X, and XY, =X, 1. We

m
also define the corresponding intermediate versions of A4,,,11 as follows.
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We set, for p< N,

‘Afn—i—l ::{((wk,a), (.lel,T)) ceA, | k,lgm} U
Un<p {((xm—&-lv ong), (xi, Un)) (XTP;H-I) | ((mm—&-l: on), (@i, Un)) €Am /\j<L} U
Up§n<N {((xm-i-han)v (xi,an)) (X51+1) | ((xm-&-luan)’ (xhan)) EAm} U
{((mk,a), (2, )) EAp | E>m+1A x4 ¢pxl} U
Un<p {((xka onj); (xlvanj)) (Xfr)z-i-l) | ((mka on), (21, Un)) EAn ANJ<LAZTmi1 Epzl} U
Up§n<N {(($k, on), (1, Un)) €A | Tmi1 EP;UZ}-

Lemma 4.3 Let A be an uogas on a finite set X. Then A,, (respectively, AL, 1) is also an uogas on
the finite set X, (respectively, X} 1) fm<L (respectively, Lo <m+1<L and p<N).

Proof. Note first that (X, A4,,) is a copy of (X, A) if m < Lg. In particular, X,, is finite, A,, is
an oriented graph on X,,, with acyclic symmetrization, and |Succ(q)| < 1 for each ¢ € X, (with
respect to A,,). Then we assume that Ly < m+1 < L. Note that X, is finite, A, 11 is an
oriented graph on X1, and |Succ(q)| < 1 for each ¢ € X, 11 (with respect to A,,11). Let us
check that s(A,,+1) is acyclic. The restriction of A, 11 to a fixed X7’ il is isomorphic to a subgraph
of A,,, and has therefore acyclic symmetrization. Note that the & o ", 1’s are pairwise disjoint and
not s(Ay,41)-related, and that X - o] ', contains (Z,,41,07) if it is not empty (i.e., if (z,,41,0) is in
Xp). The restriction of the oriented graph A,,,4+1 to R,,+1 is also 1somorphlc to a subgraph of A,,

Moreover, the only possible s(A,,1)-edge between an element of X,/ "1 and element of Rerl is
between (2,,+1,07) and (z;, o), where x; € Succ(zy,+1). This shows the acyclicity of s(A;,+1). We
argue similarly for (X}, AP ). O

Definition 4.4 We say that the tuple T := (X VA Z( fn)) is a mapping tuple if A is an uogas on the
finite set X and (Z , ( fn)) is a strongly complex situation.
Notation. Let 7 := (X, A, Z, (f,)) be a mapping tuple. We set

Er:={ (u, (Va)aex) €w¥ x (BUZ2)\{0})X | V(2,y) €A Vi C Dy AVy= fug)[Val }.

Lemma 4.5 Let T := (X, A, Z, (fn)) be a mapping tuple, and (u, (vx)xeX) € Uy. Then we can find
a family (Wm) zex of subsets of Z such that

(b) WxQVx ifreX, and W, =V, if x Emaxx.
Proof. We define W, by induction on |p;|. If |p;| =1, then we set Wy :=V,. Assume that |p,| > 2,

so that TV, has been defined if y :=p,(1). We set W, :=V, N f ( y). We are done, by Lemma
4.2. g

Lemma 4.6 Let T := (X, A Z, (fn)) be a mapping tuple, (u, (Vx)zex) € Er, xo€ X, and Wy, be
a nonempty open subset of Vy,. Then we can find a family (Wy) zc x\ {0} Of subsets of Z such that

(a) (U’ (Wa:):EEX) e kT,
()W, CVyifreX, and Wy =V, if £ ¢ C ().
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Proof. We set, for x € C(xg), ¢z := pj;(;;‘(} . We define W, by induction on |g,|, lgz| =1 (i.e.,

x=u10) being done. So assume that |g,| > 2, so that W, has been defined if y:=g,(1). We set
fuy)[ ]lf(y, )EA,

W, =
Vi O foimy (W) if (2, y) € A.

If 1€ X\ C(xp), then we set W :=V. O

Notation. Let A be an uogas on X finite, and x € X. We set M, ::max{]ngf)\ | yeminx Az €py}.

Lemma 4.7 Let T := (X, A, Z, (f,)) be a mapping tuple, d € w, and (u, (Vy)zex) € Ur. Then we
can find a family (W) e x of subsets of Z such that

(a) (u7 (Wm)xEX) € b,

(b) W, CV,, W € AN Z) and diam(W,) <2~ ifz € X,

() WoyNnWy=0ifr#yeX.

Proof. We consider the oriented graphs A, (respectively, AP 1 1) on &, (respectively, xP 1 1) de-
fined before Lemma 4.3. We set, for m < L, T (Xm, A, Z,(fr)). Similarly, we set, when
Lo<m+1<Landp< N, Tr = (X" , A" | .Z (fn)). By Lemma 4.3, all these tuples are
mapping tuples. We define, for m < L U : X, — w bY Uy (zg, 0) :=u(x)). We also define, when
Lo<m+1<Landp<N,ub . :XP  —wbyul (2, 0):=u(zy).

We first construct, by induction on m < L, a family (W )qex,, of nonempty open subsets of Z

satisfying

(1) Wm+1 Wm CV

(2) (um,( ™)ex,) GETm

(3) dlam(Wm ,) <274

(4)Vji#4 <L W o mngwj,:@
We will apply Lemmas 4.5 and 4.6 to perform this construction. For m = 0, we will apply Lemma
4.5 to 7o and up. We choose a nonempty open subset V,, o) of V;, with diameter at most 277 and
we set Vy, (o) := Vi, if 0 <k < L. Note that (ug, (Vg)gex,) € Ur,. Lemma 4.5 provides a family
(Wg )qex, of subsets of Z such that

(@) (uo, (Wo)leo) € Er,
®) W (0) S Vi (0) € V-

This completes the construction for m = 0. If m+1 < Lg, then we proceed similarly: we choose
a nonempty open subset V, .. ) of Vi, ., (which is equal to W;:LRH 0) since we only applied

Lemma 4.5 to perform this construction up to this point) with diameter at most 2~¢, and we set
Vi) =W o) if m+17k < L. Note that (um+1, Vg)gexmis) €UT,, ... Lemma 4.5 provides a
family (W"*),cx,,,, of subsets of Z such that

(@) (uerl, (W1;71+1)q€2\fm+1) €ET, 41
(b)) Wyt cwn,
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So we may assume that Lo < m+1 < L. We will, starting with (Z)))gex,, := (W;")q4ex,, and
inductively on p < N, construct families (Z%) gex? of subsets of Z such that

bRl p

(a ) ( m+1’ (Zq )qEX,I;H_l) € ETn€+1’
29 1

(") 275 C 28, o

At the end we will set Werl =27, N. Assume that p< N and (Z, ) qe X, _ has been constructed,

which is the case for p=0. We will apply Lemma 4.5 to 7'p+1 and um+1 Let u'i=ul (T, 0p),
so that sz+1,ap CD, and fu/[ xm+1,ap] ngp, by (a”). As fus Nz is not countable-to-one,
Ty ,Tp

we can find 2 € Z, , and (2;)j<1 € (Z5,,,1,0,)" injective such that f,/(z;) =z for each j < L. We
choose a sequence (V,,,,,0,7)j<L of pairwise disjoint clopen subsets of Z with diameter at most 27
such that z; € Vy, 1 5, €25, .1 0, foreach j <L, and put V,, 5 =28, 5, N ﬂj<L Ju V1,00
which is an open neighborhood of z. We apply Lemma 4.6 to 7.0 .|, (u ., (Zg)qexﬁﬂ), (zi,0p)
and Vj, 5, which gives (ul, (Yq)qexﬁbﬂ)'

We then set V,, . :=Y;, - if o1 € py, and 7 C o). We also set V,, . := ng,T if xp, ¢pxm+1, or
(x), € py; and T € ), or (k =m+1 and 7 is not of the form o,j for some j < L). This defines
(V;I)qeé\?f,’;ll’ and (uﬁi&l, Vo), Xp+1) € Umill Lemma 4.5 provides a family (Z£1) gexrth of
subsets of Z such that

@) ( fntrlly (Zerl) GXP'H ) S E7—1>+1 S

m—+1
™) Z CV,if ge XL
This finishes the construction of the family (qu+1)q€ Xy as desired. It remains to get clopen sets
and ensure (c). We first ensure the disjointness. In order to do this, we construct, inductively on m, a
family (2, )m<r of points of Z, and a family (o, )<, of finite sequences of elements of L such that

) zmy1E{z | 1<m}
/8) (xmaam)GXL 1
EWL 1

) Tm,Om
) y(Zm1) = z; if x; € Suce(wp41)

(
(
(v
( U(Zm41)

We first set o := (0), so that (xg,00) € Xz—1, and choose 2y € VVILO (,10 If m+1 < Lg, then we set
Om+1:=(0), so that (2,41, 0my1) € X1, and choose 2,11 € WE! \{z | L<m}, which is

; 3 R Tm+1,0m+1
possible since Z is perfect.

If Lo <m+1< L, then let i < m such that x; is the unique element of Succ(zy,+1), so that

(Tm1,0i7) € X1 for each j < L. We choose j,,+1 < L such that {z; | [<m} N WrL +117‘77.Jm+1 0,

which is possible by (4). We then set 0,41 := 0 jm+1, SO that (2,41, 0m+t1) € Xr—1, and choose
L—1
Zm1 €Wl oo With [y, ) (Zmg1) =2

Note that (u, (WE~L Y,,<1) € E7. As (2m)m<r, is injective, we can find a family (O )zex of

Tm,0m

pairwise disjoint clopen subsets of Z such that z,, € O, CW.L~}

Tm,Om”*
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Recall the definition of M, just before Lemma 4.7. We then define, for y € X, and inductively on
My, Uy :=0,nN ﬂxEPred(y) fu(@)[Uz), so that zp, € Uy, €V, the U,’s are pairwise disjoint, and

(U’ (Ux)mEX) S U'T-

Lemma 4.5 provides a family (W,,),cx of subsets of Z such that

@) (u, (Wa)eex) € B,
®™) W, CU,.

It remains to get clopen sets. This can be done if we apply the proof of Lemma 4.6, inductively on
M, as above, using the fact that this proof uses pre-images to go towards the elements of miny. [J

5 The important properties of G,

We first introduce the other elements of the countable antichain mentioned after Theorem 1.4.
Notation. Let (g,,) be a sequence of partial functions. We set, for s €w<“\ {0},

9s:=0s(0) © """ © Gs(]s|]—1)

and s* :=< s(1),--- ,s(]s|—1) >. If L=1and j > 1, then we set 0(j) :=2j+1. Fix L >2. We
set P :={2" 3! | pcwAl<L—2}and My :={23"-3-k | k>1Ak¢ Pr}. We define a map
O0:{jecw|j>1}—{3k | k>1} as follows:

35if j¢ (M, U (Mg +1)),
0(j):=< 3j+3if jc My,
3j—3if je My +1.

Recall the definition of (S,,) after Theorem 1.5. We define 6,,: w — w by
_ kifk¢s,,
Lemma 5.1 Fix L>1. Then (Sy,) and (0,,) satisfy the following properties:

(1) (20 52 gu} Co\Oule]

(2) 6, is injective

(3) w\Sn = {kew | 6u(K) =k}

(4) Vs ew=* strictly decreasing with 2<|s| < L 0s+[w] N Sy is infinite
(5) Vs ew=* strictly decreasing with |s| = L+1 0s+[w] N Sgp) =0

(6) 0 (297 (j+1)) =0 (27 j) <213

Proof. (1) If k € S, then 6,,(k) is a multiple of an odd number > 3. It remains to note that
{27| >qn} €S, and 6, is the identity on w\ S,,.

(2) If L=1, then 6, is a bijection between w\ S,, onto itself on one side, and from .S,, onto
{29 (2-k4+1) | k>1}CS,

on the other side. So we may assume that L. > 2.
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The map 0': {jew | j>1} — {3k | k> 1} defined by '(j) :=3; is a bijection. The difference
between 6 and @' is that 6 exchanges ¢’(23!-3-k) and 6’(23!-3-k+1) for each k > 1 with k¢ Py. Thus
6 is a bijection too. This implies that ,, is a bijection between w\ S,, onto itself on one side, and from
Sy, onto {297-3-k | k>1} C.S,, on the other side.

(3) It is enough to check that 0 is fixed point free. We may assume that L > 2. In the first two cases of
the definition of €, 6(j) > 37 > j. In the last case, if 6(j) =7, then 2j =3, which is absurd.

(4) Fix r € w. Note that
O (25O ) =0 (1) .. (jsp2y> (2BOFT-B) =+ =0,y (2L 31172y =gt gl e g )

(5) We may assume that L > 2. Note first that if §(35) = 23!-3-m, then j € Pr. Indeed, we argue
by contradiction. If 35 ¢ (M, U (M +1)), then 6(35) =324, so that 3j =23!.m. In particular, m
is a multiple of 3, which implies that m is of the form 27-3+! with [ < L —2 and j = 231P. 3! If
3j=231.3-k and k ¢ Pr, then 0(3j) =32-5+3, so that 3j is a multiple of 23! and 3 +1=23!.m,
which is absurd. Finally, 3j cannot be of the form 23!.3-k+4-1.

If O (J) € Ss(0) then O(15—1)(J) € Sy(|5|—2) is a multiple of 3 and is of the form 2%:(Is1-2).3. 5.
Thus 0<5(|5|_2)75(‘5|_1)>(J) = 95(|s\—2)(2q5(‘5‘72> 3]) = 2%(Is1-2) 0(3]) S SS(|S|_3) is of the form
29s(151-3) - k. Thus 6(35) = 2%(s1-3)"9s(s1-2) .k is of the form 23!-3.m since

s(|s|-3) — Ds(|s|-2) = Ds(|s|~2)+1 — Ds(|s|-2) = 32" —q1 =q2 — q1 =31.
The previous point implies that j € Pr,.. Thus

2qs(\s\72)+p,3l+1) 2q3(|5|72)+P,3\8\+1*N*1)

Os (J) =0 cs(1) - s(1s12)> ( =0<5(1), (N> (
asin (4), as long as |s|+l—N—-1<L—-2,1i.e.,{+2<N. In other words,

29s(1s1-2)+P.3L=2) 24s(1s|-2)+P.gL-1),

O (J) =0c5(1), s(14+2)> ( =0c(1),,s(141)> (

As 04+ (J) € S5(0)s Us(s|—2) + P> Qs(0)- Now (g 1)(29:0el=FP. 3L=1) — 90s(1s1-2FP. 3L 4 3 js not in
Ss(1)> which is the desired contradiction.

(6) We may assume that L >2. Note that 8(j+1)—6(j) €{3,6, —3}, so that
O (27 (j+1)) =0, (2 -5) <200 F1.3,
This finishes the proof. U
Notation. We define, for scw<“\ {0}, s~ :=< s(0),--- ,s(|s| —2) > and
sli=<s(|s| = 1),---,5(0) >.

We then set, for n € w, ]D)Tll := N, 0. We extend the definition of gy, : N¢, g — V¢,1 after Theorem 1.5
to any L > 2, writing gTLL instead of g, when a confusion is possible. Fix L >2. We set, for n €w,

DE={a €N | Ym<n a(29-3™)#a(20-3m1)}
and G, :=J,,,, Graph(g% ipz ), so that D% is a nonempty clopen subset of 2¢ and G, is a £9 digraph

on 2¢.
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Lemma 5.2 Fix L>1.

(a) (2‘”, (gﬁm 7,-1)) is a strongly complex situation.

(D) gs(a) # go— (@) if s € w<¥ is strictly increasing, 2<|s| <L, a € ]D5L(|s|—1) and gs(a), gs— (@)
are defined.

(c) gs(a) =gs— () if s€w<Y¥ is strictly increasing, |s|=L+1 and gs(a), gs— () are defined.

Proof. (a) It is known that 2 is a nonempty zero-dimensional perfect Polish space. Note that g, is
defined, partial, and continuous since g, (cv)(k) depends only on «|(6,,(k)+1). If 2 € 2<¢, then by
Lemma 5.1.(2) gn[Ni,02) = {BE€ Np,1 | V29 <i <27 +1+ x| (i=0,(k) = B(k) = (t,0z)(3))}
is clopen, so that g,, is open and onto with clopen domain and range, and gﬁmﬁ is partial continuous
open with clopen domain and range. If o € 2¥ and [ € w, then there is n with a|l = ¢ (n). Pick
ag € ]D)TLZ. Then (ao, g,% (ao)) e G N NC%'Z. Finally, assume that U is an open subset of 2 and

a € U N DL Then we can find x € 2<% such that o € Ny, 0, C U N DE. If B(k) = (k) for
k €0, |w] U 20 t1H12l then € Ny, 0, CUNDL and g, (8) =gn(a). As w\B,[w] is infinite by Lemma
5.1.(1), w\ (0, [w] U 22+ 1+12l) is also infinite, and the set of such 3’s is not countable.

(b) We argue by contradiction. We set k:=2%(s-1). As (g,,) and s are strictly increasing and |s| > 2,
k#2901, and g,(0)(8) (k) = B(04(0) (k) if € Ny, 0. Thus

95(0) (5)(@ :5(95(0)(2%(0) .2qs(\s\71)_q\s<0))) :5(2115(@ .9(2%(\5\71)—%(0) )) :5(2115(\5\71) .3)

if fe Nts(o)o. As 2%(sl-1) .3 £ 29s(1) |

9<5(0),5(1)> (B) (k) =gs(1)(8) (290=1=1 - 3) = B (051 (2%:(=1-1) - 3))
=B(2%M -9(2%:(s1-1 "1 . 3)) = B(2%:(Is-1) . 3%)

if B€ Ni,,y0 and gg(1)(8B) € Ni, 0. Similarly, gs(a) (k) = a(291s1-D -301) since 2 < |s| < L, which

contradicts the fact that o« € ]D)sL(|s\71) since |s|—1<s(|s|—1) cause s is stricly increasing.

(c) As above, gs(c) (k) = (05-1(k)) if k7290 As 0;—y-1 (k) is in 0 ;-1 [w], it is not in Sy(j5—1)
by Lemma 5.1.(5). Thus 0,-1(k)=0(,-y-1(k) by Lemma 5.1.(3) and we are done. O

We introduce some finitary objects used in the construction of our homomorphism. Fix L > 1.

Notation. We inductively define, for each [ € w,
- a subset X; of 2=! such that 2¢ is the disjoint union of (N,).cx,,

- an oriented graph B; on X, containing finite approximations of Gy, and providing some control on
the cycles,

-amap ¢;: By — 1 such thatt,,, )0 Cy and t,,(, 1 C z if (y,x) € By 1, giving the number of
the function approximated by an element of B; 1,

- an uogas A; on X; contained in B;, containing finite approximations of a subset of G, with acyclic
symmetrization,

- a subset Ej of X, determining the future elements of X; ;.
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We first perform the construction of these objects for [ =0, sometimes more.
- We set Xg:= {0}, so that Xy C 2= and 2“ is the disjoint union of (N, ),cx,-

- Generally speaking, we set
B;:= {(y,x) EXl2 | (NyXNz) NGr#0 A Ji<ly|, |z y(z);«éx(z)}
so that By =(). Note that B is an oriented graph on X since B, C<Yex-

- We set Ag:=0.

- If x € X, then the decision of putting x in FE; or not is made by induction on M,, related to A;,
defined before Lemma 4.7. If M, =1, then we put = in E;. We set, when the decision of putting y in

FE; is made,
. lity & B,
YT yl+lifye By

Assume that the decision of putting x in Ej is made if 1 < M, <m, which is the case for m =1, and
fix z € X; with M, =m+1, so that z ¢ miny, and Pred(x) # (). Fix y € Pred(z), so that (y, ) € A;.
We put n:=¢;_1(y, ). We say that x is y-expandable if ,,(|x|) <[,. Generally speaking, we put
x in E; exactly when z is y-expandable for each y € Pred(x) and, when there is ¢ € w with ¢, € Ej,
there is no 1 <14 < |p;, | with 2 =py, (). In particular, Eq={0}.

Assume that our objects have been constructed for p </, which is the case for [ =0.

-Weset Xpy1:={se | s€ B Ae€2} U (X;\E), so that X; 1 C25! and 2¢ is the disjoint union
of (Ngg)xele .
- If (y, =) € B4 1, then there is a unique n € w with (N, x N,) N Graph(g%) # 0, and 29" = |y A =|.
Note that n <g, <2 <|y| <I+1. We set ¢;(y, z) :=n, which defines ¢;: B;;1 — .
- We now define A;,. If t, € maxx, N Ej, then we put (¢,0,¢,1) in A;4. If y € X;\max,, then let
x be the unique element of Succ(y), so that (y, z) € A;. As A; C By, we can define n:=¢;_1(y, x). If
x ¢ Ej, then we put

(y, ) if y & Ei,

(yn,z)ifye B :=E\{t;, | mew} Ane2,

(y1,2), (y0,y1) if y=t, € E}
in Ajq. If x € By, then y ¢ {t,, | m € w}, x is y-expandable and 6,,(|z|) < l,. We put (yn, ze) in
A if ne2=t, yne X;41 and e= (yn) (0 (|z])). We first check the following announced facts.

Lemma 5.3 Letl€w. Then A; is an uogas on X, contained in B.

Proof. We argue by induction on [, and the case [ = 0 is clear. Note that A;,1 C Bj,1, by defi-
nition of A;;1, so that A;; is an oriented graph on X; ;. By definition, A;;; is unambiguously
oriented. We argue by contradiction to see that s(A;1) is acyclic. Let (uj)j<n be a s(Aj41)-
cycle. We choose j <N such that u; is <|oy-minimal, and we may assume that 0 < j < N. Then
(uj,uj—1), (uj, ujq1) € Ajg1, so that uj_1 = u;yq since A4 is unambiguously oriented, which is
absurd. [l

Lemma 5.4 Letlc€w, and x € X 1. Then |p,|<I+1.
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Proof. We argue by induction on I. For =0, X1 ={(0), (1)}, pay = ((1)) and p(g) = ((0)), so we
are done. Let x € X, 5. Note first that if i < L := |p,|, then we can find a unique couple (x;, ;) in
X1 x2S with p,. (1) =2;¢;. Let i < L—1. By definition of A, either (;, 2;,1) € Aj41, or there is
g€w such that ty € Eyyq and (pg (), px(i41)) = (£40, t41). In particular, (z;);< 1, is <joy-increasing.
By definition of Ej 1, there is at most one ¢ < L —1 for which there is ¢ € w such that ¢, € Ej4

and (pz (i), p(i+1)) = (t40,t41). If such a ¢ does not exist, then (z;)i<r, :pigf‘;gi)l and L <[+1,
by induction assumption. If now there is such a g, then (xq, -+ , 2, Tiz2, - ,Tp_1)= pi}ﬁf‘;ﬂ and
L—1<I+1, by induction assumption, so that L, <[+2. O

Lemma 5.5 Fix L>1. Then there is (Ly,)ne., € (w\{0})¥ strictly increasing satisfying the following
properties:

(a)thn€EL, \ (Uk<Ln Ey),
(b) X, N Xp,., =0,
(c) 29 < Ly, < Ly +(6Ly,)tn—1 <24n+1,

Proof. We construct L,, inductively on n. We set Ly := 1, which is correct since ¢y = (0) is in E1\ Ep,
po=0and p; =1. As X1={(0), (1)}, |x| >0 if x € X1,. Assume that L,, has been constructed.

Claim. Let | > L, (3291 En=1 Then X; does not meet X, . In fact, we can add m > 1 coordinates
at least to v € X, in X; if 1> L, +m-(3-29F1) =1 and no tq appears in some Ey, with L, <k <l.

Indeed, fix x € X,,. We want to extend properly = in some X; with [ > L,,, and to give an
estimate on [. We proceed by induction on M., which was defined just before Lemma 4.7. If M, =1,
then [:= L,,+1< L, +(3-29+1)En—1 ig suitable. Assume now that M, =2, which gives y € miny,
with z € p,, and in fact  =p,(1). In particular, (y,z) € Ay, C B, and N:=¢r,,_1(y,z) <L,—1is
defined. The definition of gk and Lemma 5.1.(6) show that if o € N, then we can find [ < L4329 +1
and 2z C v with z€ X; and z(|z|—1) = g% (a)(]z|). Note that gn < g;, since (q,,) is increasing, L,, >2
since Bo=B; =0, and L,, < L, +3-29 %1 < L, +6L,, < L, + (6L, )1 <2%+1, Thus x is properly
extended in X, |3.9an+1, and also in X (3.9¢,+1y0,-1. This argument also shows that z can be
extended by m coordinates in X ., 3.90n+1 if Ly < L,+m-3-20nFt1 < 2n+1 More generally, this
argument shows that x can be properly extended in X, | (3.94n+1)2n—1, by Lemma 5.4, which implies
that M, < L,,. o

Now note that [1)(n+1)| <n+1<2" <29 < L, < L, +(3-29+1)In—1 < 20n+1 We will extend
Y(n+1) until we reach t,, 1 = (n+1)0>" " =¥+l in some X, with ¢ > 29+1. Note first that
there is x € X1, with z C¢(n+1)0°, and ¢(n+1) Cx since |z|>n.

In order to do this, we add m := 2P+ —|z| coordinates to . By the claim, this will be possible
in X, for some 29"+t < g < L, +m- (3-20n+1)En=1 if no ¢, appears in some Ej, with L, < k < q.
This is the case since q < Ly, +(m+1)-(3-28n+1)Ln=1 < 9dnt1 4 9an+1. (6L, ) In=1 < (24n+1)2 < 20n+2
because ¢, 12 = 329+ > 2¢,,1. It remains to check that L, 1+ (6L, 1)1~ < 2dn+2 Ag
Lpy1 <(20+1)2 L, —|—(6Ln+1)L"+1_1 < (6Ln+1)L"+1 < 9(2an+143) 2+ ¢ remains to note that
(2Gn11+3)-220n+1 < 25n+1 = 32n+1 =q, 1o, O
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Corollary 5.6 For each x € 2<% there is | €w such that x € X].

Proof. We argue by induction on |z|. For x =, we can take [ :=0. Assume that 2 € X; and ¢ € 2. If
there is I’ > [ with ze € X/, then we are done. Otherwise, x € X for each I’ >1[. Using Lemma 5.5,

we choose n €w such that L,, > 1. Then z € X1, N X, which is absurd. O

Lemma 5.7 We work with L=1. Letl€w, (y,x) € Bj41 andp::psz&;)). Then
(a) x=p(j) for some 1<j<|p
(b) ei(p(5—1),p(7)) = 1(y, x) =mini<j 1 (p(7), p(i+1)),

(c) <<Pl (p(i),p(ile)))Kj is injective.

>

Proof. We argue by induction on [. We are done if [ =0 since B; =(). So assume that (y, z) € Bj1o,
which gives n := ;41 (y, ) <1 with ¢,,0 Cy and t,,1 C x. In particular, [+1 > L,. If [+1=L,,

then (y, z) = (,,0,t,1) and p=(¢,,0) s(Ai2) ) by Lemma 4.2 and since A; 2 C<jgy. Thus j=11is

ptnl,xc'(tno
convenient. So we may assume that [ > L,. Note that we can find (¢/,2") € B;11 with t,0Cy' Cy

S(AZH)) is defined and there is 1 < j' < |p/| with

and t,,1 C 2’ Cz. By the induction assumption, p’ := Py o
’ Y

$,:p,(j/)-

s(Ar+1)

Case 1. We cannot find g cw with tg€p,, )

N By
Let g9 € 25! such that y = 3/c¢. Note that there is a unique £; € 25! such that (y,p’(l)el) is
in A; o, by definition of A; . Similarly, if 1 <4 < j', then there is a unique ;,1 € 2<! such that
. . A
(' (i)es, ' (i4+1)eit1) € Ar1o. Note that p;fp/l(;?))sj
able to set j :=j if we prove that 2 =2'c s, by Lemma 4.2 and since A1 C <oy again. This is the
case if €y =), so we may assume that £, € 2, which implies that 2’ € Ej ;. Let e :=z(|2']), so that
x = z'e and we have to see that €, =e. Note that p'(i+1)e;41 is (p'(i)e;)-expandable if €;41 € 2,

for each i < j'. More precisely, if n; :=¢; (p'(i), p/(i+1)), then ;41 = (p/(i)e;) <0ni (\p’(i+l)|)>.

This implies that & jy =y (6,,(|2’])) since njs_1 =n=min;;s n; and (n;);<; is injective, by induction
assumption. In particular, y is long enough to ensure that €;s =« since (y, x) € Bjo with witness n.

 is defined and equal to (p'(i)e;), <jr- We will be

Case 2.t,€ ngéf,“) N Ej1 for some g € w, which implies that [+1=1L,.

Fix i < j’ with p/(i9) = t4. The definition of ¢; is as in Case 1 if i <iy. If £;, =0, then we set
ei:=0 if iy <i < j’ and we note that pf,ffl“) = (p'(0)eq, - -+ , P (i0)0, P (i0)1, P/ (io+1), -+ ,a’) if

ip<j', and ngfl”) = (p’(0)e0, -+ ,p'(i0)0) if ip = j/. Apart from that, we argue as in Case 1. If
ei, =1, then we set €;:=0) if io <i <j’ and we note that
S(Al+2) o / /(- /(- /
Py,x _(p (0>607"' 7p(20)17p(,60+1)7"' 7x)
if ig<j’, and pZEfl”) = (p’(O)eo, e ,p’(z'g)l) if io=4'. Apart from that, we argue as in Case 1.
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Note that (b), (c) follow from the previous discussion since (gol( (1), (i+ 1))) ~isequal to
i<j'

(gplﬂ( (1), p(i+ 1))) , except when iy < j in the first subcase of the Case 2 where one number
1<j
bigger than the others has been added strictly before the last position. O

Lemma 5.8 Fix L>1. If n € w, yp,, |41 :=tnl and k> |t,|+1, then for each o € Ny, 0 we can find
Iy €w and yi, € X, such that (o ) € By, and yi,_1 C yi; moreover, {gn (o)} :ﬂk>|tn| Ny,

Proof. By Corollary 5.6, there is [, € w such that ok € X;, . Note that [, > L,, +1 since k> |t,|+1.
There is yj, € Xj, such that gn(a) € Ny, since 2¢ is the disjoint union of (Ny)zex,, . Note that
yr Dtnl since t,1€ Xy, 41 and [, > L,,+1, so that (o|k, y) € By, . O

6 The main construction
We now come to the construction of our homomorphism.

Theorem 6.1 Let ( , ( fn)) be a strongly complex situation satisfying Condition (d) in Theorem 1.8.
Then (2¢,Gy) <Y (7, AT).

Proof. We construct, inductively on [,

© a sequence (Ué) zex,; of nonempty clopen subsets of Z,

© a natural number ¢(n) if L, <I.

We want these objects to satisfy the following conditions, using Lemma 5.7.

(1) UL C UL ifee25t Nvee Xy

(2) dlam(Ul)<2 !

(3) UL nU =0 if 20 xleXHl

(4) é“CDqs i) NUE S Fotapan Uy I (y,2) €A

( ) p(m) CD¢(<PI(Z/ z)) if (y,x)GBl+1 Am<g A
e1(p(i—1),p(5)) = iy, =) =mini<j ¢y (p(i), p(i+1))

(6) ¢(r)>sup,, ., ¢(n)

Assume that this is done. Fix v € 2“ and | € w. As 2% is the disjoint union of the N,’s for x € X,
there is a unique k; € w for which «/|k; € X;. The sequence (Uélkz)lew defines h(«) € Z, using (1) and
(2). Note that h: 2% — Z is continuous, and injective by (3) and Corollary 5.6 (which implies that k;
tends to infinity as [ tends to infinity).

Let us prove that U/ t! C D¢(<Pz(y »)) and U 41 C fotony, x))[Ul 'if (y,x) € Bj;41. By Lemma

5.7, 4,0[( (j—1),p(4 )) cpl(y, x)= m1nl<j 4,0[( p(i+1 ) and ¢ (y, x <<pl( (1), (H-l)) if i < j—1.
By Lemmas 5.3, 4.2.(b) and (4), U C Dd>(e01(p(z) p(i+1))) and Up(i+1) € foteuta( i)yp(i+1)))[Up( )] if
1<j. (5) implies that U]ljzrnll) C D¢(@l(y’$)) if m<j.
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We apply Lemma 2.5 to Vj :—Ul?;)l Vi: Ulz;il m:=¢(pi(y,x)) and

n :¢(<pz (p(i),p(iJrl)))
when ¢ <j—1. We get f¢ (o1(y,x)) [Uzl)—(:}&-l ] - f¢(<,01(y7l‘)) [U;—(t)l], so that

I+1 I+1 I+1
Uy gfqﬁ(s@z(%ft))[UpE 1)] - fota yx))[U+ J:

Thus UL C fy((y.0)) [ULT], as desired.

Let (o, 8) € Gy, and n with « 6 Ni,0 and = gn( ). By Lemma 5.8, (a|k, Bllyk|) € By, if
k> |t,|+1. By the previous point, U’ ol € Do (n) and Uﬂlly |Cf¢(n [ ]1fk:>|t |+1. In particular,

h(a) € Dg(ny- As fg(n) is continuous at h(c), diam(fy(, [ o] bl converges to zero as k converges to
infinity. Thus d( 4, (h(c)), h(8)) is zero and [y, (h(a)) =h(p).

So it is enough to prove that the construction is possible. We fix a compatible metric with
diam(Z) < 1. We first set Up := Z. Assume that ((Ux)zexp)pq and (¢(n)), _, satisfying (1)-
(6) have been constructed, which is the case for [ =0. a

s(Ar)

oy - We choose u; € wX! such

By Lemmas 5.3 and 4.2.(c), we can set, for each y € X, py —py
that u;(y) := ¢<cpl,1 (y,py( ))) if y € X;\ maxy, (this can be done, by the induction assumption).
We define, for y € X, and inductively on | péj!,

W, Ul 1fy€maXXl,
Ulﬂf ( ) if z € Succ(y),

which defines nonempty clopen subsets of Z, by (4) of the induction assumption. Note that

ful (v) [Wy] =W,
if 2 € Succ(y) since z=pl,(1) and Wy CULC fy(s, , (y2))[U}] by the induction assumption.

If [ is of the form L,., then Lemma 2.6 applied to V' :=W;,_and m:=sup; _; ¢(n)=sup,_,. $(n)
gives ¢(r) >sup,, ., ¢(n) and nonempty clopen subsets Oy, 0, Oy, 1 of Z such that Oy,0 € Wy, N D gy
and Otrl - Wtr N f¢(T) [Otr()]-

We will apply, thanks to Lemma 5.3, Lemma 4.7 to 7 := (Xl+17 A, 2, (fn)),

d:=maxeecx,,, ||,

u € wXi+1 such that u(y) := d)(gol (v, pffl(l))) if y € Xjy1\maxx,,,, and (Vz)zex,,, defined as

follows. If x € X;, 1, we denote by =~ the unique element X; for which there is ¢ € 25! with
(x7)e=z. We also set g, —pi:rllxc ifyeC(t,1). f x ¢ C(t,1), orif z ¢ q, and = #t,, then

we set V1= Ul We also set V;,.1 := Otrl and V; o := Oy, 0. If now z € C(t,1), x € ¢, \ {t,1} and
x=q, (i) with 4 > 1, then we define V. by induction on i. We set V. := fo,, (g, (i—1))) [Vau (i=1))-
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This is possible since, inductively on k < |q,
Wiga i) since ( (e(£)) ™, (g (k1)) ™) € Ar, 50 that Fu (g, ) Wigu ) 1= Wigatr1)

» Viu(k) 1s defined, nonempty and contained in

Note that (u, (Vz)zex,,,) € Ur. Indeed, let (y,z) € Ajy1. If y & C(t,1), then y~ #t,, so that
(y—,27) € A;. Moreover, z ¢ C(t,1) and V,, = Ué_, Vy=U'_. Thus V, C Dy and
Va C fo(or-1(y—a-)) [V,], by the induction assumption. It remains to note that

Spl—l(y77x7))

u(y)=¢(ei(y, ) =d(pr-1(y~,27))

to see that V,, C D,y and V. C fy,,)[Vy]. If y € C(¢,1) and y € gy, then z € g, \ {#,-1}. By definition,
Vi = fuy—)[Vyl. Note that u(y) = ¢(ei(y,z)) = ¢(r-1(y~,27)) = w(y~). If y = ¢,0, then
x=1t.1, V%,-O = OtTO - D¢(r) = Du(tr()) and ‘/tr-l = Ot,-l - fu(tTO) [V;S,O} Otherwise, V;J = Ué_ and
zeC(t,1). If v ¢ g, and x~ #t,, then we argue as in the case y ¢ C(t,1). If x € ¢, or 2~ =t,, then
Ve CW,-= ful(y*) [Wy*} C ful(y*) [Uglf] = fu(y) [Vy]

Lemma 4.7 provides a sequence (Uyl)zexl 4, of pairwise disjoint nonempty clopen subsets of
Z with diameter at most 27/~ such that Uzlfl C Dy ify ¢ maxx,,, and

Ual:—H CVen m fu(y) [Ugl;+1]
yePred(z)

if x € X;41. Note that Ui“ cV,C Ui _, by definition of the W,’s, which shows that (1) is satisfied.
The construction of the U:i“’s shows that (2)-(4) are satisfied. For (5), let (y,z) € Byy1, and m < j
with @1 (p(j —1),p(5)) = @i(y, ) = mini<; @1 (p(9), p(i+1)). If p(q) # t,1 for each 0 < ¢ < j, then
we are done, by induction assumption. If p(q) =t,1 for some 0 < ¢ < j, then ¢ < j or j =1, and we
may assume that ¢ < j. It remains to note that Uttt U(lp(q))_ C Dy (4 (y,2)) for each € € 2, by the

) i : plg—e) =
induction assumption. O

Proof of Theorem 1.8. We apply Lemma 3.2 to (X, (f,)), P := X and S,, := D,,. This is pos-
sible by Corollary 2.2. Lemma 3.2 provides a Borel subset S of X, a finer topology 7 on .S, and
a sequence (C,) of clopen subsets of ¥ := (S, 7) such that (Y, ( fn\cn)) is a strongly complex
situation and C,, € S N g;(S). By Theorem 6.1, (2*,G;) <&V (Y,Unew Graph(fnic,)). As

(Y,Unew Graph(fnc,)) <V (X, A7), we are done. o

Proof of Theorem 1.3. By Corollary 2.2, G is a 39 digraph of uncountable Borel chromatic number,
and is in particular analytic. Theorem 1.8 shows that if .S is a Borel subset of 2, 7 is a finer topology
on S, and (Cy,) is a sequence of clopen subsets of Y := (5, 7) such that (Y, (gn|Cn)) is a strongly
complex situation, then (2¢,Gq) <N (Y, Upew Graph(gn‘cn)). We apply Corollary 3.3 and the
remark after it to get the minimality of G;. This implies the minimality of Gfl. We saw in the
introduction that G is also minimal. It remains to apply Lemma 5.2 and Corollary 2.4. O
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7 The structure of j:tnj

Theorem 7.1 (2¥,G1) e, is a sequence made of X3 digraphs pairwise jgl] -incompatible among
analytic digraphs of uncountable Borel chromatic number on Polish spaces. In particular, the se-

quence (2°,Gr) ey isa jgj -antichain. Moreover, if L+ M are natural numbers, s € 2<% and G is
a dense G subset of 2, then (N5 N G, G N (N, N G)?) 20 (2% Gap).

Proof. By Lemma 5.2.(a), (2“, (g,LL‘DL)) is a complex situation if L > 1. By Theorem 1.1 and
Corollary 2.2, G, is a 2 digraph on 2% of uncountable Borel chromatic number.

Claim. Let L < M be natural numbers, and (X , ( fn)) be a complex situation satisfying the Con-

ditions (a), (b) of a strongly complex situation. Then (X, AT) <MY (2¢ Gp), (2¥,G ) cannot hold
simultaneously.

Indeed, we argue by contradiction, which gives witnesses u, u’. We set

R:={(n,r,7" 2)ew3x X | x€D, ANu(z)eDE A/ (x) € M/\u(fn( )) ( (z )
(fn( ) =g (W (x))}.

Note that R is closed, by continuity. If n € w, U is a nonempty clopen subset of D,, and x € U, then
there are r, 7’ € w such that (n,r,r',x) € R. By Baire’s theorem, we can find a nonempty clopen
subset C of U and r, ' €w such that (n,r, 7", z)e Rif z€C.

We inductively construct a strictly increasing sequence (ny)xe,, € w* as follows. We first apply
the previous point to ng := 0 and U := Dy, which provides Cy C D,,, and ro,r{ € w such that
(no,ro, 7, ) € Rif z € Co. As (X, (fy)) is a strongly complex situation, we can find nj1 > ny
such that Graph( fy,.,,) N C7 # 0. We apply the previous point to n;41 and U C Cj N C) with
diameter at most 2~%, which provides Cy1 C U and rgyq, T‘;H_l € w such that (ng41, rg+1, r,H_l, x)
isin Rif x € Cy1.

nk+1(

As (Cy) is a decreasing sequence of nonempty closed subsets of X whose diameters tend to zero,
there is © € ()¢, Ck. Note that (n, 74,7}, 2) € R for each k. Let us prove that (7},) is unbounded.
We argue by contradiction, which gives » € w and I C w infinite such that r, = r if £ € I. By
continuity, we get u(z) = g% (u(z)) since limg_o0 ger fn, () ==, which contradicts the fact that g~
is fixed point free. So, extracting a subsequence if necessary, we may assume that (r) and (r},) are
strictly increasing.

As x € O and f, (x )ng,u<fn0(fm ) = TLO<u Iy ( ) :grLO(gfl( (z ))> More
generally, u( fn, (z)) =gk (u(z)) and v/ (f,, (2)) = =g,/ (' (2)) if s €w<¥ is strictly increasing.

Assume first that L > 1. We choose s € w”T! strictly increasing. By Lemma 5.2.(c), we get
gk (u(z)) = gk (u(x)), so that ¥ (v/(z)) = g¥' (v/(z)) by injectivity of u, which contradicts
Lemma 5.2.(b) since v’ (z) € DM If L =0, we argue simililarly, using the fact that the g,.’s are

. ) Ts(|s|-1)"
injective and fixed point free. ©
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Let L <M. We argue by contradiction, which gives a Polish space Y and an analytic digraph B
on Y of uncountable Borel chromatic number such that (Y, B) jglj (2¥,Gpr), (2¥,Gpr). Theorem
1.7 gives a complex situation (X, (f,)) such that (X, Af) < (Y,B) or (X, Af) < (Y,B71).

Let us prove that (X, Af) <Y (Y, B). We argue by contradiction, so that

(x, A7) =M (v, B7Y.

As G has countable vertical sections, B too, so that B~! and A7 have countable horizontal sections.

Thus A7 is locally countable. By Corollary 2.2, Af is a 39 digraph of uncountable Borel chromatic
number. The discussion after Theorem 1.1 shows that (2¥, Gy) <Y (X, A7), and also
(2%,Go) =¥ (29,Gg ) = (¥, B) 2 (2%,Gu), (2%, Gn).

Let H be a dense G4 subset of 2¢ such that (H, Gy N H?) <Y (2¥,Gpr), (2¥,Gpr). The proof of
Lemma 2.1.(b) shows that Gg N H Q.h‘as uncountable Borel chromatic number. The discussion after

Theorem 1.1 shows that (2¢, Gg) < (H,Go N H?), and thus (2%, Go) < (2¥,Gpr), (2%, Gur),
which contradicts the claim.

This shows that (X, Af) jglj (2¥,Gp), (2¥,Gyr). So we may assume that Y =X and B= A/,
Let P be a dense G subset of X such that (P, Af N P?) <N (2¥,Gp),(2¥,Gps). The proof of
Lemma 2.1.(b) shows that Al N P? has uncountable Borel chromatic number. The previous point
shows that (2¥, Gg) £ (X, A7). By Lemma 3.2, we may assume that (X, (f,,)) is a strongly
complex situation and (X, A/) < (2¥,Gp), (29, Gypr), which contradicts the claim.

The last assertion comes from the fact that G, N (N N G)? has uncountable Borel chromatic
number, by the proof of Lemma 2.1.(b). U

Proof of Theorem 1.5. We argue by contradiction, which gives a natural number N and a basis
(Xi, Ai)i<n. By Theorem 7.1, we can find i < N and L+ M with (X;, A;) <5 (2%, Gy), (2%, Gar).
This contradicts Theorem 7.1. 0

We now prove Theorem 1.4.

Notation. We set, for each n cw, Q,,:=® <, 2“ and

Hn::{((L77)a (M,(S)) 6@721 | L=M A (776)6GL}-

Theorem 7.2 Let € € {c¢, B}. Then (Qp,H,)necw is a jlgl] -strictly increasing chain made of 9
digraphs of uncountable Borel chromatic number.

Proof. By Theorem 7.1, H,, is a X9 digraph of uncountable Borel chromatic number on Q,,. The
identity map shows that our sequence is increasing. We argue by contradiction, which gives n € w
such that (Qy,41, H,41) jglj (Qn, G,,) with witness u. The map associating ug(n,y) to v € 2¢ is
Borel, which gives L < n, s € 2<“ and a dense G subset G of 2* such that ug(L,~y) = L if 7 is in

NsNG.
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The map v associating u1(n, ) to v € Ng N G is injective and Borel. We can restrict G, so that

we may assume that v is continuous. Thus (N, N G, G, N (Ny N G)?) < (2¥, G) with witness
v, which contradicts Theorem 7.1 since n# L. O

Notation. Let (p,,)ncw be the sequence of prime numbers. We define, for each o € 2%, E,, C w by

B, = {p8(0)+1 .. .pg<”)+1 | n€w}. Then we set P, :=@rep, 2 and

Ga::{((L’7)7<M75))€Pi | L=M A (7,5)6@[,}-

Theorem 7.3 (P,,G,)ac2v is a jg] -antichain made of Eg digraphs of uncountable Borel chro-
matic number.

Proof. By Theorem 7.1, G, is a X9 digraph of uncountable Borel chromatic number on P,. We
argue by contradiction, which gives a # /3 such that (P, G,) jglj (P3, Gg) with witness u. Note
that £, N Ej is finite, which gives L € E, \ Eg. The map associating ug(L,y) to v € 2¥ is Borel,
which gives M € Eg, s € 2<“ and a dense G subset G of 2“ such that ug(L,~) = M if v is in
Ng N G. The map v associating u(L,7) to v € Ny N G is injective and Borel. We can moreover
restrict G, so that we may and will assume that v is continuous. Thus v is a witness for the fact that

(Ns NG,GrN(NsN G)Q) jinj (2%, Gps), which contradicts Theorem 7.1 since L # M. O
Our main results also hold for graphs.

Theorem 7.4 Let €< {c, B}.

(a) There is a qun] -antichain {s(Gy), s(G1)} made of graphs jlcn] -minimal among analytic
graphs of uncountable Borel chromatic number.

(b) There is a jénj -antichain of size 2%° made of Y graphs of uncountable Borel chromatic
number.

(c) Any jl@nj -basis for the class of analytic graphs of uncountable Borel chromatic number on
Polish spaces is infinite.

Proof. We first prove the following.

Claim. (2‘“, s(G L)) Lew iS a sequence made of 23 graphs pairwise jlgj -incompatible among ana-
lytic graphs of uncountable Borel chromatic number on Polish spaces.

Indeed, we argue by contradiction, which gives L # M and an analytic graph G of uncountable
Borel chromatic number on a Polish space X such that (X, G) <" (2°,s(Gr)), (2%, 5(Gar)), with
witnesses u, u’ respectively. Note that

G=(GN(uxu) HGr) N (u'xu)"HGp)) U (G N (uxu) HGr) N (W' xu")"HGy)) U

(GN (uxu) MG N (w' xuw)"HGr)) U (G N (uxu) LG N (u' xu')"HGR}))-
The second and the third of these subgraphs are locally countable. If one of them has uncountable
Borel chromatic number, then it is above Gg by the discussion after Theorem 1.1. By Theorem 7.1,

we must have L = 0 = M, which is absurd. Thus the first or the fourth of these subgraphs has
uncountable Borel chromatic number, which contradicts the incompatibility of G, and G ;. o
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(a) By the claim, s(Gy) and s(G1) are incompatible, and thus incomparable. Assume that we can find
L €2 and an analytic graph G of uncountable Borel chromatic number on a Polish space X such that

(X,Q) jiqnj (2¥,5(Gp)), with witness u. Note that
G=(GN (uxu) HGr)) U (GN (uxu) H(Gh).

One of these subgraphs has uncountable Borel chromatic number. Assume for example that it is the
first one. Then the minimality of G, shows that (2, G,) jlcnj (2‘”7 (Gn (uxu)_l(GL))) , and thus
(29, 5(Gp)) <¢" (X, Q).

(b) We essentially argue as in the proof of Theorem 7.3. By the claim, s(G,) is a 9 graph of
uncountable Borel chromatic number on PP,. We argue by contradiction, which gives a# 3 such that
(Pa,5(Ga)) <5 (Pg, s(GB)) with witness u. Note that E,, N Ej is finite, which gives L € E,\ Ej.
The map associating uo(L, ) to v € 2* is Borel, which gives M € Eg, s € 2<“ and a dense G5 subset
G of 2% such that ug(L,~y) =M if v is in Ny N G. The map v associating u;(L,y) to y€ Ns N G is
injective and Borel. We can moreover restrict G, so that we may and will assume that v is continuous.

Thus v is a witness for the fact that (N;NG, s(G1)N(N,NG)?) <V (2*, s(Gar)), which contradicts
the claim 7.1 since L # M.

(c) We argue as in the proof of Theorem 1.5, using the claim. O
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