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Abstract. MRI denoising is a classical preprocessing step which aims at reducing 
the noise naturally present in MR images. In this paper, we present a new method 
for MRI denoising that combines recent advances in deep learning with classical 
approaches for noise reduction. Specifically, the proposed method follows a two-
stage strategy. The first stage is based on an overcomplete patch-based convolu-
tional neural network that blindly removes the noise without estimation of local 
noise level present in the images. The second stage uses this filtered image as a 
guide image within a rotationally invariant non-local means filter. The proposed 
approach has been compared with related state-of-the-art methods and showed 
competitive results in all the studied cases. 
 

1 Introduction 

Magnetic resonance image (MRI) denoising is key preprocessing step in many im-
age processing and analysis tasks. There is a large amount of papers related to this topic 
[1]. Most of denoising methods can be classified on those that use the intrinsic pattern 
redundancy of the images and those exploiting their sparseness properties. 

On the first class, the well-known non-local means (NLM) filter [2] is maybe the 
most representative method. The bibliography related to extensions of this method is 
quite extensive [3-5]. On the other hand, sparseness-based methods try to reduce the 
noise by assuming that most of the signal can be sparsely represented using few base 
signals (using fixed bases like in FFT or DCT [6] or data dependent bases using for 
example PCA [7]).  

Recently, deep learning methods have also proposed to denoise MR images by train-
ing different architectures with pairs of noisy and noise-free input-outputs. Such meth-
ods try to infer the clean image from the noisy input. The main benefit of these tech-
niques is that after training, the denoising can be applied extremely fast (on GPUs). 
One of the first deep learning methods for denoising was proposed by Gondara [8] using 
convolutional denoising autoencoders though a bottleneck strategy to denoise 2D im-
ages. Benou et al [9] proposed a spatio-temporal denoising method using restricted 
Boltzman machines. More recently, Jiang et al. [10] proposed a specific Rician noise 
filter using a slice-wise convolutional neural network.  



2 
 

In this paper, we present a novel denoising approach based on the application of a 
3D Convolutional Neural Network using a sliding window scheme. The resulting fil-
tered image is used as a guide image to accurately estimate the voxel similarities within 
a rotationally invariant NLM (RI-NLM) strategy as done in Manjón et al. [7]. 

2 Material and Methods 

2.1 Image data 

 
Training dataset: To train a supervised neural network a ground truth is need to teach 
the network how the desired output looks like. Unfortunately, zero noise images do not 
exist and the only two options are to simulate noise free images or to work with a low-
noise image resulted from the averaging of multiple acquired images and to consider it 
as a bronze standard. The first option has indeed images with zero noise but at the 
expense of a simpler and less realistic anatomy. The second is anatomically more com-
plete but zeros noise condition is not met. In this paper, we have used both approaches. 
MNI synthetic dataset: We used 20 simulated T1 brain MRIs from the MNI brain sim-
ulator. To train the network several levels of stationary Gaussian and Rician noise (1% 
to 9% of maximum intensity) were added to generate the training data. Rician noise 
was generated by adding Gaussian noise to real and imaginary parts and then computing 
the magnitude image. 
IXI dataset: Since to acquisition of several MRIs is a costly process we used as a sur-
rogate denoised images from the IXI dataset. Specifically, we randomly selected 30 T1 
MRIs from this dataset and we denoised them using the PRI-NL-PCA method [7] which 
is a state-of the-art-method. Denoised images had virtually almost zero noise and the 
anatomy was minimally affected by the application of the filter as can be checked in 
the residual image obtained by subtracting the noisy and denoised image.  Again, to 
train the network several levels of noise were added to generate the training data (1% 
to 9% of maximum intensity). 
 
Test dataset: To be able to quantitatively compare the proposed method with previous 
methods, we used the well-known Brainweb 3D T1-weighted MRI phantom [11] as test 
dataset. This synthetic dataset has a size of 181x217x181 voxels (voxel resolution = 1 
mm3) and was corrupted with different levels of stationary Gaussian and Rician noise 
(1% to 9% of maximum intensity) .  

2.2 Preprocessing 

Classic preprocessing in deep learning consist of center the images by subtracting 
the mean and dividing by the standard deviation. Since our proposed method uses 3D 
patches as input of the network, this operation could be done to each patch inde-
pendently. However, since we use a sliding windows approach to denoise the images, 
we used a different approach to minimize block artifacts that could arise after mean 
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restoration and standard deviation restoration. First, we estimated a low-pass filtered 
image with a box-car kernel with the same size of the patch (local mean map). Second, 
we estimated local standard deviation map using the same patch size (local standard 
deviation map). Afterwards, these two images were used to normalize the input and 
output volumes by subtracting the local mean map and dividing by the local standard 
deviation map (see Figure 1). We found that this approach introduces significantly less 
blocking artifacts than the standard approach. 

2.3 Proposed method 

The proposed approach is based on a patch-wise single scale CNN (no max-pooling). 
The input and output of the proposed CNN are 3D patches of size 12x12x12 voxels. 
Such patches are extracted from the pre-processed images in an over complete manner 
with an overlapping of 6 voxels in all three dimensions. 
 
Differently from other approaches were different networks are trained to filter different 
levels of noise [10], our pre-processing fixes to approximately one the amount of noise 
present at each patch. Thanks to this, our network is able to blindly deal with arbitrary 
levels of noise and besides is naturally suited to deal with spatially variant noise levels 
which are quite common in modern MRIs. 
 
Overcomplete Patch-based  CNN 

The topology of the proposed network is the following. First, one input block of size 
12x12x12 composed of one 3D convolution and a RELU layer with 64 filters. Then, 
seven repeated blocks composed of a Batch-Normalization, a 3D convolution plus a 
RELU. Finally,  a last block composed of a RELU and a 3D convolution to produces a 
12x12x12 output patch (see figure 1). To train the network we used ADAM optimizer, 
100 epochs and a batch size of 128 patches. We used an early stop criterion using the 
validation data which represented the 10% of the training data. The whole network has 
a total of 779,009 trainable parameters.  
 

 
Figure 1:2D example of the proposed patch-based CNN model. Block design: Red 
(Batch Normalization), Blue (3D convolution) and Green (RELU). 
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We used a residual learning approach (i.e., the network learns how to produce noise 
map) as in [10] instead of using residual connexions in the network (i.e., the residual 
network is trained to produce denoised image) as we found this option more effective 
(faster training and better results). Basically, instead of learning the noise-free patch, 
we learn the noise present in the patch. This is done by the network simply removing 
correlated information in the input layer. Differently from [10] where the network re-
move the original image from the input, our network starts with a pre-processed patch 
that is highly similar to the output patch. Therefore, the effort of the network to remove 
the anatomy is lower and the problem to solve easier.  

We trained the network using around 300.000 patches randomly selected from the cases 
of each library (i.e. we trained a network using only patches from MNI dataset and one 
using only IXI dataset). We used the mean squared error as loss function.    Once the 
network is trained, the test image (i.e., the Brainweb phantom) is filtered using an over-
complete 3D sliding window approach. This overcomplete approach further reduces 
the noise by averaging several overlapping estimations and contributes to reduce block 
artefacts.  

Rotational invariant denoising 

As shown in Manjón et al. [7], when a good quality pre-filtered image is available 
we can use this image within a rotationally invariant NLM filter to robustly perform a 
local similarity estimation defined as follow: 

  

                        (2) 

where µNi and µNj are the mean values of patches Ni and Nj around voxels i and j in the 
guide image g, h is related to the standard deviation of the noise present on image y and 
Ω represents position of the elements of the search volume. We refer the interested 
reader to the original paper [7] to see the full details of the rotational invariant NLM 
filter. Rician noise bias was removed as described in Manjón el al [7]. It is worth noting 
that applying this rotational invariant NLM using the proposed CNN guide image not 
only outperforms the use of the CNN only but also helps to remove small remaining 
block artifacts.  

3 Experiments and results 

In this section, a set of experiments are presented to show how the hyper parameters 
of the proposed network were selected and some comparisons with state-of-the-art 
methods. To evaluate the results, we used the Peak Signal to noise Ratio (PSNR) esti-
mated between the denoised and the noisefree Brainweb phantom.  
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3.1 Network topology  

We explored several options to design the proposed patch-based CNN, such as the 
patch-size, number of layers or the number of filters. For the number of filters, we tested 
16, 32 and 64 filters, the results showed that the higher the number of filters the better 
the results. We chose 64 filters because 128 significantly increased the model size and 
training time but the improvement was modest. Regarding the number of layers, we 
found that increasing the number of layers to have a receptive field wider than the patch 
size was not improving significantly the results. We tested patch sizes of 6x6x6, 
12x12x12 and 24x24x24 voxels and we found that the best results were obtained for 
12x12x12 voxels (with 7 internal blocks covering a receptive field of 17x17x17 
voxels).  

3.2 Impact of training data   

We trained the designed network using the both described datasets (MNI and IXI) 
and compared the results on the Brainweb dataset used as testing dataset. We added 
Gaussian noise (range 1 to 9%) to these images to simulate noisy cases. We did not add 
Rician noise as the Rician bias correction is performed at postprocessing as described 
in [7]. We also evaluated the impact of the level of overlapping over the final results. 
Specifically, offsets of 6 and 3 voxels in all 3 dimensions were evaluated. The results 
are shown in table 1. As can be noted, the best results were obtained when using the 
IXI dataset. This was counter intuitive as we thought that the patterns of the synthetic 
MNI dataset and the Brainweb phantom being similar, the results would be better when 
using this dataset. We think that the patterns of the IXI dataset being richer and more 
complex allowed the network to better generalize. As expected, we found also that the 
higher the overlap the better the results (at the expense of a higher computational time, 
17 vs 120 seconds).  
 
Table 1: PSNR results on the Brainweb phantom for the proposed method for stationary 
Gaussian noise with two different training datasets (the MNI and IXI datasets). 

Filter Gaussian Noise level added on Brainweb Phantom 
1% 3% 5% 7% 9% Mean 

Noisy 
 39.99 30.46 26.02 23.10 20.91 28.10 

PB-CNN(MNI) 
off=6 

45.46 39.82 37.26 35.38 33.91 38.36 

PB-CNN(MNI) 
off=3 

45.58 40.02 37.51 35.65 34.22 38.59 

PB-CNN(IXI) 
off=6 

45.49 40.46 37.89 36.14 34.78 38.95 

PB-CNN(IXI) 
off=3 

45.82 40.70 38.18 36.44 35.10 39.24 
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3.3 Methods comparison 

We compared our proposed method with other recent state of the art denoising meth-
ods. The compared methods are called PRI-NL-PCA[7], BM4D[12],  MCDnCNNg 
(blind) and MCDnCNNs (several noise specific networks) [10] and the proposed 
method trained with IXI data. Both Gaussian and Rician noise with different levels 
were evaluated. Tables 2 and 3 summarize the results of the comparison.  

As can be noticed, the combination of the proposed PB-CNN with the RI-NLM fur-
ther improves the results for both stationary Gaussian and Rician noise. The proposed 
method outperformed the compared methods for all noise levels and noise types. 

 
Table 2: PSNR results on the Brainweb phantom of the compared methods for station-
ary Gaussian noise. 

Filter Gaussian Noise level added on Brainweb Phantom 
1% 3% 5% 7% 9% Mean 

Noisy 39.99 30.46 26.02 23.10 20.91 28.10 
PRI-NL-PCA 45.38 39.33 36.63 34.90 33.58 37.96 

BM4D 44.02 38.35 35.91 34.31 33.10 37.14 
PB-CNN 
(IXI) 

45.82 40.70 38.18 36.44 35.10 39.24 

PRI-PB-CNN 
(IXI) 

47.13 41.43 38.77 37.03 35.65 40.00 

 
Table 3: PSNR results on the Brainweb phantom of the compared methods for station-
ary Rician noise. Results of  MCDnCNNg and MCDnCNNg methods[10] were esti-
mated from figure 6. 

Filter Rician Noise level added on Brainweb Phantom 
1% 3% 5% 7% 9% Mean 

Noisy 40.00 30.49 26.09 23.20 21.04 28.16 
PRI-NL-PCA 45.31 39.34 36.58 34.74 33.28 37.85 

BM4D 44.09 38.35 35.84 34.17 32.88 36.99 
MCDnCNNg 43.80 38.10 36.00 34.50 33.00 37.08 
MCDnCNNs  45.20 39.80 37.20 35.20 33.50 38.18 

PB-CNN (IXI) 45.20 39.82 37.48 35.54 33.74 38.35 
PRI-PB-CNN 

(IXI) 
46.67 40.45 38.17 36.09 34.24 39.12 

3.4 Qualitative evaluation on real images 

Although the results on synthetic data are easy to interpret, they might by not realistic 
enough. To qualitatively evaluate the results of the proposed method we applied it to 
two real images and we evaluators visually the results. In figure 2 the results can be 
visually checked. As can be noticed, no anatomical information can be observed in the 
residuals. Finally, it is worth noting that a network trained on T1 images can be used to 
denoise T2 images effectively thanks to its patch-based nature.     
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Figure 2: Denoising example of real T1 and T2 images. From left to right: Noisy image, 
filtered image with the proposed filter and residual image (removed Rician noise). 
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