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Abstract

This paper introduces an innovative approach for handling 2D compound hy-

potheses within the Belief Function framework. We propose a polygon-based

generic representation which relies on polygon clipping operators, as well as

on a topological ordering of the focal elements within a directed acyclic graph

encoding their interconnections. This approach allows us to make the compu-

tational cost for the hypothesis representation independent of the cardinality

of the discernment frame. For belief combination, canonical decomposition and

decision making, we propose efficient algorithms which rely on hashes for fast

lookup, and which benefit from the proposed graph representation. An imple-

mentation of the functionalities proposed in this paper is provided as an open

source library. In addition to an illustrative synthetic example, quantitative

experimental results on a pedestrian localization problem are reported. The ex-

periments show that the solution is accurate and that it fully benefits from the

scalability of the 2D search space granularity provided by our representation.
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1. Introduction

Belief Function Theory (BFT) [1, 2] is an increasingly popular framework for

the generalization of probability and possibility theory by modeling imprecision

and partial ignorance of information, in addition to its uncertainty.

BFT is widely used in fundamental tasks which benefit from multi-modal5

information fusion, such as object detection and data association for assisted

driving [3, 4, 5], tracking [6, 7], object construction [8], outdoor localization [9],

or autonomous robot mapping and tracking [10, 11], medical imaging [12], re-

mote sensing [13], video surveillance [14], aircraft classification [15].

The main limitation, when dealing with such theory, since it copes with10

compound hypotheses, is the size of the set of hypotheses to handle, which

may become intractable when the size of the discernment frame increases. Such

issue becomes critical especially in higher dimensions, as when dealing with two-

dimensional (2D) spaces. In the rest of our paper, we define a set (in our case a

frame or a focal set) as being a 2D set if its elements are elements of the Cartesian15

product of two totally ordered sets. Accordingly, a 2D discernment frame is

defined as a frame of discernment which handles 2D focal elements. Now such

2D discernment frames can be encountered for instance in information fusion

in the image domain (e.g., [8]), in box particle filtering [7], or in localization

applications (e.g., [9]).20

In [8], the authors aim to reconstruct objects from fragmentary detections in

the image space. The discernment frame corresponds to the 2D image lattice.

BFT is then exploited in order to perform object-detection data association, spa-

tial extension of objects when new fragments are found, temporal conditioning

for object displacement/disappear modeling and spatial conditioning for object25

separation modeling. Focal elements are represented as set of non-intersecting

2D-boxes.

In [9], 2D BFT is applied to the global navigation satellite system (GNSS)

localization problem, where the information is represented by imprecise posi-

tion measurements provided by several satellite sources, where complex focal30
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elements shapes (ring sectors) are modeled as sets of boxes.

In [11] the authors perform scene environmental mapping by making exten-

sive use of evidential grids for spatial and temporal fusion, by converting the

original 2D domain in a map of 1D BBAs.

While several public belief function theory libraries exist [16, 17, 18], all of35

them limited to 1D representations, the use of 2D spaces for information fusion

has been recently explored for various tasks. In the following of this study, we

focus on 2D discrete discernment frames. An exhaustive representation of Ω

discrete hypotheses usually involves a discretization of the area as a grid, where

each cell of the grid represents a singleton hypothesis [19, 11]. Focal elements40

are then expressed by using a binary word, where a bit equal to 1 means that the

cell belongs to the focal set. Such straightforward binary-word representation of

hypotheses allows for the definition of operators on sets through simple bitwise

operations. However, such a representation suffers from major drawbacks when

used in real world applications. Since there are 2∣Ω∣ potential focal elements,45

large discernment frames become intractable, when the discretization resolution

or the size of the whole area increases (different tasks may require different

levels of precision for the solution, thus calling for a 2D space discretization

which would increase quadratically the representation space size).

For such reasons, some works rely on different approaches to handle the 2D50

case: by proposing a smart sub-sampling of the 2D space to maintain tractabil-

ity [19]; by proposing a sparse representation of the set of hypotheses, and by

keeping in memory only the ones which are carrying non-null information [9].

In order to make the representation manageable, [19] proposes to condition

the detections acquired from one sensor in its field of view, and to perform a55

coarsening at a lower spatial resolution of the focal elements, depending on the

physical properties of the sensor. While these workarounds help in practice,

they do not make the application fully scalable with the size of the scene, and

they involve approximations such as the already cited coarsening, or frequent

BBA simplification, which aims at maintaining under control the number of60

focal elements of the BBAs.
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Such limitations derive from the fact that the complexity of any basic opera-

tor between focal elements (e.g., intersection, union) depends on the cardinality

of the focal elements themselves. The works in [8] overcome this limitation by

proposing a representation of any focal element as a set of rectangular boxes, and65

then by expressing the basic operators as performed on arrays of rectangles. In

this setting the complexity of the basic operators will be a function of the number

of boxes, but it will be independent of the cardinality of the discernment frame.

However, such representation suffers from some practical limitations. First, the

representation is not unique. The same focal element may be represented by70

different sets of boxes, which do not allow for fast focal element comparisons

and lookup. Second, the box set representation implies a non-unique approxi-

mation of the real focal element shape once edges are not parallel to the axes of

reference. Geometric approximations of such focal elements may require a very

large set of boxes when precision is a concern. Moreover, subsequent operations75

involve increasing box fragmentation which may be detrimental both for perfor-

mance and for memory load. In order to avoid deep fragmentation, in [9] some

representation simplification procedures are presented, which in turn increase

the cost of BBA management.

In [20], the authors rely on a description of multidimensional focal elements80

by discretizing their support as a point cloud, and by deriving an approximation

of Dempster’s rule by Monte Carlo simulation. They underline the fundamen-

tal issue raised by representations based on parametric functions which lead to

difficult implementation of the elementary operations (intersection, union, and

complementation), which are needed for Dempster-Shafer reasoning. Alterna-85

tively to this representation, in this paper we propose a novel approach, which

overcomes the efficiency issues of parametric representations.

Following the idea of providing a sparse representation for 2D BFT, and

motivated by the great benefit that an efficient representation would carry to

high dimensional problems, we propose a new two-dimensional representation90

which has full scalability properties with respect to the size of the discernment

frame, while allowing a theoretical infinite precision (bounded by the hardware
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precision limitations).

Note that our purpose is different from theoretical studies in BFT [21] that

propose geometric interpretations to the classical belief assignment, in order to95

formalize and solve problems such as probabilistic approximation and canonical

decomposition. Indeed, whereas such works propose a geometrical formulation

of the basic belief assignment (BBA) itself, our focus is on the geometrical

representation of 2D focal elements.

This paper extends our preliminary conference work [22] and is organized as100

follows. Section 2 presents the efficient BBA representation we adopt for the case

of 2D discernment frames. Section 3 details the combination operators which

benefit from our representation, and Section 4 discusses the decision making

step. Section 5 presents the synthetic and the real data experiments, and we

conclude in Section 6.105

2. BBA representation

Let us denote by Ω the discernment frame, i.e., the set of mutually exclusive

hypotheses representing the solutions. The power set 2Ω is the set of the Ω

subsets having cardinality 2∣Ω∣. The mass function m, specifying a BBA, is

defined as m ∶ 2Ω → [0,1] such that ∑A∈2Ω m(A) = 1. A hypothesis A ∈ 2Ω such

that m(A) > 0, is a focal element of m. The information encoded by a mass

function can be represented in different equivalent formulations, most notably

belief (Bel), plausibility (Pl) and commonality (q):

Bel(A) = ∑
B⊆A

m(B), P l(A) = ∑
B∩A≠∅

m(B), q(A) = ∑
B⊇A

m(B),

defined ∀A ⊆ Ω.

A BBA is said to be dogmatic if Ω is not a focal element, i.e., m(Ω) = 0.

A BBA is said to be consonant if the focal elements are nested: ∀ (A,B) ∈

2Ω × 2Ω, m(A) > 0,m(B) > 0⇒ A ⊆ B ∨B ⊆ A.110

In the following sections, two complementary representations are proposed.

In Section 2.1, a compact polygon-based geometric focal element description,

for BBAs defined in 2D spaces, is detailed. It ensures low-level scalability for
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primitive operators, while exhibiting fast comparison and lookup capabilities. It

represents a generalization of the state-of-the-art representations [8, 19], which115

overcomes their limitations (outlined in Section 1).

In Section 2.2, a graph-based BBA description, independent from the BBA

representation and from the space dimensionality, is proposed. It encodes the

structural relationships between focal elements, and provides high-level scalabil-

ity capabilities, e.g., for decomposition methods (Section 3.2) and for decision120

making algorithms (Section 4). Graph construction, optimization and traversal

strategies are discussed.

Let us consider a 2D discernment frame Ω. We will refer to the illustrative

example in Figure 1. Such an example, inspired by [19], represents a typical

localization scenario, where the discernment frame is a bounded region repre-125

senting the ground plane.

2.1. Focal element geometric representation

As mentioned in the Introduction, 2D focal element representations based

on an exhaustive representation of Ω and binary words become intractable once

the size of one axis of the discernment frame becomes greater than a few tens of130

units, and the box set representation [8] suffers from geometric approximation

due to the fact that the number of boxes needs to be limited to small values.

In this work, we propose to represent the focal elements as generic polygons

(or sets of polygons for focal elements having multiple components, e.g., focal

elements with holes or which are split after a difference operation), by exploiting135

the capabilities of the generic 2D polygon clipping algorithms, efficient methods

for basic operator implementations (intersection, union, difference and XOR).

A focal element is represented by a set of closed paths, each of them represented

by an ordered array of vertexes (counter-clockwise for positive areas, clockwise

for holes). As operator implementations, we exploit an extension of Vatti’s140

algorithm for clipping [23] implemented in the Clipper library [24].

The polygons are constrained to be simple, i.e., defined by closed simple

paths (no crossing), with a minimum number of vertexes (no vertex joining two
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(a) (b)

(c)

Figure 1: Illustrative localization example. (a) BBA definition through its focal elements:

camera detection m1 (red), track at t− 1 m2 (green), road presence prior m3 (blue), building

presence mask m4 (gray). (b) Focal elements obtained as a result of performing a conjunctive

combination over the defined BBAs. (c) Intersection-inclusion graph and the result of graph

simplification. The solid lines show the inclusion relationship, while the dashed lines highlight

the intersection relationship. X∗ is the set with maximum BetP value, retrieved as the result

of the proposed BetP maximization method.
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Figure 2: Example of representation of the focal element P (containing a hole), as a set of

polygons. The external and the internal circular paths are stored in counter-clockwise and

clockwise directions respectively.

co-linear edges). Figure 2 shows an example of focal element representation as

two polygons (one of them representing a hole). In case of multiple polygons145

per focal element, an additional constraint needs to hold: Given the set of paths

composing a focal element, no edge of one path can cross an edge of another

path. Under these constraints, the complexity of the basic operators between

two polygons having n and m number of vertexes respectively, is O(nm). Such

lightweight representation presents also the advantages of uniqueness and preci-150

sion. The set of (circular) vectors of vertexes of a focal element (set of polygons)

provides a unique representation. The vertex coordinates use integer values for

numerical robustness and correctness. This means that the continuous repre-

sentation provided by polygons implies an underlining discretization. However,

differently from the previous approaches, the coordinates can be rescaled at the155

desired level of precision (up to ≈ 1019) without any impact on the speed and

memory requirements of the algorithm, being bounded only by the numerical

representation limits of the hardware. This implies full scalability of the focal

elements with respect to their size.

Example 1. Figure 1a shows an example of focal elements in the case of a lo-160

calization application. The camera detection (red) is represented as a disk focal

element, whereas the focal elements which have the shape of ring sectors embed

the imprecision of the location and the ill-knowledge of the camera extrinsic pa-
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rameters; the track (green) represents the location of the target at the previous

frame, whereas its dilation is used in order to model the imprecision in its posi-165

tion introduced by time; the gray and blue focal elements belong to two different

BBAs representing scene priors, of building and road presence respectively. The

disk shaped focal elements are modeled as 64 to 128 vertexes regular polygons.

2.2. Graph-based representation

In the previous section, we have highlighted that an efficient geometric rep-170

resentation, as the one proposed, may lead to the definition of basic operators

(e.g., intersection, union) which are cardinality independent (and thus scalable).

However, such representation alone cannot guarantee full scalability properties

when dealing, for example, with decision making algorithms, which work at

singleton hypothesis level. Thus, claiming that a representation is spatially175

scalable requires some additional mechanisms which enforce scalability at an

higher operational level than primitive operators on sets.

Indeed, many operations on BBAs, used for BBAs combination and decision

making, can be expressed as algorithms which depend only on how the focal

elements intersect with each other, irregardless of the actual shape or size of180

such elements. Typical use cases which need an efficient data structure, serving

as the foundation for the proposal of efficient algorithms, are the canonical

decomposition (Section 3.2) and the BetP maximization (Section 4).

Together with an efficient geometric representation, we propose a generic

representation, independent from the actual geometric representation chosen,185

which expresses the relationships between the focal elements of a given BBA.

In the following sections, we will propose first a straightforward representation

based on graphs, then we will highlight its limitation, and, finally, we will pro-

pose some optimization techniques to improve its efficiency.

2.2.1. Straightforward graph definition and construction190

We propose to encode the relevant topological links between the focal el-

ements as an intersection-inclusion graph, i.e an intersection graph where an
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edge is augmented in the case of a (directional) inclusion relationship.

Let us define the focal elements set as A = {A1,A2, . . . ,An}. For opti-

mization reasons explained further, the focal elements are labeled according to

decreasing cardinality and the ordering follows the element label:

∀ (Ai,Aj) ∈ A ×A, i < j Ô⇒ ∣Ai∣ ≥ ∣Aj ∣ .

In the case of different focal elements with the same cardinality, the topologi-

cal order is not unique. Thus, the graph representation itself, differently from195

the geometric one, is not unique in general. However, non-uniqueness, given

the low-level polygon representation, is not a necessary property. Moreover,

graph optimizations and graph-based algorithms (detailed further) do not re-

quire uniqueness as a prerequisite.

We build a directed acyclic graph (DAG) G = (V,E) where each node v ∈ V is200

a focal element and each edge e ∈ E represents a non empty intersection between

two focal elements, with the direction of the edge respecting the topological

ordering. The inclusion relationship information is encoded into separate arrays.

Each node has a reference to its including nodes with the lowest and highest

label. For example, if focal element A5 is included into A1, A3, A4, then the205

node v5 carries two pieces of information, namely ll5 = 1 and lh5 = 4, where llj and

lhj stands for lowest and highest label including focal element Aj .

Let us define the kth path of length m in the intersection-inclusion graph

G = (V,E) as P
(m)
k = ⟨vk,1, vk,2, . . . , vk,m⟩. Such path represents the intersection

between all the focal elements related to the nodes included in the path. In210

the following, we will refer to the intersection derived from a path as the one

computed from all its nodes.

Proposition 2.1. For any non empty intersection I derived from a set Â of

focal elements, there exists a path P in the intersection-inclusion graph G, con-

necting the elements of Â.215

Proof. Let us consider Â = {A1, . . . ,Am} as the target set of focal elements
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(I = ⋂Ai∈Âi
A). It follows that, given the graph G = (V,E):

∀(Ai,Aj) ∈ Â × Â, i < j ∣Ai ∩Aj ∣ ≠ 0⇒ vi, vj ∈ V, (vi, vj) ∈ E.

Since I ≠ ∅, any node at index i is connected to every node at index j, such

that j > i.

The above formula implies:

∀vi ∈ V, (vi, vi+1) ∈ E,

a sufficient condition for the existence of the path P (m) = ⟨v1, v2, . . . , vm⟩.

Definition 2.1. A path P
(m)
k is called dead if the intersection among the m

focal elements corresponding to its nodes is the empty set.220

Definition 2.2. Given two paths P
(m)
k and P

(n)
h , P

(m)
k is called superpath of

P
(n)
h if m > n and:

∀v ∈ P (n)h ⇒ v ∈ P (m)k .

Conversely, P
(n)
h is called subpath of P

(m)
k .

Definition 2.3. A not dead path P
(m)
k , leading to the intersection Ik is called

redundant if there exists another path P
(n)
h leading to the intersection Ih, such

that Ih = Ik, and P
(n)
h is a superpath of P

(m)
k .

In the following, we will refer to a path which is not redundant, equivalently,225

as a non-redundant path. While the graph structure can be used to explore all

the possible intersections between focal elements, it shall be as efficient as possi-

ble in order to avoid exploring dead paths, while traversing only non-redundant

paths, since they are by construction the paths carrying the greatest amount

of structural knowledge (they gather all the focal elements which include the230

target intersection set).

2.2.2. Graph traversal and limitations

The determination of the useful paths (i.e., neither dead nor redundant) is

performed through graph traversal. According to the chosen ordering (decreas-

ing cardinality), each node is iteratively selected as the root. For each root,235
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a depth first search strategy is used to traverse the graph. Then, given the

current node vi, the intersection between all the nodes of the current path is

propagated as Ii; given an edge e = (i, j), the node Aj (for notation shortness

a node is equivalently called by its represented focal element) is explored if

∣Ij ∣ = ∣Ii ∩Aj ∣ > 0. Such an operation is equivalent to performing a dynamic240

graph pruning which is a function of the current path, as soon as some branch

leads to a dead path. Then, even if the number of node visits can be very large

according to a brute force exploration, the dynamic pruning helps to cut out

early dead paths, making the number of operations much lower in practice. In

this form, however, the worst case for pruning happens with consonant BBAs,245

where every edge represents an inclusion relationship. In such case, the graph is

complete, and the entire graph would need to be explored without any pruning

possibility, even if most of the paths would be redundant. Such an observation,

together with the fact that in practice consonant BBAs are widely used as ba-

sic representation of the initial imprecision increase with certainty, e.g., in the250

Dubois and Prade BBA allocation [25], justifies the use of the inclusion infor-

mation for simplifying the graph and optimizing the traversal. In the following

section, some optimization mechanisms will be proposed in order to reduce the

number of explored paths during the traversal, thus decreasing the average com-

plexity of the algorithms which will be based on the graph representation. Three255

main sources of optimization will be presented.

2.2.3. Graph optimization

Proposition 2.2 (Root suppression). Given the current root node vj ∈ V , if:

∃vi ∈ V, (vi, vj) ∈ E, i < j s.t. Aj ⊊ Ai,

every path originating from root vj is redundant.

Proof. Let us consider a generic path starting at the root vj : P
(m+1)
k = {vj , vk,1, . . . , vk,m}.

By definition of a DAG, the index of the nodes vk,h, h ∈ {1 . . .m}, is higher than

j, and, thus, than i. Let us consider the corresponding set of focal elements
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Âk = {Aj ,Ak,1, . . . ,Ak,m},

Ik = Aj ∩ ( ⋂
h=1...m

Ak,h) ,

and the augmented set Â′
k = {Ai,Aj ,Ak,1, . . . ,Ak,m},

I ′k = (Ai ∩Aj) ∩ ( ⋂
h=1...m

Ak,h) = Aj ∩ ( ⋂
h=1...m

Ak,h) = Ik.

Moreover, the path P
′(m+2)
k = {vi, vj , vk,1, . . . , vk,m} is a superpath of P

(m+1)
k .

It follows that P
(m+1)
k is a redundant path.260

Root suppression implies that only root nodes which correspond to focal

elements not included in some others preceding them in topological order, can

produce paths which are non-redundant. Thus, all the other nodes are sup-

pressed as possible roots for the traversal. Such property justifies the choice265

of a topological sorting in descending order of cardinality. Algorithm 1 shows

where root suppression is used. After constructing the graph, each node is taken

into account as candidate root for depth first search. Root suppression is used

in order to filter root candidates for the following graph traversal operations.

Proposition 2.3 (Early stopping). Given the current root vr, a path containing270

a node vj included in a node vh, h < r is redundant.

Proof. Let us consider the generic path starting at the root vr and contain-

ing vj : P
(m+n+2)
a,b = {vr, va,1, . . . , va,m, vj , vb,1, . . . vb,n}. The corresponding set

of focal elements is Âa,b = {Ar,Aa,1, . . . ,Aa,m,Aj ,Ab,1, . . .Ab,n} leading to the

intersection Ia,b. Since Aj ⊂ Ah, we can define the augmented set275

Â′
a,b = {Ah,Ar,Aa1, . . . ,Aa,m,Aj ,Ab1, . . .Ab,n}, leading to the intersection:

I ′a,b = (Ah ∩Aj) ∩Ar ∩ ( ⋂
i=1...m

Aa,i) ∩ ( ⋂
i=1...n

Ab,i) = Ia,b,

since the term (Ah ∩Aj) reduces to Aj .

Proposition 2.1 guarantees that the superpath

P
′(m+n+3)
a,b = {vh, vr, va,1, . . . , va,m, vj , vb,1, . . . vb,n} exists. Thus, the path P

(m+n+2)
a,b

is redundant.280
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The early stopping criterion allows us to stop exploring a node if it is included

in an already explored root. The constraint is equivalently expressed as the fact

that early stopping is performed at vj if llj < r (among the nodes/focal elements

that included vj , indexed in [llj , lhj ], there is at least one that has already been

used as a root).285

Early stopping is applied during graph exploration (see Algorithm 2 and

Algorithm 3). It serves as a precondition for exploring or not a child of the

current node.

Proposition 2.4 (Graph simplification). Given a node vj which has multiple

incoming inclusion edges from {vhi }h=1...m
, all the edges but the one from the290

highest indexed node in topological order, (vmi , vj), belong to redundant paths.

Proof. First, one can demonstrate that, after removing the inclusion edges from

{vhi }h=1...m−1
, vj is still reachable from v1

i . Since the edge between vmi and vj

is kept, it is equivalent to demonstrate that vmi is reachable from v1
i .

∀Aki ,Asi , (k, s) ∈ {1, . . . ,m}2
,Aki ∩Aj = Aj ,Asi ∩Aj = Aj ⇒ ∣Aki ∩Asi ∣ ≥ ∣Aj ∣ ≠ 0

(1)

Thus, there exists a path from any node {vhi }h=1...m−1
to vmi , and, consequently,

to vj .

Finally, we demonstrate that, if one of the removed edges is included in a

path, that path is redundant.295

Let us consider the path P
(n+q+2)
a,b = {va,1, . . . , va,n, vhi , vj , vb,1, . . . vb,q}, where

h < m, leading to the intersection Ia,b. Let us consider the node vki , h < k ≤ m,

which, by topological ordering, cannot be already included into P
(n+q+2)
a,b .

Let us consider the superpath P
′(n+q+3)
a,b = {va,1, . . . , va,n, vhi , vki , vj , vb,1, . . . vb,q},

leading to the intersection I ′a,b. Two edges have been added: (vhi , vki ), guaran-

teed to exist by Equation (1); (vki , vj), that exists by definition of the problem.

I ′a,b = Ahi ∩ (Aki ∩Aj) ∩ ( ⋂
i=1...n

Aa,i) ∩ ( ⋂
i=1...q

Ab,i) = Ia,b,

since the term (Aki ∩Aj) reduces to Aj .

Thus, P
(n+q+2)
a,b is a redundant path.300
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Graph simplification boils down to keeping, for each vj , only the incoming

inclusion connection from the node with the highest index in topological order

lhj . Algorithm 4 details the graph construction steps, and shows how graph

simplification is exploited. Any intersection edge between two nodes is added

immediately, while addition of the inclusion edges is delayed until all the pairs305

of nodes are inspected (only llj and lhj indexes are updated). At the end, for

each node j, only the inclusion edge from lhj is created (if lhj is not null).

Now consider the case of a consonant BBA with k focal elements. In its

pure form, the representation leads to a complete DAG, with 2k possible paths.

However, after graph simplification, only the edges going from element Ai to310

Ai+1 are kept, resulting into k − 1 effective edges. Moreover, due to root sup-

pression, only the first node will be used as root, so k nodes in total will be

explored, leading to k non-redundant paths, providing k different intersections,

equal to the k original focal elements.

Node ll lh Use as root Deleted edges (simplification)

1 null null yes -

2 1 1 no -

3 1 1 no -

4 1 1 no -

5 1 4 no (v1 → v5), (v2 → v5)

6 1 3 no (v1 → v6), (v2 → v6)

7 1 5 no (v1 → v7), (v2 → v7), (v4 → v7)

Table 1: Graph optimization main steps for the illustrative example in Figure 1.

Example 2. We refer to the example in Figure 1. The graph on the left of315

Figure 1c illustrates the result of unoptimized graph construction. Intersection

relationships are shown as dashed arrows, while inclusion relationships are de-

picted as solid arrows. The optimization steps are shown in Table 1. First,
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v1 includes all other focal elements, thus only v1 will serve as a root for graph

traversal. Then, since v5, v6, v7 have multiple including nodes, for each of such320

nodes, all the incoming inclusion edges are deleted but the one arriving from

the node with label lh (4, 3 and 5, respectively). The graph on the right side of

Figure 1c shows the final form of the intersection-inclusion graph for the given

BBA. The X∗ set corresponds to the BetP maximizer set from the optimized

graph, explained in the Example 6 in Section 4.325

3. BBAs combination

3.1. Classical combination rules and hashing

Numerous combination rules exist in order to mix the information provided

by two sources. When the sources m1 and m2 are cognitively independent, the

conjunctive combination rule is the most popular among them:

∀A ∈ 2Ω, m1 ∩◯m2 (A) = ∑
(B,C)∈A1×A2,

B∩C=A

m1(B)m2(C),

where Ai is the set of focal elements of mi. In computational terms, the rule

involves the construction of a new BBA by performing intersection operations

between all pairs of focal elements from the two BBAs. According to the sum in330

the previous equation, when creating a new focal element from an intersection,

one has to check for its existence and to add up some elementary mass product

value if it already exists. The necessity of accumulating elementary masses into

already existent focal elements (maybe computed with different operators than

intersection, e.g., union in the case of the disjunctive rule), and thus to do an335

existence check every time a new mass value is computed, is not specific of the

conjunctive rule, but it is shared with several other rules (e.g., the disjunctive

rule [26], cautious rule [26] and evidential q-relaxation [27]).

The above considerations justify the need for a BBA representation which

allows for a fast lookup of a focal element in an array. The uniqueness and340

compactness of the proposed representation allow for an efficient and low col-

lision prone hashing. The sparse set of focal elements of a given BBA can be
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stored in a hash table, where the circular vector of vertexes is used to compute

the hash. For a given polygon, its hash will be unique provided that we fix a

policy to decide the starting vertex (e.g., the top left). The array hashing func-345

tion is equivalent to the one implemented in the Boost library’s [28] hash range

method.

The binary-word representation, in comparison, uses the full word as a

unique key. However, the key length (in number of bits) grows linearly with

the cardinality of the discernment frame, requiring the use of big data struc-350

tures in order to store it. On the contrary, the proposed hash exhibits collision

resistance property despite a fixed length. The box set representation [9], be-

ing not unique, does not allow for direct hashing without the extraction of the

minimal set of vertexes on the boundary. A cheap alternative could be to hash

the bounding box of the focal element, but this could cause frequent collisions,355

since it is common to have spatially close focal elements related to the same

BBA. On the contrary, polygon hashing can make direct use of the vertex data,

thus not requiring any additional preprocessing step.

The hashing capability of the proposed representation may provide benefits

not only in case of BBAs combination rules, but for any operator which implies

mass accumulation. Let us consider the case of coarsening [29]. Given two

discernment frames Ω1 and a finer Ω2, let us define a refining function ρ from

2Ω1 to 2Ω2 , such that {ρ({o}), o ∈ Ω1} is a partition of Ω2 and ∀A ⊆ Ω1, ρ(A) =

⋃o∈A ρ(o). Let us consider the coarsening function ρ−1. According to [29],

the least committed solution for defining ρ−1 is the following outer reduction

function:

∀B ⊆ Ω2, ρ
−1(B) = {o ∈ Ω1 s.t. ρ(o) ∩B ≠ ∅} .

The BBA mΩ2↓Ω1 defined on Ω1 from a given BBA mΩ2 , defined on Ω2, and

the coarsening function ρ−1, is given by:

∀A ∈ 2Ω1 ,mΩ2↓Ω1(A) = ∑
B⊆Ω2,ρ−1(B)=A

mΩ2(B).

It follows that the derivation of mΩ2↓Ω1 can largely benefit from hashing, since

a focal element mass may be the result of several fragmented masses. Similar360
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deductions can be derived for operations such as conditioning [2], or marginal-

ization of discernment frames defined as Cartesian products.

Example 3. Figure 1b illustrates the result of the conjunctive combination of

the sources introduced in Figure 1a. Seven focal elements are produced.

3.2. Canonical decomposition and cautious rule365

Canonical decomposition of a belief function allows us to represent a com-

plex non-dogmatic BBA 1 as the result of a combination (conjunctive combi-

nation will be referred throughout the discussion) of elementary belief states,

namely Simple Support Functions (SSF) if the decomposed BBA is separable or

a mixture of SSF and Inverse Simple Support Functions (ISSF) otherwise. The370

canonical decomposition, besides being a convenient representation for some

combinations, has its interest into allowing the introduction of new combina-

tion rules, as the Denoeux cautious conjunctive rule, that is the least committed

rule among conjunctive ones [26].

The decomposition of a non-dogmatic BBA, defined by Smets [30], uses the

concept of generalized Simple Support Function (GSSF), defined as:

µ ∶ 2Ω → R, µ(A) = 1 −w,

µ(Ω) = w,

µ(B) = 0 ∀B ∈ 2Ω/ {A,Ω} ,

where A ≠ Ω and the weight w ∈ R+. The original BBA m can be then expressed

as a combination of basic GSSFs: m = ∩◯A⊂ΩA
w(A). The conjunctive weight

function w(⋅) is associated to any hypothesis included in discernment frame Ω:

lnw(A) = − ∑
B⊇A

(−1)∣B∣−∣A∣ ln q(B), ∀A ⊂ Ω

According to GSSF definition, only weights w(A) ≠ 1 are useful for representing375

the original BBA (i.e., not leading to a vacuous GSSF). While consonant BBAs

represent a special case for weights computation, where an iterative algorithm

1Dogmatic BBAs are transformed into non-dogmatic ones by an ε discounting.
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with linear complexity in terms of the number of focal elements exists, the

generic case raises computational problems.

In the 1D case, the fastest weight computation approach exploits the Fast380

Möbius Transform (FMT) [31] for transforming the 2∣Ω∣ array of masses (dense

representation) to a 2∣Ω∣ array of commonalities q, and finally to a 2∣Ω∣ array

of weights. While this procedure is convenient for small Ω cardinalities, it is

computationally infeasible for large discernment frames, like in the 2D case.

In this work, we propose to compute efficiently the canonical decomposition385

by constructing an ad-hoc discernment frame specific to the considered BBA.

The idea is that, even if the considered 2D discernment frame Ω is vast, for the

considered BBA, the number of focal elements is limited and generally they are

less than a few tens. Thus, the considered BBA can be represented on only a

very restricted subpart of Ω with an effective spatial resolution that depends on390

the actual focal elements and will generally be much coarser than Ω resolution.

Even more, the 2D structure of the focal elements is useless provided that the

interaction properties between focal elements are preserved. Thus, for a given

BBA, we aim to compute the coarsest possible equivalent representation where

each element can be viewed as a unitary piece of information. If one retrieves this395

alternative representation, then it may be transformed into a 1D equivalent (by

processing each of its elements as a singleton hypothesis) where the discernment

frame is small, and thus suited for the FMT computation. Thus, the canonical

decomposition no longer depends on the shape and original cardinality of the

focal elements, but on their ad-hoc representation.400

From mΩ to coarse representation.

Definition 3.1. A set of disjoint sets D is a partition of the disjunction

X = ⋃A∈AA of the set of focal elements A, where each element Di (namely, a

disjoint set), satisfies:

∀Di ∈ D,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Di ⊂ X ,

∣Di ∩Dj ∣ = 0, ∀Dj ∈ D, i ≠ j

∀A ∈ A, ∣Di ∩A∣ ≠ 0 ⇐⇒ Di ⊆ A
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(a)

1 3

24

(b)

(c)

Figure 3: Illustrative example of coarse discernment frame extraction for canonical decom-

position. (a) Initial BBA definition (focal elements are labeled); (b) Optimized intersection-

inclusion graph for the given BBA: since I4 is included in both I1 and I2, the edge between

v1 and v4 has been deleted by graph simplification; (c) Final set of disjoint sets extraction

(disjoint sets are labeled). In order to stress that the x and y axes are generic (dependent on

the application), they are not labeled.
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In addition, defining the set Âi:

Âi = {A} A∈A
Di⊆A

,

as the set of all the focal elements including Di, the following condition holds

(maximal coverage):

∀Di ∈ D, ∄Dj ∈ D, i ≠ j, s.t. Âi = Âj

The coarsest possible representation consists in a subdivision of the dis-

cernment frame into a set D of disjoint sets. Basically, a set of disjoint set

is the minimum cardinality set of non intersecting sets which do not cross the

boundaries of any focal element. The set has minimal cardinality because of the405

maximal coverage constraint on each disjoint set.

In order to extract the set D, one may exploit the graph representation intro-

duced in Section 2.2. In graph terms, maximal coverage constraints guarantee

that exactly one disjoint set for each non-redundant path can be constructed

(thus, minimizing the number of disjoint sets). The graph traversal is conducted

in a depth first search manner. Let us consider the addition of a new Di ele-

ment to D, that is the result of the intersection of all the focal elements in the

path. For each Ak in the explored path, a reference to the ith disjoint set is

stored in an auxiliary set of labels Sk. Sk represents the set of all disjoint sets

included into the focal element Ak. Now, when a new candidate D̃l is found, it

is not guaranteed to be disjoint from elements already present in D. In order

to extract the related set Dl one has to apply the difference operator between

D̃l and any element already included in D. The information regarding which

disjoints sets are possibly included comes from the Sk sets. If D̃l is the result

of the intersection along the path of length m Pl = {Al,1, . . . ,Al,m}, the indexes

hl of the disjoint sets to subtract can be retrieved as:

hl = ⋂
k=1...m

Sl,k,

representing the labels of all the disjoint sets included into D̃l. The resulting

Dl will be obtained as:

Dl = D̃l ∖ {Dh}h∈hl
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If the sets are implemented as bit strings, the disjoint sets retrieval is as fast as

m bitwise operations. After the difference operation, the resulting disjoint set

could be empty, and so ignored. Algorithm 2 provides a detailed outline of the

set of disjoint sets extraction procedure through depth first search traversal.410

D̃ = ⋂i Ii
D

I1 I2 I3 I4

A ✓ ✓ ✓ DA = D̃A

B ✓ ✓ ✓ DB = D̃B

C ✓ ✓ DC = D̃C ∖ {DA,DB}

D ✓ ✓ DD = D̃D ∖ {DA}

E ✓ DE = D̃E ∖ {DA,DB ,DC ,DD}

F ✓ DF = D̃F ∖ {DA,DB ,DC}

Table 2: Coarse representation computation from graph representation.

Example 4. Figure 3 shows the disjoint set decomposition on a 2D didactic

example. Each disjoint set corresponds to a subset of one or multiple focal

elements which does not span over a focal element boundary. Table 2 specifies

the disjoint set computation procedure, as D elements are extracted in the order

assigned by the graph traversal. Each row corresponds to a path which possibly415

leads to a disjoint set. The candidate disjoint set D̃A, for example, is the result

of I1 ∩ I2 ∩ I3. Candidates are then transformed into actual disjoint sets by the

difference operator. Let us specify the case of D̃D. Since D̃D is the intersection

between I1 and I3, we focus on the sets S1 = {A,B,C} and S3 = {A}. In

this example, the content of S1 means that, among all the already extracted D420

elements, DA, DB, DC are included into I1. The vector of indexes to subtract

is computed as hl = S1 ∩ S3 = {A}. Thus, among all the already extracted D

elements, D̃D includes the disjoint set DA, which has to be subtracted. Finally

DD = D̃D/ {DA}. The intersections I2∩I3 and I2∩I4 are not explored, since both
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I3 and I4 are included in I1, which is an already explored root (early stopping).425

Moreover, for the same reason, nodes corresponding to I3 and I4 are not used

as root (root suppression).

From the coarse representation to 1D BBA. As soon as the D set is

fully constructed, the sets Sk serve to the conversion between the original BBA

and a compact 1D representation. The new 1D BBA has a new discernment

frame Ω′ of cardinality ∣D∣. The indexes of the disjoint sets represent the sin-

gleton hypotheses the 1D BBA in Ω′. Each focal element Ak is converted to

a compound 1D hypothesis by using the Sk, which stores the indexes of the

disjoint sets in D which, when performing a union operation, form the exact

original set. Thus, each Ak gives rise to:

mΩ′

( ⋃
s∈Sk

{s}) =mΩ(Ak)

Given that the cardinality of the ad-hoc 1D discernment frame Ω′ is lower than

a few tens of elements in practical cases, it is then suitable for the applica-

tion of the FMT for the weight computation. Once the weights along with the430

corresponding canonical decomposition sets are retrieved, the canonical decom-

position of the original BBA can be obtained by mapping the 1D decomposition

sets, expressed as union of singleton 1D hypotheses, to 2D sets, expressed as

union of elements of D

Example 5. We refer to the decomposition depicted in Figure 3. The new435

discernment frame is Ω′ = {A,B,C,D,E,F}. All the original focal elements

translate to focal elements in Ω′. For example, mΩ′

({A,D}) =mΩ(I3).

Such canonical decomposition approach is now fully scalable with the cardi-

nality of the discernment frame, and it is especially convenient when the number

of focal elements is much smaller than ∣Ω∣. Since the conjunctive canonical de-440

composition is trivially propagated when applying the conjunctive rule to two

canonically decomposed BBAs, the typical scenario of applying the decompo-

sition (e.g., for tracking), is at the BBA construction stage and when BBA
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approximation is needed. At BBA construction stage, the number of focal el-

ements is usually contained, and the consonant property of a BBA may be445

exploited for even faster computation. At BBA approximation stage, the num-

ber of focal elements is intentionally reduced, while the BBA is not consonant

in general, making it the ideal scenario for the exploitation of the presented

approach.

The canonical decomposition extraction approach allows us to use an alter-

native combination rule, which is particularly useful when the source cognitive

independence assumption (assumed by the conjunctive rule) is not valid. The

cautious rule [26] between two sources m1 and m2, with w1 and w2 associated

canonical decomposition weight functions, is defined as:

m1 ∧◯m2 = ∩◯A⊂ΩA
w1(A)∧w2(A)

where ∧ denotes the minimum operator. In algorithmic terms a new canonical450

decomposition is built by including all the elements of the two initial decom-

positions with weight value lower than one. As for the case of the conjunctive

rule, hashing can still be used for fast lookup of equal elements in the two

decompositions.

3.3. Evidential q-relaxation455

Recent work [27] introduces a BBA combination method which is robust

to unreliable sources. The evidential q-relaxation, inspired by its equivalent

in interval analysis (IA), allows us to relax a given number of sources when

combining several belief functions. Let us denote HN
r the hypothesis that only

r out of N sources are relevant, i.e., q = N − r have to be relaxed. Let us call

A = {A1, . . . ,AN}, as an N-tuple of hypotheses, for Ai ⊂ Ω, i ∈ [1,N]. Out of the

N hypotheses forming an N-tuple, only r must be kept. Such meta-knowledge

can be mapped as [27]:

ΓA(HN
r ) = ⋃

A′
⊆{A1,...,AN},∣A

′
∣=r

⎛
⎝ ⋂
A∈A′

A
⎞
⎠
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For any element B ⊆ Ω, its mass will be the sum, over all ΓA(HN
r ) which are

equal to B, of the products of masses of the focal elements of A:

∀B ⊆ Ω,m [HN
r ] (B) = ∑

A⊆ΩN ,ΓA(HN
r )=B

[
N

∏
i=1

mΩ
i (Ai)]

Such a rule corresponds to a generalization of classic combination rules, since

the special case of r = N (i.e., do not relax any source) corresponds to the

conjunctive rule, while the case r = 1 corresponds to the disjunctive rule.460

In computational terms, when considering the computation of the ΓA(HN
r )

terms that appear combinatorial in terms of N and r, the algorithm has higher

time complexity than classic combination approaches, depending on the value of

q. However, even for small values of q, such a method can dramatically improve

the fusion performance in presence of outlier sources. Moreover, the proposed465

representation boosts (once more) the efficiency of the method, in terms of the

efficient basic operators (the method makes heavy use of intersection and union

operators), as well as of the use of hashing for fast accumulation of elementary

masses.

4. Decision making470

Once the different sources have been combined, the decision is generally

taken on singleton hypotheses ω by maximizing the pignistic probability, defined

as:

∀ω ∈ Ω, BetP (ω) = 1

1 −m(∅) ∑B⊇ω
m(B)
∣B∣

.

Even if the search space size is now ∣Ω∣, the decision making process is dependent

on the cardinality of the discernment frame, and thus not scalable, limiting the

precision level which can be set for a specific context.

In order to overcome this limitation, we propose a maximization algorithm

which is independent from the cardinality of the sets, and which is only related475

to the number of focal elements in the BBA.
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Definition 4.1. Given a set of focal elements A = {A1,⋯,An} a maximal

intersection Im is derived from the set of focal elements Ã ⊆ A, such that any

different focal element added to Ã would lead to an empty intersection:

Im = ⋂
Ak∈Ã

Ak, Ã ⊆ A, ∣Im∣ > 0 s.t.

∄As ∈ A ∖ Ã, ∣As ∩ Im∣ > 0.

The underlying idea is that, since BetP is an additive measure, its maximum

value can be achieved only for elements of the discernment frame which present

maximal intersections.

The set X∗ of hypotheses that maximize the BetP is researched within the

set of maximal intersections I:

X∗ = arg max
Im∈I

BetP (Im)
∣Im∣

,

where the BetP function for compound hypotheses derives from the generalized

formula:

∀A ∈ 2Ω, BetP (A) = 1

1 −m(∅) ∑
B∈A,B∩A≠∅

∣A ∩B∣
∣B∣

m(B).

Consequently to this formulation, the BetP maximization algorithm boils down480

to the subproblem of maximal intersection search. The solution of this subprob-

lem may exploit of the graph-based representation presented in Section 2.2 for

fast lookup of maximal intersections.

Corollary 4.1. Given the intersection-inclusion graph G, a maximal inter-

section Im is represented by a non-redundant path Pm which is not a subpath485

of any other non-redundant path.

Proof. Let us assume that Im is redundant. Thus, there exists a superpath

leading to the same intersection. Then, Im cannot be maximal.

Let us assume that Pm is a subpath of another non-redundant path Pn,

n > m. Thus, since non-redundant paths cannot be dead paths, Pn leads to a490

non empty intersection. Then, Im cannot be maximal.
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The graph-related definition of maximal intersection implies that any inter-

section not being located at a leaf of the dynamic graph cannot be a maximal

intersection. The graph is said dynamic in the sense that a leaf is not only a

node with no outgoing edges, but it is any node for which, given the current495

path, no outgoing edge can be explored further without leading to a dead path.

Then, each leaf l and the resulting Il is a candidate for maximal intersection.

However, it could be non-maximal, as its associated set Ã could be a subset of a

maximal intersection which has already been found. So, when a maximal inter-

section Im is found, the list pm of focal sets involving it is stored (using a bit-set500

representation). Once the new candidate Il is produced, the pl list is tested

for inclusion against the stored candidates (by an AND operation between the

bit-sets). Algorithm 3 provides full details on the depth first search strategy for

the computation of maximal intersections.

Path Maximal intersection

⟨v1 → v2 → v3 → v6⟩ yes

⟨v1 → v2 → v4 → v5 → v7⟩ yes

⟨v1 → v3 → v6⟩ no

⟨v1 → v4 → v5 → v7⟩ no

Table 3: Maximal intersection search details for the illustrative example in Figure 1.

Example 6. Table 3 shows the intersection-inclusion graph traversal for max-505

imal intersection search on the intersection-inclusion graph of the illustrative

example of Figure 1. X∗ is selected as the one of the two maximal intersections

at maximum BetP . For this example, raw traversal intersection graph would

perform 42 node visits, while with the graph optimizations, presented in Section

2.2, 12 are executed. On the other hand, a straightforward BetP maximiza-510

tion by singleton hypothesis exploration would process 1100 locations (included

into at least one focal element) with a factor 10 subsampling of the discernment
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frame.

5. Experiments

We present test results on a synthetic toy example, as well as on a real515

tracking application scenario, which make use of the proposed representation,

as well as of our publicly available 2CoBel library, embedding all the described

methodologies, and exploited throughout the entire testing.

5.1. The 2CoBel library

2CoBel is an open source2 evidential framework embedding essential func-520

tionalities for generic BBAs definition, combination and decision making. An

Evidence object defines common operations for a BBA containing any generic

type of FocalElement. The current supported methods are: mass to Belief

Functions conversion (plausibility, belief, commonality), conjunctive, disjunc-

tive, cautious (exploiting the proposed canonical decomposition) rules and q-525

relaxation, vacuous extension and marginalization, conditioning, discounting,

(generalized) BetP computation, BetP maximization (with singleton hypothe-

sis enumeration or maximal intersections). Different representations of FocalEle-

ment are supported, each of them defining specifically basic operators (intersec-

tion, union, equality, inclusion): unidimensional (hashable), representing the530

1D focal element as a binary string; 2D bitmap, providing a bitmap represen-

tation as in [19]; 2D box set, implementing the definition and focal elements

simplification operations proposed in [9]; 2D polygon (hashable), implementing

our proposed representation.

The library has full support for discernment frames which are cartesian prod-535

ucts.

2Implementation available at:

https://github.com/MOHICANS-project/2CoBel
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5.2. Case study: line estimation

As toy example for illustrating the applicability of the proposed representa-

tion to 2D domains, we tackle a fundamental problem in pattern recognition,

namely the line estimation from a set of 2D points. This example allows us to

compare as well the effectiveness of the different combination rules implemented

by the framework. Given a set of planar points in the xy space, the objective is

to infer the parameters of the line that fits at best the data. The Hough trans-

form [32] is a classical approach to this problem, and the evidential framework

allows us to handle the intrinsic imprecise and uncertain sources of the problem

in the Hough domain. By using the polar representation of lines:

ρ = x cos θ + y sin θ

we build an accumulation space in the (ρ; θ) domain in order to infer the values

of the ρ ∈ (−∞,+∞) and θ ∈ [0, π) parameters. The discernment frame Ω is

then defined as a rectangular polygon in the (ρ; θ) space. Since the ρ parameter540

is unbounded, theoretically also Ω is an open set. However, in order to respect

closed world assumptions, we bound Ω to extremely large values of ρ. Due to

the sparse nature of the representation, the size of the discernment frame has

no impact on the algorithm performance, so extreme values of ρ equivalent to

the max and min integer values supported by the hardware could be chosen.545

Each data point Pi = (xi, yi) votes for a family of lines which pass through

it in the xy plane. Each voted line lij = (ρj , θj) corresponds to a point in

the accumulation space. The locus of all the points in the accumulation space

corresponds to a sinusoid function. Such toy example extends the one presented

in [9], which performs straight line estimation in the (α;β) space (where y =550

αx + β). However, such space does not parametrize any possible line, and,

moreover, a small possible interval of values has been considered in order to

have a discernment frame of small size. On the one hand, the (α;β) approach

allows one to represent the constraints as straight lines rather than sinusoids,

allowing for an inexpensive focal element representation. On the other hand,555
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the proposed representation allows us to move to a more convenient space where

complex shapes can be defined.

In classical Hough approaches, since there is an infinite number of lines

passing through the same point, the space (ρ; θ) is quantized in such a way as to

provide an acceptable precision. In the proposed representation, the resolution560

of the problem is given by the number of vertexes used to represent the polygons.

However, the scalability of the problem allows us to rescale more flexibly the

accumulation space for high precision estimations. In this experimentation we

scale the accumulation space at a resolution of 10−2 for both ρ and θ (in degrees).

The BBA construction consists in widening the sinusoidal function derived565

from each point in the dataset with imprecision and uncertainty knowledge. We

build a consonant BBA having two focal elements. The first focal element is

a sinusoidal band with width equal to δρ1, centered around the real sinusoidal

function drawn from the data. Such focal element codes the imprecision of the

points location given by the line discretization in the xy space (typical if the570

space is in the image domain). The second focal element is a sinusoidal band

with width equal to δρ2 > δρ1, again centered around the real sinusoid. Such

focal element encodes the uncertainty of the point location given by noisy data

distribution.

Figure 4 shows several consonant BBAs (one for each data point) represented575

by polygonal approximations of sinusoidal bands in the accumulation space.

Given N points, the N BBAs are then combined following some combination

rule into a single BBA. The solution (ρ∗, θ∗) is finally obtained by performing

BetP maximization on the output BBA. Since the result of the maximization

is in general a closed area, and not a single point, the barycenter of the output580

polygonal result is considered as the proposed solution.

We test this evidential approach on simulated data, were T = 100 lines are

randomly drawn in the xy space, and M = 10 points for each line are extracted

at fixed x locations, under Gaussian noise assumption for the y coordinate

yi ∼ N (− cos θ
sin θ

xi + ρ
sin θ

, σ). Moreover, in order to evaluate its robustness to585

unreliable sources, the system is tested for different numbers of outliers (0, 1
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Figure 4: Example of BBAs construction for line estimation in the accumulation space. Every

consonant BBA (one for each color), represents the information conveyed from a data point.

or 2), where an outlier is uniformly selected from the existing points and its y

value is shifted by a constant value y0. In the proposed experiments, the BBAs

parameters are set as δρ1 = 2 and δρ2 = 6, and the noise parameters are set as

σ = 0.5 and y0 = 5.590

The following different combination rules are evaluated: conjunctive rule,

cautious rule, q-relaxation (with q = 1 and q = 2). The results obtained are

compared with baseline least squares (LS), which is by definition the optimal

estimator in presence of Gaussian noise. Figure 5 shows some line estimation

examples extracted directly from the simulated data used for the quantitative595

evaluation.

Figure 6 shows the line estimation error distribution of the different methods

under varying conditions, in terms of ∆ρ = ∣ρ∗ − ρgt∣ and ∆θ = ∣θ∗ − θgt∣, where

(ρgt, θgt) are the ground truth parameters for one line of the simulation dataset.

The performance of the various combination rules when the data is free from600

outliers are comparable with the optimal performance, in terms of the median

error, achieved by standard LS. In such context, conjunctive and cautious rules

give the same results, which is a desired property when the sources are indepen-

dent. In the case of q-relaxation, even though the number of unreliable sources
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Figure 5: Example of line estimation results for different numbers of outliers: (a) no outliers;

(b) one outlier (conjunctive and cautious rule lines are identical); (c) two outliers; (d) line

estimation in presence of correlated source data: cautious rule outperforms the other methods.
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Figure 6: Radius error ∆ρ (first row) and angular error ∆θ (second row), in presence of 0, 1

or 2 outliers (from left to right), for the experiments on simulated data for the line estimation

toy example. In each figure, from left to right, the bars correspond to: least squares (LS),

conjunctive rule, cautious rule, q-relaxation (q = 1), q-relaxation (q = 2).
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is overestimated, the results are in line with the conjunctive rule case. When605

one outlier is introduced in the simulated data (by shifting the position of a

random existing point), the advantage of a robust combination rule becomes

evident. The conjunctive and cautious rules (which keep having comparable

results with respect to each other), perform slightly better in terms of median

error than the LS criterion, thus suffering less from the presence of an outlying610

source due to their resiliency to uncertain sources. Conversely, with respect

to LS, the error distribution is more diffuse, reflecting a higher imprecision in

the parameter estimation. The q-relaxation approaches (q ∈ {1,2}) clearly out-

perform the other methods both in median and variance of the errors, being

able to filter out the unreliable source and perform the estimate with the in-615

lying ones. The q-relaxation with q = 2 offers comparable performance to the

one with q = 1 (which is the optimal choice in this scenario), with a slightly

more imprecise estimate, given by the fact that it considers as unreliable both

the outlier (possibly) and an inlier, reducing the amount of useful information

exploited for decision making. When a second outlier is added, as expected,620

the q-relaxation with q = 1 becomes insufficient producing results with are only

slightly better with respect to classical conjunctive rule, while q-relaxation with

q = 2 still outperforms the others. The proposed example demonstrates the

interest of q-relaxation for any 2D problem with outliers (e.g., localization with

GPS data), at the expense of a careful selection of the q hyper-parameter, as a625

trade-off between temporal performance and degree of robustness.

While the cautious rule is equivalent to the conjunctive rule for the proposed

experiment in the case of independent data, we show its benefit when the source

independence assumption fails. Figure 5d shows an example of line estimation

where some data is clustered in the xy space. Some of the drawn points exhibit630

a partial correlation in both their x and y coordinates: they are clustered in a

small subsegment of the x axis, while their y coordinate being drawn from the

same distribution. Thus, the derived BBAs are not independent. Moreover, the

number of points composing the cluster represents a non-negligible percentage

of the total number of points (40% in the example). In this case, LS clearly635
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fails because univariate Gaussian noise assumption is violated, q-relaxation fails

because it factors out few outliers, but it is still attracted by the rest of the

cluster. Conjunctive rule fails because, when aggregating all the votes in the

accumulation space, the cluster masses accumulate giving a strong weight to the

estimation of the line from which they are drawn. Since the conjunctive rule is640

sensitive to the cluster size, it behaves estimating a wrong solution which tries

to average the two lines. Conversely, cautious rule estimates the correct line

accurately, because it processes the cluster of dependent points as a whole, thus

not being influenced by the number of points composing it.

0 2000 4000 6000 8000 10000 12000 14000 16000
 [10 2deg]

400

200

0

200

400

600

800

×
10

0

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
 [10 2deg]

400

200

0

200

400

600

800
×

10
0

(b)

Figure 7: Example of disjoint sets decomposition on complex BBAs (obtained by iterative

cautious combination of source BBAs); (a) after one combination; (b) after 2 combinations.

Figure 7 shows the disjoint set segmentation for efficient canonical decom-645

position (estimation of the ad-hoc 1D discernment frame, see Section 3.2), for

a generic BBA as the one obtained by iteratively combining sinusoidal poly-

gons. Such illustration points out that the computation of these disjoint sets is

non trivial in general, while producing a segmentation of the discernment frame

which is extremely convenient for canonical decomposition. In the presented650

scenario, since the starting BBAs are consonant, their canonical decomposition

can be trivially computed as a special case at initialization time, and propagated

after each cautious rule application as by definition.However, our aim here was

to check the efficiency of our approach.
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(a) (b) (c)

(d) (e)

Figure 8: Example of pedestrian tracking steps. (a) Pedestrian detection blob. (b) Focal ele-

ments of detection BBA md0
on the ground plane at t = 0 (the size of the largest focal element

is approximatively 1 × 2 square meters). (c) Focal elements of the conjunctive combination

m̃t0,7 between the track and the associated detection at t = 7 (16 focal elements). (d)Focal

elements of the BBA simplification of m̃t0,7 with the Jousselme’s distance criterion (5 focal

elements). (d) Focal elements after dilation of the track BBA mt0,8 by polygon offsetting.
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5.3. Case study: pedestrian tracking655

We apply the proposed representation to the problem of tracking pedestrians

detected by imprecise sensors, on the ground plane. The belief function frame-

work allows for direct modeling of the imprecision associated with the detections

and the tracks and provides a measure for data association between detections

and tracks.660

We make use of the detector proposed in [33], which performs low level

information fusion from multiple cameras in order to provide a dense pedestrian

detection map, together with pedestrian height estimations, in a range between

1.4 m and 2m. The output of the detector allows us to project and track the

detections on the ground plane. We demonstrate the use of the 2D polygon665

representation provided in the 2CoBel library in order to perform joint multiple

target tracking in the Sparse sequence presented in [33]. We perform tracking on

the provided detections for 200 frames of the Sparse sequence, and we measure

the localization error of the real tracks (13 pedestrians, 4 standing and 9 moving)

with respect to the ground truth. The tracker has to reconstruct lost tracks for670

given mis-detections occurring for up to six consecutive frames on the same

pedestrian.

5.3.1. Discernment frame definition

The area under analysis is the ground plane region where the field of views of

the cameras overlap. The area of the analysis region is 330 m2. The algorithm675

is run at a resolution of 10−4 m, so that the cardinality of the discernment frame

is ∣Ω∣ = 33 × 109. While the desired localization precision is 10−2 m, the chosen

resolution is higher for increasing the robustness to rounding errors.

5.3.2. BBA construction and assignment

Given a detection di at time t located in (xi, yi), we build a consonant680

BBA with two focal elements. The first focal element is a disk centered at

(xi, yi) and with a radius of 20 cm, taking into account the person’s head and

shoulder occupancy on the ground plane; the second focal element is a ring sector
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(approximated by a trapezoidal shape), which embeds the height uncertainty

(on the direction point towards the camera location) and the camera calibration685

imprecision. In order to break the symmetry, the two focal elements are not

assigned with 0.5 mass each, but with 0.51 for the internal disk and 0.49 for

the trapezoid. In the presented case the choice of the mass allocation has a

negligible impact on the quantitative results.

5.3.3. Data association and combination690

Given a set of tracks at time δ, T = {t1, . . . , tk} and a set of detections

D = {d1, . . . , dh}, the data association aims to compute an optimal one-to-one

association solution Al = {(ti, dj), i ∈ {1 . . . k} , j ∈ {1 . . . h}} with respect to some

defined cost. One (ti,∅) association means that the track is into an inactive

state (so it keeps propagating until it associates with a new detection or dies),

while one (∅, dj) association means a new track has to be initialized with de-

tection dj . We make use of the criterion in [34] to define the association cost:

Cti,dj = − log (1 −mti ∩◯mdj(∅)) ,

which expresses the data association task as a conflict minimization problem,

which can be solved by the use of the Hungarian algorithm [35, 36].

The data association task is followed by a conjunctive combination which

produces for every (ti, dj) the new track:

m̃ti,δ =mti,δ ∩◯mdj ∩◯mp,

where mp corresponds to the prior. It performs a masking operation on the

visible region of interest of the camera on the ground plane.

5.3.4. BBA simplification695

A BBA simplification step is essential in tracking applications for two dif-

ferent reasons. First, we want to avoid that the number of focal elements grows

without control as the time progresses, because it would mean that the real-time

performance of the algorithm would degrade in time, bounding the maximum
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Figure 9: Pedestrian tracking. (a) Detection blobs on the image space (t = 0) estimated by

the detector in [33]. Colors refer the estimated height values from 1.4 m (red) to 2m (green).

(b) Focal elements of the detection BBAs on the ground plane (t = 0). (c)Focal elements of

track and detection BBAs on the ground plane (t = 8). Associated tracks and detections share

the same color. (d) Final estimated tracks on first 20 frames. Red crosses refer to target

locations, while colored sets correspond to regions presenting maximum BetP value.
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number of processed frames. Second, we want to avoid an excessive fragmenta-700

tion of the belief. The BBA simplification aims at reducing the number of focal

elements of a given BBA while respecting the least commitment principle. We

adopt the method proposed in [19], which chooses iteratively two focal elements

to aggregate (by performing an union operation) as the ones which minimize the

Jousselme’s distance [37] between the original BBA and the summarized BBA,705

i.e., the one obtained after the aggregation.

The proposed representation allows, conversely to the one in [19] (which

simplifies the BBA after each conjunctive combination), to perform the simpli-

fication on a less frequent time step. In the proposed experiment a target BBA

is simplified when it reaches 15 focal elements, by producing a 5 focal element710

BBA.

5.3.5. BetP maximization

At each time step, we run the BetP maximization algorithm presented in

Section 4 for each active track m̃ti,δ in order to extract the most probable lo-

cation of the target. The cardinality of the resulting polygon represents the715

irreducible ambiguity in the target location. The target position is then esti-

mated as the barycenter of the polygon.

5.3.6. Modeling the imprecision of the tracks prediction

Given the track m̃ti,δ, which represents the result of the conjunctive combi-

nation, we need to model the prediction step imprecision. In order to model the720

track displacement from the current location, a random walk term is added to

the track. Such term boils down to an isotropic dilation of the focal elements.

In the proposed representation, this corresponds to applying a scalable poly-

gon offsetting algorithm, having O(n logn) complexity, where n is the number

of vertexes. Polygon offsetting allows for a dilation which respects the inclu-725

sion relationship of the original focal elements. The result of such step is the

predicted track mti,δ+1 at time t + 1.

Figure 8 depicts an example of the proposed tracking steps for a single
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pedestrian, specifically the BBA geometric representation after construction,

combination with the previous track, simplification and offsetting.730
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Figure 10: Normalized histogram of the localization error of pedestrian tracking on the Sparse

sequence.

5.3.7. Results

Figure 9 show some qualitative results of pedestrian tracking in the Sparse

sequence, highlighting the tracks estimated after the first 20 frames. In order to

evaluate quantitatively the tracking accuracy, the target predicted locations are

compared against an available ground truth. Such ground truth consists into735

coordinates in the image space where the heads are located. Since the height of

such individuals is not known a priori, each location in the image space projects

to a segment in the ground plane, allowing for any possible height in the interval

of study. One computes the localization error as the distance between the target

estimated location, and the ground truth head location, under the assumption740

that the height of such head corresponds to the predicted one. Such metric

corresponds to computing the distance between the ground truth segment and

a height uncertainty segment drawn at the target location. Target locations

for inactive track states are estimated by linear regression fit of the estimated

target positions at previous states.745

Figure 10 shows the results in terms of (normalized) histogram of localization

error. The average localization error is ε = 0.2 m, which reaches the empiric
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Resolution Average Localization error

10−1 m 30.197 cm

10−2 m 22.340 cm

10−3 m 20.078 cm

10−4 m 19.944 cm

10−5 m 19.931 cm

Table 4: Average localization error on the

Sparse sequence using different discretization

resolutions. By using a representation able to

deal with finer resolutions, one may achieve a

significant performance gain.

limit set by the intrinsic uncertainty of head spatial occupation. On the other

hand, the average localization error remains steady in time, meaning that the

estimated tracks do not tend to drift away from the real ones. The standard750

deviation of the average localization error in time is σ = 2.3 cm.

Table 4 shows the average localization error obtained by the tracking algo-

rithm for different choices of the resolution at which the discernment frame is

discretized. When a coarse resolution of 10 cm is considered, the performance

drops consistently. At this resolution the size of the discernment frame is already755

large enough to be intractable using methods based on binary representations,

as in [19]. Moreover, while for the theoretically desired resolution of 1 cm the

average localization error consistently drops, the proposed representation allows

us to scale at finer resolutions to account for rounding errors, thus providing an

additional performance boost.760

For more complex tracking scenarios, the next step is to integrate the pro-

posed representation in a more sophisticated model such as [7], which is sup-

posed to cope with specific issues such as disambiguations or long term occlu-

sions, and where our approach would extend box representations.
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6. Conclusion765

This paper proposed a new representation for multi-modal information fu-

sion in bi-dimensional spaces in the BFT domain. Such representation exhibits

uniqueness, compactness, space and precision scalability, which make it suitable

for many settings constrained to large hypothesis spaces, where there is the

need to extend the Belief Function framework with efficient multidimensional770

operators. In our experiments with actual data, we show the effectiveness of

this formulation on multi-target tracking scenarios, where tenths of tracks have

to be estimated on a wide region of interest. The main contributions can be

summarized as follows:

• The proposal of a new polygon-based compound hypothesis representa-775

tion, able to benefit from fast polygon clipping and hashing algorithms for

scalability.

• The introduction of an intersection-inclusion directed acyclic graph to

model the interaction between focal elements.

• The outline of efficient algorithms for the fundamental operators, decision780

making and decomposition methods which fully exploit the potential of

both the geometric and graph representation proposed.

• The release of our contribution as a public library for the community, in

order to ease the reproducibility of such representation for active research.

For future work, we are interested in developing a tracking algorithm for785

dense crowds, by performing cautious fusion of multiple detection sources pro-

vided by a smart camera network. We intend to highlight the interest of efficient

2D BFT representations for scaling such algorithms for high density crowds. In

such contexts, the number of targets to track jointly can become intractable

for state-of-the-art tracking frameworks, and an efficient evidential framework790

should fully benefit from the richer information provided by multiple cameras.

Besides multi-target tracking applications, we also aim to study the impact
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on our BBA representation when dealing with continuous discernment frames,

since, despite some notable works, e.g.,[38, 39, 40], belief functions have not

been widely adopted yet in real number (1D or 2D) estimation problems mainly795

because of computational limitations.

A. Graph-based representation construction details

In the following, the construction of the intersection-inclusion graph from a

given BBA is detailed. Algorithm 1 outlines the main steps for graph construc-

tion (specialized in Algorithm 4) and graph traversal (by iteratively executing800

either Algorithm 2 or Algorithm 3 at each root node).

Algorithm 1: Graph construction and traversal

Data: Set of focal elements A ordered by decreasing cardinality;

begin

(V,E, ll, lh) =BuildGraph(A);

for each vi ∈ V do

if llj is not null then

continue; //root suppression

end

DFS((V,E),A, i, ll, vi,Ai,{} ,{} ,{}) //either Algorithm 2 or 3

end

end
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Algorithm 2: DFS (Set of disjoint sets extraction)

Data: DAG G = (V,E); set of focal elements A; root label r; lowest

including set label array ll; current node vi; current intersection

Ii; current path p; sets of indexes of the disjoint sets included in

each focal element S; current set of disjoint sets D.

Result: Set of disjoint sets D.

begin

p← p ∪ {vi};

for each eij = (vi → vj) ∈ E do

if llj < r then

continue; //early stopping

end

Ij = Ii ∩Aj ;

if ∣Ij ∣ > 0 then

DFS(G,A, r, ll, vj , Ij , p, S,D);

end

end

hp = {1, . . . , ∣D∣} ;

for v ∈ p do

hp = hp ∩S[v]; //common disjoint sets among elements of the path

end

D = Ii
for h ∈ hl do

D =D ∖D[h]; //subtract from D the included disjoint sets

end

if ∣D∣ > 0 then

D ← D ∪ {D} ;

for v ∈ p do

S[v]← S[v] ∪ {∣D∣} ; //focal element at node v contains D

end

end

p← p ∖ {vi};

end
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Algorithm 3: DFS (Set of maximal intersections extraction)

Data: DAG G = (V,E); set of focal elements A; root label r; lowest

including set label array ll; current node vi; current intersection

Ii; current path p; set of paths leading to each maximal

intersection P ; current set of maximal intersections I.

Result: Set of maximal intersections I.

begin

p← p ∪ {vi};

leaf= true;

for each eij = (vi → vj) ∈ E do

if llj < r then

continue; //early stopping

end

Ij = Ii ∩Aj ;

if ∣Ij ∣ > 0 then
leaf= false;

DFS(G,A, r, ll, vj , Ij , p, P,I);
end

end

if is a leaf then
maximal= true;

for pI ∈ P do

if p ⊂ pI then
maximal= false;

break;

end

end

if is maximal then

I ← I ∪ {Ii} ;

P ← P ∪ {p} ;

end

end

p← p ∖ {vi};

end

46



Algorithm 4: BuildGraph

Data: Set of focal elements A ordered by decreasing cardinality;

Result: Simplified DAG G = (V,E); lowest including set label array ll;

highest including set label array lh;

begin

V = {};

E = {};

for each Ai ∈ A do

V ← V ∪ {vi};

for each Aj ∈ A, j > i do

if Aj ⊂ Ai then

lhj = i;

if llj is null then

llj = i;

end

//delay inclusion edge storage (graph simplification)

end

else if ∣Ai ∩Aj ∣ > 0 then

E ← E ∪ {(vi → vj)}; //storing intersection edge

end

end

end

for j in 1 . . . ∣A∣ do

if lhj is not null then

E ← E ∪ {(vlhj → vj)}; //storing inclusion edge

end

end

end
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