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Abstract

The automatic detection of pedestrians in dense crowds has become recently a very

active topic of research due to the implications for public safety, and also due to the

increased frequency of large scale social events. The detection task is complicated by

multiple factors such as strong occlusions, high homogeneity, small target size, etc.,

and different types of detectors are able to provide complementary interpretations of

the input data, with varying individual levels of performance. Our first contribution

consists in outlining a fusion strategy under the form of an ensemble method, which

models the imprecision arising from each of the detectors, both in the calibration and in

the spatial domains in an evidential framework. Then, we propose a sample selection

for augmenting the training set used jointly by the committee of classifiers, based on

evidential disagreement measures among the base members in a Query-by-Committee

context. The results show that the proposed fusion algorithm is effective in exploiting

the strengths of the individual classifiers, as well as in augmenting the training set with

informative samples which allow the resulting detector to enhance its performance.

Keywords: Pedestrian detection, Crowd analysis, Ensemble methods, Belief function

theory, Active learning

1. Introduction

For video surveillance, the automatic detection of pedestrians is a fundamental task

which is directly related to applications such as tracking or action recognition. The

context of the detection application may range widely, with works addressing various

topics such as safety issues for autonomous driving [1, 2], fall detection for elderly5
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people [3], surveillance [4] or automated video anonymization [5]. Recently, the accu-

rate detection of pedestrians in high-density scenes gained traction due to the increased

frequency of large scale social events, and due to the safety risks linked to them [6].

Although a significant effort has been devoted in the last decade to pedestrian detec-

tion [7, 8], the advances proposed in the literature are not always applicable to high-10

density crowd detections for multiple reasons [9], such as the difficulty to obtain an

adequate training set and the intrinsic complexity of the scenes.

Firstly, common pedestrian detectors (e.g. [10, 11]) are trained for discriminative

learning on the basis of a large labeled training set. In case of extremely dense crowds

however, it may become hard to define a good training set which spans over all the15

possible shades of sample characteristics while at the same time remaining focused on

the specific targets. To this extent, Active Learning (AL) has been proposed [12]. It

relies on the assumption that if a learning algorithm is allowed to choose data from

which to learn, it will reach better levels of performance with less training data [13].

Secondly, common problems for the detection task in high-density crowds are the ab-20

sence of background, the heavy occlusion of body parts, the high visual homogeneity

and the small size of the targets. It becomes therefore essential to rely on multiple

independent visual detectors which are able to provide different interpretations of the

input data. However, it is not immediately clear which detectors are the most adapted

or discriminative, and which fusion strategy is the most effective to get the best out of25

their combination.

Active learning background:. Pool-based AL [14] relies on an initial small set of la-

beled instances, L, and a larger set of unlabeled ones, U . Batches of informative train-

ing samples are iteratively selected from U and added toL, with respect to some heuris-

tics, after a query about their actual label to an oracle (e.g., a human annotator). This30

approach is well-motivated in many modern machine learning applications, where un-

labeled data may be abundant but labels are difficult, time-consuming, or expensive to

obtain, from text classification [15] to robotics [16] and medical image classification

[17] among others.

Many strategies to select new training samples have been proposed. The most pop-35
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ular ones are uncertainty sampling and Query by Committee (QBC), with many vari-

ations in order to balance exploitation of the current classifiers and exploration of the

version spaces [18]. Uncertainty sampling [19] consists in iteratively requesting labels

for training instances whose classes remain uncertain, despite the information provided

by the previously labeled instances. In this way the learning algorithm can focus its at-40

tention on the examples it finds confusing, selectively adjusting the boundary between

classes. Popular strategies consist in querying the instance whose predicted output is

the least confident or with maximum entropy, but in the context of SVM classification

the prevailing method is to select the samples which are closer to the separation hy-

perplane margin [20, 21]. More recently, DUAL [22] and QUIRE [23] methods have45

been proposed. The former is based on density weighted uncertainty sampling while

the latter aims at selecting both informative and representative examples on the basis

of a prediction of the uncertainty. The authors of [24] consider instead the diversity be-

tween samples, proposing a selection strategy which aims to reach a trade-off between

the minimum distance from the hyperplane margin and the maximum angle between50

the hyperplanes defined by each sample. In the context of image classification, di-

versity among the selected samples can be reached using spatial information, such as

in [25], where the authors propose three criteria to favor samples distant from the ones

already present in the training set, namely an Euclidean distance, a distance based on

the Parzen window method applied in the spatial domain and a distance that maximizes55

the spatial entropy variation value to distribute spatially the training samples as widely

as possible. Although uncertainty sampling offers an intuitive and flexible solution for

augmenting the training set, this framework is suited in its standard form for relying on

a single classifier.

On the other hand, QBC [26] exploits a committee of classifiers and operates by60

asking for the label of the sample on which the ensemble disagrees the most. This ap-

proach is better suited for more complex classification tasks which benefit from mul-

tiple classifiers providing different views of the input data, such as the application we

consider here. Three questions arise, namely how to build the committee set, how to

quantify the disagreement in order to define a strategy to select the new samples, and65

how to finally combine the committee member responses in order to obtain a robust
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classification. Usually generic ensemble learning algorithms are used for the construc-

tion of the committee. Query-by-bagging [27] or query-by-boosting [28] can be used to

train weak classifiers on (weighted) randomly sampled variations of the training data

set. Alternatively, a single model can be exploited and many variations of it can be70

derived, e.g. changing its intrinsic parameters, like in [29] for naive Bayes, using the

Dirichlet distribution over model parameters.

There exists a variety of heuristics to measure the disagreement among a classi-

fier ensemble, but surely the most popular ones are (Soft) Vote Entropy [13], and

Kullback-Leibler (KL) divergence [30]. Other measures include Jensen-Shannon di-75

vergence [31], a smoothed version of KL divergence, and F-compliment [32], based on

the F1-measure. A combination between Vote Entropy and KL divergence is proposed

in [33] in the specific context of stream-based QBC, where a continuous stream of sam-

ples is given as input and the active learner must decide if it is worth or not asking for

the true label. Recently, [34] proposed an interesting method to incorporate diversity80

and density measures in the instance selection, to ensure variety within the batch and

in the whole training set.

Finally, the classification in the context of QBC is usually performed at every it-

eration on the basis of the committee member responses, through an average among

them (weighted, in case of boosting), or by picking the model that provides the best85

performance (e.g., accuracy). In cases like our application, where the committee is

quite heterogeneous and there is not clearly an absolutely best classifier, but rather

each classifier is independent and contributes providing a different view of the same

data, a simple average between them may not exploit all the available information, so

that an adapted fusion becomes an integral part of the entire process.90

Classifier combination. In order to perform the fusion of detectors based on differ-

ent features, there exist in the literature various approaches, more or less suited for

pedestrian detection. To benefit simultaneously from all the available features, multi-

ple kernel learning (MKL) is a well established methodology which aims to combine

different kernels relying on different data representations as a linear combination, by95

casting this information fusion task as a convex optimization problem [35]. The prob-
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lem scales very well with the number of individual classifiers, but the main limitation of

MKL is the difficulty to interpret the final decision and to take into account the impre-

cision coming from different sources. Another established framework able to benefit

from the information provided by multiple features is the decision tree analysis. Recent100

work highlighted that intrinsic uncertainty related to learning as well as uncertainty due

to imprecise data may be jointly managed inside the decision tree by defining entropy

intervals from evidential likelihood [36]. In [37] instead, a set of base classifiers is

dynamically selected for each test sample on the basis of a classification gain com-

puted using a probabilistic model that uses the outcome from previous observations.105

Information gain is employed also in [38] for actively selecting features combining the

collected evidence over time while taking into account the amount of available training

data for each class.

In the context of high-density crowd pedestrian detection, in [39] we proposed a

robust fusion strategy based on the Belief Functions (BF) framework [40, 41, 42]. The110

evidential framework [43, 44, 36, 45] is indeed able to naturally model the concept of

imprecision, that in our case can arise in two different and complementary ways: in the

derivation of posterior probability values from SVM decision scores, and later, from the

spatial layout of the detections in the output image space. The proposed mass allocation

has been shown to be robust to possible imprecision of the calibration functions, while115

at the same time taking into account the information coming from neighboring pixels

in the image space. Besides, it allows for an amount of discounting that is different at

every pixel of the classifier’s output map, and it is not only a constant value that merely

reflects the reliability of the detector.

In the context of AL, a clear limitation of traditional QBC approaches however120

is that the selection of the new samples to be added to the training set is performed

independently from the (optional) committee member combination, that is only used

to derive statistics for evaluation purposes. The possible information arising from the

combination of the committee members is not exploited. From our part, the definition

of a fusion strategy based on BF framework allows us to naturally have at our disposal125

several clues to quantify the disagreement between committee members. The result of

the source combination indeed is a basic belief assignment (bba) associated to every
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unlabeled sample, that intrinsically contains conflict and ignorance components. For

this reason we find it appropriate to work in the evidential domain: from the one hand,

through the definition of appropriate bbas we can model the imprecision over the uncer-130

tainty value provided by each classifier; on the other hand, the BF framework directly

provides indicators to quantify the disagreement between committee members.

In this study, we thus propose a QBC algorithm that takes a committee of models

which are all labeled on the same training set, but representing competing hypothe-

ses supported by different SVM classifiers based on gradient, texture and orientation135

descriptors. Firstly we use BF framework to perform fusion between the different

pedestrian detectors, and then we propose and investigate different evidential-based

measures for the selection of the batch of new training samples. The evidential frame-

work is therefore not only involved in the combination of the sources to obtain a robust

decision, but it plays at the same time an original role in the definition of new sample140

selection strategies at each iteration.

The contribution of this paper is twofold. Firstly, we define an evidential framework

to perform active learning in a QBC context, based on the output bba obtained after the

fusion of different classifiers. Secondly, we investigate the different evidential entropy

definitions of the literature to this extent. The BF framework plays a key role in both145

cases, i.e., during the bba allocation and combination, and as input to derive evidential

measures to select the new samples at every iteration of the active learning procedure.

In the following sections, we firstly explain the bba allocation and combination

(Section 2), before arriving to the definition of the new strategies to select the samples

based on evidential functions (Section 3). The experimental part (Section 4) illustrates,150

for our high-density pedestrian detection application, the impact of the different sam-

pling strategies we considered on the performance metrics of the resulting detectors.

Then, we conclude our study in Section 5.
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2. Modeling classifier imprecision

2.1. Belief function framework155

To handle both uncertainty and imprecision, belief functions are defined on a larger

hypothesis set than in the case of the probabilistic framework. Specifically, if Θ denotes

the discernment frame, i.e. the set of mutually exclusive hypotheses, belief functions

are defined on the set of the subsets of Θ, noted 2Θ in reference to its number of

elements: 2|Θ| where |Θ| is the cardinality of Θ.160

In our case, denoting by H and H the two singleton hypotheses,“Head” and

“Not Head”, the discernment frame is Θ =
{
H,H

}
, and the set of hypotheses is

2Θ =
{
∅, H,H,

{
H,H

}}
.

Classically, the mass function noted m is the basic belief assignment (bba) that

satisfies ∀A ∈ 2Θ,m(A) ∈ [0, 1],
∑
A∈2Θ m(A) = 1. The hypotheses for which the165

mass function is non null are called focal elements. Then, other BF are in one-to-one

relationship with m. They are used either for decision, namely the plausibility and the

credibility functions noted Pl and Bel respectively, or for some computations. In this

particular setting in which we have only two singleton hypotheses and m(∅) = 0, Pl

andBel are defined by: ∀A ∈
{
H,H

}
Bel(A) = m(A) and Pl(A) = m(A)+m(Θ).170

It is important to notice that Pl and Bel functions may also be interpreted as upper

and lower probabilities [40] and they check the duality property: ∀A ∈ 2Θ, P l(A) =

1−Bel(A) (where A denotes the complement of A with respect to Θ).

2.2. Bba definition based on calibrated scores

In the context of SVM-based high density crowds pedestrian detection, we consider175

that imprecision can arise in two different and complementary ways: in the derivation

of posterior probability values from SVM decision scores, and later, from the spatial

layout of the detections in the output image space. More specifically, let us explain

better the origin of these two different types of imprecision.

Firstly, in order to obtain class probabilities from SVM scores, i.e. sample distances180

to the hyperplane margin, a well established method proposed by Platt [46] consists in
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approximating the posterior probability by learning the optimal parameters configura-

tion of a logistic sigmoid function, relying on a calibration set independent from the

training data.

In particular, given training samples xj ∈ IRn , j = 1, ..., l, labeled by yj ∈185

{+1,−1}, defined as feature vectors derived from a head detector, the binary SVM

computes a decision function f(x) such that sign(f(x)) is used to predict the label

of unseen test samples. In order to obtain class probability P (y = 1|x), the method

proposed by Platt [46] approximates the posterior probability by learning a logistic

sigmoid function190

P (y = 1|x) ≈ σλ0,λ1
(f) =

1

1 + eλ0f+λ1
. (1)

The optimal parameter configuration (λ∗0, λ
∗
1) is then determined by solving a reg-

ularized maximum likelihood problem, with respect to the calibration set.

For each different test sample, given its score si, namely its distance to the hyper-

plane boundary defined by classifier i, with i = 1 . . . N , we now define an associated

Bayesian bba mBi (i.e., bba having only singleton focal elements), from the posterior195

probability given by the calibration step:

mBi (H) = σλ∗0 ,λ∗1 (si),

mBi (H) = 1− σλ∗0 ,λ∗1 (si), (2)

mBi (Θ) = 0,

mBi (∅) = 0.

This initial Bayesian bba is only able to model the uncertainty about the class the

sample belongs to, relying on a calibration procedure that is assumed to be robust.

However, in difficult settings such as our application, a robust estimation of the sig-

moid parameters is almost impossible to achieve, and few changes in the calibration set200

(cardinality or in the samples within it) can cause the sigmoid to appear very different.

In presence of a steep transition between the two classes particularly, even a slight shift

of the sigmoid may induce very different probability values and possibly different deci-
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sions for quite numerous samples, especially in presence of strong overlap between the

two classes. Now, with belief functions we can naturally take into account the impreci-205

sion inherent to the sigmoid learning process. Instead of deriving a simple probabilistic

value through logistic regression, we aim at associating a bba to each unlabeled sample

directly from its score and from the estimated sigmoid (from calibration process).

Xu et al. [47] proposed to extend the logistic calibration to derive a bba that takes

into account the number of samples per score value for calibration process. Such an210

approach is suitable specially when the number of samples if small and when there

is no overlapping between the scores of the two considered classes. Otherwise, [45]

shows that, in such difficult types of applications, it is hard for SVM to find a very large

margin between the two classes and there can be a consistent overlap between samples

with different labels for the same score. However, since the number of samples per215

score would be high, we would paradoxically not assign a high value of imprecision to

them.

Then, as an alternative we consider the bba allocation proposed by [48]. It relies

on the observation that (fuzzy) erosion and dilation (respectively opening and closing)

are also dual with respect to complementation, and they can be interpreted as belief220

and plausibility functions: given a bba m0 derived from the output of a classifier, the

following property holds:

Pl(A) = 1−Bel(A) ↔ δv(m0(A)) = 1− Ev(m0(A)), (3)

↔ φv(m0(A)) = 1− γv(m0(A)), (4)

∀A ∈ 2Θ, where δv and Ev are the dilation and erosion operators respectively, with

structuring element v, while φv and γv are the closing and opening operators.

The amount and shape of the possible imprecision is thus modeled through a struc-225

turing element. Now, we propose to interpret the erosion operator as a discounting

operator, in the sense that the obtained bba will be less committed. Indeed, when ap-

plying erosion to m0(A) to derive Bel(A),∀A ∈
{
H,H

}
, the mass on Θ is increased

by the sum of the differences between initial values and eroded values: m0(A) −

Ev(m0(A)) +m0(A)− Ev(m0(A)).230

In our case, the initial (Bayesian) bbas mBi are provided by the learned sigmoid
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Figure 1: Example of a sigmoid function obtained with calibration, and derived Belief and Plausibility

bounds at different structuring element w sizes. In our case, class 1 corresponds to the H hypothesis.

associated to each classifier i, through the probabilistic calibration.

Then, applying erosion and dilation operations to this sigmoid, with a structuring

element of widthw defined as a segment line in the score domain, allows for the deriva-

tion of two new sigmoid functions that are interpreted as lower and upper bounds of235

probability with respect to the learned sigmoid, i.e. Bel and Pl functions of the ob-

tained bba. Due to the fact that we consider a flat structuring element and to the intrinsic

monotonically increasing profile of the sigmoid function, considering classifier i, it is

possible to easily derive:

Beli(H) = σλ∗0 ,λ∗1 (si −
w

2
), (5)

Pli(H) = σλ∗0 ,λ∗1 (si +
w

2
). (6)

Figure 1 shows an example of a sigmoid function learned on the calibration set,240

as well as the two derived sigmoid functions (for two structuring elements of different

widths), that represent Bel and Pl functions and provide the interval of imprecision.

The interval between Bel and Pl functions embeds thus the amount of imprecision

in the calibration step we have to cope with. It takes low values for points far from
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Table 1: Example of bba allocation based on calibrated scores, assuming λ∗0 = −2, λ∗1 = −0.05 and

erosion structuring element of width w = 1. Only the focal elements are reported.

Score Bayesian bba Imprecise score-based bba

sx1 = −0.5
mBx1

(H) = 0.28

mBx1
(H) = 0.72

m̃x1(H) = 0.12

m̃x1(H) = 0.49

m̃x1
(Θ) = 0.39

sx2
= +2

mBx2
(H) = 0.98

mBx2
(H) = 0.02

m̃x2(H) = 0.95

m̃x2
(H) = 0.01

m̃x2
(Θ) = 0.04

the hyperplane boundary for which the decision is already pretty sure, whereas on the245

contrary it takes high values in the area near to the hyperplane margin, where even

a slight difference in the parameters of the sigmoid can change the decision. Then,

previous bba allocation allows us to model the fact that the calibration function may be

not perfectly fitted due to the difficulty in the definition of a robust calibration set and

to allocate large values of imprecision to the samples having their correspondent score250

within the SVM margin, in the overlapping area.

Table 1 proposes a toy example to illustrate the considered bba allocation based

on SVM scores. Let us suppose that for a given classifier the sigmoid’s optimal pa-

rameters have been found to be λ∗0 = −2 and λ∗1 = −0.05 through Platt’s calibration

based on logistic regression on the calibration set. Then, considering two different255

test samples x1 and x2, such that sx1 = −0.5 and sx2 = +2 are their SVM scores

(i.e. their distances to the classification hyperplane), Eq. (1) provides the probability

estimates P (y = 1|x1) = 0.28 and P (y = 1|x2) = 0.98. Then, we can derive the

associated Bayesian bbas by simply assigning the probability estimate to the mass on

H , and by computing the mass onH accordingly. For example, considering sample x1,260

mBx1
(H) = P (y = 1|x1) and mBx1

(H) = 1−P (y = 1|x1). Then, by applying erosion

with a flat structuring element of width w (in the example w = 1) we can discount

the mass on singleton hypotheses by an amount computed with Eqs. (5) and (6), as

the difference between Bel and Pl. In this way we take into account the imprecision
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on the estimated sigmoid, and the smaller the distance of a sample to the SVM hyper-265

plane, the higher the amount of imprecision that will be considered. In our example,

sample x1 stands in the uncertain area between support vectors (|sx1
< 1|), so that we

know that a small change in the logistic optimal parameter estimation could possibly

lead to a significant change in the probability estimate. On the contrary, sample x2 has

an associated SVM score which is relatively high, and thus represents a test sample for270

which the classification is quite sure and will not easily change even in presence of cal-

ibration inaccuracy. With the proposed bba allocation in the context of BF framework,

we are therefore able to assign a higher value of imprecision to sample x1 with respect

to x2.

2.3. Bba definition based on pixel neighborhood information275

Regarding the second type of imprecision, namely the spatial one, it comes from

the fact that in the context of high-density crowd pedestrian detection strong occlusions

make the head of each pedestrian barely visible. Besides, due to the specific geome-

try of the recordings, each head corresponds to few pixels. The most effective head

detectors are based on features computed in sub-windows around the pixel of interest,280

which further increases the spatial imprecision of the detection. For this reason, fol-

lowing the preliminary work we introduced in [49], we model the spatial imprecision

due to the close resolutions of object (head) and descriptor respectively by performing

opening operation in the spatial domain to discount the bba taking into account the

neighborhood heterogeneousness.285

In particular, the bba allocation proposed in [39] is able to take into account both

types of imprecision, aiming to be more robust to possible imperfections of the learned

sigmoid from which the mapping from SVM scores to probability values is made,

while at the same time taking into account the information coming from neighboring

pixels in the image space. Practically, we process two successive discounting steps on290

the initial Bayesian bba derived from the learned sigmoid. Firstly, having learned the

sigmoid of classifier i by logistic regression, we define bbas to model the imprecision

due to possible errors in the calibration, by applying an erosion operator in the 2D

space where SVM calibration scores are projected with respect to their label. Then, we
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increase the mass on Θ discounting the previous bba by performing a morphological295

opening operation, this time in the image space, to take into account neighbor pixels

information based on the assumption that they are likely to belong to the same class.

In the following, notations are slightly modified from [39] to let appear the depen-

dency from both the considered pixel or sample (noted x) and the considered classifier

(noted i). More in detail, dilation δw and erosion Ew operators depending on the struc-300

turing element of width w are composed with the calibrated sigmoid σi relative to

classifier i, in order to derive the two different sigmoid functions, denoted (δw ◦ σi)

and (Ew ◦ σi), representing Pl and Bel function values evaluated on the score sx rela-

tive to sample x (cf. Fig. 1). This takes into account the imprecision of the calibration

step. Then, for each pixel x and classifier i independently, we derive the ‘one-time’305

discounted bba m̃x,i, so that at the end of this step we get a map (image) of bbas

{m̃x,i, x ∈ P}, where P is the pixel domain. This image M̃i is composed by four lay-

ers corresponding to the mass values of any hypothesis in
{
∅, H,H,Θ

}
, respectively.

Then, applying an opening to M̃i second and third layers (i.e., the ones correspond-

ing to singleton hypotheses), and increasing accordingly the Θ layer values, the map310

Mi of the final bbas mx,i is derived. This allows us to model the imprecision of the

detectors.

Specifically, with sx being the SVM score associated to pixel x, we have:


∀x ∈ P, m̃x,i(H) = (Ew ◦ σi)(sx),

∀x ∈ P, m̃x,i(H) = 1− (δw ◦ σi)(sx),

∀x ∈ P, m̃x,i(Θ) = 1− m̃x,i(H)− m̃x,i(H).

where σi is the learned sigmoid for classifier i and (Ew ◦ σi) and (δw ◦ σi) its eroded

and dilated results with a (flat) structuring element of width w, applied in the score315

space. Then, in the image space,


Mi(∅) = {0}x∈P ,

∀A ∈
{
H,H

}
,Mi(A) = γa

(
M̃i(A)

)
,

Mi(Θ) = {1}x∈P −Mi(H)−Mi(H),
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Table 2: Neighborhood spatial arrangement for samples x1 and x2. Corresponding mass allocations are

reported in Table 3.

neighborhood of sample x1 neighborhood of sample x2

x11

x14 x1x1x1 x12

x13

x21

x24 x2x2x2 x22

x23

Table 3: Example of proposed bba allocation after discounting based on SVM scores, for neighborhood of

samples x1 and x2 spatially arranged as reported in Table 2. Bba allocation for samples x1 and x2 is already

reported in Table 1.

m̃x11
m̃x12

m̃x13
m̃x14

m̃x21
m̃x22

m̃x23
m̃x24

H 0.8 0.2 0.7 0.01 0.95 0.94 0.98 0.95

H 0.19 0.4 0.2 0.8 0.04 0.03 0.01 0.03

Θ 0.01 0.4 0.1 0.19 0.01 0.03 0.01 0.02

whereMi(A) is the layer image associated to hypothesis A, ∀A ∈ 2Θ, and γa is the

opening operator of parameter a applied in the image domain.

As in [49], a spatial Gaussian structuring element fitted in a window of radius a is

used, to better take into account the spatial consistency. Note that the two morpholog-320

ical operations described are not commutative, since they are applied in two different

spaces, i.e. score and image domains, and we find it more natural to firstly consider the

imprecision due to the calibration step and later consider the imprecision in the spatial

context.

Let us continue with the toy example proposed in the previous section. Table 2325

shows the spatial arrangement of neighbor samples around the considered x1 and x2.

Let us suppose that neighbors have associated bbas reported in Table 3 after bba allo-

cation based on SVM scores. Bba allocation for samples x1 and x2 is already reported

in Table 1. Note that the spatial arrangement of the samples is fully independent from

their position in the score space. It is evident in the example that x2 has a more ho-330

mogeneous neighborhood with respect to x1. This reflects in a higher discounting for

sample x1 (for simplicity, in the example applying erosion with a flat 4-connectivity
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Table 4: Example of bba allocation for samples x1 and x2. From the bbas based on imprecise score we derive

the final bbas applying a second discounting based on neighboring pixels heterogeneity (in this example, with

flat 4-connectivity structuring element).

Sample Imprecise score-based bba Final bba

x1

m̃x1
(H) = 0.12

m̃x1(H) = 0.49

m̃x1(Θ) = 0.39

mx1
(H) = 0.01

mx1(H) = 0.19

mx1(Θ) = 0.8

x2

m̃x2(H) = 0.95

m̃x2(H) = 0.01

m̃x2
(Θ) = 0.04

mx1(H) = 0.94

mx1(H) = 0.01

mx1
(Θ) = 0.05

structuring element). Note that with the Bayesian allocation we would have assigned

to x1 a high mass on H , while taking into account the two types of imprecision we

end up with a bba having a high value of ignorance, that will not contribute a lot in the335

conjunctive combination with the other classifiers. On the contrary, the final bba allo-

cation of x2 reflects its Bayesian counterpart, since its calibrated score is quite reliable

and its neighborhood is homogeneous.

2.4. BBAs combination

Considering the N different descriptors, N bbas are defined as explained for ev-340

ery sample x. According to the bba obtained from descriptor i, the uncertainty of a

head presence in the pixel associated to x ranges between Belx,i(H) = mx,i(H) and

Plx,i(H) = mx,i(H)+mx,i(Θ), so thatmx,i(Θ) represents the imprecision on the un-

certainty value provided by ith descriptor for the given sample. In the proposed model,

the uncertainty comes from the binary classifier score, whereas the imprecision comes345

both from the initial score calibration and from spatial heterogeneity of uncertainty

values within the considered structuring element.

Finally, the combination between bbas can be performed. As the descriptors are

considered cognitively independent, the orthogonal sum or its unnormalized version,

the conjunctive combination rule [41], are well-suited for this task. For two sources350
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m1 and m2, the conjunctive combination rule is defined by

∀A ∈ 2Θ,m1∩©2 (A) =
∑

(B,C)∈2Θ×2Θ,
B∩C=A

m1 (B)m2 (C) . (7)

In our case where |Θ| = 2, and considering mx,i bbas allocation, the analytical

result may be easily derived:


mx (A) =

∑
(B1,...,BN )∈{A,Θ}N ,
∃i∈[1,N ]s.t.Bi=A

∏N
i=1mx,i (Bi) ,∀A ∈

{
H,H

}
,

mx (Θ) =
∏N
i=1mx,i (Θ) ,

mx (∅) = 1−mx (H)−mx

(
H
)
−mx (Θ) .

The result is thus a single four-layer mapM of bbas mx, where the overall ignorance

is reduced as a result of the combination, but at the same time a conflict component355

may appear in each pixel.

Finally, for every sample, the decision is taken from its corresponding mx. Several

rules have been proposed in the literature. Most popular ones only consider singleton

hypotheses (in order to avoid ambiguous decision) and are based on functions that

have a probabilistic interpretation: maximum of plausibility, credibility, or pignistic360

probability [41].

Pignistic probability in particular can be used to give a probabilistic interpretation

to the bbas. Since in our setting |Θ| = 2, ∀A ∈ Θ

BetPx(A) =
1

1−mx(∅)
·
(
mx(A) +

mx(Θ)

2

)
. (8)

This allows us to assign a probabilistic interpretation to the resulting bba associated to

each sample, so that we will obtain a single-layer BetP (H) image map where at every

pixel the BetPx(H) value will be differently normalized on the basis of the conflict

value included in mx, represented by the mass on the empty set. Generally, from the365

BetP (H) map, statistics for quantitative evaluation of the detection results are derived.

Besides doing this, in our study, obtained bbas mx are also taken into account for the

selection of new samples during the AL process, as explained in next section.
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3. Evidential QBC disagreement measures

In the context of QBC, new samples for the learning process are chosen based370

on the analysis of the responses of a set or committee of classifiers. Traditionally,

generic ensemble learning algorithms are used to build the committee (i.e., bagging or

boosting), or a set of weak classifiers are derived from a model changing its intrinsic

parameters. In the context of SVM-based learning, among some descriptors which are

widely used in pedestrian detection, those which are the best suited in high-density375

crowds have been recently highlighted in our previous works [50, 49], so that we find

it natural to build a set of classifiers with them.

After having built C, the committee of classifiers of cardinality |C| = N sources,

QBC relies on some heuristics to measure the disagreement among them, in order to

find the most informative samples to add to the training set L.380

In the following, we investigate traditional disagreement metrics such as Soft Vote

Entropy and KL divergence, as well as new evidential-based disagreement measures,

with diversity among samples ensured by a minimum Euclidean distance applied in the

spatial domain between instances already in the training set and in the current batch.

3.1. Traditional disagreement measures in QBC and their limitations385

Specifically, given the set of mutually exclusive hypotheses Θ =
{
H,H

}
and C

the committee of classifiers of cardinality N , Soft Vote Entropy asks for the label of

the unlabeled sample such that:

x∗SV E = argmax
x∈U

∑
y∈Θ

PC (y | x) log

(
1

PC (y | x)

)
, (9)

where U is the set of unlabeled samples (U ⊂ P), and PC (y | x) = 1
N

∑N
i=1 Pi (y | x)

is the average or consensus probability that y is the correct label according to the com-390

mittee. Soft Vote Entropy is thus essentially an ensemble generalization of entropy-

based uncertainty sampling. The log function, here and from now on, represents the

logarithm to the base 2.
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On the other hand, the KL divergence strategy adds samples to the training set such

that:395

x∗KL = argmax
x∈U

1

N

N∑
i=1

DKL (Px,i‖Px,C) , (10)

where Px,i = Pi (y | x) and Px,C = PC (y | x) for simplicity of notation, whileDKL is

the KL divergence that quantifies the disagreement as the average divergence between

the prediction of each classifier i in the committee and the consensus PC , and is defined

by

DKL (Px,i‖Px,C) =
∑
y∈Θ

Pi (y | x) log

(
Pi (y | x)

PC (y | x)

)
. (11)

The conceptual difference behind SVE and KL resides in the way they quantify400

the disagreement. Considering a committee of classifiers, the consensus probability

PC (y | x) between them could be uniform in two different cases. Firstly, all the clas-

sifiers have an uniform distribution among the hypotheses, so that the consensus dis-

tribution is also uniform. Secondly, the classifiers strongly disagree between them, but

since the consensus is an average between their responses, it ends up being uniform405

among all the hypotheses as well. In the first case, all the classifiers agree that the label

is uncertain, while in the second case they strongly support a different label. Since SVE

only considers consensus, it cannot distinguish between the two cases. On the other

hand, KL divergence would favor only samples with uncertain consensus because of

conflicting predictions given by the classifiers.410

Besides these highlighted limitations, the mentioned measures do not exploit the

possible information arising from the combination among the committee members,

and the final result on which evaluation is performed is not taken into account in the

selection of the new samples.

3.2. Proposed evidential disagreement measures415

On our side, after having performed the combination between the various sources

in the BF framework, the result is the map M where at each pixel x of the image

corresponds a bba mx that incorporates a different evidence of belonging to a certain
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Table 5: Evidential entropy definitions given bba m with discernment frame Θ

Reference Entropy formulation

Höhle [51] HO(m) =
∑
A∈2Θ m(A) log

(
1

Bel(A)

)
Yager [52] HY (m) =

∑
A∈2Θ m(A) log

(
1

Pl(A)

)
Nguyen [53] HN (m) =

∑
A∈2Θ m(A) log

(
1

m(A)

)
Pal et al. [54, 55] HP (m) =

∑
A∈2Θ m(A) log

(
|A|
m(A)

)
Dubois and Prade [56] HDP (m) =

∑
A∈2Θ m(A) log (|A|)

Lamata and Moral [57] HLM (m) = HY (m) +HDP (m)

Deng [58] HD(m) = HN (m) +
∑
A∈2Θ m(A) log

(
2|A| − 1

)
Jiroušek and Shenoy[59] HJS(m) =

∑
x∈Θ Pl P (x) log

(
1

Pl P (x)

)
+HDP (m)

Jousselme et al. [60] HJ(m) =
∑
x∈ΘBetP (x) log

(
1

BetP (x)

)

class (i.e., head or not head), as well as a component of ignorance that remains after the

combination, and conflict between the sources, i.e. the masses on Θ and ∅ respectively420

that come from the conjunctive combination. We can therefore extend the concept of

Soft Vote Entropy to the evidential framework, to define new evidential measures of

disagreement among committee members. The Maximum Entropy (ME) strategy will

add to the training set sample such that:

x∗ME = argmax
x∈U

H(mx), (12)

where in our case mx is the bba associated to the unlabeled sample x, obtained after425

the explained bba allocations and conjunctive combination, and H(·) is a definition of

the entropy function in the evidential domain.

Several definitions of evidential entropy have been proposed over the past decades,

with the aim of measuring the degree of total uncertainty of a bba, but a formulation

satisfying all the desired properties still remains an open issue.430

Table 5 summarizes some popular definitions, that we intend to investigate as func-

tions to select the new training points. Some of them, like Höhle [51], Yager [52] and

Nguyen [53] definitions are only able to measure the conflict portion of uncertainty.

Pal definition [54, 55] is an extension of Nguyen’s one, taking into account also the
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cardinality of each focal element. The definition given by Dubois and Prade [56], on435

the contrary, captures only the non-specificity portion of uncertainty, quantifying how

a bba is imprecise. The most non-specific bba is given by the categorical bba having

m(Θ) = 1, while the most specific bbas are the Bayesian ones, so that non-specificity

is a measure of how a bba is fragmented among the various hypotheses. The formula-

tion given by Lamata and Moral [57] and the more recent Deng [58] and Jiroušek and440

Shenoy [59] ones, combine both conflicting and non-specificity components in differ-

ent ways. Regarding the conflicting part, Lamata et al. uses Yager’s definition which

relies on the plausibility function, Deng uses Nguyen’s formulation while Jiroušek et

al. interprets it in a completely different way, as the Shannon’s entropy of the plausi-

bility probability function Pl P [61], an alternative method to pignistic transformation445

for translating bbas into probabilistic framework. Regarding the non-specificity com-

ponent, Lamata et al. and Jiroušek et al. rely on Dubois and Prade definition, while

Deng provides a brand new formulation. Alternatively, Jousselme et al. [60] firstly per-

form a pignistic transformation from bba to probability mass function through BetP ,

and then apply Shannon’s entropy on it. A similar definition, called pignistic entropy,450

appears in [62], in the context of the Dezert-Smarandache Theory (DSmT) [63, 64],

that is a variant of the classical Dempster-Shafer Theory (DST). Since we indeed rely

on DST, we refer in the following to Jousselme’s definition. The advantage of such

a formulation for our application is that since it is based on the BetP function, there

is a direct link between it and the final map we use for decision and, possibly, crowd455

density evaluation [50].

Besides entropy-based criteria, the masses on Θ and ∅ can be directly exploited as

indicators for the selection of the new samples. It is possible to directly derive two

simple strategies, based on Maximum Ignorance (MI) and Maximum Conflict (MC):

x∗MI = argmax
x∈U

mx (Θ) , (13)

x∗MC = argmax
x∈U

mx (∅) . (14)

where in our case mx is the bba associated to the unlabeled sample x, obtained after460

the explained bba allocations and conjunctive combination.
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Equation (13) favors the selection of new points for which all the classifiers do not

have enough information to assign them to one of the classes, i.e. samples with maxi-

mal mass on the compound hypothesis. On the contrary, Eq. (14) supports the selection

of points on which the classifiers disagree the most about their actual label, i.e. samples465

with maximal mass on the empty set. In Eq. (14) we choose to use a measure of total

conflict derived from the conjunctive combination rule as disagreement measure. In

[65, 66] total conflict is separated into internal and external components. Internal con-

flict quantifies the (self-)inconsistency of the ith source, while external conflict is only

based on the interaction between sources and does not integrate any self-inconsistency.470

The authors of [67] in particular agree with this subdivision, and they propose conflict

measurements based on contour functions, making no a-priori assumptions regarding

the dependence between sources.

The concepts of conflict and ignorance have already been used in the context of

single classifier uncertainty sampling-based AL in [68], but with different meanings475

from those in the BF framework. In their work, conflict models the extent to which a

new query point lies in the conflict region between two or more classes (whereas for

us it refers to conflicting beliefs from different classifiers), while ignorance represents

the distance of a new query point from the training samples seen so far, so that it is

higher in areas of the version space not represented yet (while for us it is higher when480

for all the classifiers the point resides in their uncertainty area - in a sense, the two

definitions are completely the opposite). Always in the different context of uncertainty

sampling, in [69] there is a distinction between insufficient-evidence and conflicting-

evidence uncertainties, but the concept of evidence does not refer to BF framework, but

it is rather measured as a weighted similarity of a given sample to the support vectors.485

We expect that the inclusion of samples with high ignorance or conflict will be

beneficial for the learning process, respectively in order to sharpen the decision bound-

aries between the classes for all the classifiers and to reduce overall conflict between

the various sources. However, the former strategy exploits examples which are near the

current decision margins in all the feature spaces, and it is not able to solve possible490

conflicts but it just adjusts the boundaries, while the latter allows for an exploration of

the version spaces to select points which are not yet represented by the current models,
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Table 6: Example of evidential-based disagreement measures
∅ H H Θ BetP (H) HO HY HN HP HDP HLM HD HRP HJ

mx1 0.01 0.1 0.1 0.79 0.5 0.67 0.03 0.93 1.72 0.8 0.83 2.19 1.8 1

mx2
0.79 0.1 0.1 0.01 0.5 1.02 0.88 1.23 1.27 0.05 0.94 1.3 1.05 1

mx3
0.4 0.1 0.1 0.4 0.5 0.86 0.09 1.25 1.92 0.66 0.75 2.31 1.66 1

mx4 0.1 0.79 0.01 0.1 0.93 0.24 0.05 0.59 0.7 0.11 0.16 0.76 0.61 0.35

but it could be prone to select outliers. In this sense they are complementary strategies,

and they should be used in conjunction with a criterion able to balance them. Alter-

natively, we expect entropy-based disagreement to be able to naturally find a trade-off495

between them as a measure of information gain.

Table 6 shows an example of four bbas associated to different samples, and the

decision about which sample to query based on the different evidential criteria (i.e. the

sample related to the bold value in each column). In particular, mx1
has a high com-

ponent of ignorance, mx2
is a very conflicting bba, mx3

is not committed and at the500

same time has a high amount of both ignorance and conflict, while mx4 is committed

about H hypothesis. The value of BetP (H) is also shown, to highlight the fact that

the probabilistic framework assigns the same value to the first three bbas even if they

are intrinsically very different one from the others. As we expect, no measure selects

mx4 to be added to the training set, since it is quite committed and it would not provide505

much information. On the contrary, the first three bbas are selected based on the dif-

ferent measures. A clear limitation of MI and MC criteria is that they fail detecting

bbas with relatively high values of both conflict and ignorance: MI selects mx1
while

MC selects mx2 , but they do not consider mx3 at all, even if it represents a potentially

interesting sample to add to the training set. Conversely, entropy-based criteria are510

able to better consider the relative repartition of masses through the various hypothe-

ses. Using Höhle and Yager definitions of entropy, mx2
is selected, highlighting their

tendency to detect conflicting instances. Nguyen and Pal favor the selection of mx3 ,

prioritizing samples which are both not very committed and conflicting, even if Nguyen

is more sensitive to conflict while Pal gives more importance to the ignorance compo-515

nent. Dubois and Prade’s formulation of entropy favors samples with high ignorance,

not being able to capture the conflict component. Among the three composite formu-

lation that aim at taking into account both conflict and non-specificity (i.e., Lamata
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Figure 2: Evidential Query-By-Committee Active Learning flowchart.

and Moral, Deng, Jiroušek and Shenoy), we can notice that they all prioritize different

samples, but there is only a slightly difference among the entropy values associated to520

the first three bbas. This suggests the fact that they would probably select the three of

them to be part of the same batch. In the same way, Jousselme’s definition based on

BetP (H) encourages a diversity in terms of bbas in the same batch, allowing to tackle

different types of issues at the same time (i.e., conflicting and/or not committed bbas).

3.3. Global overview of the proposed evidential QBC process: from bba allocation to525

new sample selection

Figure 2 shows the complete flowchart of the proposed evidential QBC method.

After the traditional learning step, BF framework is involved in three important oper-

ations, namely in the bba allocation procedure through successive discounting, in the

combination of sources that allows us to obtain a BetP (H) map used for evaluation,530

and in the derivation of evidential entropy map which guides the selection of the most

informative samples to add to the training set for the subsequent iteration of the active
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learning procedure.

The proposed evidential QBC differs from the traditional one. First of all, from the

score maps given by SVM classifications we do not derive probabilistic maps through535

logistic regression, but we perform a bba allocation that takes into account two pos-

sible sources of imprecision, namely in the estimation of the sigmoid parameters to

perform logistic regression and, later, in the image space. Then, the conjunctive com-

bination rule is able to take into account the information provided by the different

sources, discounted pixel-wise accordingly to their evaluated reliability. At this stage,540

the obtained bba mapM can be used either for evaluation, through the computation of

the BetP (H) map, or to compute the evidential entropy map, from which the samples

with maximum entropy are extracted and added to the labeled samples set L. Note that

in case of Maximum Ignorance or Maximum Conflict criteria, the evidential entropy

map would not be computed, and the samples would directly be chosen maximizing545

ignorance and conflict channels,M(Θ) andM(∅) respectively.

In the following section, we will investigate all the proposed evidential-based dis-

agreement measures as well as the traditional ones in the context of our application.

4. Experiments

4.1. Data and features used550

4.1.1. Dataset

We tested our proposed fusion method on high-density crowd images acquired at

Makkah during Hajj [70]. The camera we used is a robotic camera (AVT Guppy PRO)

mounted statically in order to observe the high-density pilgrim crowd, and provid-

ing gray-level regular images (visible spectrum). The camera provides thus a video555

sequence of the crowd (at a frame-rate of 8Hz). For the training, calibration and eval-

uation of the head detectors, we use images extracted at distant moments (in order to

establish a full level of independence among the images used). Each image instance

contains in the analyzed Region of Interest (corresponding roughly to the lower half of

the scene) a high number of objects to detect (about 900-1000 heads) due to the high560

density.
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Figure 3: Patch with ground-truth dotted annotation

Figure 3 shows a patch from an image of the dataset, highlighting the difficulty of

the problem since the heads are barely visible and many occlusions occur. We per-

formed a dotted annotation in the head centers for the training images, such that the

ground-truth so obtained can be used as oracle to assign the correct label to the sam-565

ples selected for querying by AL. Even though in Makkah the crowd follows a general

direction, there is a significant degree of head appearance variability due to gender,

type of head cover, and most importantly, to the various degrees of occlusion coupled

with the small size of the targets. For annotating a single image (clicking on the heads

exhaustively), a human annotator requires typically half a day of work, and approxi-570

mately 20% of the heads are so difficult to annotate that the human needs to look in

the previous and the next frames in order to take a head/not head decision (something

which our algorithm cannot do, as it performs the detection only in the current frame).

As it is possible to see from the image, another problem in this type of scenes is the

high data imbalance between positive and negative samples (i.e., pixels belonging or575

not to a head, respectively), stressing the importance of finding an effective strategy to

select significant samples.

4.1.2. Pedestrian detectors in dense crowds

In the difficult context of high-density crowds, simple detectors relying on appear-

ance cues, such as local color histogram which may be associated to skin, hair or580

clothes are not well suited, since the object resolution needs to be relatively high and

the color spaces may not be discriminative enough. Even worse, many surveillance

cameras provide only gray level data, as in our case, so that it is not possible at all
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to exploit color information. In the same way, common face detectors such as Viola-

Jones [71] are unsuited, since pedestrian faces are not detailed enough. Among some585

descriptors which are widely used in SVM-based pedestrian detection, those which are

the best suited in the context of high-density crowds have been recently highlighted

in [49].

Related to the image gradient, the Histogram of Oriented Gradients (HOG) descrip-

tor [10] is very popular and has exhibited in various contexts excellent performances590

when used in conjunction with a histogram intersection kernel (HIK) [9]. The contour

related to the specific shape of the head and shoulders is indeed highly discriminative,

but it may fade away due to clutter. For this reason, it is important to consider as well

some descriptors aimed at other characteristics than shape.

To this extent, some descriptors related to texture representation are the Local Bi-595

nary Pattern (LBP) operator [11] and Gabor filter banks [72]. The former is tradition-

ally employed in texture classification, and it has been successfully used in pedestrian

detection due to its reasonable robustness to occlusion provided by its local sampling

strategy, while the latter have been used for head detection [72] to encode the local

frequencies and orientations. Regarding LBP, we rely for learning on a χ2 kernel func-600

tion which has been shown to be positive definite and suited for data generated from

histograms [73], while for the Gabor-based descriptor we consider a RBF kernel.

Besides these popular pedestrian detectors, the DAISY [74] descriptor, usually used

in the field of stereo matching, has been successfully employed for the first time for

head detection in these difficult crowd scenes in [49], together with HIK. Its Gaussian605

smoothing, along with the sampling overlap, naturally enforces spatial consistency.

4.2. Evidential QBC result analysis

4.2.1. Comparison between the proposed evidential disagreement measures

For the QBC algorithm, we thus build the committee C of classifiers with the four

cited SVM pedestrian detectors, namely HOG, LBP, Gabor and DAISY. Such a com-610

mittee is quite heterogeneous since each classifier contributes providing a different

view of the data, so that the explained fusion strategy is applied at every iteration,

both to obtain the image map of the BetP (H) on which we compute statistics, and to
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choose the samples to add to the training set on the basis of the different evidential-

based proposed heuristics.615

In the context of AL, the choice of the evaluation metrics is not trivial. The re-

cent study carried out by [75] indeed have pointed out that most of the evaluations of

AL approaches in the literature have focused on a single performance measure, and

have shown that the improvements provided by AL for one performance measure of-

ten comes at the expense of another measure. Besides this, the most used metric is620

accuracy, which intrinsically depends on the choice of a threshold so that a question

arises about how much of the observed improvement is due to the effective learning

and how much of it is simply due to a shift in the optimal decision threshold. More-

over, accuracy metric is not relevant in presence of highly imbalanced data. To solve

this last problem, popular measures are Precision, Recall, and F1 score, but they still625

require a threshold. For all these reasons, we choose to evaluate our method on the ba-

sis of two different measures, which do not depend on a threshold and at the same time

are suited for imbalanced data, namely Area Under Precision-Recall Curve (AUPRC)

and Precision-Recall Break Even Point (PRBEP) (i.e., the value of the curve where

Precision is equal to Recall). These two metrics are computed on the BetP (H) map,630

applying non maxima suppression (NMS) at every threshold to identify the targets, set-

ting the radius of a head to r = 3, with 2r+ 1 minimum distance between two maxima

(head centers) in order to avoid overlapping detections.

We conducted our tests starting from a random training set of 500 samples arriving

to 2000 samples, with a batch size of 100 samples per iteration added on the basis of635

the discussed disagreement measures. Figure 4 shows the AUPRC and PRBEP for ev-

ery iteration using the proposed Maximum Entropy (ME) with the different evidential

entropy definitions, Maximum Conflict (MC) and Maximum Ignorance (MI) criteria.

It is possible to see an improvement of both metrics with all the investigated disagree-

ment measures, stressing the robustness of the method and the fact that the approach640

is well-suited to our application. All the curves tend to flatten towards the end of the

process, which means that the final number of samples represents a suitable training

set size. An interesting consideration is that some curves have higher performance

even when relying on a small size of the training set (i.e., are faster to converge). This
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Figure 4: AUPRC and PRBEP at every iteration using ME criterion with different evidential entropy dis-

agreement measures, MC and MI criteria.

means that those query strategies are immediately able to select the most informative645

samples to add to the training set. There are indeed some differences among the re-

sults achieved using the various definitions. It is clear that entropy formulations which

focus on conflict (e.g., the Yager one) provide better results with respect to Dubois-

Prade definition which focus only on the non-specificity portion of uncertainty, already

in presence of a small training set size. Moreover, considering both imprecision and650

conflict components seems to be beneficial, in particular using Lamata and Moral’s

composite definition. Note that also the the simpler Jousselme’s entropy-based crite-

rion appears quite beneficial both in terms of AUPRC and PRBEP. In general, the best

strategies appear to be the ones that encourage diverse samples inside the same batch

in terms of bba structure, that is to say, both conflict and ignorance components have655

to be taken into account, with a slight preference for samples with conflicting bbas.

Considering the results obtained with the two simple evidential criteria based solely

on conflict and ignorance indeed, these approaches do not reach the performance of

entropy-based disagreements. As expected, selecting the samples on the basis of max-

imum conflict allows for a steeper improvement at the beginning, where exploration of660

the version space is very important, but after some iterations the curves tend to flatten.

On the contrary, the samples with high values of ignorance are mostly useful when the

size of the training set begins to be consistent, and it becomes important to exploit the
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current feature spaces to adjust the boundaries. This behavior reflects the importance

to pass from an initial exploration to a final exploitation of the data. To this extent, ev-665

idential QBC based on Maximum Entropy criterion is able to naturally find a trade-off

between the two.

In the following, we choose Lamata and Moral’s entropy definition as the more

competitive criterion among the evidential entropy formulations. Indeed, it outper-

forms other formulations when considering AUPRC metric, which is a key indicator670

since it takes into account the whole Precision-Recall curve, and at the same time has

good performance in terms of PRBEP.

4.2.2. Comparison with traditional approaches

In order to evaluate the benefit for the active learning procedure of the proposed bba

allocation used in conjunction with evidential disagreement measures, Fig. 5 reports the675

curves related to two different levels of comparison.

Firstly, we evaluate the difference compared to a result reached with purely prob-

abilistic reasoning. We perform the Bayesian bba allocation from the output of each

classifier after Platt’s regression, without applying any discounting neither in the score

space nor in the image space, and we apply the normalized conjunctive combination680

rule (i.e. Dempster rule): in this way, the classifiers combination boils down to simple

product of probabilities. Then, on the resulting probabilistic map, we apply the tra-

ditional SVE and KL disagreement measures, as well as a baseline that simply adds

randomly drawn samples at every iteration. Moreover, to quantify exactly the ben-

efit of the proposed bba allocation over the Bayesian one, we aim at converting the685

proposed evidential disagreement measures to the Bayesian framework. MC and MI

do not apply, since Bayesian bbas have null masses on conflict and ignorance respec-

tively. Transposing the evidential entropy definitions to the Bayesian framework, how-

ever, we notice that all the formulations (except Dubois-Prade’s one which is always

null being mostly related to ignorance, and Jiroušek and Shenoy’s one) boil down to:690

H(m) = m(H) log
(

1
m(H)

)
+ m(H) log

(
1

m(H)

)
. Clearly, our evidential approach

outperforms all the probabilistic ones with respect to both AUPRC and PRBEP. Be-

sides, the fact that there is a consistent gap between the proposed evidential Maximum
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Entropy and the corresponding curve in the Bayesian framework (Bayesian ME) in-

dicates that the detector combination with the proposed bba allocation is significantly695

superior to a simple product of probabilities.

Now, in order to show that the performance gain is not only due to the relevant bba

allocation, but also to the good choice of disagreement measure for active learning, we

perform the proposed evidential bba allocation, obtaining a BetP (H) map that we in-

terpret as a probability map to compute SVE, KL and the random baseline. This allows700

us to focus on the benefit of the BF framework vs. probabilistic one only with respect

to the new sample selection step, to see exactly the impact of evidential measures in

the selection of the new samples being not biased by the detector combination result.

The related curves are referred in Fig. 5 as ”Semi-evidential”, since the BF framework

is only involved in the bba allocation and combination but not in the sample selection.705
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Figure 5: AUPRC and PRBEP at every iteration. Comparison of evidential-based disagreement measures

with traditional ones.

Entropy-based criteria, namely SVE and the proposed ME using Lamata and Moral

evidential entropy definition, outperform the others, both in terms of AUPRC and

PRBEP. However, although reaching almost the same performance as the evidential

ME at the very end of the process, SVE is not able to select the most informative sam-

ples from the beginning. In particular, entropy-based evidential criterion results to be710

the best one, due to the ability of BF framework to model in a finer way the actual

information contained in each sample, highlighting the importance of the coupling be-
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tween the fusion of the classifiers and the definition of the disagreement measures. We

can notice how KL strategy, which in its intention should select conflicting samples

based on the consensus probability, does not seem to be very efficient in this context,715

performing even worse than random sampling. This is against what we observed in the

comparison of the various evidential-based entropies, where the definitions that focus

on the conflict are indeed the most successful ones. This fact shows that the evidential

framework is more able to model the conflict among the various committee members,

through the mass on ∅, with respect to the probabilistic framework that models it in720

terms of divergence from the consensus probability.

4.2.3. Correlation analysis

The aim of correlation analysis between the various disagreement measures is to

understand better how they may differ from one another and the similarity between

them. To this extent, we apply the proposed MC, MI and ME criteria with all the725

investigated entropy measures on the basis of the BetP (H) map obtained after bba

allocation and combination. Traditional SVE, KL and the random sampling are still

performed on the basis of theBetP (H) map obtained after bba allocation, interpreting

it as a probability map, to focus only on the new sample selection step.

Figure 6 shows the correlation matrix in terms of percentage of common samples730

between the different points selected at every iteration on the basis of the investigated

criteria, excluding the initial common 500 samples, so that only the ones selected with

respect to the various strategies are taken into account in the computation. We do not

plot all the iterations but we focus on the first iterations, where variations are more

visible, and on the last one in order to give a sight of the general behavior. We note that735

in general, going on with the iterations, the different training sets tend to diverge, sign

that the size of the considered pool of unlabeled samples U is indeed appropriate in

the sense that the various methods have enough freedom being not constrained by the

data. Correlation is especially evident considering the various evidential disagreement

measures. Many definitions are related to ignorance, and as expected, Dubois and740

Prade’s entropy is very close to it. Yager’s entropy and Lamata and Moral’s one, on

the contrary, are very related one to each other and have a consistent overlap with

31



R
SVE KL

M
C M

I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P

M
E-L

M
M
E-D

M
E-J

S
M
E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
SVE KL

M
C M

I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P

M
E-L

M
M
E-D

M
E-J

S
M
E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
SVE KL

M
C M

I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P

M
E-L

M
M
E-D

M
E-J

S
M
E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
SVE KL

M
C M

I

M
E-O

M
E-Y

M
E-N

M
E-P

M
E-D

P

M
E-L

M
M
E-D

M
E-J

S
M
E-J

R

SVE

KL

MC

MI

ME-O

ME-Y

ME-N

ME-P

ME-DP

ME-LM

ME-D

ME-JS

ME-J

Correlation at iter.16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Correlation between samples added during successive AL iterations with different strategies, for

the initial iterations and the last one. R = Random, SVE = Soft Vote Entropy, KL = Kullback-Leibler

divergence, MC = Maximum Conflict, MI = Maximum Ignorance, ME = Maximum Entropy: O = Höhle,

Y = Yager, N = Nguyen, P = Pal et al., DP = Dubois and Prade, LM = Lamata and Moral, D = Deng, JS =

Jiroušek and Shenoy, J = Jousselme.
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(a) Patch image from U (b) BeliefM(H) (c) ConflictM(∅)

(d) IgnoranceM(Θ) (e) Soft Vote Entropy (f) KL divergence

(g) Höhle entropy (h) Yager entropy (i) Nguyen entropy

(j) Pal entropy (k) Dubois and Prade entropy (l) Lamata and Moral entropy

(m) Deng entropy (n) Jiroušek and Shenoy entropy (o) Jousselme entropy

Figure 7: Different maps obtained using the investigated evidential disagreement measures for a selected

patch of the unlabeled samples pool U (in Fig. (a)) with corresponding bba allocation M. SVE and KL

maps are shown as well for comparison.

the conflict measure. Nguyen and Pal correlation is also highlighted, and it is easily

explainable by the fact that Pal’s formulation extends Nguyen’s one, taking into account

also the cardinality of the focal elements (in our case, in presence of two singleton745

hypotheses, only the term that refers to the compound set slightly changes). Again,

Pal’s training set seems very correlated to Jiroušek-Shenoy’s and Deng’s ones, which

are two composite formulations aiming to take into account both conflict and non-

specificity. KL divergence seems totally unrelated to any other measure, except for the

conflict with a marginal degree.750

To better understand the degree of correlation between the different measures,
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Fig. 7 shows a visual comparison of the maps obtained with the various entropy def-

initions for the first iteration of the AL process, so that we can compare them on the

basis of the same training set. Figure 7(a) represents a selected part of the unlabeled

samples pool U . After the evidential combination of the classifiers, the result is the755

image map M of bbas mx associated to every pixel x, shown in terms of belief in

Fig. 7(b), conflict in Fig. 7(c), and ignorance in Fig. 7(d). Soft Vote Entropy 7(e) and

KL divergence 7(f) maps are shown as well for comparison with all the investigated ev-

idential entropy definitions. Once again, we notice the correlation between ignorance

and Dubois-Prade entropy in Fig. 7(k), while the other entropy definitions seem more760

correlated to the conflict, although to different extents. In general, evidential entropy

maps are able to model in a finer way the actual information contained at every pixel

locations, so that the regions of interest for the AL process are better enhanced with

respect to SVE and KL.

The figure visually shows where and how the various entropy definitions corre-765

late. While previous Fig. 6 provides only a global estimation of the correlation (scalar

value), Fig. 7 allows for a qualitative visualization of the spatial variation of the corre-

lation. Entropy is higher where the individual detectors are discordant, and the images

show that this happens frequently on the border of the heads, because the various clas-

sifiers provide different detection sizes (e.g. HOG and Gabor provide more localized770

detections with respect to LBP and Daisy that provide coarser blobs). There are some

areas that correspond to a head where entropy is high, and it means that just a part of the

classifier committee succeeds in detecting it. We also note that some shoulders of the

people may present high entropy values. Specifically, this happens when one or some

classifiers miss-classify shoulders as heads due to their similar rounded visual appear-775

ance. Finally, it is interesting to visualize that the maps usually agree on the location

of maximum entropy (borders of the heads, heads detected only by some classifiers,

shoulders areas which confuse some classifiers), while at the same time they provide

different amounts of entropy for the same location, and this is what allows the AL to

choose different samples and thus to obtain such diverse training set at the end of the780

process.
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4.2.4. Global benefit of evidential QBC active learning

Figure 8: Visual comparison of the detections obtained at the first iteration of the process (500 training sam-

ples), on the left, and the last iteration (2000 training samples selected using Lamata and Moral Maximum

Entropy criterion), on the right. Results are shown in terms of colormap of the BetP (H) map in the first

row, detections at PRBEP in the second row, and the different sources used in the combination in the third

row (namely HOG, LBP, Gabor, Daisy).

Figure 8 provides a visual comparison between the first and the last iterations of

the process, during which the training set increased from 500 samples (on the left) to

2000 training samples (on the right), selected with the Maximum Entropy criterion us-785

ing Lamata and Moral’s definition. The classification results are shown both in terms

of colormap of the BetP (H) in the first row, and detections at the PRBEP threshold in

the second row. Moreover, detections using the single sources that compose the com-

mittee of classifiers are shown in the last row (HOG, LBP, Gabor, Daisy respectively),

in order to highlight their complementarity and the necessity of an adapted fusion be-790

tween them.While the colormap is useful to identify regions with higher values, and to

immediately see that at the end of the process we obtain a less noisy and sharper map,

the detections superimposed on the input image are indeed useful to evaluate the actual

location of the detections and the presence of false positives (areas with high values

which do not correspond to an actual head) or false negatives (heads which are not de-795

tected). The detections are provided here for the value of threshold at which precision

is equal to recall (i.e. the PRBEP), which is a reasonable compromise since it allows

us to have the same number of false positives and false negatives. PRBEP is equal to
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0.74 for the first iteration, meaning that at the beginning of the process for this partic-

ular threshold 26% of the heads are lost while at the same time 26% of the detections800

are not actual heads. At the end of the process, PRBEP becomes 0.835, meaning that

we obtain an improvement of almost 10% with the proposed approach, both in terms

of precision and recall. PRBEP threshold is a traditional operative point for many ap-

plications and we find it reasonable to adopt it for visualization purposes. The exact

values of the thresholds are th = 0.8 for the first iteration (on the left) and th = 0.55805

for the last iteration (on the right). Although the exact values are not really meaningful

in themselves, it is interesting to notice the initial bias toward a high threshold, that can

be explained by the fact that at the beginning of the process the training set is balanced

(i.e. it has the same number of positive and negative samples), while at the end of the

process it tends to have more negative samples, reflecting the actual data distribution.810

Overall, the proposed evidential fusion, which is able to take into account impre-

cision both during calibration and in the image space, results to be suited for this ap-

plication. Besides, the AL algorithm is able to select samples which are indeed useful

to improve the performance of all the classifiers, a fact which results in a significant

and visible improvement of the final BetP (H) map. At the end of the AL process, the815

detections are more localized, sharper and a lot of false positives which were present

at the beginning have been successfully removed.

To highlight the importance of coupling the fusion strategy with the AL process,

Fig. 9 shows different Precision-Recall (PR) curves, for the various single classifiers as

well as for their fusion. The curves are shown for the first and last iterations, in order820

to illustrate the relative improvement in terms of performance for all the classifiers.

Besides showing that fusion results are better than individual detectors (which is

not mandatory true especially in case of poor initial detectors and underlines the im-

portance of the proposed bba allocation), the figure has two main purposes. Firstly, it

shows the improvement due to AL, comparing the first iteration with the last one for ev-825

ery classifier and their fusion, so that we can see that AL is effective since performance

has increased for every classifier at the end of the process. Secondly, considering the

fusion result, it shows that the improvement is not only due to the increased size of

training set but also to the chosen sample selection strategy. The image underlines in-
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last iterations. For the sample selection, we compare Lamata and Moral’s strategy with the random selector

(which benefits only from a larger training set).

37



deed the consistent gap between the two fusion results at the last iteration, which corre-830

sponds to random sample selector and maximum entropy sample selector (considering

Lamata and Moral’s entropy definition). This fact underlines the importance of having

defined an adapted fusion strategy which is able to take into account imprecision while

at the same time providing clues for the AL process.

5. Conclusion835

Our work proposes a belief function based fusion strategy for the application of

pedestrian detection in high-density crowds. The algorithm relies on a pool of het-

erogeneous detectors, and it exhibits two fundamental advantages with respect to the

many existing ensemble methods. Firstly, given the reduced size of the targets, we

take into account jointly the imprecision related to the individual decisions during the840

calibration process along with the detection imprecision exhibited in the image space.

Secondly, we exploit the disagreement among the individual detectors in order to add

new samples to the training set in an optimal manner with respect to the information

gain evaluated with different evidential entropy measures. The results highlight the

effectiveness of the detector fusion and confirm the expected behaviors of the different845

entropy measures we considered in our study.

Even if in our application we considered only two classes, the method could be eas-

ily extended to handle more than two singleton hypotheses: the proposed Maximum

Entropy and Maximum Conflict criteria would naturally apply, while the Maximum

Ignorance criterion will possibly benefit from distinction between partial ignorance850

values. Refining conflict analysis, we could also take into account the difference be-

tween external and internal conflict components, to find a balance between exploration

and exploitation of the version space.

From a methodological point of view, the perspectives of this work are related

to extending it for performing neural network late fusion, for which the widely used855

combinations do not rely on an evidential estimation of the imprecision or disagreement

(i.e. [76, 77, 78]). Application wise, the proposed strategy is well adapted in contexts

in which it is desirable to pinpoint efficiently new training samples from a large pool
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of heterogeneous data based on the lack of consensus among many classifiers. For

the specific field of crowd analysis, we are also interested in performing local density860

estimation which could be helpful in identifying instability areas without the need to

perform accurate individual detections.
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[59] R. Jiroušek, P. P. Shenoy, A new definition of entropy of belief functions in

the Dempster–Shafer theory, International Journal of Approximate Reasoning 92

(2018) 49–65.

[60] A.-L. Jousselme, C. Liu, D. Grenier, É. Bossé, Measuring ambiguity in the evi-1015
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