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About Darcy’s law in non-Galilean frame

C. Geindreau . E. Sawicki, J.-L. Auriault and P. Royer

SUMMARY

This paper is aimed towards investigating the filtration law of an incompressible viscous Newtonian fluid
through a rigid non-inertial porous medium (e.g. a porous medium placed in a centrifuge basket). The
filtration law is obtained by upscaling the flow equations at the pore scale. The upscaling technique is the
homogenization method of multiple scale expansions which rigorously gives the macroscopic behaviour
and the effective properties without any prerequisite on the form of the macroscopic equations. The derived
filtration law is similar to Darcy’s law. but the tensor of permeability presents the following remarkable
properties: it depends upon the angular velocity of the porous matrix. it verifies Hall-Onsager's
relationship and it is a non-symmetric tensor. We thus deduce that, under rotation. an isotropic
porous medium leads to a non-isotropic effective permeability. In this paper. we present the results
of numerical simulations of the flow through rotating porous media. This allows us to highlight the
deviations of the flow due to Coriolis effects at both the microscopic scale (i.e. the pore scale), and the
macroscopic scale (i.e. the sample scale). The above results confirm that for an isotropic medium,
phenomenological laws already proposed in the literature fails at reproducing three-dimensional Coriolis
effects in all types of pores geometry. We show that Coriolis effects may lead to ﬂgmﬁcant variations of the
permeability measured during centrifuge tests when the inverse Ekman number Ek™' is ¢(1). These
variations are estimated to be less than 5% if Ek ™' <0.2, which is the case of classical geotechnical
centrifuge tests. We finally conclude by showing that available experimental data from tests carried out in
centrifuges are not sufficient to determining the effective tensor of permeability of rotating porous media.
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1. INTRODUCTION

The focus of the present study is on the fundamentals of fluid flow in rotating rigid porous
media. In the absence of external forces, the steady-state slow flow of an incompressible liquid
through a rigid inertial porous matrix is described by the well-known Darcy’s law:
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where the tensor of intrinsic permeability K (m?) is a positive and symmetrical tensor, the vector
v represents the Darcy velocity, p is the dynamic fluid viscosity and Vp denotes the macroscopic
pressure gradient, which forces the flow through the porous matrix, p is the fluid density and g is
the vector of gravity acceleration. The description is completed by the volume balance

i= 0 (2)
ax;

The purpose of this paper is to consider the steady-state slow flow of an incompressible liquid
through a non-inertial rigid porous matrix. As an example, we will consider the flow through a
porous sample placed in the basket of a centrifuge, of angular velocity @ with respect to a
Galilean frame. The issue is to determine the consequences of the angular velocity @ on Darcy’s
law (1).

It is worth keeping in mind that Darcy’s law (1) was obtained from experiments conducted on
Earth surface, which is itself submitted to rotation. However, as it will be shown later, for
classical soils Earth rotation is sufficiently low to ensure that there is no rotation effect on the
filtration law. Under such circumstances, Earth can be seen as a Galilean frame.

In available centrifuge tests, the porous samples are assumed to be isotropic. There exist two
phenomenological filtration laws for modelling the flow of water through a rotating porous
medium. The first model, see, e.g. [1.2] is based upon Darcy’s law formulation (1) with a
modified hydraulic conductivity £~"

V.-v=0,

ku:n — ldv.r (3)

In the above expression, k (m/s) denotes the scalar hydraulic conductivity of the isotropic
porous medium under zero angular rotation. The dimensionless parameter N is such that Vg
represents the acceleration level which has been reached during the test. It is shown that the
exponent x varies with respect to N. Experimental data confirm the N-dependence of £*" [2]. Let
us remark that the definition of the hydraulic conductivity £°*" is not clear and different points
of view can be found in the literature [3.4]. In the following, we prefer to work with the
permeability K (m?) to avoid any misunderstanding.

The second existing model [5] is based upon the conjecture that Coriolis effects should
explicitly be accounted for. Based on a phenomenological reasoning, the resulting dimensionless
filtration law for an isotropic porous media reads

v=—i—<‘(Vp+ Ek 'e, x v) 4)

where v is the flow rate vector, K represents the scalar permeability, ¥V p denotes the pressure

gradient (including centrifugal force), e, is a unit vector in the direction of the rotational

velocity and Ek is the Ekman number, that is, the ratio of the viscous term to Coriolis term in
Navier-Stokes equations. Equation (4) can be rewritten into a Darcy’s-type form (1)

Kb

Ve Vp (5)

in which K™ (m?) is a non-symmetrical and @-dependent permeability tensor and is given by

K™ — [K'1+ Ek e, %] (6)

On the other hand, by applying the theory of non-equilibrium thermodynamics [6] to the general
problem of fluid flow in a rotating porous medium, it can be shown that the filtration law is of



Darcy’s type (1), but that the tensor of permeability satisfies Hall-Onsager's property
Kij(o) = Kij(—o) (7

This latter property is the analogue for the permeability of a rotating porous medium of Hall’s
effect, which characterizes the conductivity of a material subject to a magnetic field. It should be
noted that Onsager’s relationship directly arises, on the basis of the principles of statistical
mechanics, from the microscopic laws of particle motions, and by using the principle of time
reversal invariance of these laws. Equation (7) tells us that when an isotropic porous medium is
submitted to rotation, its tensor of effective permeability is no longer isotropic: Kj;#Kj;#0
when i# . It can easily be shown that the permeability tensor of the phenomenological model
(6) verifies Hall-Onsager’s property (7).

More recently, [7, 8], the filtration law in a rotating porous medium was derived by upscaling
the pore-scale description. A deterministic upscaling technique was used, namely the
homogenization method of multiple scale expansions. With regard to the research contributions
reviewed above, the novel aspect of these works is that the filtration law is rigorously derived
from the physics at the pore scalke and that, furthermore, no specific geometry or isotropy
property is at issue; it results in the most general filtration model at the Darcy scale, which takes
form (1), but with a different permeability tensor K™,

Physical phenomena in heterogeneous systems such as porous media are homogenizable, i.e.
may be modelled by means of an equivalent continuous macroscopic description, provided that
the condition of separation of scales is satisfied [9,10]. This fundamental condition may be
expressed as

, ! 1 8

&= l_.< (8)
in which [ and L are the characteristic lengths of the heterogeneities (here, the pore characteristic
size) and of the macroscopic sample or excitation, respectively. The macroscopic equivalent
model is obtained from the description at the heterogeneity scale by Auriault [11]: (i) assuming
the medium to be periodic, without loss of generality (see Section 2); (ii) writing the local
description in a dimensionless form; (iii) estimating the order of magnitude of the dimensionless
numbers with respect to the scale ratio & (iv) looking for the unknown fields in the form of
asymptotic expansions in powers of £; (v) solving the boundary-value problems that arise at the
successive orders of ¢ after introducing the asymptotic expansions in the local dimensionless
description. The macroscopic equivalent model is obtained from the compatibility conditions,
which are the necessary conditions for the existence of the solutions to the boundary-value
problems. Generally speaking, the main advantages of the method rely upon the possibility of:
(a) avoiding prerequisites at the macroscopic scalk:; (b) modelling finite size macroscopic
samples: (¢) modelling macroscopically non-homogeneous media or phenomena; (d) modelling
problems with several separations of scales: (¢) modelling several simultaneous phenomena; (f)
determining whether the system ‘medium + phenomena’ is homogenizable or not; (g) providing
the domains of validity of the macroscopic models.

After underlining the equivalence between random and periodic media, we give a brief review
of the derivation of Darcy’s law by applying homogenization to Stokes equations at the pore
scale. We then focus on the flow through a rotating porous matrix, e.g. through a sample placed
in the basket of a centrifuge. The relative importance of Coriolis effects is measured by means of
the inverse Ekman number, which is the ratio of the Coriolis term to the viscous term in the



Stokes equation: EK™' = 2pw/l? /i, where p and p denote the dynamic viscosity and the density
of the fluid, respectively. As a typical example, we consider a centrifuge of angular velocity
@ ~ 300 rpm, and a liquid of viscosity ¢ ~ 1073 Pa s and of density p ~ 10% kg/m’. Using the
size of grains as characteristic length /, the resulting values of the inverse Ekman number Ek ™'
range from 62 for sands (/ ~ 1077 m) to 6.2 x 1077 for clays (/ ~ 107® m). Hence, we shall
consider that the order of magnitude of the inverse Ekman number is such that EK™' = ¢(1),
which with respect to the scale ratio ¢ actually means ¢ <Ek™' <& !. We then employ the
homogenization method, which leads to a macroscopic filtration law of Darcy’ type (1), but
whose effective tensor of permeability K™ is non-symmetric and verifies Hall-Onsager’s
relationship (7). The homogenized tensor of permeability, which we compare to the above-cited
models, clearly proves by its definition, that the deviations from Darcy’s law are due to Coriolis
forces. Rotation effects are twofold. Firstly, the centrifugal force increases the forcing term Vp,
which is the sought-after purpose in a centrifuge filtration test. Compared to a classical filtration
test, this increased forcing term does not change the pore-scak velocity pattern: velocities are
just everywhere increased by a constant ratio. Secondly, Coriolis forces deviates the pore-scale
velocity field, which results in a rotation-dependent permeability. This second effect is present
when the Ekman number is ¢/(1).

We then present the results of numerical simulations carried out for the flow through rotating
porous media at both the microscopic and the macroscopic scales. We first study the influence of
Coriolis forces at the microscopic scale on the flow through a rotating periodic array of
cylinders and spheres. This study represents an interesting first step toward understanding
Coriolis effects on the flow through porous media. Deviations of the flow which are due to
Coriolis forces, that is, to the angular velocity are clearly highlighted. Numerical results
obtained for different values of the radius of cylinders (or spheres) and porosity are presented.
They suggest that it is more pertinent to use the permeability to estimate the Ekman number and
they confirm that the phenomenological model (6) fails at reproducing three-dimensional
Coriolis effects in all types of pores geometry. Finally, numerical results of the flow through a
permeameter placed in a centrifuge basket highlight that the macroscopic velocity is also
deviated and the pressure field is not homogeneous. We finally show that Coriolis effects may
lead to significant variations of the permeability K*" (m®) which can be measured during
centrifuge test when the Ekman number is ¢/(1). These variations are estimated to be less than
5% if EK~' <0.2, which is the case of classical geotechnical centrifuge tests [2].

2. RANDOM AND PERIODIC POROUS MEDIA

Consider a random inertial porous medium that fulfills the condition of separation of scales.
Fluid flow through this porous medium can therefore be described by means of a continuous
macroscopic description and there exists a representative elementary volume (REV), which we
denote by Qggy, see Reference [12]. To a given degree of accuracy as the medium is random, the
REV contains all the required information that permits to define the equivalent macroscopic
medium. Let consider an orthotropic porous medium, which with regard to flow properties
coincides with the most general case of anisotropy. Without loss of generality, we may choose
the REV to be a parallelepiped whose edges are parallel to the orthotropy axes.

Let now construct a period Q by introducing three successive plane symmetries with respect to
three non-parallel faces of the REV. Both the resulting periodic medium of period Q and the



random medium of REV Qggy have the same macroscopic description and their permeabilities
present the same properties. There is, therefore, no loss of generality by considering a periodic
medium, when looking for the general structure of the macroscopic behaviour.

3. DARCY'S LAW

In this section, we give a brief review of the investigation conducted in Reference [10], in which
Darcy’s law is rigorously derived by homogenization. Consider a porous medium of period Q
and bounded by Q. Within the periodic cell, the fluid occupies the domain Q,,, and the fluid-
solid interface is denoted by I' (Figure 1). We also assume the porous matrix to be rigid.
Relatively to the Galilean porous matrix frame R, the momentum balance for the quasi-static
flow of an incompressible viscous Newtonian liquid is given in each point M of the pore space by
Stokes equation

Ww—Vp=0 inQ, 9)

where the vector w is the fluid velocity relatively to the matrix frame, p denotes the pressure and
perepresents the fluid viscosity. Gravitational Earth acceleration is included in the pressure term.
To complete the pore-scale description we shall also consider the incompressibility condition
and the no-slip condition on I

V-w=0 inQ w=0 onl (10)

P

3.1. Dimensionless pore-scale description

We use the local pore length scale / as the characteristic length scale of reference for normalizing
the variations of the differential operators: in other words, we apply the so-called microscopic
point of view [11]. Other characteristic quantities are denoted by using the subscript ¢. The pore-
scale description introduces a single dimensionless number, Q, which represents the ratio of the
pressure term to the viscous forces Q = p.//ow., where p. denotes the characteristic pressure

R, (galilean frame)

Figure 1. Scheme of the periodic cell Q in a Galilean frame Ry.



increment applied to the sample. For estimating Q with respect to the scale ratio £, we consider
the following phenomenological argument: the local viscous flow is driven by a macroscopic
pressure gradient [11]. In an order of magnitude sense, this argument reads pow./I* = €(p./L).
Therefore, we obtain

Q = pel/pwe = €(&") (1)

For simplicity we have kept, for the dimensionless variables, the same notations as for the
original variables. The formal dimensionless set that describes the flow is thus written

uVw—0Vp=0 inQ, (12)

Vew=0 inQ,, w=0 onl (13)

3.2, Upscaling

We may now employ the homogenization procedure by firstly introducing the multiple scale co-
ordinates [6, 12]: the macroscopic dimensionless space variable x = X/L (where X represents the
physical space variable) is related to the microscopic dimensionless space variable y = X// by
x = gy. Then, by applying the technique of multiple scale expansions, we may look for the
velocity w and the pressure p in the form of asymptotic expansions of powers of ¢

w=w2xy) + ewVix,y) + 2w (xy) + - (14)

p=p o,y +epx,y) + & pPxy) + - (15)

Incorporating the above expansions in the set (12)—(13) and identifying at the successive orders
of ¢ allows the construction of appropriate boundary-value problems. Solving these boundary-
value problem leads to the macroscopic description.

The lowest order yields

3 (M
Bap:‘ =0, p‘0)= p‘o)(x) (16)

Hence, the first-order pressure is constant over the period. Considering the next order, we obtain
a boundary-value problem with respect to the first-order velocity w'” and to the second-order
pressure p'l:

Swl? ap' ap'h .
ﬂavév»_gg» —Q*ap:,' =0 inQ, (17)
XXy i | o]
O
ag, =0inQ, w”=0 onT (18)
i

where w” and p'" are Q-periodic and the quantity Q* = Qe = €(1).

A weak formulation of the above set is required for determining its solution, which as it will
be seen later, is linked to the properties of the effective properties. For this purpose, we shall
introduce the Hilbert space W of vectors u of Q,,, that are Q-periodic, divergence free and zero-
valued over I'. This Hilbert space is equipped with the following inner product:

all,' &vi
y ' w = ——d 7 19
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Let now multiply Equation (17) by ue W and integrate it over Q,. Integrating by parts,
applying the divergence theorem and then using the property of periodicity and the boundary
condition on I', we obtain the following weak formulation:

u; ow'® 350
YueW, / puo gy / 0t 2P 4y 20)
o, 0y oy Q, ox;

The above formulation is strongly elliptic [13], and presents a unique solution w' which is a
linear function of dp'” /éx;
_ap'®
W = — I&B_p‘ (21)
! i Ox;

where the tensor field k is a function of y. Finally, let consider the volume balance (13) at the
second order

av(l ) av{o)
: CRp—) 22
Ay + ox; 0 inQ, 22
Integrating over ,, we obtain
O (0) K ép 1 /
_=O, )i = ). =——j—, Ki'= k," == k,"d’ 23
o U wi'y u o i = {kij) Q o, i Ay (23)

which represents the macroscopic equivalent behaviour at the order ¢(¢) of approximation. The
second equality in (23) represents Darcy’s law.

3.3. Comments
The above derivation of Darcy’s law conjures up the following comments:

® [t can easily be proved that the tensor of permeability K is positive and symmetric [10]. It
should be noted that both these properties directly arise from the weak formulation (20).
The dimensional permeability K (m?) characterizes the porous medium. It does not depend
on the forcing macroscopic gradient of pressure Vp.

® By definition, the macroscopic velocity v = {w'”) is a volume average velocity. It can,
however, be shown that this volume average is equal to a surface average [11], which
ascribes to v the required properties of a Darcy’s velocity.

® The fact that p'” is constant over the period tells us that the pressure keeps the same
meaning at both the local scale and the macroscopic scale.

® Darcy's law appears to be the macroscopic momentum balance of the liquid flow through a
Galilean porous matrix. As a consequence, in the case of a non-Galilean porous matrix, we
may thus expect the momentum balance, that is, Darcy’s law to be modified. This issue is
the purpose of the next section.

4. FILTRATION LAW IN ROTATING POROUS MATRIX

The objective of the present section is the derivation by homogenization of the filtration law in a
rotating porous medium. We apply the same methodology asin the preceding section; for details
related to the analysis below, the reader is referred to References [7.8].



Let now consider the flow through a porous medium placed in a centrifuge of radius r.
Relatively to the moving porous matrix frame R (see Figure 2), the momentum balance for the
quasi-static flow of an incompressible viscous Newtonian liquid is now written as

uViw—Vp = ply, +7v) inQ, (24)

The vectors y, and y, represent the convective and the Coriolis accelerations, respectively, with
respect to a Galilean frame (Rg)

y¢=y(0)+%)xOM+mx(meM) (25)

Ve = 20 X W (26)

In the above equations, @ denotes the angular velocity of the porous matrix (i.e. of the
centrifuge), O is a fixed point of the porous matrix within the period and M represents a current
point in Q, (Figure 2). To be completed, the local description also includes the incompressibility
condition and the no-slip condition on I’

V-w=0 inQ, w=0 onl (27)

4.1. Dimensionless pore-scale description

We use again the local pore length-scale / as the characteristic length scale for normalizing the
variations of the differential operators. Let us consider a centrifuge of radius » and whose
constant angular velocity is @ = we,,, where @ is constant. From the pore-scale description arise
four dimensionless numbers: the ratio Q, which has already been defined and estimated in the
preceding section (Q = ((z7')); the ratio R of the macroscopic convective inertia py(0Q) to
the viscous force uV>w: the ratio 4 of the local convective inertia pe x (@ x OM) to
the macroscopic convective inertia py(0) and the Ekman number, Ek, the ratio of the viscous
force Vw to the Coriolis inertia 2p® x w. We have A = ((w*l/w*r)<I/L = ¢ and we assume
R = ((1). It should be noted that the requirement R<((1) is linked to the hypothesis of
separation of scales with regard to excitation. Greater orders of magnitude of R would yield

R, (rotating frame)

R, (galilean frame)

Figure 2. Scheme of the periodic cell Q in a non-Galilean frame R,.



non-homogenizable problems, i.e. problems for which there exists no equivalent macroscopic
description. To account for Coriolis effects and as noted in the introduction, we assume
Ek = ((1). For ease of formulation, we again keep, for the dimensionless variables, the same
notations as for the original variables. The formal dimensionless set that describes the flow takes
the form

HVwW — OVp = p(Ry(0) + EK '@ x w+ RAe x (0 x OM)) in Q, (28)

Vew=0 inQ,, w=0 onl (29)

4.2, Upscaling

Incorporating expansions (14)—(15) in the set (28)—29) and identifying at the successive orders
of &, we obtain successive boundary-value problems, which we now have to be solve. As in the
preceding section, the lowest order yields

ap'®
=0, =" (30)

Considering the next order, we obtain the following boundary-value problem of unknowns w'
and p'":

al A0 ) ()
“8;-“81,- -G -0 g,- = Bk 'papopw’ in Q, K1)
ity Yi
F A0)
== =0 inQ, w”=0 onl (32)

where w” and p'" are Q-periodic and the quantity Q* = Qe = €(1).

In the above equations, the symbol &;; denotes the permutation symbol and the vector G
represents the macroscopic driving force which is independent of y and which is defined by
G = O*V, p'" + Rpy(0), with $(0) = Ng, and where the subscript x denotes the derivative with
respect to the variable x. Let now multiply Equation (31) by ue W and integrate it over ,,.
Integration by parts and then using the divergence theorem, periodicity, and the boundary
condition on I', we obtain

o onl” .
Yue W, / yau‘ g" d_v+/ Ek";n:,»jkijio’u,dy=—/ u;G;dy (33)
Q, 5 -_\'_,' Q, Q

4 "

Formulation (33) is strongly elliptic, and there exists a unique W' which is a linear vector
function of G
koyEK !
w:»m =— M G; (34)
i
where the tensor field k™ now depends on both Ek™' and y. Finally, integrating over Q, the
second order of the volume balance (29), we obtain

1o ~1
Kij (Ek™) )

e '§ 1
v () G, K¢ =5 / kit dy (35)
Q,

gj' = 0, vy = <Wi > = — “



which represents the macroscopic equivalent behaviour at the order () of approximation.
From its definition, we see that the filtration tensor K" (Ek ') depends on the angular velocity
, the kinetic viscosity u/p and the characteristic length / through the Ekman number.

4.3. Comments
The following essential features of the above-derived modified Darcy’s law (35) can be stated:

® As for the macroscopic velocity in Darcy’s law, it can be shown [11] that the velocity
v = (W) in (35) is a surface average velocity, that is a Darcy’s velocity. It should also be
underlined that the physical meaning of the macroscopic pressure is preserved.

® Although formulation (35) is a Darcy's-type law (23), there exist, however, important
differences. In effect, it can be shown that the dimensional effective permeability tensor
K™(Ek ') (m®) which characterize the porous medium at a given Ekman number, is a
positive but non-symmetric tensor [7, 8], and that it verifies Hall-Onsager’s relationship

K (o) = K" (o) (36)

which expresses the analogue of Hall's effect for filtration. All these properties directly arise
from the weak formulation (33). Obviously, the permeability tensor K(Ek ') can be put
in the form

K - K-EEk™") (37)

where K (m?) is the classical intrinsic permeability tensor and E(Ek™") (dimensionless) is a
positive but non-symmetric second-order tensor which depends on the Ekman number
only and, which verifies the Hall-Onsager’s relation E; (@) = E;{—o).

® The permeability tensor of an isotropic porous medium of Galilean permeability K and
submitted to an angular velocity @ = we; takes the form

K@) K@) 0
K = | —Ki${(@) K@) 0 (38)
0 0 K

Note that the tensor K™ is invariant under any rotation of e; axis. Therefore, the principal
components of K™ are complex valued.

® Rotation effects are twofold. Firstly, the centrifugal force increases the forcing term Vp,
which is the sought-after purpose in a centrifuge filtration test. Compared to a classical
filtration test, this increased forcing term does not change the pore-scale velocity pattern:
velocities are just everywhere increased by a constant ratio. Permeability tensor is not
affected by the centrifugal force itself. Secondly, Coriolis forces deviate the pore-scale
velocity field, which results in a rotation-dependent permeability. This second effect is
present when the Ekman number is ¢(1). How the permeability tensor is affected by the
rotation is measured by the value of Ek .

4.4. Is the non-inertial flow law applicable to centrifuge tests?

The above analysis is conducted under three conditions that are related to the dimensionless
numbers that enter the Stokes equation which describes the flow at the pore scale. The first



condition concerns the ratio of the macroscopic convective inertia to the viscous term

R="1"rr = = (1 39

1w o (1) (39)

Recall that a quantity ® is ¢(1) if e<® <. Coriolis effects will be seen if Ekman number
is ((1)

|[IV:W| . H

Ek = =
[2po x w|  2pwl?

=0(1) (40)

In the analysis, we have neglected non-linear terms in the stokes equation, that yields a
macroscopic linear flow law. It is generally admitted that the validity of such a linear law is for
pore Reynolds number equal or less than 10 [12]. Therefore, the third condition writes

Re =<1 @1)
i
It is also of interest to introduce the ratio D of the Coriolis inertia to the centrifugal force [14]

p=POxXW _ 2w pgt g @2)

[p(0O)) row
In (42), the product » @ represents the velocity of the centrifuge basquet. If a typical value of D
in a centrifuge test is 1073, to be consistent with the theory, we should have £< 1073, which
means a very good separation of scales. From (39), (40) and (41), we have

800 Ek
S__

pr: D?
If we consider a centrifuge test with » = 5 m, water, EK = 1 and D = 1073, that gives » <32,
which is quite consistent.

As an example, consider the test reported in Reference [2] on a sand sample. In this
experiment, » = 5.5 m, and the filtrating liquid is water, with ¢ = 10~ Pa sand p = 10% kg/m’.
For the maximum reported centrifugal acceleration, ro® = 50 g, the fluid velocity is w ~
0.01 m/s. That gives D ~ 4 x 1074 The main difficulty stands in the evaluation of the pore
characteristic size [. Firstly, let us adopt d5p as an evaluation of /: [ ~ 0.2 mm. That gives
Ek™' ~ 0.75and Re ~ 2. We deduce that Coriolis effects are seen and the linear seepage law is
valid. The decreasing permeability with increasing @ in Reference [2] could be due to this effect,
although experimental data were obtained using the classical Darcy’s law in place of the non-
inertial flow law. Secondly, it could be more pertinent to estimate / as the characteristic
thickness of the narrowings between sand grains, which are the main contributors to
permeability coefficient as in Reference [5]. The sand sample shows an isotropic permeability at
rest K = 2.4 x 107" m®. Therefore, we now adopt / = \/EIE ~ 5% 107% m. That yields Ek '
5 x 1074, which shows that Coriolis effects are quite negligible. To overcome this difficulty to
estimate /, numerical investigations of Coriolis effects on the permeability of a periodic square of
cylinders and spheres are presented in Section 5.

(43)

4.5. Comparison between K™ and K™

Considering two distinct simple pore geometries which are saturated by water ( = 1077 Pas,
p =107 kg/m’), we have plotted the evolution of the dimensionkss permeabilities
K{TH ) /K{TH0) and K5 (@)/K[{'(0) with respect to the angular velocity @ (see curves (i) and



(ii) in Figures 3 and 4. These figures also show the profiles of K!}“(w) and K§/“(w) (see curves
! 21

(iii) and (iv)). As already mentioned, both tensors K™ and KM account for Coriolis forces
and vcrlfy Hal-Onsager's relationship (36). It can be seen from Figures 3 and 4, that K"h‘(w)
and K% "(w) keep the same profilkes on both geometries: we may thus conclude lhal the
Conols correction in K™ is independent of pore geometry. In the case of parallel plane
fissures (Figure 3), we observe that the tensor KM provides a good approximation of K™'.
On the other hand, in the case of a bundle of capillaries, the profiles of K™ tells us that the
Coriolis forces have no impact on the filtration process. This is due to the fact that the pore
surface prevents the Coriolis force from acting on fluid flow. Figure 4 clearly shows that KP™
fails at reproducing this effect.

08y 5 10 15 20 25 30 35 40

® (rad/s)

Figure 3. Network of parallel plane fissures saturated by water. Dimensionless permedbllmes versus
angular velocity @ = wes: (i) K{TH(w)/K[{1(0): (ii) K57 w)/KTH(0): (iii) K"h‘(m) and (iv) K (m)

iv)

0.4

0.6 X
0 5 10 15 20 25 30 35 40

o (rad/s)

Figure 4. Bundle of capillaries saturated by water. Dimensionless permeabllmes of a porous medium
versus angular velocity @ = wes: (i) K{{(w)/ K7 (0): (i) K5 (w)/Ki510): (iii) K] he(w): and (iv) Kﬂ"(m).



5. NUMERICAL INVESTIGATIONS OF CORIOLIS EFFECTS ON THE FLOW
THROUGH ROTATING POROUS MEDIA

The objective of this last section is to highlight the influence of the Coriolis forces on the flow in
rotating porous media. For this purpose, firstly we investigate the influence of Coriolis force on
the flow at the microscopic scale, i.e. on the permeability of a periodic array of cylinders and
spheres. Secondly, we study the flow at the macroscopic scale, i.e. through a permeameter placed
in a centrifuge basket.

5.1. Determination of the permeability tensor K™ (w)

3.1.1. Square array of cylinders. The porous medium consists of a periodic array of cylinders
(Figure 5(a)) which is placed in a centrifuge at constant angular velocity @ = we;. The radius of
the cylinder is @ and e is the size of the periodic cell. Thus, the porosity of the porous medium
¢ = 1 — (ra®)/e* varies from 0.215 to 1. We suppose that the porous medium is submitted to a
macroscopic gradient G = Gaey, which is due to the centrifuge acceleration only,

pA ]

G = pro‘es = pNges (44)

where p is the water density, » denotes the radius of the centrifuge and N represents the
acceleration level. As a result of the simplified geometry and macroscopic pressure gradient,
the flow through the porous medium reduces to a 2D problem within the plane (e, e,). The
permeability tensor K" (w) of the periodic array of cylinders takes the form

KiMw) —Kw) 0
K = | K@) K{Mew) 0 (45)
0 0 Ky

The permeability tensor K" () is obtained by solving the boundary-value problem (31)—(32) in
its dimensional forms over the periodic cell, in which the unknowns, namely the microscopic
velocity field w! and the local pressure p'" are Q-periodic. We have also considered that

€y
(a) (b)

Figure 5. Characteristic dimensions of the periodic cell: (a) periodic array of
cylinders: and (b) periodic array of spheres.



p= 103 Pasand p = 10° kg/m’. The macroscopic driving force G is determined by the value
of @ under consideration. The permeabilities of the porous medium are then deduced from
Equations (34) and (35). We have solved the above-mentioned boundary-value problem for each
value of @, by using a finite element code [15].

Figure 6 shows the microscopic velocity fields w'” which we have obtained for four different
values of the angular velocity @ and for a given value of porosity ¢ = 0.7. We observe that the
flow deviations due to Coriolis forces increase with increasing angular velocity . The plots of
the dimensionless permeabilities K{{'(@)/K[7'(0) and K5"'(w)/K[{'(0) with respect to @ for three
different values of porosity ¢ (0.9, 0.7 and 0.5) and for two values of ¢ (2 and 1.5 mm) are shown
in Figure 7(a). For a given angular velocity, we observe that Coriolis effects on the permeability
decrease with decreasing the porosity ¢ and with decreasing the length e. Finally, Figure 7(b)
shows the evolution of all these numerical results with respect to the inverse of Ekman number
defined as

r()l
Ek' =2pw KO (46)
i

where we note that the characteristic length / in use to calculate Ek is \/K[}'(0). This figure
shows that dimensionless permeabilities K{{'(@)/K[{'(0) and K3}"'(@)/K|[{'(0) can be adjusted by a
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Figure 6. Microscopic velocity field w® versus angular velocity @ = we;, i.e. EK™' defined by (46). The
macroscopic driving pressure gradient is G = Ge,. The porosity ¢ is equal to 0.7.
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Figure 7. Periodic array of cylinders: dimensionless permeabilities K{J'(w) /K7 (0) and K3 (w)/K]T(0)

versus angular velocity @ (a) and versus Ek' defined by (46) (b). for three different values of porosity
¢ and for two values of e: (0) ¢ =09, e =2mm. () ¢ =0.7. ¢ =2 mm, (~) ¢ = 0.5,
e=2mm. (<) ¢ =09 ¢e=15mm. (¢) p=07.¢e=15mm, ()¢ =05.¢=1.5mm.
The continuous line represents Equation (47).

unique curve which depends on the Ekman number in form (46) only,

—Ek™!
1+ (Ek 'Yy 1 +(Ek ')’

These relations are plotted in Figure 7(b) (continuous line). In this particular case, it can be
shown that relations (47) are consistent with the phenomenological model (6). That is not the
case if @#we;. Finally, the above numerical results on the flow through a periodic array of

cylinders clearly show that it is more pertinent to use the permeability to evaluate the Ekman
number.

K| w) = K1) K3 ) = K[7H0) (47)

3.1.2. Square array of spheres. Now, the porous medium under consideration consists of a
cubic array of spheres (Figure 5(b)) which is placed in a centrifuge at constant angular velocity
o = we;z. The radius of the sphere is @ and e is the size of the periodic cell. The porosity of the
porous medium ¢ = 1 — (4na’/3)/e’ varies from 0.476 to 1. Once again, we suppose that
the medium is submitted to the same macroscopic gradient G = Ghex = pr(f):eg, which is due to
the centrifuge acceleration only. As a result of the geometry and macroscopic pressure gradient,



the permea. tensor K™ m) of the cubic array of spheres takes the form

KiMw) —Kw) 0
Kml — K;{Tl((ﬂ) ml(‘u) 0 (48)
0 0 K3

with K33 = K[§'(0). Numerical values of the permeability tensor K'*() have been obtained by
following the same methodology presented in Section 5.1.1.

The plots of the dimensionless permeabilities K[{"(w)/K{'(0) and K37'(@)/K[{'(0) with respect
to  for three different values of porosity ¢ (0.9, 0.7 and 0.5) and for two values of ¢ (2 and
1.5 mm) are shown in Figure 8(a). Once again, for a given angular velocity, we observe that
Coriolis effects on the permeability decrease with decreasing the porosity ¢» and with decreasing
the len%lh e. Finally, Figure 8(b) shows the evolution of all these numerical results with respect
to Ek™ ' defined by Equation (46). In this case, we obtained three different curves K{{'(@)/K[{'(0)
and Ki{'(@)/K[1(0) which depend on the Ekman number and the porosity. Relations (47),
which are consistent with the phenomenological model (6), have been also plotted in Figure
8(b). These relations are not capable to describe our numerical data. This result confirms that
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Figure 8. Periodic array of spheres: dlmemnonless permeabilities K{{"(w)/K{7(0) and K3 (w) /K[7'(0)
versus angular velocity @ (a) and versus EK™' defined by (46) (b). for three different \alues of porosity
¢ and for two values of e: (0) ¢ =09, e =2mm. () ¢ =0.7. ¢ =2 mm, (») ¢ = 0.5,
e=2mm, (<) ¢ =09, ¢=1.5mm. () d) =07 ¢e= 15mm, (&) 4) =05, ¢=15mm.

The continuous line represents Equation (47).



model (6) fails at reproducing three-dimensional Coriolis effects which can appear in all types of
pore geometry.

3.2, 2D-flow simulations in a rotating permeaneter

The objective of this last section is to highlight the influence of the Coriolis forces on the flow in
a rotating porous medium at the macroscopic scale. For this purpose, we consider a
permeameter which is placed in a centrifuge at constant angular velocity @ = we; (Figure 9).
The characteristic dimensions of the permeameter are L and H. The porous medium consists
of a periodic array of cylinders. It is submitted to a macroscopic gradient G = Ghex =
((m — p1)/H)ey, where @ and p; (py > py) are the inlet and outlet imposed pressures,
respectively. We have also considered impervious lateral surfaces. As a result of the simplified
geometry and macroscopic pressure gradient, the flow through the permeameter reduces to a 2D
problem within the plane (e;, e;). By making use of the above determination of the permeability
K" (w) (47) and by considering appropriate macroscopic boundary conditions, we have solved
model (35) and performed 2D-flow simulations by means of the same finite element code [15).

Figure 10 shows the macroscopic velocity field v = (w”) and the contours of the
dimensionless pressure field ((p— p1)/(po — p)) obtained for three different values of the
inverse of Ekman number (46) when the ratio H/L = 2. We observe that flow deviations due
Coriolis forces increase with increasing values of EK™', ie. increasing @ and that the pressure
field is not homogeneous.

Figure 9. Cross-section of a permeameter placed in a centrifuge at angular velocity @ = we;.
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Figure 10. Flow in a permeameter placed in a centrifuge: macroscopic velocity field v = {w'®> and
contours of the dimensionless pressure field ((p — p1)/(po — p1)) obtained for three different values of Ek!
defined by Equation (46) in the case where the ratio H /L = 2.

Centrifuge test data which are available in the literature are usually performed on isotropic
porous media. With the view to compare the classical interpretation of centrifuge tests to our
results, let us introduce the scalar parameter K" (m?) ( #£4°" see (3)) defined by the classical
Darcy’s law,

G (49)
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Figure 11. Flow in a permeameter placed in a centrifuge: K*"(w)/K['(0) with respect to Ek' (46)
for three different values of the ratio H /L. (O)H/L=1, (D) H/L =2, (A) H/L = 4.
The continuous line represents K]{'(w)/K{T1(0) (47).

Parameter K" can be obtained from our numerical data

cen nXen)H
K™ (@) Lipo— p1)
where Q(w) (m?/s) is the flow rate in the permeameter which depends on the value of » under
consideration, i.e. Ek™'. Figure 11 shows the plots of the dimensionless permeabilities
K=™w)/K{'(0) with respect to Ek ™' (46) for three different values of the ratio H/L(1,2and 4).
The dimensionless permeability K{}'(@)/K|[{'(0) defined by Equation (47) is also plotted in
Figure 11. The curves of the evolution of K***()/K[$'(0) with respect to EK' clearly show that
K"“"(w)#K{‘,"(w) and prove that K°**(w), which depends on the ratio H /L, is not intrinsic. We
observe that Coriolis effects may lead to significant variations of the permeability K" during
centrifuge tests when the Ekman number is ¢/(1). These variations also strongly depends on the
ratio H/L. We can note that if EK™' <0.2, which is the case of geotechnical centrifuge tests
reported in Reference [2], Coriolis effects are quite negligible,

K=" — K{1(0)

Ki§'(0)
The above observations prove that existing experimental data are not sufficient for

determining an experimental tensor K™ In effect, the knowledge of K™ would require the
measurement of two parameters, namely K[{" and KI{" and none of them is equal to K=", which
can be actually measured during centrifuge tests.

(50)

< 5% (51)

6. CONCLUSIONS

We have revisited the filtration law for fluid flow in rotating porous media, by applying
homogenization to the pore-scale physical description. The derived filtration law is a modified



Darcy’s law. We have shown that in rotating porous media Coriolis forces may lead to
significant flow deviations. In effect, these forces give rise to a non-symmetric tensor of
permeability K™, which depends upon the angular velocity. We have proved that this tensor
verifies Hall-Onsager’s relationship

K (@) = K'(—®)

which expresses the analogue for filtration of Hall's effect. This latter property also proves that,
under rotation, the effective permeability of an isotropic porous medium is a non-isotropic
tensor. All the above-mentioned effects and properties become significant provided the Ekman
number, EK = u/2pwl? is €(1).

Numerical simulations have been performed to highlight the influence of the Coriolis forces
on the flow in a rotating porous medium at both the microscopic and the macroscopic scales, i.e.
on the permeability of a periodic array of cylinders or spheres and on the flow through a
permeameter placed in a centrifuge basket. Our numerical results clearly show the flow
deviations due to Coriolis forces at both the pore scale and the sample scale. We have
shown that, the tensor of the phenomenological model, K™ includes Coriolis effects and verifies
Hall-Onsager’s relationship, but that this Coriolis correction fails at reproducing the flow for all
types of pore geometry. Numerical results obtained for different values of the radius of cylinders
(or spheres) and porosity are presented. Both cases suggest that it is more pertinent to use the
permeability to estimate the Ekman number. Finally, numerical simulations on the flow through
a permeameter placed in a centrifuge basket show that Coriolis effects may lead to significant
variations of the permeability K*" during centrifuge tests when the Ekman number is ¢(1).
These variations are estimated to be less than 5% if EK™' <0.2, which is the case for classical
geotechnical centrifuge tests. The key parameter to measure eventual Coriolis effects is the
Ekman number. Ekman number is different from the ratio D of the fluid velocity to the basket
velocity (see (42)) which is generally used to measure such effects [14].

The determination of the effective tensor K™'(w) requires the knowledge of two parameters:
K" and K5'. Therefore, K™ () cannot be determined from existing experimental data, since
they are based on the single measurement of K*". Further developments of the present work
should therefore include the experimental determination of K{' and Ki{".

Finally, let us remark that in some industrial applications, like centrifugal casting, Coriolis
effects on the flow through the mushy zone which appear during the solidification process are
not negligible. During such a process, the typical angular velocity is 500 rpm. Considering, a
dynamic viscosity of the metallic liquid g = 1077 Pa s, a density p x 7.3 x 10° kg/m3 and a
permeability K of the mushy zone which may vary between 10% and 107" m® [16], we have
0<Ek '<4.
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