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Abstract Uffink and Valente (2015) claim that there is no time-asymmetric
ingredient that, added to the Hamiltonian equations of motion, allows to ob-
tain the Boltzmann equation within the Lanford’s derivation. This paper is
a discussion and a reply to that analysis. More specifically, I focus on two
mathematical tools used in this derivation, viz. the Boltzmann-Grad limit and
the incoming configurations. Although none of them are time-asymmetric in-
gredients, by themselves, I claim that the use of incoming configurations, as
taken within the Boltzmann-Grad limit, is such a time-asymmetric ingredient.
Accordingly, this leads to reconsider a kind of Stoßzahlansatz within Lanford’s
derivation.
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1 Introduction

The derivation of the Boltzmann equation (BE) from the Hamiltonian equa-
tions of motion of a hard spheres gas is a key topic on irreversibility (Sklar 1993,
p. 32, Uffink 2007, Section 4). Although the Hamiltonian equations of motion
are invariant under time reversal, the BE is not. Moreover, this equation allows
to derive the H-theorem, which states that a function H monotonically de-
creases with time, and thus that the minus-H function increases, in agreement
with the second law of thermodynamics. The derivation of the BE thus raises
the question of irreversibility since this equation exhibits irreversibility even
though the microscopic description of the gas is based on reversible equations.

Recent discussions (Valente 2014, Uffink and Valente 2015) focus on a rig-
orous derivation of the BE provided by Lanford (1975, 1976), which is “maybe
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the most important mathematical result of kinetic theory” (Villani 2010, p.
100). This result is very important from a philosophical point of view since
the BE is derived without the famous controversial Boltzmann’s assumption,
i.e., the Stosszahlansatz (Uffink and Valente 2015, p. 407 and p. 423).1 Nev-
ertheless, the origin of irreversibility in this derivation is still unclear and
controversial. Uffink and Valente conclude their detailed analysis as follows:

We discussed the problem of the emergence of irreversibility in Lan-
ford’s theorem. We argued that all the different views on the issue
presented in the literature miss the target, in that they fail to identify
a time-asymmetric ingredient that, added to the Hamiltonian equations
of motion, would obtain the Boltzmann equation.More to the point, we
argued that there is no such an ingredient at all, as one can infer from
the fact that the theorem is indeed time-reversal invariant. (Uffink and
Valente 2015, p. 432)

According to Uffink and Valente, Lanford’s theorem does not account for the
appearance of irreversibility within the BE. This paper aims at replying to
that analysis. More precisely, I focus on two views of the literature on the
derivation BE, which are the role of the Boltzmann-Grad (B-G) limit and
the role of the incoming configurations. Uffink and Valente (2015) claim that
neither the B-G limit, nor the incoming configurations are time-asymmetric
ingredients that allow to obtain the BE. Although I agree that none of them
are a time-asymmetric ingredient, by themselves, I claim that the use of incom-
ing configurations, as taken within the B-G limit, is such a time-asymmetric
ingredient.

The paper is organized as follows. First, I introduce the derivation of the
BE within Lanford’s and successors’ works, and I make clear how the question
of irreversibility is tackled within this derivation (Section 2). Then, I examine
why the B-G limit as well as the incoming configurations are essential to
derive the BE although each of them, taken separately, is not sufficient for the
appearance of irreversibility. For that purpose, I begin with the case of the B-
G limit (Section 3), and then I turn to the case of the incoming configurations
(Section 4). After having clarified these points, I argue that the incoming
configurations as taken within the B-G limit are a time-asymmetric ingredient
that allows to obtain the BE (Section 5). Finally, I suggest that such an analysis
of Lanford’s derivation of the BE allows us to argue for a reconsideration of
the Stoßzahlansatz of the original Boltzmann’s heuristic derivation of the BE
(Section 6).

1 In Boltzmann’s derivation, Stoßzahlansatz, sometimes wrongly called the hypothesis of
molecular chaos as Uffink and Valente point out, was assumed at any time. With Lanford’s
derivation, there is only a factorization condition at the initial time. See Section 2.2 and
Section 6 of the paper.
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2 The derivation of the Boltzmann equation

The BE is based on a model of a hard spheres gas. It describes the time
evolution of the probability density that a hard sphere is located at the position
q with the momentum p. The original Boltzmann’s derivation of the equation
and the H-theorem led to extended discussions that cannot be addressed here
(Uffink 2007, Brown et al. 2009). Yet based on Grad’s ideas (1949), Lanford
(1975, 1976) provided a rigorous derivation, with some gaps, which have been
completed by Cercignani et al. (1994) and Gallagher et al. (2014). The aim of
this section is to give an overview of the main steps of this rigorous derivation
of the BE.2 I begin by introducing the BE (Section 2.1) before sketching the
main steps of its derivation (Section 2.2). I then introduce the question of
irreversibility within Lanford’s derivation of the BE (Section 2.3).

2.1 The Boltzmann equation and the H-theorem

Let us consider a model of N hard spheres with mass m and diameter a that
move freely according to the laws of classical dynamics. Let us denote by q and
p, the position and the momentum of the center of the mass of a hard sphere
in three dimension space. Under these conditions, two spheres i and j collide
when the relative position between the center of the spheres |qi − qj | = a. In
this case, with pi,j the momenta before collision, the momenta after collision
p′i,j are given by:

p′i = pi − (ωij .(pi − pj))ωij (1)

p′j = pj + (ωij .(pi − pj))ωij (2)

with ωij is the unit vector ωij =
qj−qi

a .3

Let us now describe the gas by a function ft(q, p1) that represents the
probability density that the particle 1 is located at the position between q and
q + dq with momenta between p1 and p1 + dp1 at the instant t. Under these
conditions, the BE is:

∂

∂t
ft(q, p1) +

p1
m
· ∂
∂q
ft(q, p1) = Q (3)

with Q the collision term defined as:

Q = α

∫
R3

dp2

∫
S+

dω12
(p1 − p2)

m
· ω12{ft(q, p′1)ft(q, p

′
2)− ft(q, p1)ft(q, p2)}

(4)

2 This section is a summary based on Uffink and Valente (2015) and Cercignani et al.
(1994, Chapter 4). For technical details, see also Gallagher et al. (2014) and Golse (2013).

3 I follow the notation used by Uffink and Valente (2015) and Golse (2014, p. 3). I em-

phasize that, in Gallagher (2014, p. 5), ωij is instead defined as
qi−qj

a
, from the particule i

to the particule j.
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where S+ is the domain for ω12 such as ω12 · (p1 − p2) ≥ 0. This corresponds
to the case for which particles are about to collide.4

The BE allows then to derive the H-theorem. Let us first define the H-
function, which is more precisely a functional, as follows:

H(ft) =

∫
ft(q, p) ln ft(q, p)dpdq (5)

In a nutshell, it can be proved that dH(ft)
dt ≤ 0, i.e., the H-function monotoni-

cally decreases with time. The BE thus exhibits irreversibility in the sense that
the minus H-function, which increases with time, can be somehow interpreted
as the entropy of the system.

2.2 Main steps of the derivation

Let us turn to the Lanford’s derivation of the BE, which requires different
main steps that I sketch very briefly.

Step 1: From the Liouville equation to the BBGKY hierarchy

The derivation of BE begins with the Liouville equation of a N hard spheres
system that describes the time evolution of the probability density µ(x1, x2, ..., xN )
in the phase space:

∂µ

∂t
= {H,µ} =

3N∑
i=1

∂H

∂qi

∂µ

∂pi
− ∂H

∂pi

∂µ

∂qi
=: HNµ (6)

where H is the Hamiltonian of the system. Using the property that the Hamil-
tonian is invariant by permutation of particles, and under some normalization
conventions, a hierarchy of marginal probability densities (or reduced proba-
bility densities) is defined as follows:

ρ1(x1) :=

∫
µ(x1, . . . xN )dx2 · · ·xN

...

ρk(x1, ..., xk) :=

∫
µ(x1, . . . xN )dxk+1 · · ·xN

...

ρN (x1, . . . , xN ) := µ(x1, . . . , xN )

4 Indeed, two particules 1 and 2 are about to collide if their relative distance ω12 decreases
with time, i.e., if d

dt
|q2− q1|2 ≤ 0, which implies that ω12 · (p1− p2) ≥ 0 with our notations.
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where ρk(x1, ..., xk) corresponds to the probability density that k particles are
located at q1, . . . , qk and with momenta p1, . . . , pk, while the remaining N − k
particles possess arbitrary positions and momenta.

Then, applying the Liouville equation to the ρk, one obtains the BBGKY
hierarchy, i.e., a series of N equations:

∂ρk,t
∂t

= Hkρk,t + C(a)k,k+1ρk+1,t k ∈ {1, . . . , N} (7)

with

C(a)k,k+1 ρk+1,t = Na2
k∑

i=1

∫
R3

dpk+1

∫
S2

dωi,k+1 (8)(
ωi,k+1 ·

(
pk+1 − pi

))
ρk+1,t(x1, . . . , xk, qi + aωi,k+1, pk+1) (9)

Step 2: From the BBGKY hierarchy to the Boltzmann hierarchy

The integral in the collision term C(a)k,k+1 is then split into two terms and
the B-G limit is used. Under these conditions, one proves that the BBGKY
hierarchy tends formally to the Boltzmann hierarchy:

∂fk,t
∂t

= Hkfk,t + Ck,k+1fk+1,t (10)

with C(a)k,k+1 −→ Ck,k+1, ρk,t −→ fk,t, Na
2 −→ α, where

Ck,k+1fk+1,t = (11)

α

k∑
i=1

∫
R3

dpk+1

∫
ωi,k+1·(pi−pk+1)≥0

dωi,k+1

(
ωi,k+1 ·

(
pi − pk+1

))
(12)[

fk+1,t(x1, ..., qi, p
′
i , ..., qi, p

′
k+1)− fk+1,t(x1, ..., qi, pi, ..., qi, pk+1)

]
(13)

Step 3: From the Boltzmann hierarchy to the Boltzmann equation

Finally, let us consider a specific solution for the Boltzmann hierarchy, which
is the factorized solution :

fk,t(x1, . . . , xk) =

k∏
i=1

ft(xi) (14)

where ft(xi) is the solution of the BE. In this case, the equations of the Boltz-
mann hierarchy correspond to the BE. Moreover, if we add the further as-
sumption about the initial conditions for the distribution, namely that is the
functions fk,0 factorize in such a way that:

fk,0(x1, . . . , xk) =

k∏
i=1

f0(xi) , (15)
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then it can be shown that this factorization property (Eq. 14) is maintained
in time, which is called the propagation of chaos.

2.3 The question of irreversibility within Lanford’s theorem

Fig. 1 Main steps of Lanford’s derivation of the Boltzmann equation.

The step 2 of the derivation is particularly important with regard to the ques-
tion of irreversibility. As Lanford points out, “the BBGKY hierarchy is time-
reversal invariant but the Boltzmann hierarchy is not”(Lanford 1975, p. 110).
Like the Liouville equation, the BBGKY hierarchy is indeed invariant under
time reversal. Instead, the Boltzmann hierarchy, like the BE, is not invariant
under time reversal. Irreversibility thus seems to appear between the BBGKY
hierarchy and the Boltzmann hierarchy.

Two ingredients are required within this second step, which are the B-G
limit and the ingoing (or incoming) configurations (see Fig. 1). First, the B-G
limit is the limiting regime for which the number N of hard spheres tends to
infinity, the diameter a of spheres tends to zero in such a way that the quantity
Na2 converges to a finite and non-zero quantity α (Grad 1949). It is a limit for
infinitely diluted gases since the volume occupied by bodies, which varies with
Na3, tends to zero. As Uffink and Valente (2015) point out, “since irreversible
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behaviour already appears at the level of the Boltzmann hierarchy, Lanford
puts the blame on the procedure to take the limit from the BBGKY hierarchy
to the Boltzmann hierarchy”(p. 423). Second, the ingoing configurations are
the momenta, or the velocities, of two hard spheres before colliding (Fig. 2).
They are also called pre-collisional configurations and are used to rewrite the

collision term C(a)k,k+1 of the BBGKY hierarchy in order to obtain the collision
term Ck,k+1 of the Boltzmann hierarchy. Such configurations contrast with
outgoing configurations, which are the momenta after collision, also called
post-collisional configurations. However, because the collisions between two
hard spheres are deterministic (see Eq. (1)-(2)), the use of the one or the
other configuration seems to be equivalent.

Fig. 2 Ingoing and outgoing configurations. Figure extracted from (Saint-Raymond 2013).

Uffink and Valente (2015) claim that neither the B-G limit, nor the ingoing
configurations are responsible for the appearance of irreversibility. Their argu-
ments are specific for each of them, and they will be discussed in the remainder
of the paper. But, before investigating them, I make clear another and more
general claim they argue for: there is no time-asymmetric ingredient at all
since Lanford’s theorem is time-reversal invariant. Uffink and Valente (2015,
p. 431) indeed emphasize that the theorem is valid not only for positive times
but also for negative times, i.e., valid within a interval [−τ, τ ]. Lanford (1975,
p. 109) himself stressed this point. Although the BE is derived for positive
times, another equation is indeed derived for negative times within Lanford’s
theorem, which is the anti-BE (or the backward BE):

∂

∂t
ft(q, p1) +

p1
m
· ∂
∂q
ft(q, p1) = Q∗ (16)

with Q∗ the collision term that is the opposite of the collision term in the
BE, i.e., Q∗ = −Q. The anti-BE is an equation that is also non invariant
under time reversal. However, this equation is problematic with regard to the



8 Vincent Ardourel

question of the appearance of irreversibility because it leads to an anti-H
theorem, which states that, for negative times, the H function increases with
time, or the minus H function decreases with time (Fig. 3). This seems to be in
conflict with the the second law of thermodynamics which states that entropy
is monotonic for any times. Therefore, as Valente (2014, p. 326) stresses, this
property raises the question whether Lanford’s theorem is true for the past.

Fig. 3 Time-symmetry of H-theorem derived from Lanford’s theorem.

Lanford’s theorem is time-symmetric in the sense that it is valid within a
interval [−τ, τ ]. However, I claim that it does not follow that there is no time-
asymmetric ingredient used to derive the BE from the Hamiltonian equations
of motion within Lanford’s and successors’ derivation. As I will argue in Section
5, the use of the ingoing configurations to represent collisions between particles
forces the derivation of the BE rather than the anti-BE. One should thus make
the distinction between the Lanford’s theorem and the Lanford’s derivation
of the BE. Lanford’s theorem can be applied to both ingoing and outgoing
configurations. In the first case, it leads to the BE for the positive times (for
[0, τ ]) and, in the second case, to the anti-BE for the negative times (for
[−τ, 0]). Accordingly, I will argue in Section 5 that ingoing configurations, as
taken within the B-G limit, are the time-asymmetric ingredient that allows
to derive the BE from Hamiltonian equation of motions. But before that, I
investigate the role of the B-G limit within Lanford’s derivation (Section 3),
and then, the role the incoming configurations (Section 4).

3 The Boltzmann-Grad limit: essential for the derivation but not
sufficient for irreversibility

In this section, I make clear why the B-G limit is essential for the derivation of
the BE although it is not sufficient for the appearance of irreversibility. This
section is a first step before arguing below, in Section 5, in what sense the
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B-G limit nevertheless contributes to the appearance of irreversibility within
Lanford’s derivation.

3.1 The essential role the Boltzmann-Grad limit in the derivation

Valente (2014) and Uffink and Valente (2015) make clear that the B-G limit
is essential in the derivation of the BE:

[W]e would like to stress that the Boltzmann-Grad limit is essential
for the purpose of obtaining a rigorous derivation of the Boltzmann
equation, from which one derives a statistical H-theorem predicting a
monotonic increase of entropy towards equilibrium. (Valente 2014, p.
321)

This limiting procedure first enables to rigorously establish the relationship
between the microstate of the gas and the probability density of the gas at the
macroscopic scale. At the microscopic scale, the distribution function of the
gas of hard spheres involves a discrete system, i.e., composed by finite number
N of hard spheres located at postions qi with momenta pi, with i = 1, ..., N .
By contrast, the probability density ft(xi) of the BE is a continuous function
of the variables q and p. The B-G scaling thus offers a rigorous framework to
approximate a discrete distribution by a continuous function by using the limit
for which the number of components tends to infinity.5 Second, the use of the
B-G scaling guarantees that the collision term in the BE does not vanish when
the diameter a of hard spheres then to zero. This scaling maintains indeed the
quantity Na2 to be finite, which corresponds to the factor α of the collision
integral of the BE.6

Besides, it has to be stressed that the derivation of the BE is not doomed
to use a hard sphere model. More generally, this derivation requires a strong
but local coupling between particles. This can be exemplify by a hard sphere

5 The use of the B-G limit avoids thus to meet the recurrence objection since the recur-
rence theorem rests on the assumption that N is finite (Jones 2006, p. 105) and Valente
(2014, p. 321).

6 Norton (2012, p. 218) points out that extensionless points with the B-G limit are prob-
lematic with respect to determinism. When a → 0 the direction of particles after each
collision is no longer deterministic. Valente (2014, p. 320) reinforces this point in empha-
sizing that the vector ω12 corresponding to the relative position of the centers of two hard
spheres that are going to collide is no more defined when a→ 0. In addition, Golse (2014, p.
35) suggests that the appearance of irreversibility could thus be linked with such appearance
of indeterminism:

Another factor that contributes to the irreversibility is that B-G limit implies that
r → 0 [i.e. a → 0]. While r > 0, laws of collisions are reversible because there is a
unique vector nkl [i.e. ω12] with respect to the position of particles k and l [i.e. 1
and 2]. Instead, when r → 0, the definition of the collision integral [...] requires the
vector n, analogous to nkl, which is now randomly and uniformly distributed on the
sphere.7

However, the relationship, if there is any, between the appearance of indeterminism in the
laws of collision and the loss of invariance under time-reversal for the BBGKY hierarchy is
still not clear.
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model but, also by a model of N mass points where two mass points interact
with a short-range repulsive potential (King 1975, Gallagher et al. 2014). Such
a derivation of the BE still requires the B-G limit for which a is now the range
of a short-range repulsive potential. In that case, the B-G limit allows to
make compatible the use of an infinite limit for Hamiltonian systems with the
constraint that average energy per particle remains bounded. This is done by
assuming that the energy of each pairwise interaction is small, which is done
“by scaling the range of potential”(Gallagher et al. 2014, p. 7).

Although the B-G limit is essential for the derivation of the BE, I stress
that it is not a time-asymmetric ingredient in the derivation of the BE, in
agreement with Uffink and Valente’s claim (2015). In the remainder of this
Section 3, I untangle the reasons of why the B-G limit is not sufficient for the
appearance of irreversibility.

3.2 Boltzmann-Grad limit and the Vlasov equation

About the B-G limit, Uffink and Valente emphasize that “Lanford (1981)
himself argues that this limiting procedure is not sufficient for the appearance
of irreversibility.”(2015, p. 424. My emphasis). Following a comparison made
by Lanford between the derivation of the BE and the derivation of the Vlasov
equation, they argue that the B-G limit is not a time-asymmetric ingredient in
the derivation of the BE. Indeed, the two equations are actually very different
with regard to the question of irreversibility. On the one hand, the VE is time-
reversal invariant whereas the BE is not. On the other hand, the H-function
for the VE, occurring in the H-theorem, is constant with time whereas the
H-function for the BE monotonically decreases with time. However, I stress
here that this comparison is misleading to argue that the B-G limit is not
sufficient for the appearance of irreversibility.8

Unlike the BE, the derivation of the VE does not actually require the
B-G limit. It requires the effective field or the mean field limit, which only
assume that N → ∞ in order to scale the strength of interactions. There is
not any a parameter within this limiting regime. The derivations of the BE
and the VE are indeed based on two different limiting regimes. Unlike the
BE, the derivation of the VE assumes a weak but global coupling between
particles, which is a model where each particle interacts with other particles
without colliding (Gallagher et al. 2014, p. 7). Coupling is weak in the sense
that the strength of the individual interaction becomes small when N grows
(since potential varies with 1/N). However, the range of the potential remains

8 The VE describes the evolution of the probability density in phase-space that a particle
is located at the position q with momentum p when the interaction between particles is
given by a sum of two-body potentials of the form : φ(N)(q1 − q2) = 1

N
φ0(q1 − q2). The

BE and the VE thus both describe the evolution of the probability density ft(q, p) of a
N -body system. The VE is : ∂

∂t
ft(q, p) + p

m
· ∂
∂q
ft(q, p) = −F(q) ∂

∂p
ft(q, p) where F(q) is

an integral that depends on the potential φ0 and ft(q, p) (Lanford 1981, p. 75). In addition,
both equations are derived from the Hamiltonian equations of motion of N particles when
the number of particles tends to infinity.
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macroscopic in the sense that two particles which are far from each other still
interact with each other.9

Like the B-G limit, the effective field limit, allows to make compatible
the use of an infinite limit for Hamiltonian systems with the constraint that
average energy per particle remains bounded. However, in this case, this is done
by assuming that the energy of each pairwise interaction is small “by scaling
the strength of the force”(Gallagher et al. 2014, p. 7). Since the derivation of
the VE does not require the B-G limit, I stress that we are not allowed to
make any statements about the B-G limit from the analysis of the VE.

3.3 Boltzmann-Grad limit and time-symmetry of Lanford’s theorem

A most compelling reason for arguing that the B-G limit is not sufficient for
the appearance of irreversibility comes from the time-symmetry of Lanford’s
theorem, which is stressed by Uffink (2007, p. 116) and Valente (2014) (see
Fig. 3):

[T]here exists a version of the theorem for negative times which provides
a rigorous derivation of the Anti-Boltzmann equation (cfr. Lanford 1975
and Lebowitz 1981) [...] [This] now means that in the Boltzmann-Grad
limit the vast majority of microstates x0 satisfying the initial conditions
evolve in agreement with Anti-B.E., from which it follows that the
negative of the H-function monotonically decreases for t < 0 (Valente
2014, p. 328, My emphasis)

We have seen in Section 3.1 that the B-G limit is required to derive the Boltz-
mann hierarchy for positive times. It turns out that the B-G limit is also
required to derive the anti-Boltzmann hierarchy for negative times. The anal-
ysis discussed in Section 3.1 equally applies to the anti-BE for negative times.
This means that, by itself, the use of the B-G limit is essential to obtain the BE
as well as the backward-BE. If the B-G limit were, by itself, a time-asymmetric
ingredient within the derivation of the BE, only the BE could be derive. But,
this not the case. An anti-BE is derived within the B-G limit. This means that
the B-G is not a time-asymmetric ingredient in the derivation of the BE.

4 Incoming configurations: essential for the derivation but not
sufficient for irreversibility

Let us turn now to the incoming configurations. I make clear why they are
essential to the derivation of the BE even if they are not sufficient for the
apparence of irreversibility. This section is also a first step before arguing

9 Unlike the BE, the VE is indeed derived from a system of N particles that do not collide:
“The Vlasov equation is the kinetic model for collisionless gases or plasmas”(Golse 2003,
p. 2, My emphasis). In addition, the derivations of the VE and the BE require two different
notions of convergence.
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below, in Section 5, in what sense the incoming configurations within the B-
G limit become, under this condition, a time-asymmetric ingredient in the
derivation of the BE.

4.1 The essential role of ingoing configurations

As we have seen in Section 2.3, incoming configurations correspond to the
momenta of hard spheres before they collide whereas outgoing configurations
correspond to the momenta after collision. A crucial step in the derivation of
the BE lie in the use of these incoming configurations. This step consists in
rewriting the right-hand of the equations of the BBGKY hierarchy (Eq. 7).

The right-hand of the equations of the BBGKY hierarchy C(a)k,k+1 (Eq. 8)
is split in two terms that will lead, latter on in the derivation, to the gain and
loss terms of the right hand of the BE, i.e the collision term Q of equation (4).
More precisely, the integral in (Eq. 8) is split in two integrals that range over
the hemispheres ωi,k+1 ·(pi−pk+1) ≥ 0 and ωi,k+1 ·(pi−pk+1) ≤ 0. In the first
hemisphere, the momenta in the configuration (qi, pi; qi+aωi,k+1, pk+1) appear
as ingoing momenta because of the domain of integration. The particles move
closer to each other. Instead, the momenta appear as outgoing momenta in
the second hemisphere according the domain of integration. The step in the
derivation that we focus on consists in rewriting the two hemispheres with
only incoming momenta.

Lanford and Cercignani et al. emphasize that this step is crucial in the
derivation with respect to the derivation of the BE:

We obtained [the BBGKY hierarchy] by systematically writing collision
phase points in their incoming representations. We could have equally
well have written them in their outgoing representations; [...] we would
have obtained the Boltzmann collision term with its sign reversed. It is
thus essential, in order to get the Boltzmann equation, to assume [...]
incoming collision points (x1, x2) and not [...] outgoing ones (Lanford
1975, p. 88)

And similarly:

In the derivation of the [collision] operator Q, we chose to represent
collision phase points in terms of ingoing configurations. [...] We are
thus compelled to ask whether the representation in terms of ingoing
configurations is the right one, i.e., physically meaningful. (Cercignani
et al. 1994, p. 74)

According to Lanford and Cercignani et al., if there is no such change of
variables, the integral vanishes by symmetry. In addition, if we use the outgoing
configuration, a minus sign will appear in the right hand leading, latter on the
derivation, to the anti-BE. Therefore, the derivation of the BE requires the
use of the incoming configurations.
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4.2 Ingoing configurations as neutral temporal ingredients

Although the use of the incoming configurations is essential to derive the BE,
Uffink and Valente claim that they are neutral with respect to the appearance
of irreversibility in the derivation of the BE.

On the one hand, they mitigate the difference between incoming and out-
going configurations with respect to the derivation the BE:

The choice of either one of the two collision configurations does not
make any difference at the level of the BBGKY hierarchy. In particular,
one can derive the Boltzmann hierarchy, as well as the anti-Boltzmann
hierarchy, from the BBGKY hierarchy rewritten in terms of either the
incoming or the outgoing configurations without having to choose the
“right” one. (Uffink and Valente 2015, p. 429)

Uffink and Valente prove indeed the equivalence between the BBGKY hierar-
chy with the collision term expressed by incoming momenta and the BBGKY
hierarchy with the collision term expressed by outcoming momenta (2015, p.
435). In the first part of their Proposition 3, they establish more specifically
that the BBGKY hierarchy with ingoing configurations is equal to the BBGKY
hierarchy with outgoing configurations.

On the other hand, they emphasize why the incoming configurations cannot
be a time-asymmetric ingredient. First, they show in the second part of their
Proposition 3 that the BBGKY written with outgoing configurations is time-
reversal invariant. More to the point, they prove in their Proposition 2 that the
BBGKY written with incoming configurations is time-reversal invariant. If the
incoming configurations were a time-asymmetric ingredient in the derivation
of the BE, they could not lead to a time-reversal invariance equation.

At this point of the debate, the position of Lanford and Cercignani et
al. on the one hand, and the position of Uffink and Valente seem to be in
conflict. Either some of them are wrong, or what they state is, in a sense, still
compatible. I argue for the second option in the next section.

5 Incoming configurations within Boltzmann-Grad limit

In this section, I argue that incoming configurations, as taken within the B-G
limit, is a time-asymmetric ingredient that added to Hamiltonian equations of
motion allows to obtain the BE. My argument runs as follows. First of all, it is
uncontroversial that incoming configurations refer to a preferred time-direction
in the sense that collisions are represented by momenta before collision. Yet,
as I will argue bellow, the use of these ingoing configuration within the B-G
limit is mandatory in order to obtain the BE. More to the point, by using the
ingoing configurations within the B-G limit, one cannot derive the anti-BE for
negative times. In other words, the use of incoming configurations within the
B-G limit leads to a time-asymmetric H-function. Unlike the H-function dis-
cussed in Section 2.3 (see Fig. 3), the H-function is no longer time-symmetric
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by using the incoming configuration only (see Fig. 4). If we only use the ingoing
configurations, the BE is derived for positive times within Lanford’s theorem
but nothing can be derived for negative times. Therefore, the crucial part of
my discussion is to make clear that the ingoing configurations are mandatory
to obtain the BE within the B-G limit.

Fig. 4 H-theorem with incoming configurations and without outgoing configurations.

5.1 Express the BBGKY hierarchy vs. derive the Boltzmann hierarchy

Let us begin by focusing on the debate between Lanford (1975) and Cercignani
et al. (1994), and Uffink and Valente (2015) about the incoming configurations.
I argue that their positions are compatible depending on whether the B-G
limit is taken or not. More precisely, I stress that the equivalence between
ingoing configurations and outgoing configurations holds at the level of the
BBGKY hierarchy, i.e. to express the BBGKY hierarchy, in agreement with
Uffink and Valente: “The choice of either one of the two collision configurations
does not make any difference at the level of the BBGKY hierarchy”(2015, p.
49). Nevertheless, I claim that ingoing and outgoing configurations are not
equivalent to derive the Boltzmann hierarchy, and respectively to derive the
backward Boltzmann hierarchy, which both require the B-G limit.

This claim is supported by the way that Cercignani et al. and Gallagher
et al. prove that the BBGKY hierarchy converges to the Boltzmann hierarchy
within the B-G limit. What is proved is that the formal solution of the BBGKY
hierarchy converges to the formal solution of the Boltzmann hierarchy. On the
one hand, the formal solution of the BBGKY hierarchy can be expanded as
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follows:

ρk(t) =

∞∑
i=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ ti−1

0

dtiS
k
a(t− t1) C(a)k,k+1S

k+1
a (t1 − t2) · · ·

C(a)k+i−1,k+iS
k+i
a (ti)ρk+i(0)

where Sa(.) are operators that represent the collisionless time evolution of the
hard sphere gas. On the other hand, the solution of the Boltzmann hierarchy
can be formally expanded as:

fk(t) =

∞∑
i=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ ti−1

0

dtiS
k
0 (t− t1) Ck,k+1S

k+1
0 (t1 − t2) · · ·

Ck+i−1,k+iS
k+i
0 (ti)fk+i(0)

Cercignani et al. and Saint-Raymond claim that the convergence of the formal
solution of the BBGKY hierarchy to the formal solution of the Boltzmann
hierarchy can only be proved if the ingoing configurations are used:

We have no choice of the representation of the collision point in terms of
ingoing or outgoing velocities; a representation just arises automatically,
and the correct expression of the limit collision terms follows from the
calculations.(Cercignani et al. 1994, p. 81. My emphasis).

And more precisely,

At this point the choice [...] to express everything in terms of pre-
collisional configurations, is not really a choice. If I decide to go back
from t to 0, I have no choice, I have to express everything in terms of
pre-collisional configurations. And [...] if you would like to go from 0 to
minus t [...] you have to express everything in terms of post-collisional
configurations. And then, instead of the BE, what you end up with is
the backward BE. [...] This is really important because this is at this
point that irreversibility just enters into the game. (Saint-Raymond
2015, 43’22. My emphasis)

It is possible to use either ingoing or outgoing configurations to express the
BBGKY hierarchy. However, it does not follow that “one can derive the Boltz-
mann hierarchy, as well as the anti-Boltzmann hierarchy, from the BBGKY
hierarchy rewritten in terms of either the incoming or the outgoing configu-
rations without having to choose the “right” one.”(Uffink and Valente 2015,
p. 429. My emphases). The point I stress is that the incoming configurations
are mandatory to derive the Boltzmann hierarchy, and they cannot be used to
derive the anti-Boltzmann hierarchy.

5.2 Collision trees as a mathematical constraint

Cercignani et al. (1994), Gallagher et al. (2014), and Saint-Raymond (2015)
emphasize that the convergence proof of the the formal solution of the BBGKY
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Fig. 5 Collision trees for positive times. Figure extracted from (Gallagher et al. 2014).

hierarchy ρk(t) towards the formal solution of the Boltzmann hierarchy fk(t) is
established within the framework of collision trees. They are are graphical rep-
resentations of the formal solution of the BBGKY hierarchy (see Fig. 5). For
positive times, collision trees correspond to the all possible trajectories that
lead to the position of a particule at the time t from an initial time. Accord-
ing to Saint-Raymond, within this framework, the ingoing configurations are
required to prove that the formal solution of the BBGKY hierarchy converges
to the Boltzmann hierarchy for positive times.10 In the same way, for nega-
tive times, the outgoing configurations are required to prove that the formal
solution of the BBGKY hierarchy converges to the anti-Boltzmann hierarchy.

Cercignani et al., Gallagher et al., and Saint-Raymond claim thus that one
does not know how to derive the Boltzmann hierarchy without the use of the
incoming configurations. At least, as far I know, there is no rigorous derivation
of the Boltzmann hierarchy without the use of the ingoing configurations. We
are dealing here with a mathematical constraint that plays a crucial role in the
derivation of the Boltzmann hierarchy. The use of collision trees framework
comes from the use of the Duhamel formula with which the formal solution of
the BBGKY hierarchy is expanded (Gallagher et al. 2014, p. 50).11 The value
of such a constraint is questionable. First, it seems to imply that, roughly
speaking, the way that a solution is expressed would have consequences on

10 Saint-Raymond claims even more that the use of the incoming configurations is required
to rigorously define the formal solution of the BBGKY hierarchy with integrals (private
communication).
11 This corresponds to the use of Dyson’s time-dependent perturbation theory in Uffink

and Valente (2015, p. 418).
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the appearance of a time-asymmetric solution. This case raises more gener-
ally a philosophical issue that I will leave open here, viz. which mathematics
represent physical assumptions and which ones are superfluous. Second, since
the collision trees are a mathematical framework, it could possibly be removed
to derive the BE. Therefore, this framework would be contingent with regard
to the question of the appearance of irreversibility in the derivation of the
BE. Accordingly, I do not claim that it would be impossible to derive the
Boltzmann hierarchy by using outgoing configurations with other mathemati-
cal techniques, i.e., without the framework of collision trees. However, I stress
that as far as we are concerned with the current Lanford’s and successors’s
works on the BE, outgoing configurations and ingoing configurations are not
equivalent with respect to the derivation of the BE.

Finally, it has to be stressed that Uffink and Valente’s proof of the equiv-
alence between the BBGKY hierarchy with incoming and outgoing configura-
tions contrasts with such a mathematical constraint. This equivalence holds
even if the BE would be derived with another framework. This makes this
equivalence claim very strong. However, it holds only at the level of the
BBGKY hierarchy. It is not sufficient to argue for the equivalence between
ingoing and outgoing configurations at the level of the Boltzmann hierarchy.

5.3 Equivalence breaking between ingoing and outgoing configurations

I have argued that ingoing and outgoing configurations are equivalent to ex-
press the BBGKY hierarchy whereas they are not to derive the Boltzmann
hierarchy. I stress here the role of the B-G limit regarding this difference.
More precisely, I emphasize that this is the use of the B-G limit that breaks
this equivalence. Therefore, the argument according to which ingoing or out-
going configurations are neutral regarding the derivation of the BE does not
hold when the B-G limit is taken.

First of all, let us makes clear how the equivalence between ingoing and
outgoing configurations without the B-G limit comes from. Uffink and Valente
point out that a continuity condition about collisions is responsible for this
equivalence. This condition states that the probability density of hard spheres
before collision equals the probability density of hard-spheres after collision
(Uffink and Valente 2015, p. 428)12, i.e.,

ρk+1(qi, pi; qi + aωi,k+1, pk+1) = ρk+1(qi, p
′
i ; qi + aωi,k+1, p

′
k+1) (17)

This equations roughly states that the number of particles before colliding
equals the number of particles after colliding. However, this equation is valid
while the B-G limit is not taken yet. The equivalence of using incoming or
outgoing configurations holds thus while the B-G limit is not taken yet, i.e.,
at the level of the BBGKY hierarchy but not at the level of the Boltzmann
hierarchy. Uffink and Valente also make this point clear :

12 See also Spohn (2006) on this point.
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Let us emphasize that continuity across collisions is a peculiar condition
on the BBGKY hierarchy for hard spheres, which does not carry over
when we take the Boltzmann-Grad limit, at least if one wishes to derive
a genuinely irreversible behaviour. In fact, such a condition would have
no analogue for the Boltzmann hierarchy, or the anti-Boltzmann hier-
archy. [...] [F]or an irreversible approach to equilibrium to obtain, the
continuity at collisions condition, which maintains time-reversal invari-
ance of the BBGKY hierarchy written in any collision configuration,
has no analogue in the Boltzmann-Grad limit.(Uffink and Valente 2015,
p. 429. My emphases.)

When the B-G limit is taken, we are no longer allowed to claim the equivalence
between ingoing and outgoing configurations. Yet, the B-G limit is uncontro-
versially needed to derive the BE, and because of the use of collision trees, the
ingoing configurations are also needed to derive the BE. Therefore, as a math-
ematical fact of Lanford’s derivation, only the use of ingoing configurations
within the B-G limit allows to obtain the BE. Such ingoing configurations
cannot be used to derive any equations for negative times, leading to a time-
asymmetry for the H-function (see Fig. 4).

6 Stoßzahlansatz reconsidered

This analysis of Lanford’s derivation of the BE allows me to argue for a re-
consideration of the Stoßzahlansatz, i.e., the assumption about the number of
collisions in the original Boltzmann’s heuristic derivation of the BE. It is gen-
erally admitted that irreversibility in Boltzmann’s original derivation comes
from this assumption:

[T]he irreversible time-evolution of macroscopic systems cannot be a
consequence of the laws of Hamiltonian mechanics alone. There must
be some additional non-dynamical ingredient in the H-theorem, or in-
deed in the Boltzmann equation from which it follows, that picks out a
preferred direction in time. As we now know, the Stoßzahlansatz is the
culprit. The pre-collision condition introduces a time-asymmetric ele-
ment, since it is assumed to hold only for particle pairs immediately be-
fore collisions, but not for pairs immediately after they collided. (Uffink
and Valente 2015, p. 410)

The time-asymmetric ingredient within the Stoßzahlansatz is the pre-collision
condition, which roughly states that, at any time, particles are uncorrelated
before collisions (Uffink and Valente 2015, p. 407).

Nevertheless, Uffink and Valente claim that the Stoßzahlansatz has been
removed in the rigorous Lanford’s derivation of the BE. More precisely, there
is no longer any pre-collision condition. There is only a factorization condition
but which does not make any reference to a direction of time. Indeed, the fac-
torization condition in Lanford’s derivation, corresponding to Eq. (14), is used
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to obtain the BE as well the anti-BE. In other words, the factorization condi-
tion does not depend on incoming configurations or outgoing configurations,
and thus does not depend on any direction in time.

However, I claim that there is actually a kind of a pre-collision condition
within Lanford’s derivation of the BE, because of the mandatory use of the
ingoing configurations. Such ingoing configurations indeed correspond to the
use of momenta of hard spheres before collisions. Nevertheless, if there is any
new kind of Stoßzahlansatz within Lanford’s derivation, it is different form the
Stoßzahlansatz in Boltzmann’s derivation. Unlike the original Stoßzahlansatz,
the factorization condition in Lanford’s derivation can be assumed at an initial
time, and not necessarily at any time. Indeed, the factorization property at
the initial time (Eq. 15) is maintained in time within Lanford’s derivation,
corresponding to Equation (14) at the time t. This property is called the
propagation of chaos (Uffink and Valente 2015, p. 418).

In other words, according to my analysis of Lanford’s derivation of the
BE, one can roughly view the hard spheres of the gas as assumed, before
collisions (because of the mandatory use of the incoming configurations), to
be uncorrelated at the initial time (because of the factorization condition).

7 Conclusion

Based on Uffink and Valente’s paper (2015), I discussed the problem of the ap-
pearance of irreversibility in Lanford’s and successors’ derivation of the Boltz-
mann equation (Lanford 1975, Cercignani et al. 1994, Gallagher et al. 2014).
Unlike Uffink and Valente, I claimed that there is a time-asymmetric ingredi-
ent that, added to the Hamiltonian equations of motion, allows to obtain the
Boltzmann equation. Such a time-asymmetric ingredient is the use of incoming
configurations as taken within the Boltzmann-Grad limit.

Following Uffink and Valente’s analysis, I first clarified that the Boltzmann-
Grad limit and the incoming configurations are not, by themselves, time-
asymmetric ingredients. In addition, each of them is essential for Lanford’s
derivation of the Boltzmann equation. Nevertheless, I emphasize that incom-
ing configurations and outgoing configurations are not neutral with respect to
the derivation of the Boltzmann equation. Outgoing configurations can be used
to express the BBGKY hierarchy – before using the Boltzmann-Grad limit –
but not to derive the Boltzmann hierarchy, and therefore the Boltzmann equa-
tion. I thus stressed that one cannot dispense with incoming configurations to
derive the Boltzmann equation, at least as far as we are concerned with the
current Lanford’s derivation. Accordingly, I suggest that there is a kind of
pre-collision condition in this derivation. However, there is no Boltzmann’s
Stoßzahlansatz within this derivation since the factorization condition can be
assumed for a single initial time.
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