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Introduction
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Applications with Security Requirements

• medical devices

• home automation

• digital administration

• e-commerce

• transports

• communications: cell. phones, Internet, industrial networks. . .

• IOT

• WSN

• embedded systems

• cloud computing

• RFID tags

• smart { grids | cities | buildings | . . . }
• . . .
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Security and Embedded Systems

Integrated circuits perform security tasks, somewhere in the system. . .

Cases where a close access is difficult:

Cases where a close access can be possible:
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Physical Attacks
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Attacks

Types of attacks (non-exhaustive):

social engineering

theoretical

software

physical

invasiveprobing

reverse engineering

perturbationfault injection

observation

timing analysis

power analysis

EMR analysis

EMR = Electromagnetic radiation
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Observation Attacks

Question: what can/should be measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• computation time

• power consumption

• electromagnetic radiation

• temperature

• sound

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (microprobe, # cache misses...)
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Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .
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Differences & External Signature
An algorithm

has a current signature and a time signature

:

r = 0
for i from 1 to n do

if ki = 0 then

r = r + a
else

r = r × b

I+ I×
t

I

i
ki
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Observation Attacks

Source: [9]
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Observation Attacks

Source: [9]
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Perturbation or Fault Injection Attacks

Typical techniques:

• perturbation in the power supply voltage

• perturbation of the clock signal

• temperature (over/under-heating the chip)

• radiation or electromagnetic (EM) disturbances

• exposing the chip to intense lights or beams

• etc

Accuracy:

• time: part of clock cycle, clock cycle, code block (instruction sequence)

• space: gate, block, unit, core, chip, package

• value: set to a specific value, bit flip, stuck-at 0 or 1, random
modification
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Perturbation on the External Clock
Principle:

time

voltage

CLK

• Normal clock (at a given frequency, duty cycle ≈ 50%)

• Clock with a modified duty cycle
• Glitched clock
• Etc.
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Perturbation on the External Clock
Principle:

time

voltage

CLK

MCLK

GCLK

glitches

• Normal clock (at a given frequency, duty cycle ≈ 50%)
• Clock with a modified duty cycle
• Glitched clock
• Etc.
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Clock Glitch Attack Example

Source: paper [1] presented at FDTC 2011 conference

Setup: AVR ATMega 163 microcontroller @ 1MHz

mode glitch period cycle instruction opcode (bin)

normal - i NOP 0000 0000 0000 0000
normal - i + 1 EOR R15,R5 0010 0100 1111 0101

glitch 59 ns i + 1 NOP 0000 0000 0000 0000

mode glitch period cycle instruction opcode (bin)

normal - i NOP 0000 0000 0000 0000
normal - i + 1 SER R18 1110 1111 0010 1111

glitch 61 ns i + 1 LDI R18,0xEF 1110 1110 0010 1111
glitch 60 ns i + 1 SBC R12,R15 0000 1000 0010 1111
glitch 59 ns i + 1 NOP 0000 0000 0000 0000
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Arithmetic Circuits
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Example of Crypto-Processor Architecture

ex
te

rn
al

in
te

rf
ac

e

interconnect

CTRL

code
mem.

ke
y

m
n

g.

register
file

FU1 FU2 FU3

Functional Units: ±, ×, ÷ in finite fields Fp or F2m with 20 – 8000 bits
elements and (small) vectors/matrices
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Protections
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Protections

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . . )

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . . )

• . . .
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Circuit-Level Protections for Arithmetic Operators

References: [6] and [7]
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Protection of Arithmetic Operators

Unprotected
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References:
PhD D. Pamula [10]
Articles: [12], [11]
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Exotic Representations of Numbers
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1 kt−2

. . . k2 k1 k0 t explicit digits

Digits: ki ∈ {0, 1}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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Randomized DBNS Recoding

• On-the-fly random recoding of secret values (e.g. scalars in ECC)

• In a limited window, randomly select one of recoding (if possible):

I 1 + 2 � 3
I 1 + 3 � 22

I 1 + 23 � 32

• DBNS is redundant ⇒ security ↗
• DBNS is sparse ⇒ 20–30 % speed ↗
• Reference: [4] for DBNS, [5] for MBNS

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice
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Prototyping in Real Circuits
Processor for Elliptic Curve Cryptography designed in the PAVOIS ANR
project (2012–2016)

Fp 256 bits (gen.)
65 nm CMOS
1.5 mm2
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Conclusion and References
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“Conclusion”

• Physical attacks are serious threats

• Attacks are more and more efficient (many variants)

• Security analysis is mandatory at all levels (specification, algorithm,
operation, implementation, test, life cycle)

• Security = trade-off between performances, robustness and cost

• Security = func( secret value, attacker capabilities )

• Security = computer science + microelectronics + mathematics
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The end, questions ?

Contact:

• mailto:arnaud.tisserand@univ-ubs.fr

• http://www-labsticc.univ-ubs.fr/~tisseran

• CNRS, Lab-STICC Laboratory
University South Brittany (UBS),
Centre de recherche C. Huygens, rue St Maudé, BP 92116,
56321 Lorient cedex, France

Thank you
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