
HAL Id: hal-01918140
https://hal.science/hal-01918140

Submitted on 2 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-resource sharing scheduling considering
uncontrollable environment

Mahya Rahimi, Emil Dumitrescu, Eric Niel

To cite this version:
Mahya Rahimi, Emil Dumitrescu, Eric Niel. Multi-resource sharing scheduling considering uncon-
trollable environment. ETFA 2018, Sep 2018, Torino, Italy. �10.1109/ETFA.2018.8502611�. �hal-
01918140�

https://hal.science/hal-01918140
https://hal.archives-ouvertes.fr

Multi-resource sharing scheduling considering
uncontrollable environment

Mahya Rahimi
AMPERE Laboratory,

INSA Lyon
Villeurbanne, France

mahya.rahimi@insa-lyon.fr

Emil Dumitrescu
AMPERE Laboratory,

INSA Lyon
Villeurbanne, France

emil.dumitrescu@insa-lyon.fr

Eric Niel
AMPERE Laboratory,

INSA Lyon
Villeurbanne, France
eric.niel@insa-lyon.fr

Abstract—This paper addresses the problem of scheduling
through a visual, expressive and formal modeling approach, based
on Timed Game Automata (TGA). The originality of the proposed
approach lies in integrating various kinds of uncontrollability in
the scheduling problem and also the ability of handling the sharing
of multiple resources. This uncontrollable behaviors consist of the
start time, the duration of the task and the failure occurrence in a
schedule which are modeled by TGA. The models have the
advantage of being directly exploitable by means of synthesis tools.
To obtain the minimum makespan and optimal schedules as the
result, a time-optimal reachability game is performed through
Tiga tool. The obtained result for a scheduling example shows the
huge difference in the obtained schedule with and without
considering uncontrollable behaviors.

Keywords—scheduling, timed synthesis, uncontrollability, timed
game automata, makespan, multi-resource sharing

I. INTRODUCTION
Scheduling problems can benefit from significant

enhancements when restricted to single-resource applications
[1]. Yet in some application domains, it is essential to assign
more than one resource to each task [2], [3]. Many approaches
exist for solving scheduling problems; optimization methods and
tools, advocated by [4], already offer competitive solutions for
optimization and scheduling in particular. Yet, research issues
related to modeling, such as behavioral and dynamic interaction,
or expressing disruptive behaviors need further investigation.
Accordingly, many research contributions advocate the use of
(max,+) algebra, Petri nets or automata theory for addressing
these issues. In this direction, automata models appear to be very
convenient: they are intuitive, expressive, robust against changes
in the parameter setting and against changes in the problem
specification [5], [6], while offering a formal framework.

Automata theory and adjacent tools, such as verification
approaches, have been widely used for addressing scheduling
problems [5], [7], [8]. Yet few contributions take into account
the multi-resource sharing (MRS) aspect. Subbiah et al. [7]
consider scheduling of multi-product batch plants with
sequence-dependent changeover procedures through timed
automata. The authors do not take into account MRS criteria in
the proposed model. G. Behrmann et al. [6] treat a type of job
shop scheduling problem for lacquer production using a timed
automata modeling approach. The authors use a heuristic
approach to reduce the search space. They also propose solutions
that are applicable for other scheduling cases. Abdeddaïm et al.
[5] propose shortest path algorithms for timed automata to find
optimal schedules in a job shop scheduling problem. The authors
also investigate non-lazy scheduling with uncertain task

duration. Panek et al. [9] integrate mathematical modeling into
the reachability analysis of timed automata and propose an
algorithm for scheduling and makespan minimization of job
shop problems. Marangé et al. [10] propose a scheduling
approach to handle reconfiguration of a manufacturing plant.
Following a reconfiguration request, a scheduling is obtained for
a set of items produced by a set of machines. The problem is
classified as a job-shop scheduling problem which is threated by
reachability analysis. All the studies mentioned above are
classified into classical job-shop problems and hence do not
consider MRS criteria.

It should be mentioned that there exist some related studies
that in addition to using automata models, integrate MRS criteria
in the problem. Whereas, they do not generate any schedule, but
their goal is to only minimize the makespan [11].

Apart from MRS aspect, in all of the above studies, it is
considered that task behaviors are deterministic and resources
are reliable. While the real world is not like that: disruptive
behaviors may exist affecting the pre-scheduled execution of
tasks. Start time of tasks may be changed due to several reasons
like the delay in sourcing of raw material; task processing may
take more or less time than expected; resources may break down;
undelayable tasks may arrive in the middle of the schedule, etc.
[5], [12]–[15].

Disruptive behaviors can be integrated in automata modeling
by using the notion of uncontrollability. Abdeddaïm et al. [5] use
an extension of timed automata for solving the classical job-shop
problem. The authors divide the transition set into controllable
and uncontrollable subsets. They propose shortest path
algorithms for timed automata to find the optimal schedules.
They also investigate non-lazy scheduling with uncertainty in
task duration. David et al. [16] propose a framework to model
and analyze a variety of schedulability scenarios for problems
that deal with multiprocessor systems, timing uncertainties in
arrival and execution times, possible dependencies of tasks and
preemption of resources. The problem is modeled by timed
automata. Dumitrescu et al. [17] propose a framework for multi-
criteria optimal controller synthesis to model and optimize fault-
tolerant distributed systems considering task execution cost and
its service quality. Moreover, to combine criteria, the authors
consider three different methods: aggregation, hierarchization
and translation. Marangé et al. [10] develop a job-shop
scheduling model by communicating automata to handle
reconfiguration of a manufacturing plant due to resource failure.
Following a reconfiguration request, a scheduling is generated
for a set of products that are produced by a set of machines. This

����������������������������l�����-))) ���

schedule can be obtained by means of reachability analysis on
the model.

Su et al. [18] address a minimum-makespan supervisory
synthesis job shop problem. They assume also occurrence of
uncontrollable events such as malfunction of a component when
the system reaches a certain state, being unable to execute a
program immediately when the operating system is still
retrieving all relevant execution resources for this program
according to a pre-specified internal mechanism unknown to the
end user, producing imperfect product, etc. The makespan of the
problem is computed through theory of heap-of-pieces. A timed
supervisory control map is also presented that is capable of
implementing the synthesized minimum-makespan
sublanguage. The author models the problem by weighted and
un-weighted deterministic finite state automata. Boukra et al.
[19] propose new representations for (max,+) automata in order
to describe their extremal behaviors. Consequently, the defined
automata is applied to performance evaluation application.
Thereby, the worst case and optimum case of behavior of
automata are formulated in a form that has polynomial
complexity. Furthermore, the authors defines an equation to find
the start time of actions in optimal and worst cases. Thus, if the
automaton corresponds to the synchronous composition of
components of a scheduling problem, the minimum makespan
and start time of tasks can be found through the presented
formula for the performance evaluation. In this article, the
presented formulae are applied to an example of MRS
scheduling problem. Supervisory control of automata and the
notion of uncontrollability represents undelayable and
unpreventable tasks.

According to the contributions mentioned above, the
modeling of uncertain behaviors using uncontrollability appears
to be of great interest. Yet, different notions of uncontrollability
are explored in different specific ways.

The purpose of this work is to explore several useful notions
of uncertain behaviors, model them using the uncontrollability
mechanism, apply them to a specific class of problems and
provide a global modeling and scheduling framework suitable
for this class. The scheduling problems considered in the sequel
require modeling specificities: concurrency, explicit timing,
interaction mechanisms and a means of specifying
uncontrollability. The timed game automata (TGA) model [20]
provides these mechanisms, which is why it is used throughout
this work. In order to do scheduling, a worst-case makespan is
obtained which enables scheduling the tasks of time-critical
systems.

The main contribution of this work is a novel modeling
approach based on TGA in order to perform makespan
minimization, by considering:

� the occurrence of different kinds of uncontrollable
behaviors

� the integration of MRS concept

The remainder of this paper is as follows: Section II presents
the problem description. Different types of uncontrollability are
enumerated in Section 11). In Section IV, the scheduling
problem is modeled through TGA. Section V discussed the

solving approach for the scheduling problem. In section VI
through an example, the difference between a schedule with and
without presence of uncontrollable behaviors is demonstrated.
Finally, section VII is devoted to the conclusion.

II. PROBLEM DESCRIPTION
The aim of this work is to find a schedule of minimum

duration (minimum makespan) in order to execute a set of tasks
just once. Tasks consist of either value-added operations or
preventive maintenances on resources. Tasks should be
performed in parallel, by respecting predefined mutual exclusion
and precedence constraints. The following assumptions are
expected to hold:

1) Duration of tasks may be restricted to be bounded within
an interval.

2) Start time of tasks may be subject to bounded
uncertainty.

3) Task preemption is not allowed, whereas due to a failure
a task may be canceled.

4) There may be conflicts for performing tasks at the same
time, but when there is no conflict between them, they
should be performed simultaneously.

5) There may exist precedence constraints between tasks.

6) All tasks are ready to be executed at time zero.

7) Resources are pre-assigned to tasks.

8) Resources are reusable (they are not raw materials and
by performing maintenances, they can be used in every
cycle).

9) Each resource can be used to execute only one task at a
time, but a task may use more than one resource
simultaneously.

10) Resources are not reliable and may fail in two
conditions: 1. during performing a task, 2. during idle
time of resources

11) If resources are not broken down, they are available at
time zero.

III. DIFFERENT TYPES OF UNCONTROLLABLE BEHAVIORS
In this section, four major kinds of uncontrollable behaviors

are discussed.

� Resource failure while performing a task: In certain
cases, resources are not reliable and for that reason,
during execution of tasks, unpredictable failures may
occur. Therefore, tasks relating to that resource cannot be
executed until its reparation.

� Resource failure when it is idle: Not all the failures
happen when performing tasks. Sometimes failures may
occur when a resource is idle and therefore it won’t be
able to start execution of any task until it is repaired.

� Bounded uncertainty in duration of tasks: In real world,
human intervention, incomplete information or uncertain
environment may cause uncertainty in duration of tasks.

���

� Bounded uncertainty in start time of tasks: In certain
applications, uncertain task performing conditions might
cause a delay in start time of tasks from the moment of
their release time. By definition, release time is the
earliest time when a task can start execution.
This type of uncontrollable behavior may happen to two
types of resource assignment; when tasks require
resource assignments from their decided start time or
when resources should be assigned from the real start
time of the task execution.

The inclusion of these types of uncontrollability in the model
at hand is both intuitive and provides generic models.

IV. MODELING THE SCHEDULING PROBLEM THROUGH TGA
A schedule S over a set of tasks T can be considered as a

mapping �: T → ℝ�� assigning a starting time to each task of T.
Yet, by considering uncontrollable behaviors, this representation
is no longer valid, and the schedule should be replaced by a
scheduler, featuring a dynamic behavior, interacting with an
environment in order to implement a winning game: reach a final
desired configuration as fast as possible, despite the behavior of
the environment, considered as an adversary.

In this situation, some actions are done by the environment
and therefore are uncontrollable and the others are done by the
controller. For example, let’s assume the case when the start time
of the tasks are controllable and there is a possibility of resource
failure it their idle state. To finish all the tasks in a minimum
time, there is a competition between the controller and the
environment. The environment prevents the controller to do the
optimal actions by creating uncontrollable behaviors. This
competition can be modeled by Timed Game Automata [21]. In
this case, tasks can be launched by the controller through taking
a controllable transition, while at the same time, the environment
may take an uncontrollable transition to cause a failure. In order
to perform all the tasks, the controller finds a strategy that
guarantees reaching the final state whatever the opponent (the
environment) is doing.

The definition of a MRS scheduling problem relies on a
collection of three kinds of TGA models expressing: mutual
exclusion, precedence and task launching.

Definition (MRS scheduling problem): A MRS scheduling
problem statement � = (�, �, �� �, ��� , �) consists of (1) a set
� = {��|� = 1, … �} of tasks that might be necessary to be
executed simultaneously, (2) a family of mutual exclusion
constraint sets � ∈ 2� that are modeled as a set ��� of Mutual
Exclusion automata (��), (3) a duration function �: � → ℝ��
assigning fixed durations to tasks, (4) a set �� � of Task Launcher
(TL) automata that model triggering of each task for a specific
number of times. |�� �| = |�| = � which means that for
executing every task, there exists one TL automaton (5) a set ���
of Precedence (PR) automata modeling precedence constraints
among tasks. This set could be empty.

In order to perform the scheduling, the MRS scheduling
problem is first modeled by a collection of TGA. Then through
a timed game analysis, the strategy for obtaining an optimal
schedule and makespan is found. In the sequel, tasks are
triggered using the interaction mechanisms of TGA:

communication channels. Each task launcher (TL) triggers one
task t, by emitting the communication signal “t_s!”. The mutual
exclusion (ME) and precedence (PR) models listen “t_s?” and
react accordingly, by enabling/disabling further task triggering
so that the modeled constraints are always satisfied.

It should be mentioned that in the sequel, whenever variables
of a model are discussed locally, they are not indexed. For
example in Fig. 1 where there are numerous tasks and tasks are
not discussed locally, they are indexed as ��, ��, … , ��; while in
Fig. 3, one task is discussed locally and task � is not indexed.

A. The Mutual Exclusion (ME) model
A ME automaton model represents the conflict among a set

of tasks �� ⊆ �. The model waits in its initial location ��. When
receiving a launching signal ��_� in order to run ��, it takes a
transition from �� to the task location �� and resets the clock ��.
After elapsing �(��) time units, it takes the transition from
location �� to ��. In fact, �(��) is the duration of task ��. In the
initial location, the automaton waits for another launching signal
to execute a new task. Figure 1 indicates that tasks �� =
{��, ��, ��, … , ��} are in conflict.

Figure 1. Modeling pattern of timed ME automaton

The ME model can be adapted in order to integrate the
uncontrollable behaviors introduced in the previous section.

1) Unpredictable resource failure
In each ME automaton, due to using common set of resource,

tasks can be in conflict. Therefore, if one of these resources
breaks down, tasks related to that ME automaton cannot be
executed until the resource is repaired. Reparation duration
depends on the resource. In automaton �, this duration is denoted
by �(����) and is equal to the maximum time needed for
reparation of resources related to this automaton (Fig. 2 and Fig.
3).

Variable �� is dedicated to modeling a bound of resource
failures. It denotes the number of failures in a scheduled cycle.
For avoiding schedulability problems, this number should be
limited. In fact, if no limit is put for this number, there would be
a possibility that a scheduled cycle would never end. Without
loss of generality, it is assumed that at most one failure may
occur in a cycle. Therefore when �� = 1, no more failure can
occur in a ME automaton.

���

Two kind of resource failures can be modeled in a ME
automaton:

a) Failure while a resource is idle
 During idle time of resources, a failure may occur. A failure

is an uncontrollable action, modeled by a dashed transition. As
mentioned above, for the sake of schedulability, it is assumed to
be limited to occur at most once. Hence, in the model of failure
(Fig. 2), if �� = 0, an uncontrollable transition can be taken by
the environment, the clock is reset and the automaton reaches the
fail location. Then after elapsing �(����) time units, the
automaton takes a transition to the initial location and updates
variable �� to one.

Figure 2. Modeling pattern of a resource failure in its idle time
in ME automaton �
b) Failure while doing a task

 In automaton �, during execution of task �, a failure may
happen. The reason of the failure could be a breakdown in the
resources related to the mutual exclusion set � or another mutual
exclusion set that share task �.

Execution of task � happens in the location � . Therefore,
uncontrollable transitions representing failures should be taken
from this location. For modeling a breakdown in the resources
related to the ME automaton model � , an uncontrollable
transition is added from location �. If it is the first time that a
failure happens in this set of resources, i.e. �� = 1 and if task � is
not finished yet, i.e. �� < �(�), this transition can be taken by
environment. By taking this transition, clock �� is reset and a
signal � ���_� is sent to the other model components that share
task � to stop the task. Thereby the automaton reaches location
��� where it waits for repairing the broken resource.

Figure 3. Modeling pattern of a task in a ME automaton subject to
resource failure

After the repairing period, i.e. �(����), the resource is ready
and all the tasks belonging to this task-conflict set, i.e. ��� , can
start execution. Therefore, the automaton takes a transition to the
initial location, updates variable �� to one to prevent more
failures and sends signal ��� ����_� to the other model
components that share the same task, to enable restarting �� .

These model components can be other ME models, or
precedence (PR) models automata or task launcher (TL) models,
all presented in the sequel.

At the same time when a task is interrupted due to a failure
in a ME automaton, it should also stop execution in other ME
automata that share the same task. Hence, as depicted in Fig. 3,
a transition from location � to the initial location is added to the
model of a task. Whenever the automaton is in task location �
and receives signal � ���_� from another ME automaton, it stops
execution and goes to the initial location.

Thereby, with possibility of abovementioned types of
failures, the model of a ME automaton can be as presented in
Fig. 4.

Figure 4. Modeling pattern of a ME automaton subject to resource failure

2) Bounded uncertainty in duration of tasks
In some applications, the exact duration of the tasks may not

be given, but rather durations are restricted to be bounded within
an interval of the form [��(�), ��(�)].

Figure 5. Modeling pattern of a task with uncertain duration in a ME
automaton

Hence, when the ME automata is in the task location �, from
the moment the clock reaches ��(�) till ��(�), the automata may
take a transition to the initial location. Therefore, an
uncontrollable transition is added to enable this uncertain
movement from task location to initial location when ��(�) ≤
�� < ��(�). But as assumed, it is certain that the duration of the
task is no longer than ��(�), a controllable transition is added
from the task location to the initial location to be taken if the
automaton still waits in task location at time ��(�) (Fig. 5).

3) Bounded uncertainty in start time of tasks
Start time of a task may be uncertain. Whereas, as mentioned

previously, this uncertainty can be treated with two points of
view. The first one is to keep all the necessary resources

���

available from the decided start time of the task until its real start
time. The second point of view is to let the environment start the
task during a time window while the resources are idle. The
global model should represent these cases appropriately:

a) Environment starts the task in a time window whenever
related resources are idle

This kind of uncontrollability does not have any impact on
the model of the task in ME automaton model. For considering
this type of uncertainty, only the model of TL automaton
changes, as shown in the sequel.

b) Keeping resources available from the lower bound of
the decision time window

 Resources should be reserved from the initial moment of
decision time window. Hence, from this moment, the automaton
should move from the initial location to another location to
prevent starting the other tasks. Although, since in this moment
the task is not started yet, the ME model cannot move to the task
location. For that reason, in this instant, by receiving the signal
decide_s from the related TL automaton, the ME model moves
to a new location ���� ��. When the environment decides to start
the task, it sends signal �_� from the TL automaton to the ME
automaton. Thereby, clock is reset and the ME automaton
reaches the task location � and starts the task. After waiting �(�)
time units in this location and finishing the task, the automaton
takes a controllable transition to the initial location and waits for
starting a new task (Fig. 6).

Figure 6. Modeling pattern of a task with uncertain start time in a ME
automaton

B. The Task Launcher (TL) model
In order to launch every task, a TL automaton is needed and

hence the number of TL automata models is equal to the number
of tasks to schedule. A task launcher should be able to launch a
task whenever its related task is executable in other automata.
This means that the other automata containing the same task
should be in locations dedicated to listening signal �_�. Thence,
through sending signal �_�! by the task launcher of task �, the
related ME and PR automata receive signal �_�? and trigger task
� . For this purpose, in this model, function �������(�) is
defined. Therefore, whenever all the ME automata sharing the
task are in their initial location, the output of function
�������(�) becomes true and the task can be launched. In this
moment, the automaton sends a signal �_� to the other automata
sharing the task � and reaches the location � (Fig. 7). Thereby,
� starts execution in these automata.

Therefore the guard function ������� ∶ � → ����, which is
associated to the transition of the TL model, is true if and only if
the following condition holds:

∀� ∈ [1, �]: � ∈ ��� → ∀�′ ∈ ���\{�}: ¬����� ��(��, ��) (1)

where ����� ��: ��� × ���� → ���� is defined as

����� ��(�, ��) = ����� �, �� = ��
����, �. � (2)

where � is the number of ME automata, � is the name of the
task, ��� is the set of tasks engaged in �th ME automaton. In the
�th ME automaton, ���� is the set of locations, �� is its current
location and �� is the initial location. Hence, function pending,
presented in equation (2), verifies if a ME automaton is in a
location where a task t is being executed.

Hence, task t can only be enabled if all the ME components
observing t are in their respective initial location ��.

Figure 7. Modeling pattern of a task launcher automaton

The TL model should also be adapted in order to integrate
the failure behaviors mentioned above

1) Unpredictable resource failure
a) Failure while a resource is idle

 This kind of failure does not interrupts tasks since a TL
automaton is only related to tasks and not resources. Therefore,
there is no need to change the model of TL automaton for
considering failure while a resource is idle.

b) Failure while doing a task
 Whenever a failure occurs during execution of a task, the

task should be repeated after repairing the resource. Therefore,
after this period, TL should return to its initial location to be able
to launch the task another time.

To add this feature to the model of TL automaton, one
additional location stp is created. When a task is during
execution, the automaton is in location f. Therefore, at the instant
of resource failure, it receives the signal � ���_� from the ME
automaton in which the resource failure was triggered and
reaches location � ��. In this location, the automaton waits until

Figure 8. Modeling pattern of a launcher automaton for a task subject
to failure

reparation of the related resource. After this period, the
automaton receives another signal �������_� from the ME
automaton to which the resource failure was related. Thereby TL
automaton goes to the initial location (Fig. 8).

2) Bounded uncertainty in duration of tasks
A TL only launches a task and does not concern duration of

tasks. Hence, for considering uncertain duration of tasks, there
is no need to change the model of TL automaton.

3) Bounded uncertainty in start time of tasks
a) Environment starts the task in a time window whenever

related resources are idle
 Start time of a task may be uncontrollable such that from the

instant of releasing a task, its start time vary in an interval of the
form [0, �� �] where �� � represents the maximum delay for
starting the task. For modeling this feature, two issues should be

���

considered; the first one is that as before, in addition to the
communication signal �_�, the output of ������� function for
the task � should be verified. The releasing time of the task is let
to be time zero in TL automaton. Hence, the second issue is that
from time zero to the moment prior to the time bound �� �
launching the task � is uncontrollable. If the task is not launched
until this time, the automaton should be forced to launch the task
at this instant. Furthermore, its launching cannot be delayed
more than this threshold.

Therefore, two transitions lead the automaton from the initial
location �� to the location �. One transition is an uncontrollable
transition that can be taken by the environment if �������(�) is
true and the value of the local clock �� is less than �� �. Another
transition is a controllable transition that can taken by controller
if ������(�) is true and the value of �� is equal to �� �. When
taking one of these transitions, a communication signal �_� will
be sent to the other automata that share the task � (Fig. 9).

Figure 9. Modeling pattern of a TL automaton for a task with uncertain start
time when the resources are occupied from the instant of execution

b) Keeping resources available from the lower bound of
the decision time window

In this case, at the instant when all necessary resources for
execution of task � are available, i.e. the output of ������(�) is
true, the TL automaton of task � reserves resources. To this end,
it takes a transition to ���� �� location and sends a signal
���� ��_� to the ME automata sharing task � . Therefore, the
related ME automata reach to their ���� �� location and this
issue prevents other tasks in the related ME automata to occupy
the necessary resources and to be executed. Furthermore, by
taking this transition, the local clock �� is reset. In location
���� ��, the automaton waits for the environment to take an
uncontrollable transition to the location � until the instant that
the clock value reaches �� �. If the environment did not took the
transition, the supervisor takes a controllable transition to � at
time �� �. In the both cases, a communication signal �_� is sent
to the other automata that share � to start the task (Fig. 10).

Figure 10. Modeling pattern of a TL automaton for a task with uncertain
start time when the resources are occupied from the release time of task

C. The Precedence (PR) model
In the proposed framework, two types of precedence

constraints have been identified. The first type, considers
precedence constraints for delay between start times of tasks and
is denoted as delay precedence constraint. This delay might be
equal to the duration of tasks. The second type is a particular case
of the first type. It considers precedence constraints for start
times of tasks and is denoted as untimed precedence constraint.

The automaton representing the first and second type of
constraint are named delay and untimed PR automaton
respectively.

Uncertainties of duration or start time of tasks does not affect
the model of PR automaton. Indeed, in both types of PR
automata, only the starting moment of a task is taken into
account. Thus, it is not important if a task starts right after the
prior task or it starts some moments later. The same goes for the
duration of the task, i.e. the finishing instant of the task is not
important. Precedence constraints solely set the minimum time
distances between the starting times of tasks.

Failures which happen in idle time of resources don’t cancel
tasks. For that reason, by integrating this kind of failure in the
problem, the model of PR automaton will not be changed.

Precedence constraints can be either untimed or delayed. The
following presents the models of untimed and delay PR
automata models with and without possibility of failure while
execution of task.

1) The Untimed PR automaton model
The untimed PR model is composed of triggering transitions

so as to request starting of tasks in a specific order. In Fig. 11,
task �� will be started before task ��.

 It is intended to put constraints on tasks that are fulfilled
successfully. When a task fails, it will not be necessarily re-
executed right after reparation of the broken-down resource. It
may be executed afterwards. Therefore, its re-execution should
be considered in the PR automaton model to prevent execution
of tasks in an undesired order.

Figure 11. Modeling pattern of an untimed PR automata with reliable resources

To model this feature in untimed PR automata models, it is
enough to add uncontrollable transitions that lead the automaton
from the locations that tasks are launched to their previous
locations where tasks are not launched yet. For example, when a
TL launches task ��, the PR automata in Fig. 12 takes a transition
from �� to ��. If �� fails, the automaton should execute it again.
To this aim, a new uncontrollable transition could be added from
�� to �� . Thereby, when a failure happens, a signal � ���_�� is
received from the related ME automaton and the PR automata
moves to the previous location. This makes it possible to execute
�� for another time. The same goes for all the tasks in the
automaton. Thus, in order to consider failure during execution of
tasks, the model of untimed PR automata changes to Fig. 12.

Figure 12. Modeling pattern of an untimed PR automata with tasks subject to
failure

2) Delay precedence automaton
 In addition to the precedence between tasks, the delay PR

automaton model should demonstrate time elapse between start
times of tasks. Therefore, new locations, time guards and
invariants are added to the model of untimed PR automaton to

���

obtain delay PR automaton (Fig. 13). In this model, two
locations are assigned to each task (e.g. ��). The first location
(e.g. ��) is where the automaton waits for receiving signal �_�
from the TL automaton of task � to launch the task (launching
location). The second location (e.g. ��) corresponds where it
waits ��� time units (delay location). By receiving signal �_�,
clock is reset and the automaton reaches the second location (e.g.
��). After ��� time units, task � finishes and the automaton
changes the location in order to wait for receiving launching
signal from TL automata of the next task. Since there exist no
task after execution of the last task of the constraint, naturally no
delay will be defined after its execution. Thence, no delay
location or guard is needed for executing the last task in this
automaton. If the precedence is correctly followed, automaton
will reach location �.

Figure 13. Modeling pattern of a delay PR automata with reliable resources

The process of modeling task failure in this automaton is
similar to the untimed PR automata. The only difference is that
in this model, there should exist transitions to lead the automaton
from launching and delay locations to their previous launching
locations. Fig. 14 represents modeling pattern of a delay PR
automata with tasks subject to failure. After launching task ��,
the automaton reaches the delay location ��. During execution of

Figure 14. Modeling pattern of a delay PR automata with tasks subject to
failure
the task, a resource failure may happen. There is a possibility
that this failure occurs during the waiting period in ��. Whereas,
if ���� was smaller than duration of the task �(��), this failure
may happen after time ���� and when the automaton has moved
to the location ��. Thus, two uncontrollable transitions are added
to the automaton. Thereby, whenever a failure signal ����_�� is
received from a ME automaton, if the PR automata was at
location �� or �� , it will go back to the previous launching
location, i.e. initial location. Related changes for the other tasks
are the same as ��.

V. SOLVING APPROACH
In order to find an optimized schedule, the tool TIGA is used

as a synthesis tool to explore the state space for determining if
there is a winning strategy to reach a location where all the tasks
are done and the precedence constraint is respected. For this
purpose, a time-optimal control property is verified by solving a
reachability game. This game concerns reachability of all the
ME automata models to their initial locations and all TL and PR
automata models to their final locations (�) despite
uncontrollable actions of the environment. In TCTL language,
this property can be formalized as follows [22]:

�������_�∗(�, �): � ◊ ((⋀ ���. ��)����� ∧
(⋀ ���. �)����� ∧ (⋀ ���. �)�����) (3)

where �� is the initial location in each ME automata, and � is the
final location in each TL and PR automata. As highlighted
previously, there exist � ME automata, � TL automata and �
PR automata. Generally, �������_�∗(�, �): � ◊ ���� means
that the supervisor must reach a set of goal locations within less
than � − � time units. In the case of the proposed scheduling
problem, goal locations are initial locations �� in ME automata
and � locations in TL and PR automata. Moreover, � can be set
to a very large number and � can have zero value. By
performing a reachability game through verifying this property,
TIGA yields an optimal or sub-optimal value of makespan that
can be acquired despite the worst actions of the environment
(from the point of view of the supervisor). Furthermore, the
strategy to reach the final location can be obtained through this
synthesis [22].

In the following, through an example, the difference of the
optimum schedule with and without presence of uncontrollable
behaviors is explained.

VI. EXAMPLE
Assume there is a set of tasks � = {�, �, �} to be done. A set

of resources � = {�1, … , �5} is assigned to tasks with resource
association details shown in Table 1. Hence, tasks � and � are in
conflict with each other, while � and � are not. Therefore, � and
� can be performed simultaneously. Duration of �, � and � are
7, 5 and 3 time units respectively and the precedence constraint
among tasks is such that task � should be started after finishing
task �.

Table 1. Resource assignment details

task
resource

R1 R2 R3 R4 R5
a � �
b � � �
c � � �

An optimal schedule is to first execute task � and after
finishing � , tasks � and � can be started simultaneously.
Therefore, the minimum makespan for performing all the tasks
is 12 time units.

Now let’s integrate uncontrollable behaviors in the problem.
Assume that duration of � is restricted to be bounded in interval
[7,11]. In addition, resources are not reliable and may fail in
their idle time or even during execution of tasks. Maximum
reparation time of resources are as Table 2. Thus, the maximum
duration for repairing resources necessary to execute the set of
tasks {�, �} and {�, �} are 4 and 5 time units respectively.

The optimum makespan despite the best play of the
environment is obtained 41 time units through Tiga. Fig. 15
demonstrates the Gantt chart of its corresponding schedule. It
means that failures are happened at moments that can extend
duration of the schedule as much as possible. Moreover, duration
of task � is maximum. In this schedule, the controller executes
task � at time 0. Therefore, � is executed on both sets of
resources. Some instances before � ends, a failure happens in the
second set of resources. This issue stops �. Maximum reparation
time of the second set of resources is 5 time units. Thus, till time
10, resources are repaired and in this moment, task � restarts and

���

finished at time 15. Then task � and � start simultaneously. At
time 18 � finished, while � is still executing.

Table 2. Repairing duration of resources
R1 R2 R3 R4 R5
4 3 4 5 4

Duration of task � is non-deterministic and is bounded in
interval [7,11]. Until moments before time 26, the environment
does not take any action to finish the task. While some instants
before time 26, a failure in the first set of resources occurs which
stops execution of the task. It takes 4 time units to repair the
resources. At time 30, the first set of resources are repaired.
Since task � was not finished, it should be repeated again.
Hence, � restarts and takes 11 time units to be finished.
Therefore all tasks are finished at time 41.

Figure 15. Gantt chart for a sample schedule

As mentioned above, this case is the worst case of uncontrollable
behaviors which should be predicated for scheduling the tasks of
time-critical systems. A usual schedule when the environment
doesn’t do its best play might be faster; and of course the best
case is when no uncontrollable behavior happens.

VII. CONCLUSION
In this paper, a novel approach is presented to model and

solve multi-resource sharing scheduling problem considering
uncontrollable behaviors happening in the real life.

These kinds of uncontrollability consist of uncertain duration
of tasks, uncertain start time of tasks and resource failures during
a scheduled cycle. Tasks that are subject to uncertain start time
are divided to two sets: those that engage resources from their
decided start time and the ones, which occupy resources only
when they are executing. Furthermore, two types of failures are
studied: failures while tasks are being executed and failures
during idle time of resources. It should be noted that all the
mentioned kinds of uncontrollability are possible to be
integrated in the model of the scheduling problem at the same
time.

The problem is modeled by timed game automata which is a
visual and expressive means of modeling. Solving a problem that
contains uncontrollability needs to perform a supervisory control
and extracting a strategy to reach the desired condition despite
all actions of the environment. In order to solve the MRS
scheduling problem, time-optimal reachability game, which is a
kind of supervisory control, is performed through the synthesis
tool Tiga.

As future research, other kinds of uncontrollability such as
uncontrollable arrival of tasks during the schedule, malfunction
or unavailability of resources can be integrated in the model.

REFERENCES
[1] E. B. Edis, C. Oguz, and I. Ozkarahan, “Parallel machine scheduling

with additional resources: Notation, classification, models and
solution methods,” 2013.

[2] M. Afzalirad and J. Rezaeian, “Resource-constrained unrelated
parallel machine scheduling problem with sequence dependent setup
times, precedence constraints and machine eligibility restrictions,”
Comput. Ind. Eng., vol. 98, pp. 40–52, 2016.

[3] K. R. Quintero Garcia, “Optimisation d’alignements d’un réseau de
pipelines basée sur les algèbres tropicales et les approches
génétiques,” Lyon, INSA, 2015.

[4] Ibm, “IBM ILOG CPLEX Optimization Studio,” Man. Seq. interval
Var., p. 594, 2014.

[5] Y. Abdeddaïm, E. Asarin, and O. Maler, “Scheduling with timed
automata,” in Theoretical Computer Science, 2006, vol. 354, no. 2,
pp. 272–300.

[6] G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader, “Production
Scheduling by Reachability Analysis - A Case Study,” in 19th IEEE
International Parallel and Distributed Processing Symposium, 2005,
p. 140a–140a.

[7] S. Subbiah and S. Engell, “Short-term scheduling of multi-product
batch plants with sequence-dependent changeovers using timed
automata models,” Comput. Aided Chem. Eng., vol. 28, no. C, pp.
1201–1206, 2010.

[8] A. R. Shehabinia, L. Lin, and R. Su, “Timed Supervisory Control for
Operational Planning and Scheduling under Multiple Job Deadlines,”
arXiv Prepr. arXiv1607.04255, 2016.

[9] S. Panek, O. Stursberg, and S. Engell, “Efficient synthesis of
production schedules by optimization of timed automata,” Control
Eng. Pract., vol. 14, no. 10, pp. 1183–1197, 2006.

[10] P. Marange, J.-F. Petin, A. Manceaux, and D. Gouyon, “Contribution
à la reconfiguration des systèmes de production : ordonnancement par
recherche d’atteignabilité,” J. Eur. des Systèmes Autom., 2011.

[11] S. Gaubert and J. Mairesse, “Task Resource Models and (max,+)
Automata,” vol. 11, pp. 133–144, 1995.

[12] G. Rzevski and P. Skobelev, “Intelligent Adaptive Schedulers For
Railways,” Int. J. Transp. Dev. Integr., vol. 1, no. 3, pp. 414–420,
Apr. 2017.

[13] U. Dorndorf, F. Jaehn, and E. Pesch, “Flight gate assignment and
recovery strategies with stochastic arrival and departure times,” OR
Spectr., vol. 39, no. 1, pp. 65–93, 2017.

[14] N. Kundakcı and O. Kulak, “Hybrid genetic algorithms for
minimizing makespan in dynamic job shop scheduling problem,”
Comput. Ind. Eng., vol. 96, pp. 31–51, 2016.

[15] A. Cimatti, A. Micheli, and M. Roveri, “Strong Temporal Planning
with Uncontrollable Durations : A State-Space Approach,” in
Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015, pp. 3254–3260.

[16] A. David, J. Illum, K. G. Larsen, and A. Skou, “Model-based
Framework for Schedulability Analysis Using Uppaal 4.1,” in Model-
Based Design for Embedded Systems, 2009, pp. 1–32.

[17] E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten, “Multicriteria
optimal reconfiguration of fault-tolerant real-time tasks,” in IFAC
Proceedings Volumes (IFAC-PapersOnline), 2010, vol. 10, no.
PART 1, pp. 356–363.

[18] R. Su, J. H. Van Schuppen, and J. E. Rooda, “The synthesis of time
optimal supervisors by using heaps-of-pieces,” IEEE Trans. Automat.
Contr., vol. 57, no. 1, pp. 105–118, 2012.

[19] R. Boukra, S. Lahaye, and J.-L. Boimond, “New representations for
(max,+) automata with applications to performance evaluation and
control of discrete event systems,” Discret. Event Dyn. Syst., vol. 25,
no. 1–2, pp. 295–322, 2015.

[20] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient
on-the-fly algorithms for the analysis of timed games,” in CONCUR:
International Conference on Concurrency Theory, 2005, vol. 5, pp.
66–80.

[21] R. De Munter, “A comparison of Timed Games and Time Optimal
Supervisor Synthesis,” 2010.

[22] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “Uppaal Tiga User-manual.” Aalborg University, 2007.

���

4S[IVIH�F]�8'4(*��[[[�XGTHJ�SVK

