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Abstract—This paper addresses the problem of scheduling 
through a visual, expressive and formal modeling approach, based 
on Timed Game Automata (TGA). The originality of the proposed 
approach lies in integrating various kinds of uncontrollability in 
the scheduling problem and also the ability of handling the sharing 
of multiple resources. This uncontrollable behaviors consist of the 
start time, the duration of the task and the failure occurrence in a 
schedule which are modeled by TGA. The models have the 
advantage of being directly exploitable by means of synthesis tools. 
To obtain the minimum makespan and optimal schedules as the 
result, a time-optimal reachability game is performed through 
Tiga tool. The obtained result for a scheduling example shows the 
huge difference in the obtained schedule with and without 
considering uncontrollable behaviors. 

Keywords—scheduling, timed synthesis, uncontrollability, timed 
game automata, makespan, multi-resource sharing 

I. INTRODUCTION 
Scheduling problems can benefit from significant 

enhancements when restricted to single-resource applications  
[1]. Yet in some application domains, it is essential to assign 
more than one resource to each task [2], [3]. Many approaches 
exist for solving scheduling problems; optimization methods and 
tools, advocated by [4], already offer competitive solutions for 
optimization and scheduling in particular. Yet, research issues 
related to modeling, such as behavioral and dynamic interaction, 
or expressing disruptive behaviors need further investigation. 
Accordingly, many research contributions advocate   the use of 
(max,+) algebra, Petri nets or automata theory for addressing 
these issues. In this direction, automata models appear to be very 
convenient: they are intuitive, expressive, robust against changes 
in the parameter setting and against changes in the problem 
specification [5], [6], while offering a formal framework.  

Automata theory and adjacent tools, such as verification 
approaches, have been widely used for addressing scheduling 
problems [5], [7], [8]. Yet few contributions take into account 
the multi-resource sharing (MRS) aspect. Subbiah et al. [7] 
consider scheduling of multi-product batch plants with 
sequence-dependent changeover procedures through timed 
automata. The authors do not take into account MRS criteria in 
the proposed model. G. Behrmann et al. [6] treat a type of job 
shop scheduling problem for lacquer production using a  timed 
automata modeling approach. The authors use a heuristic 
approach to reduce the search space. They also propose solutions 
that are applicable for other scheduling cases. Abdeddaïm et al. 
[5] propose shortest path algorithms for timed automata to find 
optimal schedules in a job shop scheduling problem. The authors 
also investigate non-lazy scheduling with uncertain task 

duration. Panek et al. [9] integrate mathematical modeling into 
the reachability analysis of timed automata and propose an 
algorithm for scheduling and makespan minimization of job 
shop problems. Marangé et al. [10] propose a scheduling 
approach to handle reconfiguration of a manufacturing plant. 
Following a reconfiguration request, a scheduling is obtained for 
a set of items produced by a set of machines. The problem is 
classified as a job-shop scheduling problem which is threated by 
reachability analysis. All the studies mentioned above are 
classified into classical job-shop problems and hence do not 
consider MRS criteria.  

It should be mentioned that there exist some related studies 
that in addition to using automata models, integrate MRS criteria 
in the problem. Whereas, they do not generate any schedule, but 
their goal is to only minimize the makespan [11]. 

Apart from MRS aspect, in all of the above studies, it is 
considered that task behaviors are deterministic and resources 
are reliable. While the real world is not like that: disruptive 
behaviors may exist affecting the pre-scheduled execution of 
tasks. Start time of tasks may be changed due to several reasons 
like the delay in sourcing of raw material; task processing may 
take more or less time than expected; resources may break down; 
undelayable tasks may arrive in the middle of the schedule, etc. 
[5], [12]–[15]. 

Disruptive behaviors can be integrated in automata modeling 
by using the notion of uncontrollability. Abdeddaïm et al. [5] use 
an extension of timed automata for solving the classical job-shop 
problem. The authors divide the transition set into controllable 
and uncontrollable subsets. They propose shortest path 
algorithms for timed automata to find the optimal schedules. 
They also investigate non-lazy scheduling with uncertainty in 
task duration. David et al. [16] propose a framework to model 
and analyze a variety of schedulability scenarios for problems 
that deal with multiprocessor systems, timing uncertainties in 
arrival and execution times, possible dependencies of tasks and 
preemption of resources. The problem is modeled by timed 
automata. Dumitrescu et al. [17] propose a framework for multi-
criteria optimal controller synthesis to model and optimize fault-
tolerant distributed systems considering task execution cost and 
its service quality. Moreover, to combine criteria, the authors 
consider three different methods: aggregation, hierarchization 
and translation. Marangé et al. [10] develop a job-shop 
scheduling model by communicating automata to handle 
reconfiguration of a manufacturing plant due to resource failure. 
Following a reconfiguration request, a scheduling is generated 
for a set of products that are produced by a set of machines. This 
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schedule can be obtained by means of reachability analysis on 
the model. 

Su et al. [18] address a minimum-makespan supervisory 
synthesis job shop problem. They assume also occurrence of 
uncontrollable events such as malfunction of a component when 
the system reaches a certain state, being unable to execute a 
program immediately when the operating system is still 
retrieving all relevant execution resources for this program 
according to a pre-specified internal mechanism unknown to the 
end user, producing imperfect product, etc. The makespan of the 
problem is computed through theory of heap-of-pieces. A timed 
supervisory control map is also presented that is capable of 
implementing the synthesized minimum-makespan 
sublanguage. The author models the problem by weighted and 
un-weighted deterministic finite state automata. Boukra et al. 
[19] propose new representations for (max,+) automata in order 
to describe their extremal behaviors. Consequently, the defined 
automata is applied to performance evaluation application. 
Thereby, the worst case and optimum case of behavior of 
automata are formulated in a form that has polynomial 
complexity. Furthermore, the authors defines an equation to find 
the start time of actions in optimal and worst cases. Thus, if the 
automaton corresponds to the synchronous composition of 
components of a scheduling problem, the minimum makespan 
and start time of tasks can be found through the presented 
formula for the performance evaluation. In this article, the 
presented formulae are applied to an example of MRS 
scheduling problem. Supervisory control of automata and the 
notion of uncontrollability represents undelayable and 
unpreventable tasks.  

According to the contributions mentioned above, the 
modeling of uncertain behaviors using uncontrollability appears 
to be of great interest. Yet, different notions of uncontrollability 
are explored in different specific ways.  

The purpose of this work is to explore several useful notions 
of uncertain behaviors, model them using the uncontrollability 
mechanism, apply them to a specific class of problems and 
provide a global modeling and scheduling framework suitable 
for this class. The scheduling problems considered in the sequel 
require modeling specificities: concurrency, explicit timing, 
interaction mechanisms and a means of specifying 
uncontrollability. The timed game automata  (TGA) model [20] 
provides these mechanisms, which is why it is used throughout 
this work. In order to do scheduling, a worst-case makespan is 
obtained which enables scheduling the tasks of time-critical 
systems. 

The main contribution of this work is a novel modeling 
approach based on TGA in order to perform makespan 
minimization, by considering:  

� the occurrence of different kinds of uncontrollable 
behaviors 

� the integration of MRS concept 

The remainder of this paper is as follows: Section II presents 
the problem description. Different types of uncontrollability are 
enumerated in Section 11). In Section IV, the scheduling 
problem is modeled through TGA. Section V discussed the 

solving approach for the scheduling problem. In section VI 
through an example, the difference between a schedule with and 
without presence of uncontrollable behaviors is demonstrated. 
Finally, section VII is devoted to the conclusion. 

II. PROBLEM DESCRIPTION 
The aim of this work is to find a schedule of minimum 

duration (minimum makespan) in order to execute a set of tasks 
just once. Tasks consist of either value-added operations or 
preventive maintenances on resources. Tasks should be 
performed in parallel, by respecting predefined mutual exclusion 
and precedence constraints. The following assumptions are 
expected to hold:  

1) Duration of tasks may be restricted to be bounded within 
an interval.  

2) Start time of tasks may be subject to bounded 
uncertainty. 

3) Task preemption is not allowed, whereas due to a failure 
a task may be canceled.  

4) There may be conflicts for performing tasks at the same 
time, but when there is no conflict between them, they 
should be performed simultaneously.  

5) There may exist precedence constraints between tasks.  

6) All tasks are ready to be executed at time zero.  

7) Resources are pre-assigned to tasks.  

8) Resources are reusable (they are not raw materials and 
by performing maintenances, they can be used in every 
cycle).  

9) Each resource can be used to execute only one task at a 
time, but a task may use more than one resource 
simultaneously.  

10) Resources are not reliable and may fail in two 
conditions: 1. during performing a task, 2. during idle 
time of resources 

11) If resources are not broken down, they are available at 
time zero. 

III. DIFFERENT TYPES OF UNCONTROLLABLE BEHAVIORS  
In this section, four major kinds of uncontrollable behaviors 

are discussed.   

� Resource failure while performing a task: In certain 
cases, resources are not reliable and for that reason, 
during execution of tasks, unpredictable failures may 
occur. Therefore, tasks relating to that resource cannot be 
executed until its reparation. 

� Resource failure when it is idle: Not all the failures 
happen when performing tasks. Sometimes failures may 
occur when a resource is idle and therefore it won’t be 
able to start execution of any task until it is repaired. 

� Bounded uncertainty in duration of tasks: In real world, 
human intervention, incomplete information or uncertain 
environment may cause uncertainty in duration of tasks. 
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� Bounded uncertainty in start time of tasks: In certain 
applications, uncertain task performing conditions might 
cause a delay in start time of tasks from the moment of 
their release time. By definition, release time is the 
earliest time when a task can start execution. 
This type of uncontrollable behavior may happen to two 
types of resource assignment; when tasks require 
resource assignments from their decided start time or 
when resources should be assigned from the real start 
time of the task execution. 

The inclusion of these types of uncontrollability in the model 
at hand is both intuitive and provides generic models.  

IV. MODELING THE SCHEDULING PROBLEM THROUGH TGA 
A schedule S over a set of tasks T can be considered as a 

mapping �: T → ℝ�� assigning a starting time to each task of T. 
Yet, by considering uncontrollable behaviors, this representation 
is no longer valid, and the schedule should be replaced by a 
scheduler, featuring a dynamic behavior, interacting with an 
environment in order to implement a winning game: reach a final 
desired configuration as fast as possible, despite the behavior of 
the environment, considered as an adversary.   

In this situation, some actions are done by the environment 
and therefore are uncontrollable and the others are done by the 
controller. For example, let’s assume the case when the start time 
of the tasks are controllable and there is a possibility of resource 
failure it their idle state. To finish all the tasks in a minimum 
time, there is a competition between the controller and the 
environment. The environment prevents the controller to do the 
optimal actions by creating uncontrollable behaviors. This 
competition can be modeled by Timed Game Automata [21]. In 
this case, tasks can be launched by the controller through taking 
a controllable transition, while at the same time, the environment 
may take an uncontrollable transition to cause a failure. In order 
to perform all the tasks, the controller finds a strategy that 
guarantees reaching the final state whatever the opponent (the 
environment) is doing.  

The definition of a MRS scheduling problem relies on a 
collection of three kinds of TGA models expressing: mutual 
exclusion, precedence and task launching.  

Definition (MRS scheduling problem): A MRS scheduling 
problem statement � = (�, �, �� �, ��� , �)  consists of (1) a set 
� = {��|� = 1, … �}  of tasks that might be necessary  to be 
executed simultaneously, (2) a family of mutual exclusion 
constraint sets � ∈ 2�  that are modeled as a set ���  of Mutual 
Exclusion automata (��), (3) a duration function �: � → ℝ�� 
assigning fixed durations to tasks, (4) a set �� � of Task Launcher 
(TL) automata that model triggering of each task for a specific 
number of times. |�� �| = |�| = �  which means that for 
executing every task, there exists one TL automaton (5) a set ���  
of Precedence (PR) automata modeling precedence constraints 
among tasks. This set could be empty.  

In order to perform the scheduling, the MRS scheduling 
problem is first modeled by a collection of TGA. Then through 
a timed game analysis, the strategy for obtaining an optimal 
schedule and makespan is found. In the sequel, tasks are 
triggered using the interaction mechanisms of TGA: 

communication channels. Each task launcher (TL) triggers one 
task t, by emitting the communication signal “t_s!”. The mutual 
exclusion (ME) and precedence (PR) models listen “t_s?” and 
react accordingly, by enabling/disabling further task triggering 
so that the modeled constraints are always satisfied.  

It should be mentioned that in the sequel, whenever variables 
of a model are discussed locally, they are not indexed. For 
example in Fig. 1 where there are numerous tasks and tasks are 
not discussed locally, they are indexed as ��, ��, … , ��; while in 
Fig. 3, one task is discussed locally and task � is not indexed.  

A. The Mutual Exclusion (ME) model 
A ME automaton model represents the conflict among a set 

of tasks �� ⊆ �. The model waits in its initial location ��. When 
receiving a launching signal ��_� in order to run ��, it takes a 
transition from �� to the task location �� and resets the clock ��. 
After elapsing �(��)  time units, it takes the transition from 
location �� to ��. In fact, �(��) is the duration of task ��. In the 
initial location, the automaton waits for another launching signal 
to execute a new task. Figure 1 indicates that tasks �� =
{��, ��, ��, … , ��} are in conflict.   

 
Figure 1. Modeling pattern of timed ME automaton 

The ME model can be adapted in order to integrate the 
uncontrollable behaviors introduced in the previous section. 

1) Unpredictable resource failure 
In each ME automaton, due to using common set of resource, 

tasks can be in conflict. Therefore, if one of these resources 
breaks down, tasks related to that ME automaton cannot be 
executed until the resource is repaired. Reparation duration 
depends on the resource. In automaton �, this duration is denoted 
by �(����)  and is equal to the maximum time needed for 
reparation of resources related to this automaton (Fig. 2 and Fig. 
3).  

Variable ��  is dedicated to modeling a bound of resource 
failures. It denotes the number of failures in a scheduled cycle. 
For avoiding schedulability problems, this number should be 
limited. In fact, if no limit is put for this number, there would be 
a possibility that a scheduled cycle would never end. Without 
loss of generality, it is assumed that at most one failure may 
occur in a cycle. Therefore when �� = 1, no more failure can 
occur in a ME automaton. 
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Two kind of resource failures can be modeled in a ME 
automaton: 

a) Failure while a resource is idle 
 During idle time of resources, a failure may occur. A failure 

is an uncontrollable action, modeled by a dashed transition. As 
mentioned above, for the sake of schedulability, it is assumed to 
be limited to occur at most once. Hence, in the model of failure 
(Fig. 2), if �� = 0, an uncontrollable transition can be taken by 
the environment, the clock is reset and the automaton reaches the 
fail location. Then after elapsing �(����)  time units, the 
automaton takes a transition to the initial location and updates 
variable �� to one.  

 
Figure 2. Modeling pattern of a resource failure in its idle time 
in ME automaton � 
b) Failure while doing a task 

 In automaton �, during execution of task �, a failure may 
happen. The reason of the failure could be a breakdown in the 
resources related to the mutual exclusion set � or another mutual 
exclusion set that share task �. 

Execution of task �  happens in the location � . Therefore, 
uncontrollable transitions representing failures should be taken 
from this location. For modeling a breakdown in the resources 
related to the ME automaton model  � , an uncontrollable 
transition is added from location �. If it is the first time that a 
failure happens in this set of resources, i.e. �� = 1 and if task � is 
not finished yet, i.e. �� < �(�), this transition can be taken by 
environment. By taking this transition, clock �� is reset and a 
signal � ���_� is sent to the other model components that share 
task � to stop the task. Thereby the automaton reaches location 
��� where it waits for repairing the broken resource.  

 
Figure 3. Modeling pattern of a task in a ME automaton subject to 
resource failure 

After the repairing period, i.e. �(����), the resource is ready 
and all the tasks belonging to this task-conflict set, i.e. ��� , can 
start execution. Therefore, the automaton takes a transition to the 
initial location, updates variable ��  to one to prevent more 
failures and sends signal ��� ����_� to the other model 
components that share the same task, to enable restarting �� . 

These model components can be other ME models, or 
precedence (PR) models automata or task launcher (TL) models, 
all presented in the sequel. 

At the same time when a task is interrupted due to a failure 
in a ME automaton, it should also stop execution in other ME 
automata that share the same task. Hence, as depicted in Fig. 3, 
a transition from location � to the initial location is added to the 
model of a task. Whenever the automaton is in task location � 
and receives signal � ���_� from another ME automaton, it stops 
execution and goes to the initial location. 

Thereby, with possibility of abovementioned types of 
failures, the model of a ME automaton can be as presented in 
Fig. 4.  

 
Figure 4. Modeling pattern of a ME automaton subject to resource failure 

2) Bounded uncertainty in duration of tasks 
In some applications, the exact duration of the tasks may not 

be given, but rather durations are restricted to be bounded within 
an interval of the form [��(�), ��(�)]. 

 
Figure 5. Modeling pattern of a task with uncertain duration in a ME 
automaton 

Hence, when the ME automata is in the task location �, from 
the moment the clock reaches ��(�) till ��(�), the automata may 
take a transition to the initial location. Therefore, an 
uncontrollable transition is added to enable this uncertain 
movement from task location to initial location when ��(�) ≤
�� < ��(�). But as assumed, it is certain that the duration of the 
task is no longer than ��(�), a controllable transition is added 
from the task location to the initial location to be taken if the 
automaton still waits in task location at time ��(�) (Fig. 5).  

3) Bounded uncertainty in start time of tasks 
Start time of a task may be uncertain. Whereas, as mentioned 

previously, this uncertainty can be treated with two points of 
view. The first one is to keep all the necessary resources 
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available from the decided start time of the task until its real start 
time. The second point of view is to let the environment start the 
task during a time window while the resources are idle. The 
global model should represent these cases appropriately: 

a) Environment starts the task in a time window whenever 
related resources are idle 

This kind of uncontrollability does not have any impact on 
the model of the task in ME automaton model. For considering 
this type of uncertainty, only the model of TL automaton 
changes, as shown in the sequel. 

b) Keeping resources available from the lower bound of 
the decision time window 

 Resources should be reserved from the initial moment of 
decision time window. Hence, from this moment, the automaton 
should move from the initial location to another location to 
prevent starting the other tasks. Although, since in this moment 
the task is not started yet, the ME model cannot move to the task 
location. For that reason, in this instant, by receiving the signal 
decide_s from the related TL automaton, the ME model moves 
to a new location ���� ��. When the environment decides to start 
the task, it sends signal �_� from the TL automaton to the ME 
automaton. Thereby, clock is reset and the ME automaton 
reaches the task location � and starts the task. After waiting �(�) 
time units in this location and finishing the task, the automaton 
takes a controllable transition to the initial location and waits for 
starting a new task (Fig. 6). 

 
Figure 6. Modeling pattern of a task with uncertain start time in a ME 
automaton 

B. The Task Launcher (TL) model 
In order to launch every task, a TL automaton is needed and 

hence the number of TL automata models is equal to the number 
of tasks to schedule. A task launcher should be able to launch a 
task whenever its related task is executable in other automata. 
This means that the other automata containing the same task 
should be in locations dedicated to listening signal �_�. Thence, 
through sending signal �_�! by the task launcher of task �, the 
related ME and PR automata receive signal �_�? and trigger task 
� . For this purpose, in this model, function �������(�)  is 
defined. Therefore, whenever all the ME automata sharing the 
task are in their initial location, the output of function 
�������(�) becomes true and the task can be launched. In this 
moment, the automaton sends a signal �_� to the other automata 
sharing the task � and reaches the location � (Fig. 7). Thereby, 
� starts execution in these automata. 

Therefore the guard function ������� ∶ � → ����, which is 
associated to the transition of the TL model, is true if and only if 
the following condition holds: 

∀� ∈ [1, �]: � ∈ ��� → ∀�′ ∈ ���\{�}: ¬����� ��(��, ��) (1) 

where ����� ��: ��� × ���� → ���� is defined as 

����� ��(�, ��) = ����� �,     �� = ��
����,           �. �  (2) 

where � is the number of ME automata, � is the name of the 
task, ��� is the set of tasks engaged in �th ME automaton. In the 
�th ME automaton, ����  is the set of locations, �� is its current 
location and �� is the initial location. Hence, function pending,  
presented in equation (2), verifies if a ME automaton is in a 
location where a task t is being executed. 

Hence, task t can only be enabled if all the ME components 
observing t are in their respective initial location ��. 

 
Figure 7. Modeling pattern of a task launcher automaton 

The TL model should also be adapted in order to integrate 
the failure behaviors mentioned above 

1) Unpredictable resource failure 
a) Failure while a resource is idle 

 This kind of failure does not interrupts tasks since a TL 
automaton is only related to tasks and not resources. Therefore, 
there is no need to change the model of TL automaton for 
considering failure while a resource is idle. 

b) Failure while doing a task 
 Whenever a failure occurs during execution of a task, the 

task should be repeated after repairing the resource. Therefore, 
after this period, TL should return to its initial location to be able 
to launch the task another time.  

To add this feature to the model of TL automaton, one 
additional location stp is created. When a task is during 
execution, the automaton is in location f. Therefore, at the instant 
of resource failure, it receives the signal � ���_� from the ME 
automaton in which the resource failure was triggered and 
reaches location � ��. In this location, the automaton waits until  

 
Figure 8. Modeling pattern of a launcher automaton for a task subject 
to failure  

reparation of the related resource. After this period, the 
automaton receives another signal �������_� from the ME 
automaton to which the resource failure was related. Thereby TL 
automaton goes to the initial location (Fig. 8). 

2) Bounded uncertainty in duration of tasks 
A TL only launches a task and does not concern duration of 

tasks. Hence, for considering uncertain duration of tasks, there 
is no need to change the model of TL automaton. 

3) Bounded uncertainty in start time of tasks 
a) Environment starts the task in a time window whenever 

related resources are idle 
 Start time of a task may be uncontrollable such that from the 

instant of releasing a task, its start time vary in an interval of the 
form [0, �� �]  where �� � represents the maximum delay for 
starting the task. For modeling this feature, two issues should be 
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considered; the first one is that as before, in addition to the 
communication signal �_�, the output of ������� function for 
the task � should be verified. The releasing time of the task is let 
to be time zero in TL automaton. Hence, the second issue is that 
from time zero to the moment prior to the time bound �� � 
launching the task � is uncontrollable. If the task is not launched 
until this time, the automaton should be forced to launch the task 
at this instant. Furthermore, its launching cannot be delayed 
more than this threshold.  

Therefore, two transitions lead the automaton from the initial 
location �� to the location �. One transition is an uncontrollable 
transition that can be taken by the environment if �������(�) is 
true and the value of the local clock �� is less than �� �. Another 
transition is a controllable transition that can taken by controller 
if ������(�) is true and the value of �� is equal to �� �. When 
taking one of these transitions, a communication signal �_� will 
be sent to the other automata that share the task � (Fig. 9). 

 
Figure 9. Modeling pattern of a TL automaton for a task with uncertain start 
time when the resources are occupied from the instant of execution 

b) Keeping resources available from the lower bound of 
the decision time window 

In this case, at the instant when all necessary resources for 
execution of task � are available, i.e. the output of ������(�) is 
true, the TL automaton of task � reserves resources. To this end, 
it takes a transition to ���� �� location and sends a signal 
���� ��_� to the ME automata sharing task � . Therefore, the 
related ME automata reach to their ���� �� location and this 
issue prevents other tasks in the related ME automata to occupy 
the necessary resources and to be executed. Furthermore, by 
taking this transition, the local clock �� is reset. In location 
���� ��, the automaton waits for the environment to take an 
uncontrollable transition to the location � until the instant that 
the clock value reaches �� �. If the environment did not took the 
transition, the supervisor takes a controllable transition to � at 
time �� �. In the both cases, a communication signal �_� is sent 
to the other automata that share � to start the task (Fig. 10).  

 
Figure 10. Modeling pattern of a TL automaton for a task with uncertain 
start time when the resources are occupied from the release time of task 

C. The Precedence (PR) model 
In the proposed framework, two types of precedence 

constraints have been identified. The first type, considers 
precedence constraints for delay between start times of tasks and 
is denoted as delay precedence constraint. This delay might be 
equal to the duration of tasks. The second type is a particular case 
of the first type. It considers precedence constraints for start 
times of tasks and is denoted as untimed precedence constraint. 

The automaton representing the first and second type of 
constraint are named delay and untimed PR automaton 
respectively. 

Uncertainties of duration or start time of tasks does not affect 
the model of PR automaton. Indeed, in both types of PR 
automata, only the starting moment of a task is taken into 
account. Thus, it is not important if a task starts right after the 
prior task or it starts some moments later. The same goes for the 
duration of the task, i.e. the finishing instant of the task is not 
important. Precedence constraints solely set the minimum time 
distances between the starting times of tasks. 

Failures which happen in idle time of resources don’t cancel 
tasks. For that reason, by integrating this kind of failure in the 
problem, the model of PR automaton will not be changed. 

Precedence constraints can be either untimed or delayed. The 
following presents the models of untimed and delay PR 
automata models with and without possibility of failure while 
execution of task. 

1) The Untimed PR automaton model 
The untimed PR model is composed of triggering transitions 

so as to request starting of tasks in a specific order. In Fig. 11, 
task �� will be started before task ��. 

 It is intended to put constraints on tasks that are fulfilled 
successfully. When a task fails, it will not be necessarily re-
executed right after reparation of the broken-down resource. It 
may be executed afterwards. Therefore, its re-execution should 
be considered in the PR automaton model to prevent execution 
of tasks in an undesired order.  

 
Figure 11. Modeling pattern of an untimed PR automata with reliable resources 

To model this feature in untimed PR automata models, it is 
enough to add uncontrollable transitions that lead the automaton 
from the locations that tasks are launched to their previous 
locations where tasks are not launched yet. For example, when a 
TL launches task ��, the PR automata in Fig. 12 takes a transition 
from �� to ��. If �� fails, the automaton should execute it again. 
To this aim, a new uncontrollable transition could be added from 
��  to �� . Thereby, when a failure happens, a signal � ���_��  is 
received from the related ME automaton and the PR automata 
moves to the previous location. This makes it possible to execute 
��  for another time. The same goes for all the tasks in the 
automaton. Thus, in order to consider failure during execution of 
tasks, the model of untimed PR automata changes to Fig. 12. 

 
Figure 12. Modeling pattern of an untimed PR automata with tasks subject to 
failure 

2) Delay precedence automaton 
 In addition to the precedence between tasks, the delay PR 

automaton model should demonstrate time elapse between start 
times of tasks. Therefore, new locations, time guards and 
invariants are added to the model of untimed PR automaton to 

���



obtain delay PR automaton (Fig. 13). In this model, two 
locations are assigned to each task (e.g. ��). The first location 
(e.g. ��) is where the automaton waits for receiving signal �_� 
from the TL automaton of task � to launch the task (launching 
location). The second location (e.g. �� ) corresponds where it 
waits ��� time units (delay location). By receiving signal �_�, 
clock is reset and the automaton reaches the second location (e.g. 
�� ). After ���  time units, task �  finishes and the automaton 
changes the location in order to wait for receiving launching 
signal from TL automata of the next task. Since there exist no 
task after execution of the last task of the constraint, naturally no 
delay will be defined after its execution. Thence, no delay 
location or guard is needed for executing the last task in this 
automaton. If the precedence is correctly followed, automaton 
will reach location �. 

 
Figure 13. Modeling pattern of a delay PR automata with reliable resources 

The process of modeling task failure in this automaton is 
similar to the untimed PR automata. The only difference is that 
in this model, there should exist transitions to lead the automaton 
from launching and delay locations to their previous launching 
locations. Fig. 14 represents modeling pattern of a delay PR 
automata with tasks subject to failure. After launching task ��, 
the automaton reaches the delay location ��. During execution of 

Figure 14. Modeling pattern of a delay PR automata with tasks subject to 
failure 
the task, a resource failure may happen. There is a possibility 
that this failure occurs during the waiting period in ��. Whereas, 
if ���� was smaller than duration of the task �(��), this failure 
may happen after time ���� and when the automaton has moved 
to the location ��. Thus, two uncontrollable transitions are added 
to the automaton. Thereby, whenever a failure signal ����_�� is 
received from a ME automaton, if the PR automata was at 
location ��  or �� , it will go back to the previous launching 
location, i.e. initial location. Related changes for the other tasks 
are the same as ��.   

V. SOLVING APPROACH 
In order to find an optimized schedule, the tool TIGA is used 

as a synthesis tool to explore the state space for determining if 
there is a winning strategy to reach a location where all the tasks 
are done and the precedence constraint is respected. For this 
purpose, a time-optimal control property is verified by solving a 
reachability game. This game concerns reachability of all the 
ME automata models to their initial locations and all TL and PR 
automata models to their final locations ( � ) despite 
uncontrollable actions of the environment. In TCTL language, 
this property can be formalized as follows [22]: 

�������_�∗(�, �): � ◊ ((⋀ ���. ��)����� ∧
(⋀ ���. �)����� ∧ (⋀ ���. �)����� )  (3) 

where �� is the initial location in each ME automata, and �  is the 
final location in each TL and PR automata. As highlighted 
previously, there exist � ME automata, � TL automata and � 
PR automata. Generally, �������_�∗(�, �): � ◊ ����  means 
that the supervisor must reach a set of goal locations within less 
than � − � time units. In the case of the proposed scheduling 
problem, goal locations are initial locations �� in ME automata 
and � locations in TL and PR automata. Moreover, � can be set 
to a very large number and �  can have zero value. By 
performing a reachability game through verifying this property, 
TIGA yields an optimal or sub-optimal value of makespan that 
can be acquired despite the worst actions of the environment 
(from the point of view of the supervisor). Furthermore, the 
strategy to reach the final location can be obtained through this 
synthesis [22]. 

In the following, through an example, the difference of the 
optimum schedule with and without presence of uncontrollable 
behaviors is explained. 

VI. EXAMPLE 
Assume there is a set of tasks � = {�, �, �} to be done. A set 

of resources � = {�1, … , �5} is assigned to tasks with resource 
association details shown in Table 1. Hence, tasks � and � are in 
conflict with each other, while � and � are not. Therefore, � and 
� can be performed simultaneously. Duration of �, � and � are 
7, 5 and 3 time units respectively and the precedence constraint 
among tasks is such that task � should be started after finishing 
task �. 

Table 1. Resource assignment details 

task 
resource 

R1 R2 R3 R4 R5 
a �    � 
b � � �   
c  � � �  

An optimal schedule is to first execute task �  and after 
finishing � , tasks �  and �  can be started simultaneously. 
Therefore, the minimum makespan for performing all the tasks 
is 12 time units. 

Now let’s integrate uncontrollable behaviors in the problem. 
Assume that duration of � is restricted to be bounded in interval 
[7,11]. In addition, resources are not reliable and may fail in 
their idle time or even during execution of tasks. Maximum 
reparation time of resources are as Table 2. Thus, the maximum 
duration for repairing resources necessary to execute the set of 
tasks {�, �} and {�, �} are 4 and 5 time units respectively.  

The optimum makespan despite the best play of the 
environment is obtained 41 time units through Tiga. Fig. 15 
demonstrates the Gantt chart of its corresponding schedule. It 
means that failures are happened at moments that can extend 
duration of the schedule as much as possible. Moreover, duration 
of task � is maximum. In this schedule, the controller executes 
task � at time 0. Therefore, �  is executed on both sets of 
resources. Some instances before � ends, a failure happens in the 
second set of resources. This issue stops �. Maximum reparation 
time of the second set of resources is 5 time units. Thus, till time 
10, resources are repaired and in this moment, task � restarts and 
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finished at time 15. Then task � and � start simultaneously. At 
time 18 � finished, while � is still executing. 

Table 2. Repairing duration of resources 
R1 R2 R3 R4 R5 
4 3 4 5 4 

Duration of task � is non-deterministic and is bounded in 
interval [7,11]. Until moments before time 26, the environment 
does not take any action to finish the task. While some instants 
before time 26, a failure in the first set of resources occurs which 
stops execution of the task. It takes 4 time units to repair the 
resources. At time 30, the first set of resources are repaired. 
Since task �  was not finished, it should be repeated again. 
Hence, �  restarts and takes 11 time units to be finished. 
Therefore all tasks are finished at time 41.  

 
Figure 15. Gantt chart for a sample schedule 

As mentioned above, this case is the worst case of uncontrollable 
behaviors which should be predicated for scheduling the tasks of 
time-critical systems. A usual schedule when the environment 
doesn’t do its best play might be faster; and of course the best 
case is when no uncontrollable behavior happens.   

VII. CONCLUSION 
In this paper, a novel approach is presented to model and 

solve multi-resource sharing scheduling problem considering 
uncontrollable behaviors happening in the real life. 

These kinds of uncontrollability consist of uncertain duration 
of tasks, uncertain start time of tasks and resource failures during 
a scheduled cycle. Tasks that are subject to uncertain start time 
are divided to two sets: those that engage resources from their 
decided start time and the ones, which occupy resources only 
when they are executing. Furthermore, two types of failures are 
studied: failures while tasks are being executed and failures 
during idle time of resources. It should be noted that all the 
mentioned kinds of uncontrollability are possible to be 
integrated in the model of the scheduling problem at the same 
time.  

The problem is modeled by timed game automata which is a 
visual and expressive means of modeling. Solving a problem that 
contains uncontrollability needs to perform a supervisory control 
and extracting a strategy to reach the desired condition despite 
all actions of the environment. In order to solve the MRS 
scheduling problem, time-optimal reachability game, which is a 
kind of supervisory control, is performed through the synthesis 
tool Tiga.  

As future research, other kinds of uncontrollability such as 
uncontrollable arrival of tasks during the schedule, malfunction 
or unavailability of resources can be integrated in the model.  

REFERENCES 
[1] E. B. Edis, C. Oguz, and I. Ozkarahan, “Parallel machine scheduling 

with additional resources: Notation, classification, models and 
solution methods,” 2013. 

[2] M. Afzalirad and J. Rezaeian, “Resource-constrained unrelated 
parallel machine scheduling problem with sequence dependent setup 
times, precedence constraints and machine eligibility restrictions,” 
Comput. Ind. Eng., vol. 98, pp. 40–52, 2016. 

[3] K. R. Quintero Garcia, “Optimisation d’alignements d’un réseau de 
pipelines basée sur les algèbres tropicales et les approches 
génétiques,” Lyon, INSA, 2015. 

[4] Ibm, “IBM ILOG CPLEX Optimization Studio,” Man. Seq. interval 
Var., p. 594, 2014. 

[5] Y. Abdeddaïm, E. Asarin, and O. Maler, “Scheduling with timed 
automata,” in Theoretical Computer Science, 2006, vol. 354, no. 2, 
pp. 272–300. 

[6] G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader, “Production 
Scheduling by Reachability Analysis - A Case Study,” in 19th IEEE 
International Parallel and Distributed Processing Symposium, 2005, 
p. 140a–140a. 

[7] S. Subbiah and S. Engell, “Short-term scheduling of multi-product 
batch plants with sequence-dependent changeovers using timed 
automata models,” Comput. Aided Chem. Eng., vol. 28, no. C, pp. 
1201–1206, 2010. 

[8] A. R. Shehabinia, L. Lin, and R. Su, “Timed Supervisory Control for 
Operational Planning and Scheduling under Multiple Job Deadlines,” 
arXiv Prepr. arXiv1607.04255, 2016. 

[9] S. Panek, O. Stursberg, and S. Engell, “Efficient synthesis of 
production schedules by optimization of timed automata,” Control 
Eng. Pract., vol. 14, no. 10, pp. 1183–1197, 2006. 

[10] P. Marange, J.-F. Petin, A. Manceaux, and D. Gouyon, “Contribution 
à la reconfiguration des systèmes de production : ordonnancement par 
recherche d’atteignabilité,” J. Eur. des Systèmes Autom., 2011. 

[11] S. Gaubert and J. Mairesse, “Task Resource Models and (max,+) 
Automata,” vol. 11, pp. 133–144, 1995. 

[12] G. Rzevski and P. Skobelev, “Intelligent Adaptive Schedulers For 
Railways,” Int. J. Transp. Dev. Integr., vol. 1, no. 3, pp. 414–420, 
Apr. 2017. 

[13] U. Dorndorf, F. Jaehn, and E. Pesch, “Flight gate assignment and 
recovery strategies with stochastic arrival and departure times,” OR 
Spectr., vol. 39, no. 1, pp. 65–93, 2017. 

[14] N. Kundakcı and O. Kulak, “Hybrid genetic algorithms for 
minimizing makespan in dynamic job shop scheduling problem,” 
Comput. Ind. Eng., vol. 96, pp. 31–51, 2016. 

[15] A. Cimatti, A. Micheli, and M. Roveri, “Strong Temporal Planning 
with Uncontrollable Durations : A State-Space Approach,” in 
Proceedings of the Twenty-Ninth AAAI Conference on Artificial 
Intelligence, 2015, pp. 3254–3260. 

[16] A. David, J. Illum, K. G. Larsen, and A. Skou, “Model-based 
Framework for Schedulability Analysis Using Uppaal 4.1,” in Model-
Based Design for Embedded Systems, 2009, pp. 1–32. 

[17] E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten, “Multicriteria 
optimal reconfiguration of fault-tolerant real-time tasks,” in IFAC 
Proceedings Volumes (IFAC-PapersOnline), 2010, vol. 10, no. 
PART 1, pp. 356–363. 

[18] R. Su, J. H. Van Schuppen, and J. E. Rooda, “The synthesis of time 
optimal supervisors by using heaps-of-pieces,” IEEE Trans. Automat. 
Contr., vol. 57, no. 1, pp. 105–118, 2012. 

[19] R. Boukra, S. Lahaye, and J.-L. Boimond, “New representations for 
(max,+) automata with applications to performance evaluation and 
control of discrete event systems,” Discret. Event Dyn. Syst., vol. 25, 
no. 1–2, pp. 295–322, 2015. 

[20] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient 
on-the-fly algorithms for the analysis of timed games,” in CONCUR: 
International Conference on Concurrency Theory, 2005, vol. 5, pp. 
66–80. 

[21] R. De Munter, “A comparison of Timed Games and Time Optimal 
Supervisor Synthesis,” 2010. 

[22] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and 
D. Lime, “Uppaal Tiga User-manual.” Aalborg University, 2007. 

 

���

4S[IVIH�F]�8'4(*��[[[�XGTHJ�SVK


