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Abstract

The decision to centralise or decentralise human organisations needs to be based
on quantified evidence, yet little is available in the literature. We provide such
data in a variant of the Multiple Travelling Salesmen Problem (MTSP) in which
we study how the allocation sub-problem may be decentralised among selfish
salesmen. Our contributions are: (i) this modification of the MTSP to include
selfishness; (ii) the proposition of organisations to solve this modified MTSP;
and (iii) the comparison of these organisations. Our 5 organisations may be
summarised as follows: (i) OptDecentr is a pure Centralised Organisation (CO)
in which a Central Authority (CA) finds the best solution that could be found
by a Decentralised Organisation (DO); (ii) Cluster and (iii) Auction are CO/DO
hybrids; and (iv) P2P and (v) CNP are pure DO. The sixth and seventh or-
ganisations are used as benchmarks: (vi) NoRealloc is a pure DO which ignores
the allocation problem; and (vii) FullCentr is a pure CO which solves a different
problem, viz., the traditional MTSP. Comparing the efficiency of pairs of these
mechanisms quantifies the price of decentralising an organisation. In particu-
lar, our model of selfishness in OptDecentr, with 5 (respectively, 9) salesmen,
makes the total route length 30% (respectively, 60%) longer than the traditional
MTSP in FullCentr when the computation time is limited to 30 minutes. With
this time limit, our results also seem to indicate that the level of coercion of the
CA impacts the total route length more than the level of centralisation.
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1. Introduction

Everybody has an opinion about the centralisation of decision making. We
believe that these opinions depend too much on intuition rather than quantified
evidence. In addition, several different criteria are used to compare organisa-
tions. For instance, Centralised Organisation (CO) is often said to find the
optimum solution (or, at least, the best possible solution), while Decentralised
Organisation (DO) is more reactive. Two incomparable metrics are opposed
here, namely, quality of the solution found and computation speed. Like com-
parisons of capitalism and socialism [4], numerical comparisons of CO and DO
rely on comparisons of specific organisations instantiating these levels of cen-
tralisation. In other words, because it is difficult to provide numerical evidence
of the efficiency of CO and DO in general, particular mechanisms of these ap-
proaches are compared. In this article, we call “mechanism” an instance of an
“organisation”, and an “organisation” is an instance of an “approach”. The pos-
sible “approaches” are pure CO and DO, and CO/DO hybrids. Let us illustrate
these three terms. First, the CO/DO hybrid approach can be instantiated as an
“organisation” with one or several (coercive) dispatchers, and/or (non-coercive)
mediators such as an auctioneer, or peer-to-peer negotiation, etc. Next, the
“organisation” with an auctioneer can be instantiated as a “mechanism” as ei-
ther an English (multiple-shot first-price) or Vickrey (single-shot second-price)
auction.

We think that the choice of a more or less centralised organisation is a ques-
tion that is too often addressed in political discussions because of the lack of
numerical evidence. This research question is important because the efficiency
of organisations may be greatly improved by selecting the appropriate decision
organisation. In fact, defenders of CO (respectively, DO) spend much effort in
developing their mechanism, while they may obtain much better performances
by introducing some features of DO (respectively, CO). As the saying goes, if
your only tool is a hammer then every problem looks like a nail. This type
of choice between various organisations requires numerical data about these
organisations, such as the aforementioned quality of the solution and compu-
tation time. With such data, an organisation could be designed, depending on
its constraints; for instance, the choice of the number of hierarchical levels and
the appropriate organisation on each level, depending on the time available to
make a decision. In particular, we believe that our work will shed light on the
organisation of the Physical Internet [21] since this project aims at connecting
CO logistics networks in a DO way.

The literature provides little quantified comparisons of CO and DO, as noted
in a review co-written by one of us [18]. In addition to the papers referenced in
this review, we now outline others which compare CO and DO in applications to
logistics. In this area, the scarcity of quantified comparisons has also been noted
[15, p. 60]. Similarly, Davidsson and colleagues [2] regret the few quantitative
comparisons of DO approaches with CO. One of the earliest such comparisons
in logistics is a work by Fisher et al. [5, 6] who propose an extension of Smith’s
Contract Net Protocol (CNP) [23] in which task decomposition is decentralised
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to solve a static Vehicle Routing Problem with Time Windows. Their experi-
ment shows that their protocol finds a total route length between 3% and 74%
worse than the optimal, and is thus comparable to heuristics from Operations
Research. They then propose an improvement which reduces these figures by
about 12%. Since routing problems are NP-hard, the optimal route is often
unknown and some studies compare the results of DO with those of approxi-
mate CO heuristics. In this context, Mes et al. [15] report that their Vickrey
auction (DO) performs as well as or even better than centralised heuristics to
solve a dynamic Pickup and Delivery Problem with Time Windows (PDPTW).
For the same problem, Máhr et al. [14] also compare a Vickrey auction (DO) to
the approximate solution found by CPLEX in a few 30-second intervals (CO).
Their experimentation shows that the auction outperforms CPLEX when service
time duration is highly uncertain. Next, van Lon and Holvoet [25] compare a
cheapest insertion heuristic (CO) with an implementation of the Contract Net
Protocol [5] (DO). Their results seem to indicate that DO outperforms CO.
Glaschenko and colleagues [9] have implemented a real-time multiagent sched-
uler for a taxi company in London, UK. The benefit of their tool is distributed
between the drivers and the company, resulting in a 9% increase of driver wages.
Karmani and colleagues [12] use a market-based approach to solve a capacitated
version with multiple depot of the MTSP. Their experiment shows that their
approach scales to thousands of cities and hundreds of salesmen with a total
route length quite close to the optimum. Kivelevitch et al. [13] were inspired by
this approach to propose a distributed meta-heuristic. The total length of the
routes are within 1% of the optimal in 90% of the tested cases. More precisely,
the median total length of the route is 1.7% higher than the optimum and 4.8%
higher in the worst of the tested cases, but the median run time is 8 times faster
than CPLEX. However, as this approach uses agents with no autonomy at all
(e.g., an agent can take one or all cities from another agent without permission),
we think it is related more to parallel algorithms [24] than to decision making in
the human organisations with selfish agents that we investigate. Quite similarly,
others solve logistic problems with agents who, again, lack the human charac-
teristics of selfishness and therefore cannot be used to design organisations as
well [11, 26].

The goal of this article is to compare CO with DO by measuring the efficiency
of several mechanisms on various levels of centralisation to solve a modified
Multiple Travelling Salesmen Problem (MTSP) (MTSP is the Vehicle Routing
Problem without capacities) such that the selfishness of the salesmen is taken
into account. It is important to notice that our salesmen are selfish because
we want to investigate human organisations. This article has the following
contributions:

1. Conceptual contributions : CO and DO are different by nature because,
for example, the social welfare (i.e., utility function of the group) in CO
may have no trivial relationship with the individual utility functions in
DO. Game Theory proposes models and tools to study CO and DO,
e.g., the Prisoner’s Dilemma shows that DO may find a solution (i.e.,
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Nash equilibrium) which is Pareto dominated by the solution found by
CO. Taking this game-theoretical background into account, we modify
the MTSP by adding features representing the selfishness of the salesmen
such that our modified MTSP can be solved in organisations with differing
degrees of centralisation. Selfishness means that a salesman maximises
his1 own utility in a selfish manner without paying attention to the social
welfare of the community of salesmen.
Subsection 2.2 introduces our MTSP constrained by 1-1 exchanges. More
precisely, the salesmen “own” an initial endowment of cities, and they use
a mechanism to modify this initial allocation of cities by exchanging one
city against one city exclusively, which we refer to as “1-1 exchanges”. This
corresponds to our modified MTSP. Section 6 discusses other possibilities
to obtain a pair of CO and DO versions of a problem.

2. Technical contributions : As noted in the above literature review, no pre-
vious work compares more than two kinds of organisation to solve a same
location and routing problem. By contract, in our study, the choice of
organisations for the exchange of cities is inspired by the numerous classes
of coordination proposed by Frayret [7, p. 131] as an extension to the work
of Mintzberg [17]. This paper examines the following organisations, which
have various numbers of hierarchical levels, coercion levels and rounds of
interactions, as summarised in Figure 1:

1. OptDecentr makes the Central Authority (CA) find both (i) the best
allocation of cities to salesmen with the constraint of 1-1 exchanges
and (ii) for each salesman, the shortest path visiting all the cities
allocated to this salesman. This is a CO mechanism which looks
for the best solution that can be found by the following five DO
mechanisms;

2. Cluster makes the CA allocate groups of neighbouring cities to the
salesmen with the constraint of 1-1 exchanges. Every salesman then
locally solves a Travelling Salesman Problem (TSP) with his allocated
cities;

3. Auction is similar to Cluster except that the CA is less coercive since
she plays the role of an auctioneer;

4. CNP (Contract Net Protocol) has no CA and every salesman plays
the role of an auctioneer;

5. P2P also has no CA and relies on bilateral negotiations.

Finally, two additional organisations are used as benchmarks:

6. NoRealloc assumes no reallocations of the cities among the salesmen
who only solve a TSP on their initial endowment;

7. FullCentr is the same as OptDecentr without the constraint of 1-1 ex-
changes; so FullCentr is the only mechanism that solves the traditional
MTSP.

1We always use “him” for a salesman and “her” for the Central Authority (CA).
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Figure 1: Overview of the seven organisations compared

Since our experiments simulate more agents than the number of cores of
the CPU in our computers, we perform only sequential simulations, and
then infer what would have happened in real life with computations carried
out in parallel.
As noted above, we call “mechanism” an instance of an “organisation”.
However, this article uses both terms interchangeably because it deals with
one mechanism per organisation only. In fact, each of the above organisa-
tions may be instantiated in mechanisms different from our descriptions
in Section 3, as discussed in Section 6.
Finally, our mechanisms instantiating the above first five organisations are
new, since they solve the MTSP constrained by 1-1 exchanges which we
have never seen in the literature. On the contrary, benchmarks NoRealloc
and FullCentr are not new as they solve a classic Mixed-Integer Linear
Programming (MILP) formulation of TSP and MTSP.

3. Numerical contributions : Davidsson and his colleagues [3] compare four
mechanisms on a same problem and we do not know of any work with
more mechanisms. In comparison with this work, our work both consider
more mechanisms and present many more experimental results. In fact,
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our results are robust since we compare the efficiency of the mechanisms
when they solve the same instance among 130 instances for given numbers
of salesmen and clients, and we present the fifth and ninth deciles obtained
by these 130 instances.

The outline of this paper is as follows. Section 2 presents our framework,
i.e., our MTSP constrained by 1-1 exchanges, and our hypotheses about how
to carry out a fair comparisons of the mechanisms. Section 3 details the seven
mechanisms. Section 4 shows how the duration of the parallel computations of
up to 10 agents (9 salesmen + 1 Central Authority (CA)) is inferred from the
sequential computations in our experimentation on one of our computers with
a 4-core CPU. Section 5 presents the numerical results of this experimentation.
Section 6 discusses these results, and then how other variants of MTSP may
be introduced taking the selfishness of the salesmen into account. Section 7
concludes.

2. Framework

This section first reviews the formulation of the traditional MTSP solved by
Mechanism FullCentr, and then our MTSP constrained by 1-1 exchanges of cities
which is solved by the other six mechanisms. We assume that both problems
have n cities to be visited by one ofm salesmen, and dij is the Euclidean distance
between Cities i and j. City i = 0 is the depot shared by all salesmen.

2.1. Traditional MTSP: FullCentr

The traditional MTSP in Equations 1-8 uses the 2-index decision variable xij

such that xij = 1 only if one of the m salesmen goes from City i to City j. The

objective function in Equation 1 minimises the total distance Utrad travelled
by all the salesmen. Equation 2 (respectively, 5) ensures that m salesmen leave
(respectively, enter) the depot. Similarly, Equation 3 (respectively, 4) ensures
that a single salesman leaves (respectively, enters) every city. Equation 6 is a
constraint eliminating sub-routes by the method of node potentials in which
decision variable pi counts the number of cities visited by a salesman before he
visits City i [16].

minUtrad =
∑n−1

i=0

∑n−1

j=0,j 6=i dijxij (1)
∑n−1

j=1 x0j = m (2)
∑n−1

j=0,j 6=i xij = 1 1 ≤ i < n (3)
∑n−1

i=0,i6=j xij = 1 1 ≤ j < n (4)
∑n−1

i=1 xi0 = m (5)

pi − pj + (n− 1).xij ≤ n− 2 1 ≤ i 6= j < n (6)

pi ∈ ℜ+ 1 ≤ i < n (7)

xij ∈ {0, 1} 0 ≤ i, j < n (8)
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2.2. Modified MTSP (constrained by 1-1 exchanges)

We now explain how we modify this traditional MTSP to include the indi-
vidual selfishness of the salesmen such that a DO can also solve our modified
problem. The following explanation calls Utrad the social welfare in the tradi-

tional MTSP (i.e., the total route length in Eq. 1), and Umod the social welfare

and umod
k Salesman k’s utility in the modified MTSP. We make the following

assumptions:

1. Hyp. 1 – Individual utilities measure the travelled distance: We define

umod
k as the distance travelled by Salesman k and Umod =

∑
k u

mod
k as

the distance travelled by all. Of course, the advantage of such a hypothesis

is that Umod = Utrad.
The drawback is that salesmen all want to get rid of their cities, but no one

accepts cities from other salesmen. Consequently, such choices of umod
k

and Umod require the following two assumptions which operate together.

2. Hyp. 2 – Salesmen “own” an initial endowment of cities : Since Hyp. 1

makes our distance-minimiser salesmen all want to reduce the number
of cities allocated to them, we cannot assume that they will “fight” to
obtain cities from a shared pool. Instead, we assume that every Salesman
k initially “owns” some cities, and he tries to change this initial allocation
by exchanging cities whenever such an exchange reduces his individual

distance umod
k .

3. Hyp. 3 – Only 1-1 exchanges of cities are possible: Let us look at what
happens when a Salesman k gives n cities to Salesman k′ and receives n′

cities from k′ in a round of interaction. All exchanges with n = n′ are

rational for both salesmen when they reduce both umod
k and umod

k′ , as
shown in the next paragraph. This constraint of n−n exchanges solves the
above problem caused by selfishness which makes salesmen want to give
but not receive cities. In this article, we only consider the case n = n′ = 1;
Cases n = n′ > 1 are discussed in Section 6.
Let us examine why n < n′ cannot be accepted by k′ (the case n > n′

is similar). Without knowing the cities allocated to Salesman k′ (such a
list of clients is private in DO), Salesman k will have trouble convincing
k′ to accept more than n′ = n cities in an interaction round. In fact, a
consequence of the triangular inequality is that accepting n (respectively,
n + 1, n + 2, etc.) cities while giving n − 1 (respectively, n, n + 1, etc.)

increases more umod
k′ than accepting the same number of cities as the

number given (except when a city exactly lies on the optimal route – which
is known by k′ but unknown to k). As a result, even when k proposes to
give n close cities in exchange for n′ cities, it would not be rational for k′

to accept n′ < n.

The traditional MTSP is the problem faced, for example, by a home health
care service in which all nurses are employees and therefore have no individual
utility function to optimise. In contrast, our modified MTSP corresponds to
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the problem faced by a private nurses’ association in which the nurses have
an initial endowment of patients (the patients either make an appointment to
their nurse or are provided by a physician) and the association is a place in
which the nurses may exchange patients when this is mutually beneficial. In
this modified problem, every private nurse has an individual utility function
which they optimise.

2.3. Hypothesis Hyp. 4 about the computation time

In this article, we also make Assumption Hyp. 4 which states that we only
take account of the computation time of the MILP solver, namely CPLEX. We
choose to make this assumption as a solution to the problem of comparing vari-
ous organisations implemented in various environments and languages. In fact,
Hyp. 4 forbids the comparison of the duration of the operation of a mechanism
which mostly uses CPLEX with the duration of another which simulates its
interactions in AnyLogic2 which runs in Java. Because of this hypothesis, we
ignore the duration of anything not computed by CPLEX, such as:

• Messages travel instantaneously: DO implies interactions which are sim-
ulated by AnyLogic, not CPLEX. Hence, we ignore the travelling time of
the messages exchanged.

• Some techniques are not possible: We cannot use multiagent techniques,
such as BDI (Belief-Desire-Intention) architecture [1] or reinforcement
learning [10], which may decrease the performance of our DO organisa-
tions. Similarly, Organisation Cluster cannot use the k-means algorithm,
but a MILP formulation usable by CPLEX. Likewise, the salesmen locally
solve a TSP in several of our organisations with CPLEX, but they cannot
use Concorde3 even though it is often seen as the most efficient.

3. Allocation mechanisms

We now describe our six mechanisms/organisations to solve the MTSP con-
strained by 1-1 exchanges. Figure 1 shows an overview in which we can see,
for example, that OptDecentr is more centralised than Cluster and Auction, and
Cluster has a more coercive CA than Auction. This figure also points out that
OptDecentr is the most centralised in the sense that the CA solves both the al-
location and all routing problems while the other organisations let the salesmen
locally solve a TSP on their allocated cities. Some organisations operate in a
single round while others need more interactions. Finally, this figure highlights
the fact that FullCentr solves a problem different than the other mechanisms.
Each subsequent subsection details a mechanism.

2The AnyLogic model and the outcomes of the experiments will be published on www.

github.com after acceptation of this article for publication.
3http://www.math.uwaterloo.ca/tsp/concorde/index.html
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3.1. Pure DO: NoRealloc, P2P and CNP

We first present NoRealloc since its MILP formulation of TSP is both used
in P2P, Cluster and Auction, and is the base of the MILP formulation of the
MTSP constrained by 1-1 exchanges in OptDecentr.

3.1.1. NoRealloc

As noted above, NoRealloc ignores the allocation problem and lets every
salesman find the shortest route leaving the depot, visiting the N cities4 allo-
cated to him in the initial endowment and returning to the depot. There is a
single round in which each of the m salesmen solves the TSP in Equations 9-14.
This formulation uses the 2-index decision variable xij which equals one only if
the considered salesman goes from City i to City j.

min
∑N−1

i=0

∑N−1

j=0,j 6=i dijxij (9)

s.t.
∑N−1

j=0,j 6=i xij = 1 0 ≤ i < N (10)
∑N−1

i=0,i6=j xij = 1 0 ≤ j < N (11)

pi − pj +N.xij ≤ N − 1 1 ≤ i 6= j < N (12)

pi ∈ ℜ+ 1 ≤ i < N (13)

xij ∈ {0, 1} (i, j) ∈ {0, 1, . . .N − 1}2 (14)

With this notation, Equation 9 is the same as Equation 1 except that it min-
imises the route length of a single salesman and n is thus replaced by N , Equa-
tion 10 (respectively, 11) is similar to Equations 2 and 3 (respectively, 4 and 5)
except that it does not need to distinguish the case of the depot, and Equation
12 is the same constraint of sub-route elimination as Equation 6.

3.1.2. P2P

Mechanism P2P has several interaction rounds in which instances of TSP or a
derivative of TSP are solved. The bottom of Figure 2 shows that P2P consists of
two state charts which may run concurrently, namely, P2P host and P2P guest

which replies to the former. Therefore, every salesman may take part in two
interactions simultaneously, as a guest and as a host. Remember that every
salesman operates his own version of the state charts in Figure 2. The names
of the states and transitions in both state charts all start with P2Pn action

where n indicates their order of activation in a round and action summarises
the action performed. P2P uses the variables at the top of Figure 2. Each of
these variables is a pointer to a city or salesman, except propCities[k][i] which
records previous interactions as a matrix of Booleans that are true only when
the considered salesman has already proposed City i to another Salesman k to
prevent infinite loops. allocatedCities (list of cities currently allocated to the

4 N may be different between salesmen in the two variants of TSP shown in this article.
We do not use Nk because N is a local variable for every salesman-agent k.
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Figure 2: A salesman’s implementation of the mechanisms (“CPLEX” arrows point to tran-
sitions and states whose duration are taken into account)

considered salesman), ownedCities (his initial endowment) and route (similar
to allocatedCities but with the cities ordered according to the shortest route
found by the mechanism in use, thus P2P in this subsection) also are variables
but AnyLogic shows them with a different icon because they are collections of
objects.

We now detail the operation of P2P. State P2P0 initialisation mainly
sets all entries in propCities[k][i] to false. AnyLogic always executes the first
state in all state charts, and transition P2P0 host starts fires only when mech-
anism P2P is selected. The first salesman whose P2P0 host starts fires first
becomes the host in this round. (This state chart could generate more than
one host at the same time, but we prevent this by setting AnyLogic to use only
one thread, as detailed in Section 4.) Next, P2P2 host invites guest makes
this host select a guest (i.e., the salesman with the lowest number of false
in propCities[k][i]) and sends him an invitation. The guest was waiting in
state P2P1 guest waits for invitation and this message fires his transition
P2P3 guest receives invitation from host.

Then, P2P4 guest proposes a city is the first call to CPLEX in this round
of interaction. The guest solves the modified TSP in Equations 15-23 to propose
a city to the host. The goal of this model is to find the city which should
be removed from allocatedCities such that the reduction of route length is
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maximised.5 Equations 15-23 modify the formulation of TSP in Equations 9-14
by adding binary decision variable kept such that kepti = 1 for the N − 1 cities
to be kept and kepti = 0 for the city to be proposed to the host.6

min
∑N−1

i=0

∑N−1

j=0,j 6=i cijxij (15)

s.t.
∑N−1

j=0,j 6=i xij = kepti 0 ≤ i < N (16)
∑N−1

i=0,i6=j xij = keptj 0 ≤ j < N (17)
∑N−1

i=1 kepti = N − 2 0 ≤ i < N (18)

pi − pj +N.xij ≤ N − 1 1 ≤ i 6= j < N (19)

kepti = 1 i|propCities[host][i] = true (20)

kepti ∈ {0, 1} i ∈ {1, . . .N − 1} (21)

pi ∈ ℜ+ 1 ≤ i < N (22)

xij ∈ {0, 1} (i, j) ∈ {0, 1, . . .N − 1}2 (23)

Consequently, Equations 15 and 19 are the same as Equations 9 and 12. Equa-
tions 16 and 17 are similar to Equations 10 and 11 except for the city i to be
proposed which has kepti = 0. Equation 18 checks that exactly one city will be
proposed to the host. Equation 20 ensures that a city previously proposed and
returned by the guest will not be proposed again.7 If propCities indicates that
all cities have already been proposed, then the considered guest proposes null,
which fires transition P2P5 host receives negotiation rejection.

Otherwise, the city proposed by the guest fires transition P2P5 host re-

ceives city proposed by guest and state P2P6 host proposes city to guest

finds the city to be proposed by the host to the guest. This is the second call
to CPLEX in this round of interaction. Again, CPLEX solves the above mod-
ified TSP in Equations 15-23 (with a small modification: host needs to be
replaced by guest in Equation 20). The guest may not find a city reducing his
route length and may therefore send a null reply to the guest. Otherwise, he
memorises in propCities not to keep proposing the city he has just proposed.

P2P7 guest receives proposition and sends reply receives this proposed
city. If the city proposed by the host is null, then the guest sends a message to
confirm the failure of this round of negotiation. Otherwise, he uses a CPLEX
to solve the traditional TSP in Equations 9-14 with all his cities, minus the one
previously proposed to the host, plus the one which has just been proposed by

5The problem in Equations 15-23 finds the city which causes the largest increase in the
route length. Instead of this single round, we may solve this problem in N−1 rounds in which

the TSP in Equations 9-14 is solved with N − 1 cities (the ith round without the ith city),
then the shortest of the N − 1 obtained route lengths indicates the city to be proposed. We
have tested this method and seen that it takes more time than solving Equations 15-23.

6When this problem is solved by a salesman in Mechanism Auction, the end of this sentence
reads: “. . . kepti = 0 for the city to be proposed to the auctioneer”.

7When Equations 15-23 are solved in Mechanism Auction, the previous sentence reads:
“Equation 20 ensures that a city previously proposed and returned by the auctioneer will not
be proposed again”.
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the host. If the proposed exchange reduces his route length, then the guest sends
an acceptation message and updates his route length by taking this exchange
into account, otherwise he sends a null.

Finally, transition P2P8 host receives acceptation or rejection receives
this reply. If the guest accepts the exchange, the host modifies his allocatedCities
then updates his route by solving Equations 9-14 and setting propCities[city]
[guest] = false for all his city to propose any city to this guest again.

P2P9 host does nothing and P2P10 host waitsmake the host wait for one
millisecond. This tiny pause is requested by AnyLogic to allow other salesmen
to become host. Otherwise, Salesman 0 would keep the control in all subsequent
rounds until he has proposed all his cities, next Salesman 1 would become host
as long as he has not proposed all his cities, then Salesman 2, etc.

Finally, note that P2P does not loop forever because State P2P2 host

invites guest does not send an invitation when propCities[k][i] = true for
all Salesmen k and all Cities i, which eventually causes every salesman except
one to stop acting as the host.

3.1.3. CNP

Like Frey et al. [8], our Mechanism CNP is inspired by the Contract Net
Protocol. CNP is described by state charts CNP host and CNP guest in Fig-
ure 2. Similarly to P2P, the states and transitions have a name starting with
CNPn action where n is the order of activation of the considered element and
action describes it. CNP runs by rounds in which a salesman (host) plays
the role of an auctioneer who broadcasts a city to give and the other salesmen
(guests) reply by proposing a city to be exchanged. Conversely to P2P, CNP
has several guests.

The detail of this mechanism is as follows. CNP0 initialisation sets all
the entries in propCities[k][i] to false. This is performed by all salesmen
because the first state in all state charts is always executed. All salesmen
wait in state CNP1 guest waits for RFP. Transition CNP2 host starts in all
salesmen may fire because its condition only checks that Mechanism CNP is
selected; This condition fires first in one of the salesmen who becomes the
host in this round. (Like P2P, CNP could have several hosts and we pre-
vent this by allowing only one thread in AnyLogic, as detailed in Section 4.)
The host does the first use of CPLEX in this round to select a city to give
by solving the modified TSP in Equations 15-23; This city is sent in a Re-
quest For Proposals to all the guests in CNP3 host broadcasts RFPs. Every
guest also uses CPLEX to solve the problem in Equations 15-23 to make a pro-
posal in CNP5 guest sends proposal. When transitions CNP6 host received-

proposal and CNP6b host received proposal have received all these propos-
als, the host selects the winner by calling CPLEX to test each proposed city in
CNP9 host sends allocation replies. More precisely, for each city submit-
ted by the guests, the host solves the traditional TSP in Equations 9-14 with his
allocated cities minus the city broadcast in the Request For Proposals (RFP)
plus the city submitted by the considered guest. The guest sends an accepta-
tion message to the guest who proposed the city that reduces his route length
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the most. In this case, the guest updates his variables allocatedCities and
route (route points to the same cities as allocatedCities but in the order
minimising the route length). If no city causes such a reduction, then no accep-
tation is sent. Finally, the guest sends a rejection message to the other guests.
After the acceptation (respectively, rejection) message has been received by
CNP10 guest received acceptation (respectively, CNP10 guest received re-

jection), another round may start.
After pure DO, we now turn our attention to pure CO.

3.2. CO with constraints of DO: OptDecentr

As noted above, OptDecentr is a CO organisation that mimics DO. In other
words, CA uses CPLEX to find the optimal solution of our MTSP constrained
by 1-1 exchanges. Note that this constraint of 1-1 exchanges of cities makes all
salesmen always keep the same number of cities as in their initial endowment.
As a result, the decision variable must identify the salesmen to ensure that their
number of allocated cities equals their number of cities owned in this endowment.
Consequently, OptDecentr uses a MILP model with the 3-index decision variable
xijk which equals one only if Salesmen k goes from City i to City j:

min Umod =
∑m

k=1 u
mod
k (24)

s.t. umod
k =

∑n−1

i=0

∑n−1

j=0,j 6=i dijxijk 1 ≤ k ≤ m (25)
∑n−1

j=1 x0jk = 1 1 ≤ k ≤ m (26)
∑n−1

j=0,j 6=i

∑m

k=1 xijk = 1 1 ≤ i < n (27)
∑n−1

i=0,i6=j

∑m

k=1 xijk = 1 1 ≤ j < n (28)
∑n−1

i=1 xi0k = 1 1 ≤ k ≤ m (29)

pi − pj + n.xijk ≤ n− 1 1 ≤ i, j < n, 1 ≤ k ≤ m (30)
∑n−1

i=0

∑n−1

j=0,j 6=i xijk =
∑n−1

j=0 ojk 1 ≤ k ≤ m (31)

(
∑n−1

l=0,l 6=j xjlk)− xijk ≥ 0 0 ≤ i, j < n, 1 ≤ k ≤ m (32)

pi ∈ ℜ+ 0 ≤ i < n (33)

xijk ∈ {0, 1} 0 ≤ i, j < n, 1 ≤ k ≤ m (34)

In this model, Equations 24 and 25 minimise the total distance travelled by the
community of salesmen. Equation 26 (respectively, 29) checks that all salesmen
leave (respectively, enter) the depot. Equation 27 (respectively, 28) checks that
all cities are left (respectively, entered) exactly once. Equation 30 is the same
constraint of sub-route elimination as Equations 6, 12 and 19. Equation 32
ensures that the salesmen entering and leaving a city are the same. Equation 31
checks that the number of cities allocated to a salesman equals the number of
cities he owns in his initial endowment. (The right-hand side in this equation is
a constant as Parameter ojk represents the initial endowment (“ownership”) of
cities, modelled by ojk = 1 if City j is “owned” by Salesman k at the beginning
of the experiment, and ojk = 0 otherwise.)
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3.3. CO/DO hybrids: Cluster and Auction

We now introduce our two hybrid organisations, viz., Cluster and Auction.
They are not pure DO since CA takes part in the allocation and not pure CO
because CA lets the salesmen locally solve the TSP in Equations 9-14. Cluster

is more coercive because the salesmen are supposed to let CA know about all
their cities to solve the allocation problem, while Auction allows them to never
propose some of their cities if for some reason they do not wish to do so (e.g., a
city has an important client they want to keep or not disclose). Conversely to
P2P and CNP, which perform only bilateral exchanges, Cluster and Auction may
involve more than two salesmen per exchange during a round, that is, Salesman
s1 may give a city to Salesman s2, Salesman s2 give a city to Salesman s3, . . .,
and Salesman sq give a city to Salesman s1 for any q ≤ m.

3.3.1. Cluster

Because of Hypothesis Hyp. 4 about the use of CPLEX to make all decisions,
Mechanism Cluster cannot use just any solving methods from the clustering
literature but only those based on a MILP formulation. We use the model
proposed in [19, Sec. 5]:

min D (35)

s.t. D ≥ dij(xik + xjk − 1) 1 ≤ i < j < n, 0 ≤ k < m (36)
∑m

k=1 xik = 1 1 ≤ i < n (37)

1 +
∑n−1

j=1 xjk =
∑n−1

j=1 ojk 0 ≤ k < m (38)

xik ∈ {0, 1}, D > 0 1 ≤ i < n, 0 ≤ k < m (39)

In this model, decision variable xik is a binary equal to one only when City i is
allocated to Salesman/Cluster k. Equations 35 and 36 are the objective function
which minimises the diameter of the cluster that has the largest diameter. More
precisely, Equation 36 includes the linearisation ofDk ≥ dijxikxjk which ensures
that the diameter of Cluster k is at least the maximum distance between any
two Cities i and j allocated to this cluster. Note that such a formulation defines
circular clusters which may hence overlap. Like in any other allocation problem,
Equation 37 checks that every city is allocated to exactly one cluster/salesman.
In addition to the original model by Rao [19], we add Equation 38 to ensure that
the size of the clusters(/salesmen) correspond to the number of cities provided
by every (cluster/)salesman, that is, if Salesman k owns

∑
j ojk cities (again,

ojk is a constant which equals one only if Salesman k “owns” City j in his
initial endowment), then a cluster with

∑
j ojk cities must exist to be able to

be allocated to k.
As noted above, the Mechanism Cluster operates in a single round: CA first

solves the problem in Equations 35-39 to allocate N cities to every salesman8,
and then these salesmen locally solve the traditional TSP in Equations 9-14.

8Like in Footnote 4, N may not be that same for all salesmen since it is a local variable.
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CPLEX

Figure 3: State chart of Auction in the Central Authority (CA)

3.3.2. Auction

Auction is an organisation in which CA is an auctioneer who is thus less
coercive than in Cluster. Conversely to Cluster, Auction operates in several
rounds. In each round, every salesman gives a city A to CA who either gives
it back if no other salesman wants it, or gives a city B proposed by another
salesman if exchanging A and B reduce the length travelled by both salesmen.
Figure 3 and the top right corner of Figure 2 detail the states and transitions in
this organisation. As above, their name has the form An action where n helps
the reader understand the order of their activation and action summarises their
goal.

At the beginning of a round, all salesmen wait in A1 wait for RFP un-
til CA sends them a Request For Proposals in A2 broadcast RFPs. When a
salesman receives this message, he uses CPLEX to look for a city to give in
A4 propose a city to give by solving the modified TSP in Equations 15-23.
When all salesmen have replied by sending either a city or null to CA, CA
broadcasts this list of replies to all salesmen in A8 broadcast proposed cities.
For each city in this list, every salesman uses CPLEX to compute a bid for it in
A10 bid on every proposed city. A bid for a city is the additional distance
travelled to visit it, or, more technically, as the differences between:

• the shortest length of the route visiting their remaining N − 1 cities,
that is, their allocated cities except the one proposed to the auctioneer
in A4 propose a city to give. This is obtained by each salesman by
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solving the TSP in Equations 9-14 once.

• the shortest length of the route visiting their remaining N − 1 cities plus
the city proposed by one of the other salesmen. This is obtained by each
salesman by solving the TSP in Equations 9-14 for each city in the list of
bids.

When all salesmen have returned their list of bids, CA uses CPLEX to solve
an allocation problem in A14 send allocation of cities. To describe this
problem, let us call savings[k][i] the bid of Salesman k for City i and binary
decision variable xki equals 1 only if City i is allocated to Salesman k. For
simplicity, we let m denote the number of salesmen who have not left the auction
before the current round. The allocation model solved by CA is described by
Equations 40-44. The objective in Equation 40 allocates the cities such that
the total route length of all salesmen is minimal. The constraint in Equation
43 ensures that, in every auction round, every salesman does not increase his
individual route length.

min
∑m

k=1

∑m

i=0 savings[k][i].xki (40)

s.t.
∑m

i=0 xki = 1 0 ≤ k < m (41)
∑m

k=1 xki ≤ 1 0 ≤ i < m (42)
∑m

i=0 savings[k][i].xki ≤ savings[k][k] 0 ≤ k < m (43)

xki ∈ {0, 1} 0 ≤ i, j ≤ m (44)

4. Real time spans deduced from sequential simulations

After the description of the compared mechanisms, we now present how
the computation time span of every organisation is deduced from sequential
experiments, that is, experiments running on a single thread of AnyLogic. In
fact, our experimentation involves up to 10 agents (9 salesmen + 1 CA) while
each of our computers has a CPU with 4 cores only. Thus, configuring AnyLogic
to simulate this parallelism would require studying how AnyLogic schedules
up to 4 agents in parallel, then deducing how 10 agents would have behaved
in reality. Instead, we prefer to make AnyLogic carry out all computations
sequentially, then infer how (pure and mixed) DO would occur concurrently
in real life. The time span of the CPLEX computation (duration between the
beginning of the first computation and the end of the last one) in an experiment
is deduced as follows.

• OptDecentr and FullCentr: CO uses no parallelism and the computation
time span is thus equal to the computation time recorded in our sequential
experiments. More technically, this duration is the difference between
the two System.currentTimeMillis() after and before cplex.solve().
This is also the Java code to measure the duration of all CPLEX calls in
all our organisations below.
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Salesman 1

Salesman 2
A4: 7 ms

A4: 5 ms

Salesman 3

A10: 15 ms

Round 1

A10: 13 ms

A14: 27 ms

A10: 11 ms

Round 2

A4: 4 ms

a) Simulation: Sequential experimentations find that Round 1

Salesman 1

Salesman 2

Round 1

A4: 7 ms

A10: 15 ms

A10: 13 ms

A4: 5 ms

Salesman 3

A14: 27 ms

A10: 11 msA4: 4 ms

Round 2

b) Reality: Round 1 with parallel decisions would

Auctioneer Auctioneer

    lasts (5+7+4)+(15+13+11)+27=82 ms     last max(5;7;4)+max(15;13;11)+27=49 ms

Figure 4: Difference between the computation time (a) in our experiments and (b) in real of
one round of Auction (“Ax:” is the beginning of the the name in the state charts in Figures
2 and 3)

• Auction: Figure 4a illustrates how AnyLogic sequentially runs the oper-
ation of two salesmen, and Figure 4b what reality would look like with
parallelism:

– AnyLogic: Figure 4a shows that Salesman 1 calls CPLEX for 5 ms
in State A4 propose a city to give (summarised as “A4: 5ms” in
Figures 4a and 4b), and Salesman 2 and 3 spend 7 ms and 4 ms
in this state. Next CA (auctioneer) receives the result of these
computations and broadcasts it to all salesmen (not shown in Fig-
ures 4 because performed without CPLEX). Later, Salesman 1 com-
putes for 15 ms, Salesman 2 for 13 ms and Salesman 3 for 11 ms
in A10 bid on every proposed city. Finally, the auctioneer com-
putes for 27 ms in A14 send allocation of cities. The duration
observed in AnyLogic is the sum of these durations, as shown in
Figure 4a.

– Reality: In real life, all states with the same name can be computed
in parallel, as shown in Figure 4b. It follows that the duration of the
CPLEX computations in a state is the maximum of the durations of
all salesmen in this state, i.e., this round would take max(5; 7; 4) +
max(15; 13; 11) + max(27) = 49ms.

• Cluster: The method for Cluster is the same as for Auction except that (i)
there is a single round, and (ii) every salesman solves the TSP only once in
this round. As a result, the real-life duration is (i) the time spent by CA
solving the clustering problem in Equations 35-39 plus (ii) the maximum
of the time spent by the salesmen solving the TSP in Equations 9-14.

• NoRealloc: The method for NoRealloc is the same as Cluster without CA,
that is, the real-life duration is the maximum of the time spent by the
salesmen solving the TSP in Equations 9-14.

• P2P and CNP: The inference of the duration of interactions in pure DO
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a) Simulation

Figure 5: Difference between the computation time (a) in our experiments and (b) in real life
in four rounds (called I1, I2, I3 and I4) of P2P interactions (“Ix” refers to Interaction Ix and
“-P2Py” to the names in the state charts in Figure 2)

is the most complicated because several interactions of various durations
may take place concurrently. In contrast, the CA in Auction ensures that
a new round starts only after the end of the previous one. On the other
hand, no CA synchronises interactions in P2P and CNP because the state
charts in Figure 2 allow every salesman to be host and guest at the same
time in two concurrent interactions. We assume that interactions do not
overlap, that is, an interaction is never stopped between its start and its
end. This is consistent with our observation of the operation of AnyLogic
when only one thread is used. In addition, using more threads would
not change the total duration of interactions and would just make it more
complicated to observe what we now explain. This explanation is provided
for P2P because it is the most complex as several bilateral interactions may
occur concurrently; CNP is slightly simpler because such overlaps are made
impossible by the fact that an interaction always involves all salesmen.

In every round of a P2P interaction, we make AnyLogic record the (i) iden-
tities of the host and guest in this round, (ii) the starting time in AnyLogic
of this round, and (iii) its duration (i.e., sum of (1) the CPLEX computa-
tion time of the guest in P2P4 guest proposes a city, (2) the time of the
host in P2P6 host proposes city to guest, (3) the time of the guest in
P2P7 guest receives proposition and sends reply and (4) the time of
host in P2P8 host receives acceptation or rejection. Note that this
is a summation because everything also happens sequentially in real life).
Figure 5 illustrates how this information is used after the completion of the
mechanism with an example of four interactions named I1, I2, I3 and I4:

– AnyLogic: Salesman 2 is the host of Interaction I1 (Figures 5a and
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5b only show CPLEX computations, thus P2P2 host invites guest

is not shown) and the first CPLEX computation is performed by
his guest Salesman 2 in State P2P4 guest proposes a city, which
is represented by I1-P2P4 in Figure 5a. AnyLogic carries out the
computations one after the other: I1-P2P4, then I1-P2P6, I1-P2P7
and I1-P2P8 for Interaction 1, next Interaction 2 with I2-P2P4, I2-
P2P6, I2-P2P7 and I2-P2P8, then Interaction 3, etc.

– Reality: Figure 5b shows that Interactions I1 and I2 will actually
start at the same time since they involve two different pairs of sales-
men. Hence, the CPLEX calls in {I1-P2P4, I1-P2P6, I1-P2P7, I1-
P2P8} would be in parallel with those in {I2-P2P4, I2-P2P6, I2-
P2P7, I2-P2P8}. After that, I3 would start as soon as its host Sales-
man 1 is available, i.e., just after I1-P2P7, then this host would wait
for the reply of Salesman 2 at the end of I3-P2P3 because this guest
would be taking part to I2. Similarly, I4 starts just after its host
Salesman 3 has finished I3-P2P7, which is not shown for Salesman 3
but will have an effect on Salesman 4 who computes I4-P2P4.

Finally, both Figures 5a and 5b are incomplete because they show inter-
actions without the initialisation of the salesmen who first solve the TSP
in Equations 9-14 before t = 0, and the salesmen in Figures 5b would be
ready for their first interaction at different times.

More technically, the computation time in P2P is calculated by updating a
vector clockk after each computation of Salesman k. clockk represents the
total computation time of Salesman k up to the considered interaction.
We also call Ts the computation time of CPLEX in state s:

– Duration of initialisation: Every salesman k solves the TSP in Equa-
tions 9-14, which takes a duration TP2P0k . Since these computations
are parallel, the duration of this initialisation is maxk(TP2P0k). Hence,
at the end of this initialisation, clockk = maxk(TP2P0k) for all Sales-
men k.

– For every round of bilateral interactions :

∗ An interaction starts as soon as its host and guest are both ready,
so an interaction starts at max(clockhost, clockguest). Hence,

clockhost = clockguest = max(clockhost, clockguest).

∗ The end dates of the current round are clockguest = clockhost+
TP2P4 guest proposes a city + TP2P6 host proposes city to guest + TP2P7

guest receives proposition and sends reply and clockhost = clockguest+
TP2P8 host receives acceptation or rejection.

– Total computation time: The searched duration of Mechanism P2P is
maxk(clockk) calculated when all interaction rounds are completed.
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5. Numerical experimentation

Instead of performing Monte Carlo simulations to assess the mechanisms, we
allow the reader to replicate our results by generating 130 instances by circular
permutations on problem “CH130” in TSPLIB.9 To describe these circular per-
mutations, let us call (xi, yi) the coordinates of the ith city in our simulation
and (Xi, Yi) the coordinates of the ith city in TSPLIB. For a given number of
cities n, our Instance zero uses the first n instances in TSPLIB such that City i
has xi = Xi and yi = Yi (cities i ≥ n in TSPLIB are ignored), i.e., Salesman 1 is
at (334.5 . . . , 161.7 . . .), 2 at (397.6 . . . , 262.8 . . .), 3 at (503.8 . . . , 172.8 . . .), etc.
Next, Instance ∆Y uses xi = Xi and yi = Yi+∆Y , i.e., for Instance 1, Salesman
1 is at (334.5 . . . , 262.8 . . .), 2 at (397.6 . . . , 172.8 . . .), 3 at (503.8 . . . , 384.6 . . .),
etc. (We noticed that Instance ∆Y = 122 is often very long to solve for several
mechanisms.)

This generation of instances allows us to present results in which the mech-
anisms work on the same instances. For example, the ratios in Figures 7, 8,
9, 10 are obtained by (i) setting n and m, (ii) comparing all mechanisms (i.e.,
computing the ratios of the total route length of two mechanisms) on Instance
∆Y = 0, (ii’) repeating ii for ∆Y varying between 1 and 129, and (iii) writting
in these figures the fifth and ninth deciles of these 130 ratios.

Our numerical experiments were performed on the 17 Personal Computers
of a student laboratory in the department of Industrial Engineering at INSA-
Lyon, Lyon, France. These computers are all identical and run Windows 7
professionnel SP1 64 bits on Intel Core i5-3470 CPU@3.20GHz with 8.00 Gb
RAM. The softwares used were IBM ILOG CPLEX 12.6.3.0 and AnyLogic 7.3.2.

5.1. Results with a time limit of 24 hours

We consider two metrics to assess our mechanisms, viz., total route length
(also referred to as quality of the solution) and computation time. In this
article, all graphs in a same figure use the same ranges on the y-axis. For each
mechanism, Figure 6 shows the box-plots of the computation time of the 130
instances for various numbers of cities n when there are m = 9 salesmen. The
main point to notice is the quick increase of the duration of OptDecentr from
n = 20, which corresponds to (n − 1)/m ≈ 2.1 cities per salesman (“minus
one” prevents counting the depot). In this figure, the number of salesmen m is
increased until one of the 130 instances cannot reach its end within 24 hours.
As we can see, this limit is set by OptDecentr which cannot find the optimal
solution of at least one of the 130 instances for m = 9 salesmen and n = 23
cities. We do not show the equivalent of Figure 6 with the quality of the solution
because it would be difficult to see a difference between the mechanisms.

Instead, we show Figures 7 and 8 which show ratios of quality (compared
to OptDecentr in Figure 7 and to FullCentr in Figure 8) for m = 5 (left) and
m = 9 salesmen (right). More precisely, Figure 7 compares the total route length

9http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/ch130.tsp.gz
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Figure 6: Box-plots of the computation time of the 130 instances for m = 9 salesmen and
various numbers of cities n
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Figure 7: Ratios of quality compared to OptDecentr for m = 5 (left) and m = 9 (right)
salesmen with no time limit
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found by the mechanisms solving the MTSP constrained by 1-1 exchanges and
this comparison is carried out against the optimal value found by OptDecentr.
As noted above, for given instance ∆Y and values of m and n, the route length
found by a mechanism is divided by the route length found by OptDecentr for
each of the 130 instances; Both top graphs in 7 show the ninth decile of these
130 ratios and both bottom graphs show their median. Figure 8 is computed
the same way, but the base of comparison is FullCentr instead of OptDecentr. In
other words, Figure 7 compares mechanisms solving the same problem, while
Figure 8 compares DO mechanisms to the CO mechanism.

We think that the most interesting points are the presence of plateaus. Some
mechanisms seem to reach a plateau in Figure 7: Cluster seems to be about 5%
worse, CNP about 11% worse, P2P about 12% and Auction about 20% worse
than OptDecentr with the median for both m = 5 and m = 9, and the ninth
decile also seems to stabilise on slightly higher figures. This indicates that these
decentralised mechanisms do not explore the entire search space of the possible
1-1 exchanges since the CA in DO is sometimes able to find a better allocation
which satisfies the selfishness of the salesmen. Unfortunately, there do not seem
to be such plateaus in Figure 8, because either they do not exist or n has not
been increased enough to reach them. We believe that the latter explanation
is true. To check that we are right, the next subsection reduces the time limit
and keeps increasing n even when the computation time reaches this limit.

5.2. Results with a time limit of 30 minutes

To obtain figures with much larger numbers of cities n, we limit the com-
putation time to 30 minutes. (Hence, we only show the ratios of total route
lengths since the equivalent of Figure 6 would only show that this time limit is
respected.) In both Figures 7 and 8, the real-life duration of the operation of
the mechanisms inferred from sequential simulations, as explained in Section 4,
was computed after the end of the simulations (offline). To obtain more data,
we have modified our AnyLogic models such that this computation is done
throughout the simulation (online) by updating get Main().remainingCom-

putationTime, which is shared by all salesmen, and added cplex.setParam(Ilo-
Cplex.Param.TimeLimit, get Main().remainingComputationTime/1000) to
make CPLEX stop before or at the time limit. In Figures 9 and 10, this time
limit is set to 30 minutes in parallel simulations. That is, DO mechanisms may
run much longer sequential simulations in AnyLogic, but they cannot last more
than 30 minutes when we infer what they would actually last.

As a consequence, OptDecentr and FullCentr find the optimal solution of
their respective version of MTSP in Figures 7 and 8 because we stopped the
experimentation as soon as the time limit is reached. Hence, it was not possible
to have a point below 100%. By contrast, Figure 9 shows points below 100%
for high values of n when the simulation stops before CPLEX has found the
optimal solution of OptDecentr. (Figure 10 has no points below 100% because
FullCentr is much quicker to optimise.)

The most salient points to note in Figures 9 and 10 are:
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Figure 9: Ratios of quality compared to OptDecentr for m = 5 (left) and m = 9 (right)
salesmen when the time limit is 30 minutes
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Figure 10: Ratios of quality compared to FullCentr for m = 5 (left) and m = 9 (right)
salesmen when the time limit is 30 minutes
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• The cost of selfishness is about 30% higher for m = 5 and 60% higher for
m = 9 than the cost in the traditional MTSP: To see this, we compare
FullCentr (MTSP without our constraint modelling selfishness) and Opt-

Decentr (benchmark showing the best results that Cluster, CNP, P2P and
Auction could find):

– For the instances of small size (i.e., less than 6 cities per salesman
for m = 5 in the lower left graph in Figure 10, and less than 4 cities
per salesman for m = 9 in lower right), OptDecentr finds the best
DO solution because the time limit of 30 minutes does not stop this
mechanism too early.

– For larger instances, OptDecentr does not have enough time to find
the optimum. Therefore, we look at the quality of Cluster instead,
because it is the best DO mechanism. In other words, we use Cluster
to infer the quality that OptDecentr would obtain without the time
limit for such larger instances. In fact, OptDecentr would find the
optimal solution of our modified MTSP if there were no time limit,
hence we assume that the quality of the solution found by Cluster is
an upper bound of a perfect DO mechanism.

Since the median route length of Auction reaches a plateau at about 130%
(respectively, 160%) the length of FullCentr for m = 5 (respectively, m =
9), we conclude that these figures are upper bounds of the median route
length of OptDecentr. As a conclusion, the modelling of selfishness in
our modified MTSP increases the total route length by 30% (respectively,
60%) for m = 5 (respectively, m = 9) in comparison with the traditional
MTSP.

• (De-)centralisation seems to have a negligible impact on the quality of
the solution: CNP, Auction and P2P have very close results in Figure 10
when n is large, while the second of these mechanisms has a CA, i.e., an
auctioneer. The next bullet point indicates that this may be due to the
fact that this CA is not coercive.

• Coercion seems to improve the quality of the solution: Both Figures 9 and
10 suggest that the more coercive the CA in a mechanism, the better the
quality of the solution found by this mechanism:

– Ranking of mechanisms by quality of the solution: If we write > for
“is more efficient than”, then we can see in Figures 9 and 10 that
FullCentr > OptDecentr > Cluster > Auction.

– Ranking of mechanisms by coercion level of their CA: The same order
applies to the coercion level of the CA in these four mechanisms:

1. FullCentr has a more coercive CA than OptDecentr because she
ignores the selfishness of the salesmen.

2. The CA in OptDecentr is more coercive in Cluster because she
controls both allocation and routing.
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3. The CA in Cluster is required to know all the cities while, as noted
in the previous bullet point, she is just a mediator in Auction.

In sum, Figures 9 and 10 for a high value of n suggest the following ranking
(from most to least efficient): FullCentr > OptDecentr > Cluster > (Auction ≈
CNP ≈ P2P) > NoRealloc.

6. Discussion

The discussion puts this article into perspective with regard to the general
question of the price of selfishness in DO. This presentation is carried out in
relation to our contributions:

6.1. Conceptual contributions

This article focuses on one way to include DO features in human organisa-
tions – namely, salesmen’s selfishness – into the traditional MTSP addressed
by CO. Yet, other pairs of CO/DO problems are also possible. These other
possibilities may be summarised as follows:

• Relax Assumption Hyp. 3: As aforementioned, Hyp. 3 may be relaxed by
replacing the constraint of 1-1 exchanges by n-n exchanges. Clearly, the
cases with n > 1 may find better exchanges but a combinatorial number
of possible exchanges would have to be considered by salesmen.

• Modify the objective function in MTSP: As shown in Subsection 2.2, we
choose to keep the same social welfare as the objective function in the
traditional MTSP, which eventually result in adding the constraint of 1-1
exchanges with an initial endowment of cities.

Instead of such a modification of the constraints, we could have modified
the objective function. For example, we could have i) given a value vik to
each City i for each Salesman k (for instance, Salesman 1 earns v11=e3 for
visiting City 1 and v21=e4 for City 2 while Salesman 2 receives v12=e6
and v22=e5 respectively) and ii) modified the objective function to make
a trade-off between the distance travelled and the value earned for visiting
cities (for example, this distance is transformed into a cost of fuel and this
cost is subtracted from the money earned in the cities). With such a utility
function, the salesmen would agree to increase the number of their cities
when their value is high enough.

Other examples of modifications are based on the fact that our modified
MTSP relies on the utilitarian social welfare (i.e., sum of individual util-
ities), but other mappings of individual utilities to a social welfare have
been proposed (e.g., maximum, minimum or product of individual utili-
ties).

• Derive a CO problem from a DO one: Instead of adding the selfishness of
the decision makers to a CO problem, other work reported in the literature
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does the contrary. For instance, Sallez et al. [20] compare the dynamic
allocation and routing in a real flexible manufacturing system managed
by a DO mechanism to a CO benchmark which does not take all the
constraints into account because of the combinatorial explosion.

• Change who make decisions : We assume that salesmen fight for cities, but
the opposite is also possible. It is even possible that both salesmen and
cities make decisions.

Finally, we note that CO can estimate the performance of DO. In fact,
OptDecentr implements CO to find the best solution of our modified MTSP,
and this solution is a benchmark for Cluster, CNP, P2P and Auction.

6.2. Technical contributions

Our main technical contribution is the implementation of various mecha-
nisms solving our modified MTSP. It is interesting to note that we have imple-
mented one mechanism per organisation, but other mechanisms are possible for
all the organisations in Figure 1. For example, Cluster uses the MILP formula-
tion proposed by Rao [19], but others do exist.10

We have chosen to measure the computation time of CPLEX only. On the
one hand, we first started to program our mechanisms with a MILP solver
written in Java, namely ojAlgo v4011, to have only pure Java in AnyLogic. We
then stopped this and turned to CPLEX because it is a recognised benchmark,
whereas we know little about the performance of ojAlgo. We also first thought
about using various tools and environments (Concorde, k-means, etc.), and
then using benchmarks to compare their computation times. Unfortunately, no
recognised benchmarks exist and contradicting information may even be found,
such as “C runs faster than Java because it operates on a lower level” and
“Java runs faster than C because its virtual machine adapts the program to the
computer”.

6.3. Numerical contributions

The data shown in Section 5 are robust because each point in Figures 7, 8, 9
and 10 represent a decile calculated on 130 instances. Of course, our conclusions
at the end of Subsection 5.2 may turn out to be wrong with other instances, as
well as with other hypotheses about how to modify MTSP to take the salesmen’s
selfishness into account.

10We have also tested Mechanism Cluster with the formulation by Sağlam et al. [22] to
which we added our constraint for 1-1 exchanges. Our experimentation (not presented in this
article) shows similar performance to the formulation by Rao described in Paragraph 3.3.1,
even though the clusters obtained sometimes differ.

11http://www.ojalgo.org
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7. Conclusion

To quantify the cost of having selfish decision makers, this article compares
organisations with varying degrees of centralisation. For that purpose, our first
contribution is to introduce a same problem with features for both Centralised
Organisation (CO) and Decentralised Organisation (DO). We address this issue
by constraining the Multiple Travelling Salesmen Problem (MTSP) with both
1-1 exchanges of cities as an initial endowment. Our second contribution is that
ours is the first article comparing five decision organisations to solve a same
joint allocation and routing problem, while the few other similar comparisons
in the literature consider only two organisations. Our third contribution is the
quantification of the cost of decentralising decision making. We think that the
most interesting result is the fact that DO (i.e., our modified MTSP) has a
median total route length which reaches a plateau ≈30% (respectively, ≈60%)
longer than CO (i.e., the traditional MTSP) when there are five (respectively,
nine) salesmen and many cities. This stabilisation was hoped for but unpre-
dictable without experimentation. We also notice that the coercion level of CA
seems to have much more impact on the quality of the solution than the level
of centralisation of a mechanism.

As future work, we may perform simulations with various time limits then
perform non-linear regressions to obtain the quality of each mechanism as a
function of n (number of cities), m (number of salesmen) and time limit to
study how each parameter impacts the quality of each mechanism. The aim
is to study the impact of each parameter on the performance of a mechanism.
Another possible follow-up study may also examine how our model of selfishness
impacts the efficiency of the mechanisms. For that purpose, we would use the
model of preferences detailed in the discussion section, in which the salesmen
make a trade-off between the value of cities and the distance travelled, and then
adapt our mechanisms to this other variant of MTSP. Or other future work may
classify our allocation mechanisms into a hierarchy of families depending on the
structures of their MILP and interactions. This hierarchy would hopefully allow
new families to be identified.
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