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Abstract

The decision to centralise or decentralise human organisations re-
quires quantified evidence but little is available in the literature. We
provide such data in a variant of the Multiple Travelling Salesmen
Problem (MTSP) in which we study how the allocation sub-problem
may be decentralised among selfish selfmen. Our contributions are
(i) this modification of the MTSP in order to include selfishness, (ii)
the proposition of organisations to solve this modified MTSP, and (iii)
the comparison of these organisations. Our 5 organisations may be
summarised as follows: (i) OptDecentr is a pure Centralised Organisa-
tion (CO) in which a Central Authority (CA) finds the best solution which
could be found by a Decentralised Organisation (DO), (ii) Cluster and
(iii) Auction are CO/DO hybrids, and (iv) P2P and (v) CNP are pure DO.
Sixth and seventh organisations are used as benchmarks: (vi) NoRealloc
is a pure DO which ignores the allocation problem, and (vii) FullCentr is
a pure CO which solves a different problem, viz., the traditional MTSP.
Comparing the efficiency of pairs of these mechanisms quantify the price
of decentralising an organisation. In particular, our model of selfishness in
OptDecentr makes the total route length 30% (respectively, 60%) longer
with 5 (respectively, 9) salesmen than the traditional MTSP in FullCentr
when the computation time is limited to 30 minutes. With this time limit,
our results also seem to indicate that the level of coercion of the CA
impacts more the total route length than the level of centralisation.

Keywords. Centralised Organisation (CO); Decentralised Organisation
(DO); Selfishness; Multiple Travelling Salesmen Problem (MTSP).

1 Introduction

Everybody has an opinion about the centralisation of decision. We believe
that this opinion depends too much on intuition rather than quantified
evidence. In addition, several criteria exist to compare organisations. For
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instance, Centralised Organisation (CO) is often said to find the opti-
mum solution (or, at least, the best possible solution), while Decentralised
Organisation (DO) is more reactive. Two incomparable metrics are op-
posed here, namely, quality of the solution found and computation speed.
Like comparisons of capitalism and socialism (Ellman, 1989), numerical
comparisons of CO and DO rely on comparisons of specific organisations
instantiating these levels of centralisation. In other words, it is difficult
to provide numerical evidence of the efficiency of CO and DO in gen-
eral, hence particular mechanisms of these approaches are compared. In
this article, we call “mechanism” an instance of an “organisation”, and
an “organisation” is an instance of an “approach”. The possible “ap-
proaches” are pure CO and DO, and CO/DO hybrids. Let us illustrate
these three terms: The CO/DO hybrid approach can be instantiated as
an “organisation” with one or several (coercive) dispatchers, and/or (non-
coercive) mediators such as an auctioneer, or peer-to-peer negotiation,
etc. Next, the “organisation” with an auctioneer can be instantiated as
a “mechanism” as either an English (multiple-shot first-price) or Vickrey
(single-shot second-price) auction.

We think that the choice of a more or less centralised organisation is
a question too often addressed by political discussions as a consequence
of the lack of numerical evidence. This research question is important be-
cause the efficiency of organisations may be greatly improved by selecting
the appropriate decision organisation. In fact, defenders of CO (respec-
tively, DO) spends much effort in developing their mechanism, while they
may obtain much better performances by introducing some features of
DO (respectively, CO) — “If your only tool is a hammer then every prob-
lem looks like a nail”, as the saying goes. Such a choice between various
organisations requires numerical data about these organisations, such as
the aforementioned quality of the solution and computation time. With
such data, an organisation could be designed depending on its constraints;
for instance, choosing the number of hierarchical levels and the appropri-
ate organisation on each level depending on the time available to make
a decision. In particular, we believe that our work will shed light on the
organisation of the Physical Internet (Sarraj et al., 2014) since this project
aims at connecting CO logistics networks in a DO way.

The literature provides little quantified comparisons of CO and DO,
as noted in a review co-written by one of us (Moyaux and McBurney,
2012). In addition to the papers referenced in this review, we now outline
others which compare CO and DO in applications to logistics. In this
area, the scarcity of quantified comparisons has also been noted (Mes
et al., 2007, p. 60). Similarly, Davidsson et al. (2005) regret the few
quantitative comparisons of DO approaches with CO. One of the earliest
such comparisons in logistics is a work by Fisher et al. (1995, 1996) who
propose an extension of Smith (1980)’s Contract Net Protocol (CNP)
in which task decomposition is decentralised in order to solve a static
Vehicle Routing Problem with Time Windows. Their experiment shows
that their protocol finds a total route length between 3% and 74% worse
than the optimal and is thus comparable to heuristics from Operations
Research. Then, they propose an improvement which reduces these figures
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by about 12%. Since routing problems are NP-hard, the optimal route is
often unknown and some studies compare the results of DO with those
of approximate CO heuristics. In this context, Mes et al. (2007) report
that their Vickrey auction (DO) performs as good as or even better than
centralised heuristics to solve a dynamic Pickup and Delivery Problem
with Time Windows (PDPTW). For the same problem, Máhr et al. (2010)
also compare a Vickrey auction (DO) to the approximate solution found
by CPLEX in a few 30-second intervals (CO). Their experimentation
shows that the auction outperforms CPLEX when service time duration is
highly uncertain. Next, van Lon and Holvoet (2015) compare a cheapest
insertion heuristic (CO) with an implementation of Fisher et al. (1995)’s
Contract Net Protocol (DO). Their results seem to indicate that DO
outperforms CO. Glaschenko et al. (2009) have implemented a real-time
multiagent scheduler for a taxi company in London, UK. The benefit of
their tool is distributed between the drivers and the company, resulting in
an increase of driver wages by 9%. Karmani et al. (2007) use a market-
based approach to solve a capacitated version with multiple depot of the
MTSP. Their experiment shows that their approach scales to thousands of
cities and hundreds of salesmen with a total route length quite close to the
optimum. Later, Kivelevitch et al. (2013) were inspired by this approach
to propose a distributed meta-heuristic. The total length of the routes are
within 1% of the optimal in 90% of the tested cases. More precisely, the
median total length of the route is 1.7% higher than the optimum and
4.8% higher in the worst of the tested cases, but the median run time
is 8 times faster than CPLEX. Nevertheless, this approach uses agents
with no autonomy at all (e.g., an agent can take one or all cities from
another agent without permission), hence we think it is more related to
parallel algorithms (Talbi, 2006) than to the making of decisions in human
organisations with selfish agents as we investigate. Quite similarly, others
solve logistic problems (e.g., Travelling Salesman Problem (TSP) by Xie
and Liu (2009) and Hanna and Cagan (2009)) with agents who, again,
lack the human characteristics of selfishness and cannot hence be used to
design organisations as well.

The goal of this article is to compare CO with DO by measuring the
efficiency of several mechanisms on various levels of centralisation to solve
a modified Multiple Travelling Salesmen Problem (MTSP) (MTSP is the
Vehicle Routing Problem without capacities) such that the selfishness of
the salesmen is taken into account. It is important to notice that our sales-
men are selfishness because we want to investigate human organisations.
This article has the following contributions:

1. Conceptual contributions: CO and DO are different by nature be-
cause, for example, the social welfare (i.e., utility function of the
group) in CO may have no trivial relationship with the individual
utility functions in DO. Game Theory proposes models and tools to
study CO and DO, e.g., the Prisoner’s Dilemma shows that DO may
find a solution (i.e., Nash equilibrium) which is Pareto dominated by
the solution found by CO. Taking this game-theoretic background
into account, we modify the MTSP by adding features represent-
ing the selfishness of the salesmen such that our modified MTSP
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can be solved in more or less centralised organisations. Selfishness
means that a salesman maximises his1 own utility in a selfish manner
without paying attention to the social welfare of the community of
salesmen.

Subsection 2.2 introduces our MTSP constrained by 1-1 exchanges.
More precisely, the salesmen “own” an initial endowment of cities,
and they use a mechanism to modify this initial allocation of cities
by exchanging one city against one city exclusively, which we refer
to as “1-1 exchanges”. This corresponds to our modified MTSP.
Section 6 discusses other possibilities to obtain a pair of CO and
DO versions of a problem.

2. Technical contributions: As said in the above literature review, no
previous work compares more than two kinds of organisations to
solve a same location and routing problem. Our organisations for
the exchange of cities are inspired by the classes of coordination
proposed in (Frayret, 2002, p. 131) as an extension to Mintzberg
(1978). To be precise, this paper studies the following organisations
which have various numbers of hierarchical levels, coercion levels
and number of rounds of interactions, as summarised in Figure 1:

1. OptDecentr makes the Central Authority (CA) find both (i) the
best allocation of cities to salesmen with the constraint of 1-1
exchanges and (ii) for each salesman, the shortest path visiting
all the cities allocated to this salesman – this is a CO mechanism
which looks for the best solution which may be found by the
following five DO mechanisms;

2. Cluster makes the CA allocate groups of neighbouring cities to
the salesmen with the constraint of 1-1 exchanges, then every
salesman locally solves a TSP with his allocated cities;

3. Auction is similar to Cluster except that the CA is less coercive
since she plays the role of an auctioneer;

4. CNP (Contract Net Protocol) has no CA and every salesman
plays the role of an auctioneer;

5. P2P also has no CA and relies on bilateral negotiations.

Finally, two additional organisations are used as benchmarks:

6. NoRealloc assumes no reallocations of the cities among the
salesmen who only solve a TSP on their initial endowment;

7. FullCentr is the same as OptDecentr without the constraint of
1-1 exchanges, that is FullCentr is the only mechanism that
solves the traditional MTSP.

Since our experimentation simulates more agents than the number
of cores of the CPU in our computers, we perform only sequential
simulations, then we infer what would have happened in real life
with computations carried out in parallel.

As said above, we call “mechanism” an instance of an “organisa-
tion”. However, this article uses both terms interchangeably because

1We always use “him” for a salesman and “her” for the Central Authority (CA).
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Figure 1: Overview of the seven organisations compared.

it deals with one mechanism per organisation only. In fact, each of
the above organisations may be instantiated in mechanisms different
from our descriptions in Section 3, as shall be discussed in Section 6.

Finally, our mechanisms instantiating the above first five organi-
sations are new, since they solve the MTSP constrained by 1-1 ex-
changes which we have never seen in the literature. On the contrary,
benchmarks NoRealloc and FullCentr are not new as they solve a
classic Mixed-Integer Linear Programming (MILP) formulation of
TSP and MTSP.

3. Numerical contributions: Davidsson et al. (2007) compare four mech-
anisms on a same problem and we do not know of any work with
more mechanisms. In comparison with this work, our work both
consider more mechanisms and present many more experimental re-
sults. In fact, our results are robust since we compare the efficiency
of the mechanisms when they solve the same instance among 130
for given numbers of salesmen and clients, and we present the fifth
and ninth deciles obtained by 130 instances.

The outline of this paper is as follows. Section 2 presents our frame-
work, i.e., our MTSP constrained by 1-1 exchanges, next hypotheses about
how to carry out a fair comparisons of the mechanisms. Section 3 details
the seven mechanisms. Section 4 shows how the duration of the parallel
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computations of up to 10 agents (9 salesmen + 1 Central Authority (CA))
is inferred from the sequential computations in our experimentation on one
of our computers with a 4-core CPU. Section 5 presents the numerical re-
sults of this experimentation. Section 6 discusses these results, next how
other variants of MTSP may be introduced taking the selfishness of the
salesmen into account. Section 7 concludes.

2 Framework

This section first recalls the formulation of the traditional MTSP solved
by Mechanism FullCentr, next our MTSP constrained by 1-1 exchanges of
cities which is solved by the other six mechanisms. We assume that both
problems have n cities to be visited by one of m salesmen, and dij is the
Euclidean distance between Cities i and j. City i = 0 is the depot shared
by all salesmen.

2.1 Traditional MTSP: FullCentr

The traditional MTSP in Equations 1-8 uses the 2-index decision variable
xij such that xij = 1 only if one of the m salesmen goes from City i to
City j. The objective function in Equation 1 minimises the total distance

Utrad travelled by all the salesmen. Equation 2 (respectively, 5) ensures
that m salesmen leave (respectively, enter) the depot. Similarly, Equation
3 (respectively, 4) ensures that a single salesman leaves (respectively, en-
ters) every city. Equation 6 is a constraint eliminating sub-routes by the
method of node potentials proposed by Miller et al. (1960) in which deci-
sion variable pi counts the number of cities visited by a salesman before
he visits City i.

minUtrad =
∑n−1

i=0

∑n−1

j=0,j 6=i dijxij (1)
∑n−1

j=1
x0j = m (2)

∑n−1

j=0,j 6=i xij = 1 1 ≤ i < n (3)
∑n−1

i=0,i6=j xij = 1 1 ≤ j < n (4)
∑n−1

i=1
xi0 = m (5)

pi − pj + (n− 1).xij ≤ n− 2 1 ≤ i 6= j < n (6)

pi ∈ ℜ+ 1 ≤ i < n (7)

xij ∈ {0, 1} 0 ≤ i, j < n (8)

2.2 Modified MTSP (constrained by 1-1 exchanges)

We now explain how we modify this traditional MTSP in order to include
the individual selfishness of the salesmen such that a DO can also solve
our modified problem. The following explanation calls Utrad the social
welfare in the traditional MTSP (i.e., the total route length in Eq. 1), and

Umod the social welfare and umod
k Salesman k’s utility in the modified

MTSP. We make the following assumptions:
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1. Hyp. 1 – Individual utilities measure the travelled distance: We

define umod
k as the distance travelled by Salesman k and Umod =

∑
k u

mod
k as the distance travelled by all. Of course, the advantage

of such a hypothesis is that Umod = Utrad.

The drawback is that salesmen all want to get rid of their cities,
but no one accepts cities from other salesmen. Consequently, such

choices of umod
k and Umod require the following two assumptions

which operate together.

2. Hyp. 2 – Salesmen “own” an initial endowment of cities: Since
Hyp. 1 makes our distance-minimiser salesmen all want to reduce
the number of cities allocated to them, we cannot assume that they
will “fight” in order to obtain cities from a shared pool. Instead, we
assume that every Salesman k initially “owns” some cities, and he
tries to change this initial allocation by exchanging cities whenever

such an exchange reduces his individual distance umod
k .

3. Hyp. 3 – Only 1-1 exchanges of cities are possible: Let us study
what happens when a Salesman k gives n cities to Salesman k′ and
receives n′ cities from k′ in a round of interaction. All exchanges
with n = n′ are rational for both salesmen when they reduce both

umod
k and umod

k′ , as shown in the next paragraph. This constraint
of n− n exchanges solves the above problem caused by selfishness
which makes salesmen want to give but not receive cities. In this
article, we only consider the case n = n′ = 1; Cases n = n′ > 1 are
discussed in Section 6.

Let us detail why n < n′ cannot be accepted by k′ (the case n > n′

is similar). Without knowing the cities allocated to Salesman k′

(such a list of clients is private in DO), Salesman k will have trouble
convincing k′ to accept more than n′ = n city in an interaction
round. In fact, a consequence of the triangular inequality is that
accepting n (respectively, n+1, n+2, etc.) cities while giving n−1

(respectively, n, n + 1, etc.) increases more umod
k′ than accepting

the same number of cities as the number given (except when a city
exactly lies on the optimal route – which is known by k′ but ignored
by k). As a result, even when k proposes to give n close cities in
exchange for n′ cities, k′ would not be rational to accept n′ < n.

The traditional MTSP is the problem faced, for example, by a home
health care service in which all nurses are employees and have hence no
individual utility function to optimise. In contrast, our modified MTSP
corresponds to the problem faced by a private nurse association in which
the nurses have an initial endowment of patients (the patients either make
an appointment to their nurse or are provided by a physician) and the
association is a place in which the nurses may exchange patients when
this is mutually beneficial. In this modified problem, every private nurse
has an individual utility function which they optimise.
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2.3 Hypothesis Hyp. 4 about the computation time

In this article, we also make Assumption Hyp. 4 which states that we
only take account of the computation time of the MILP solver, namely
CPLEX. We choose to make this assumption as a solution to the problem
of comparing various organisations implemented in various environments
and languages. In fact, Hyp. 4 forbids the comparison of the duration of
the operation of a mechanism which mostly uses CPLEX with the duration
of another which simulates its interactions in AnyLogic2 which runs in
Java. Because of this hypothesis, we ignore the duration of anything not
computed by CPLEX, such as:

• Messages travel instantaneously : DO implies interactions which are
simulated by AnyLogic, not CPLEX. Hence, we ignore the travelling
time of the messages exchanged.

• Some techniques are not possible: We cannot use multiagent tech-
niques, such as BDI (Belief-Desire-Intention) architecture (Caballero
et al., 2011) or reinforcement learning (Gunady et al., 2014), which
may decrease the performance of our DO organisations. Similarly,
Organisation Cluster cannot use the k-means algorithm, but a MILP
formulation usable by CPLEX. Likewise, the salesmen locally solve
a TSP in several of our organisations with CPLEX, but they cannot
use Concorde3 while it is often seen as the most efficient.

3 Allocation mechanisms

We now describe our six mechanisms/organisations to solve the MTSP
constrained by 1-1 exchanges. Figure 1 shows an overview in which we
can see, for example, that OptDecentr is more centralised than Cluster
and Auction, and Cluster has a more coercive CA than Auction. This
figure also points out that OptDecentr is the most centralised in the sense
that the CA solves both the allocation and all routing problems while the
other organisations let the salesmen locally solve a TSP on their allocated
cities. Some organisations operate in a single round while others need more
interactions. Finally, this figure recalls that FullCentr solves a problem
different than the other mechanisms. Each subsequent subsection details
a mechanism.

3.1 Pure DO: NoRealloc, P2P and CNP

We first present NoRealloc since its MILP formulation of TSP is both used
in P2P, Cluster and Auction, and the base of the MILP formulation of the
MTSP constrained by 1-1 exchanges in OptDecentr.

2The AnyLogic model and the outcomes of the experiments will be published on www.

github.com after acceptation of this article for publication.
3http://www.math.uwaterloo.ca/tsp/concorde/index.html
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3.1.1 NoRealloc

As said above, NoRealloc ignores the allocation problem and lets every
salesman find the shortest route leaving the depot, visiting the N cities4

allocated to him in the initial endowment and returning to the depot.
There is a single round in which each of the m salesmen solves the TSP
in Equations 9-14. This formulation uses the 2-index decision variable
xij which equals one only if the considered salesman goes from City i to
City j.

min
∑N−1

i=0

∑N−1

j=0,j 6=i dijxij (9)

s.t.
∑N−1

j=0,j 6=i xij = 1 0 ≤ i < N (10)
∑N−1

i=0,i6=j xij = 1 0 ≤ j < N (11)

pi − pj +N.xij ≤ N − 1 1 ≤ i 6= j < N (12)

pi ∈ ℜ+ 1 ≤ i < N (13)

xij ∈ {0, 1} (i, j) ∈ {0, 1, . . .N − 1}2 (14)

With this notation, Equation 9 is the same as Equation 1 except that it
minimises the route length of a single salesman and n is thus replaced
by N , Equation 10 (respectively, 11) is similar to Equations 2 and 3
(respectively, 4 and 5) except that it does not need to distinguish the
case of the depot, and Equation 12 is the same constraint of sub-route
elimination as Equation 6.

3.1.2 P2P

Mechanism P2P has several interaction rounds in which instances of TSP
or a derivative of TSP are solved. The bottom of Figure 2 shows that
P2P consists of two state charts which may run concurrently, namely,
P2P host and P2P guest which replies to the former. Therefore, every
salesman may take part in two interactions simultaneously, the first as
guest and the second as host. Please remember that every salesman oper-
ates his own copy of the state charts in Figure 2. The names of the states
and transitions in both state charts all start with P2Pn action where n

indicates their order of activation in a round and action summarises the
action performed. P2P uses the variables at the top of Figure 2. Each of
these variables is a pointer to a city or salesman, except propCities[k][i]
that records previous interactions as a matrix of Booleans which are true
only when the considered salesman has already proposed City i to another
Salesman k in order to prevent infinite loops. allocatedCities (list of
cities currently allocated to the considered salesman), ownedCities (his
initial endowment) and route (similar to allocatedCities but with the
cities ordered according to the shortest route found by the mechanism in
use, thus P2P in this subsection) also are variables but AnyLogic shows
them with a different icon because they are collections of objects.

4 N may be different between salesmen in the two variants of TSP shown in this article.
We do not use Nk because N is a local variable for every salesman-agent k.
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Figure 2: Implementation of the mechanisms in a salesman. (“CPLEX” ar-
rows point to transitions and states whose duration are taken into account.)

We now detail the operation of P2P. State P2P0 initialisation

mainly sets all entries in propCities[k][i] to false. AnyLogic always exe-
cutes the first state in all state charts, and transition P2P0 host starts

only fires when mechanism P2P is selected. The first salesman whose
P2P0 host starts fires first becomes the host in this round. (This
state chart could generate more than one host at the same time, but
we prevent this by setting AnyLogic to use only one thread, as detailed
in Section 4.) Next, P2P2 host invites guest makes this host se-
lect a guest (i.e., the salesman with the lowest number of false in
propCities[k][i]) and send him an invitation. The guest was waiting
in state P2P1 guest waits for invitation and this message fires his
transition P2P3 guest receives invitation from host.

Then, P2P4 guest proposes a city is the first call to CPLEX in this
round of interaction. The guest solves the modified TSP in Equations 15-
23 in order to propose a city to the host. The goal of this model is to
find the city which should be removed from allocatedCities such that
the reduction of route length is maximised.5 Equations 15-23 modify the
formulation of TSP in Equations 9-14 by adding binary decision variable
kept such that kepti = 1 for the N − 1 cities to be kept and kepti = 0

5The problem in Equations 15-23 finds the city which causes the largest increase in
the route length. Instead of this single round, we may solve this problem in N − 1 rounds

in which the TSP in Equations 9-14 is solved with N − 1 cities (the ith round without

the ith city), then the shortest of the N − 1 obtained route lengths indicates the city to
be proposed. We have tested this method and seen that it takes more time than solving
Equations 15-23.
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for the city to be proposed to the host.6

min
∑N−1

i=0

∑N−1

j=0,j 6=i cijxij (15)

s.t.
∑N−1

j=0,j 6=i xij = kepti 0 ≤ i < N (16)
∑N−1

i=0,i6=j xij = keptj 0 ≤ j < N (17)
∑N−1

i=1
kepti = N − 2 0 ≤ i < N (18)

pi − pj +N.xij ≤ N − 1 1 ≤ i 6= j < N (19)

kepti = 1 i|propCities[host][i] = true (20)

kepti ∈ {0, 1} i ∈ {1, . . .N − 1} (21)

pi ∈ ℜ+ 1 ≤ i < N (22)

xij ∈ {0, 1} (i, j) ∈ {0, 1, . . .N − 1}2 (23)

Consequently, Equations 15 and 19 are the same as Equations 9 and
12. Equations 16 and 17 are similar to Equations 10 and 11 except for
the city i to be proposed which has kepti = 0. Equation 18 checks
that exactly one city will be proposed to the host. Equation 20 ensures
that a city previously proposed and returned by the guest will not be
proposed again.7 If propCities indicates that all cities have already been
proposed, then the considered guest proposes null, which fires transition
P2P5 host receives negotiation rejection.

Otherwise, the city proposed by the guest fires transition P2P5 host re-

ceives city proposed by guest and state P2P6 host proposes city -

to guest finds the city to be proposed by the host to the guest. This
is the second call to CPLEX in this round of interaction. Again, CPLEX
solves the above modified TSP in Equations 15-23 (with a small modifi-
cation: host needs to be replaced by guest in Equation 20). The guest
may not find a city reducing his route length and, hence, send a null

reply to the guest. Otherwise, he memorises in propCities not to keep
proposing the city he has just proposed.

P2P7 guest receives proposition and sends reply receives this
proposed city. If the city proposed by the host is null, then the guest sends
a message to confirm the failure of this round of negotiation. Otherwise,
he uses a CPLEX to solve the traditional TSP in Equations 9-14 with all his
cities, minus the one previously proposed to the host, plus the one which
has just been proposed by the host. If the proposed exchange reduces his
route length, then the guest sends an acceptation message and updates
his route length by taking this exchange into account, otherwise he sends
a null.

Finally, transition P2P8 host receives acceptation or rejection

receives this reply. If the guest accepts the exchange, the host modifies
his allocatedCities then updates his route by solving Equations 9-14 and

6When this problem is solved by a salesman in Mechanism Auction, the end of this
sentence reads: “. . . kepti = 0 for the city to be proposed to the auctioneer”.

7When Equations 15-23 are solved in Mechanism Auction, the previous sentence reads:
“Equation 20 ensures that a city previously proposed and returned by the auctioneer will not
be proposed again”.
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setting propCities[city][guest] = false for all his city in order to propose
any city to this guest again.

P2P9 host does nothing and P2P10 host waitsmake the host wait
for one millisecond. This tiny pause is requested by AnyLogic in order to
allow other salesmen to become host. Otherwise, Salesman 0 would keep
the control in all subsequent rounds until he has proposed all his cities,
next Salesman 1 would become host as long as he has not proposed all
his cities, then Salesman 2, etc.

Finally, note that P2P does not loop forever because State P2P2 host

invites guest does not send an invitation when propCities[k][i] =
true for all Salesmen k and all Cities i, which eventually causes every
salesman except one to stop acting as host.

3.1.3 CNP

Like (Frey et al., 2003), our Mechanism CNP is inspired by the Contract
Net Protocol. CNP is described by state charts CNP host and CNP guest

in Figure 2. Similarly to P2P, the states and transitions have a name
starting by CNPn action where n is the order of activation of the con-
sidered element and action describes it. CNP runs by rounds in which
a salesman (host) plays the role of an auctioneer who broadcasts a city
to give and the other salesmen (guests) reply by proposing a city to be
exchanged. Conversely to P2P, CNP has several guests.

The detail of this mechanism is as follows. CNP0 initialisation

sets all the entries in propCities[k][i] to false; This is performed by
all salesmen because the first state in all state charts is always exe-
cuted. All salesmen wait in state CNP1 guest waits for RFP. Transition
CNP2 host starts in all salesmen may fire because its condition only
checks that Mechanism CNP is selected; This condition fires first in one
of the salesmen who becomes the host in this round. (Like P2P, CNP
could have several hosts and we prevent this by allowing only one thread
in AnyLogic, as detailed in Section 4.) The host does the first use of
CPLEX in this round to select a city to give by solving the modified TSP
in Equations 15-23; This city is sent in a Request For Proposals to all the
guests in CNP3 host broadcasts RFPs. Every guest also uses CPLEX
to solve the problem in Equations 15-23 in order to make a proposal in
CNP5 guest sends proposal. When transitions CNP6 host received-

proposal and CNP6b host received proposal have received all these
proposals, the host selects the winner by calling CPLEX to test each pro-
posed city in CNP9 host sends allocation replies. More precisely,
for each city submitted by the guests, the host solves the traditional
TSP in Equations 9-14 with his allocated cities minus the city broad-
cast in the Request For Proposals (RFP) plus the city submitted by
the considered guest. The guest sends an acceptation message to the
guest who proposed the city reducing the most his route length. In
this case, the guest updates his variables allocatedCities and route

(route points to the same cities as allocatedCities but in the order
minimising the route length). If no city causes such a reduction, then
no acceptation is sent. Finally, the guest sends a rejection message to

12



the other guests. After the acceptation (respectively, rejection) message
has been received by CNP10 guest received acceptation (respectively,
CNP10 guest received rejection), another round may start.

After pure DO, we now turn our attention to pure CO.

3.2 CO with constraints of DO: OptDecentr

As previously said, OptDecentr is a CO organisation that mimics DO.
In other words, CA uses CPLEX in order to find the optimal solution of
our MTSP constrained by 1-1 exchanges. Please first notice that this
constraint of 1-1 exchanges of cities makes all salesmen always keep the
same number of cities as in their initial endowment. As a result, the
decision variable must identify the salesmen in order to ensure that their
number of allocated cities equals their number of cities owned in this
endowment. Consequently, OptDecentr uses a MILP model with the 3-
index decision variable xijk which equals one only if Salesmen k goes from
City i to City j:

min Umod =
∑m

k=1
umod
k (24)

s.t. umod
k =

∑n−1

i=0

∑n−1

j=0,j 6=i dijxijk 1 ≤ k ≤ m (25)
∑n−1

j=1
x0jk = 1 1 ≤ k ≤ m (26)

∑n−1

j=0,j 6=i

∑m

k=1
xijk = 1 1 ≤ i < n (27)

∑n−1

i=0,i6=j

∑m

k=1
xijk = 1 1 ≤ j < n (28)

∑n−1

i=1
xi0k = 1 1 ≤ k ≤ m (29)

pi − pj + n.xijk ≤ n− 1 1 ≤ i, j < n, 1 ≤ k ≤ m(30)
∑n−1

i=0

∑n−1

j=0,j 6=i xijk =
∑n−1

j=0
ojk 1 ≤ k ≤ m (31)

(
∑n−1

l=0,l 6=j xjlk)− xijk ≥ 0 0 ≤ i, j < n, 1 ≤ k ≤ m(32)

pi ∈ ℜ+ 0 ≤ i < n (33)

xijk ∈ {0, 1} 0 ≤ i, j < n, 1 ≤ k ≤ m(34)

In this model, Equations 24 and 25 minimise the total distance travelled
by the community of salesmen. Equation 26 (respectively, 29) checks that
all salesmen leave (respectively, enter) the depot. Equation 27 (respec-
tively, 28) checks that all cities are left (respectively, entered) exactly once.
Equation 30 is the same constraint of sub-route elimination as Equations
6, 12 and 19. Equation 32 ensures that the salesmen entering and leav-
ing a city are the same. Equation 31 checks that the number of cities
allocated to a salesman equals the number of cities he owns in his ini-
tial endowment. (The right-hand side in this equation is a constant as
Parameter ojk represents the initial endowment (“ownership”) of cities,
modelled by ojk = 1 if City j is “owned” by Salesman k at the beginning
of the experiment, and ojk = 0 otherwise.)
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3.3 CO/DO hybrids: Cluster and Auction

We now introduce our two hybrid organisations, viz., Cluster and Auction.
They are not pure DO since CA takes part in the allocation and not pure
CO because CA lets the salesmen locally solve the TSP in Equations 9-
14. Cluster is more coercive because the salesmen are supposed to let CA
know about all their cities in order to solve the allocation problem, while
Auction lets them free to never propose some of their cities if they want
for some reason (e.g., a city has an important client they want to keep or
not disclose). Conversely to P2P and CNP which only perform bilateral
exchanges, Cluster and Auction may involve more than two salesmen per
exchange during a round, that is, Salesman s1 may give a city to Salesman
s2, s2 give to s3, . . ., and sq give to s1 for any q ≤ m.

3.3.1 Cluster

Because of Hypothesis Hyp. 4 about the use of CPLEX to make all deci-
sions, Mechanism Cluster cannot use whichever solving methods from the
clustering literature but only those based on a MILP formulation. We use
the model proposed in (Rao, 1971, Sec. 5):

min D (35)

s.t. D ≥ dij(xik + xjk − 1) 1 ≤ i < j < n, 0 ≤ k < m (36)
∑m

k=1
xik = 1 1 ≤ i < n (37)

1 +
∑n−1

j=1
xjk =

∑n−1

j=1
ojk 0 ≤ k < m (38)

xik ∈ {0, 1}, D > 0 1 ≤ i < n, 0 ≤ k < m (39)

In this model, decision variable xik is a binary equal to one only when
City i is allocated to Salesman/Cluster k. Equations 35 and 36 are the
objective function which minimises the diameter of the cluster which has
the largest diameter. More precisely, Equation 36 includes the linearisation
of Dk ≥ dijxikxjk which ensures that the diameter of Cluster k is at
least the maximum distance between any two Cities i and j allocated to
this cluster; Please notice that such a formulation defines circular clusters
which may hence overlap. Like in any other allocation problem, Equation
37 checks that every city is affected to exactly one cluster/salesman. In
addition to the original model by Rao (1971), we add Equation 38 in
order to ensure that the size of the clusters(/salesmen) correspond to the
number of cities provided by every (cluster/)salesman, that is, if Salesman
k owns

∑
j ojk cities (again, ojk is a constant which equals one only if

Salesman k “owns” City j in his initial endowment), then a cluster with∑
j ojk cities must exist in order to be allocated to k.
As previously said, Mechanism Cluster operates in a single round: CA

first solves the problem in Equations 35-39 to allocate N cities to ev-
ery salesman8, then these salesmen locally solve the traditional TSP in
Equations 9-14.

8Like in Footnote 4, N may not be that same for all salesmen since it is a local variable.
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CPLEX

Figure 3: State chart of Auction in the Central Authority (CA).

3.3.2 Auction

Auction is an organisation in which CA is an auctioneer who is thus less
coercive than in Cluster. Conversely to Cluster, Auction operates in several
rounds. In each round, every salesman gives a city A to CA who either
gives it back if no other salesman wants it, or gives a city B proposed by
another salesman if exchanging A and B reduce the length travelled by
both salesmen. Figure 3 and the top right corner of Figure 2 detail the
states and transitions in this organisation. As above, their name has the
form An action where n helps the reader understand the order of their
activation and action summarises their goal.

At the beginning of a round, all salesmen wait in A1 wait for RFP

until CA sends them a Request For Proposals in A2 broadcast RFPs.
When a salesman receives this message, he uses CPLEX to look for a
city to give in A4 propose a city to give by solving the modified TSP
in Equations 15-23. When all salesmen have replied by sending either a
city or null to CA, CA broadcasts this list of replies to all salesmen in
A8 broadcast proposed cities. For each city in this list, every sales-
man uses CPLEX to compute a bid for it in A10 bid on every proposed-

city. A bid for a city is the additional distance travelled to visit it, or,
more technically, as the differences between:

• the shortest length of the route visiting their remaining N −1 cities,
that is, their allocated cities except the one proposed to the auc-
tioneer in A4 propose a city to give. This is obtained by each
salesman by solving the TSP in Equations 9-14 once.

• the shortest length of the route visiting their remaining N − 1 cities

15



plus the city proposed by one of the other salesmen. This is obtained
by each salesman by solving the TSP in Equations 9-14 for each city
in the list of bids.

When all salesmen have returned their list of bids, CA uses CPLEX
to solve an allocation problem in A14 send allocation of cities. In
order to describe this problem, let us call savings[k][i] the bid of Sales-
man k for City i and binary decision variable xki equals 1 only if City
i is allocated to Salesman k. For simplicity, we write m the number of
salesmen who have not left the auction before the current round. The
allocation model solved by CA is described by Equations 40-44. The ob-
jective in Equation 40 allocates the cities such that the total route length
of all salesmen is minimum. The constraint in Equation 43 ensures that,
in every auction round, every salesman does not increase his individual
route length.

min
∑m

k=1

∑m

i=0
savings[k][i].xki (40)

s.t.
∑m

i=0
xki = 1 0 ≤ k < m (41)

∑m

k=1
xki ≤ 1 0 ≤ i < m (42)

∑m

i=0
savings[k][i].xki ≤ savings[k][k] 0 ≤ k < m (43)

xki ∈ {0, 1} 0 ≤ i, j ≤ m (44)

4 Real time spans deduced from sequen-

tial simulations

After the description of the compared mechanisms, we now present how
the computation time span of every organisation is deduced from sequen-
tial experiments, that is, experiments running on a single thread of Any-
Logic. In fact, our experimentation involves up to 10 agents (9 salesmen
+ 1 CA) while each of our computers has a CPU with 4 cores only. Thus,
configuring AnyLogic to simulate this parallelism would require studying
how AnyLogic schedules up to 4 agents in parallel, then deduce how 10
agents would have behaved in reality. Instead, we prefer to make AnyLogic
carry out all computations sequentially, then infer how (pure and mixed)
DO would occur concurrently in real life. The time span of the CPLEX
computation (duration between the beginning of the first computation and
the end of the last one) in an experiment is deduced as follows.

• OptDecentr and FullCentr: CO uses no parallelism and the compu-
tation time span is thus equal to the computation time recorded in
our sequential experiments. More technically, this duration is the
difference between the two System.currentTimeMillis() after
and before cplex.solve(). This is also the Java code to measure
the duration of all CPLEX calls in all our organisations below.

• Auction: Figure 4a illustrates how AnyLogic sequentially runs the
operation of two salesmen, and Figure 4b how reality would look
like with parallelism:

– AnyLogic : Figure 4a shows that Salesman 1 calls CPLEX for 5
ms in State A4 propose a city to give (summarised as “A4:
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Salesman 1

Salesman 2
A4: 7 ms

A4: 5 ms

Salesman 3

A10: 15 ms

Round 1

A10: 13 ms

A14: 27 ms

A10: 11 ms

Round 2

A4: 4 ms

    lasts (5+7+4)+(15+13+11)+27=82ms.
a) Simulation: Sequential experimentations find that Round 1

Salesman 1

Salesman 2

Round 1

A4: 7 ms

A10: 15 ms

A10: 13 ms

A4: 5 ms

Salesman 3

A14: 27 ms

A10: 11 msA4: 4 ms

Round 2

b) Reality: Round 1 with parallel decisions would
    last max(5;7;4)+max(15;13;11)+27=49ms.

Auctioneer Auctioneer

Figure 4: Difference between the computation time (a) in our experiments
and (b) in real (b) of one round of Auction. (“Ax:” is the beginning of the
the name in the state charts in Figures 2 and 3).

5ms” in Figures 4a and 4b), and Salesman 2 and 3 spend 7 ms
and 4 ms in this state. Next CA (auctioneer) receives the result
of these computations and broadcasts it to all salesmen (not
shown in Figures 4 because performed without CPLEX). Later,
Salesman 1 computes for 15 ms, Salesman 2 for 13 ms and
Salesman 3 for 11 ms in A10 bid on every proposed city.
Finally, the auctioneer computes for 27 ms in A14 send allo-

cation of cities. The duration observed in AnyLogic is the
sum of these durations, as shown in Figure 4a.

– Reality : In real life, all states with the same name can be
computed in parallel, as shown in Figure 4b. It follows that the
duration of the CPLEX computations in a state is the maximum
of the durations of all salesmen in this state, i.e., this round
would take max(5; 7; 4)+max(15; 13; 11)+max(27) = 49ms.

• Cluster: The method for Cluster is the same as for Auction except
that (i) there is a single round, and (ii) every salesman solves the
TSP only once in this round. Shortly, the real-life duration is (i) the
time spent by CA solving the clustering problem in Equations 35-39
plus (ii) the maximum of the time spent by the salesmen solving the
TSP in Equations 9-14.

• NoRealloc: The method for NoRealloc is the same as Cluster without
CA, that is, the real-life duration is the maximum of the time spent
by the salesmen solving the TSP in Equations 9-14.

• P2P and CNP: The inference of the duration of interactions in pure
DO is the most complicated because several interactions of various
durations may take place concurrently. In contrast, the CA in Auc-
tion ensures that a new round starts only after the end of the previous
one. On the contrary, no CA synchronises interactions in P2P and
CNP because the state charts in Figure 2 allow every salesman to
be host and guest at the same time in two concurrent interactions.
We assume that interactions do not overlap, that is, an interaction
is never stopped between its start and end. This complies with our
observation of the operation of AnyLogic when only one thread is

17



3000 200100

Time

I1−P2P4 I1−P2P7

Interaction I1

I1−P2P4

I1−P2P6

I1−P2P7

I1−P2P8

Interaction I2

I2−P2P4

I2−P2P6

I2−P2P7

I2−P2P8

I3−P2P4
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I4−P2P6

Salesman 4

Salesman 3

Salesman 2

Salesman 1

Salesman 4

Salesman 3

Salesman 2

Salesman 1

b) Reality

I1−P2P6 I1−P2P8

Interaction I3

I4−P2P4 I4−P2P7

I4−P2P8I4−P2P6

I3−P2P8

I3−P2P7

I3−P2P6

I3−P2P4
I2−P2P8I2−P2P6

I2−P2P4 I2−P2P7

a) Simulation

Figure 5: Difference between the computation time (a) in our experiments
and (b) in real life in four rounds (called I1, I2, I3 and I4) of P2P interactions.
(“Ix” refers to Interaction Ix and “-P2Py” to the names in the state charts in
Figure 2).

used. In addition, using more threads would not change the total
duration of interactions and would just make it more complicated to
observe what we now explain. This explanation is provided for P2P
because it is the most complex as several bilateral interactions may
occur concurrently; CNP is slightly simpler because such overlaps
are made impossible by the fact that an interaction always involves
all salesmen.

In every round of a P2P interaction, we make AnyLogic record the
(i) identities of the host and guest in this round, (ii) the starting time
in AnyLogic of this round, and (iii) its duration (i.e., sum of (1) the
CPLEX computation time of the guest in P2P4 guest proposes a-

city, (2) the time of the host in P2P6 host proposes city to-

guest, (3) the time of the guest in P2P7 guest receives propo-

sition and sends reply and (4) the time of host in P2P8 host-

receives acceptation or rejection – please notice that this
is a summation because everything also happens sequentially in real
life). Figure 5 illustrates how this information is used after the
completion of the mechanism with an example of four interactions
named I1, I2, I3 and I4:

– AnyLogic : Salesman 2 is the host of Interaction I1 (Figures 5a
and 5b only show CPLEX computations, thus P2P2 host invi-

tes guest is not shown) and the first CPLEX computation is
performed by his guest Salesman 2 in State P2P4 guest propo-

ses a city, which is represented by I1-P2P4 in Figure 5a.
AnyLogic carries out the computations one after the other:
I1-P2P4, then I1-P2P6, I1-P2P7 and I1-P2P8 for Interaction
1, next Interaction 2 with I2-P2P4, I2-P2P6, I2-P2P7 and I2-
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P2P8, then Interaction 3, etc.

– Reality : Figure 5b shows that Interactions I1 and I2 will start
at the same time in reality since they involve two different pairs
of salesmen. Hence, the CPLEX calls in {I1-P2P4, I1-P2P6, I1-
P2P7, I1-P2P8} would be in parallel with those in {I2-P2P4,
I2-P2P6, I2-P2P7, I2-P2P8}. After that, I3 would start as soon
as its host Salesman 1 is available, i.e., just after I1-P2P7, then
this host would wait for the reply of Salesman 2 at the end of I3-
P2P3 because this guest would be taking part to I2. Similarly,
I4 starts just after its host Salesman 3 finished I3-P2P7, which
is not shown on Salesman 3 but with the effect on Salesman 4
who computes I4-P2P4.

Finally, both Figures 5a and 5b are incomplete because they show
interactions without the initialisation of the salesmen who first solve
the TSP in Equations 9-14 before t = 0, and the salesmen in Fig-
ures 5b would be ready for their first interaction at different times.

More technically, the computation time in P2P is calculated by up-
dating a vector clockk after each computation of Salesman k. clockk
represents the total computation time of Salesman k up to the con-
sidered interaction. We also call Ts the computation time of CPLEX
in state s:

– Duration of initialisation: Every salesman k solves the TSP in
Equations 9-14, which takes a duration TP2P0k . Since these
computations are parallel, the duration of this initialisation is
maxk(TP2P0k). Hence, at the end of this initialisation, clockk =
maxk(TP2P0k) for all Salesmen k.

– For every round of bilateral interactions:

∗ An interaction starts as soon as its host and guest are both
ready, thus an interaction starts atmax(clockhost, clockguest).
Hence, clockhost = clockguest = max(clockhost, clockguest).

∗ The end dates of the current round is clockguest = clockhost+
TP2P4 guest proposes a city+TP2P6 host proposes city to guest+
TP2P7 guest receives proposition and sends reply and clockhost =
clockguest + TP2P8 host receives acceptation or rejection.

– Total computation time: The searched duration of Mechanism
P2P is maxk(clockk) calculated when all interaction rounds are
completed.

5 Numerical experimentation

Instead of performing Monte Carlo simulations to assess the mechanisms,
we allow the reader to replicate our results by generating 130 instances
by circular permutations on problem “CH130” in TSPLIB.9 In order to
describe these circular permutations, let us call (xi, yi) the coordinates of
the ith city in our simulation and (Xi, Yi) the coordinates of the ith city
in TSPLIB. For a given number of cities n, our Instance zero uses the first

9http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/ch130.tsp.gz
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n instances in TSPLIB such that City i has xi = Xi and yi = Yi (cities
i ≥ n in TSPLIB are ignored), i.e., Salesman 1 is at (334.5 . . . , 161.7 . . .),
2 at (397.6 . . . , 262.8 . . .), 3 at (503.8 . . . , 172.8 . . .), etc. Next, Instance
∆Y uses xi = Xi and yi = Yi+∆Y , i.e., for Instance 1, Salesman 1 is at
(334.5 . . . , 262.8 . . .), 2 at (397.6 . . . , 172.8 . . .), 3 at (503.8 . . . , 384.6 . . .),
etc. (We noticed that Instance ∆Y = 122 is often very long to solve for
several mechanisms.)

This generation of instances allows us to present results in which the
mechanisms work on the same instances. For example, the ratios in Fig-
ures 7, 8, 9, 10 are obtained by (i) setting n and m, (ii) comparing all
mechanisms (i.e., computing the ratios of the total route length of two
mechanisms) on Instance ∆ = 0, (ii’) repeating ii for ∆ varying between
1 and 129, and (iii) writting in these figures the fifth and ninth deciles of
these 130 ratios.

Our numerical experimentation have been performed on the 17 Per-
sonal Computers of a student laboratory in the department of Industrial
Engineering at INSA-Lyon, Lyon, France. These computers are all iden-
tical and run Windows 7 professionnel SP1 64 bits on Intel Core i5-3470
CPU@3.20GHz with 8.00 Gb RAM. The softwares used were IBM ILOG
CPLEX 12.6.3.0 and AnyLogic 7.3.2.

5.1 Results with a time limit of 24 hours

We consider two metrics to assess our mechanisms, viz., total route length
(also referred to as quality of the solution) and computation time. In this
article, all graphs in a same figure use the same ranges on the y-axis. For
each mechanism, Figure 6 shows the box-plots of the computation time
of the 130 instances for various number of cities n when there are m = 9
salesmen. The main point to notice is the quick increase of the duration
of OptDecentr from n = 20, which corresponds (n − 1)/m ≈ 2.1 cities
per salesman (“minus one” prevents counting the depot). In this figure,
the number of salesmen m is increased until one of the 130 instances
cannot reach its end within 24 hours. As can be seen, this limit is set by
OptDecentr which cannot find the optimal solution of at least one of the
130 instances for m = 9 salesmen and n = 23 cities. We do not show the
equivalent of Figure 6 with the quality of the solution because it would be
difficult to see a difference between the mechanisms.

Instead, we show Figures 7 and 8 which show ratios of quality (com-
pared to OptDecentr in Figure 7 and to FullCentr in Figure 8) for m = 5
(left) and m = 9 salesmen (right). More precisely, Figure 7 compares the
total route length found by the mechanisms solving the MTSP constrained
by 1-1 exchanges and this comparison is carried out against the optimal
value found by OptDecentr. As said above, for given instance ∆Y and
values of m and n, the route length found by a mechanism is divided by
the route length found by OptDecentr for each of the 130 instances; Both
top graphs in 7 show the ninth decile of these 130 ratios and both bottom
graphs show their median. Figure 8 is computed the same way, but the
base of comparison is FullCentr instead of OptDecentr. In other words,
Figure 7 compares mechanisms solving the same problem, while Figure 8
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Figure 6: Box-plots of the computation time of the 130 instances for m = 9
salesmen and various number of cities n.
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Figure 7: Ratios of quality compared to OptDecentr for m = 5 (left) and
m = 9 (right) salesmen with no time limit.
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Figure 8: Ratios of quality compared to FullCentr for m = 5 (left) and
m = 9 (right) salesmen with no time limit.
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compares DO mechanisms to the CO mechanism.
We think that the most interesting points are the presence of plateaus.

Some mechanisms seem to reach a plateau in Figure 7: Cluster seems to
be about 5% worse, CNP about 11% worse, P2P about 12% and Auction
about 20% worse than OptDecentr with the median for both m = 5
and m = 9, and the ninth decile also seems to stabilise on slightly higher
figures. This indicates that these decentralised mechanisms do not explore
the entire search space of the possible 1-1 exchanges since the CA in DO
is sometimes able to find a better allocation which satisfies the selfishness
of the salesmen. Unfortunately, there does not seem to be such plateaus
in Figure 8, because either they do not exist or n has not been increased
enough to reach them. We believe that the latter explanation is true. In
order to check that we are right, the next subsection reduces the time
limit and keeps increasing n even when the computation time reaches this
limit.

5.2 Results with a time limit of 30 minutes

In order to obtain figures with much larger numbers of cities n, we limit the
computation time to 30 minutes. (Hence, we only show the ratios of total
route lengths since the equivalent of Figure 6 would only show that this
time limit is respected.) In both Figures 7 and 8, the real-life duration of
the operation of the mechanisms inferred from sequential simulations, as
explained in Section 4, was computer after the end of the simulations (of-
fline). In order to obtain more data, we have modified our AnyLogic mod-
els such that this computation is done throughout the simulation (online)
by updating get Main().remainingComputationTime which is shared
by all salesmen, and added cplex.setParam(IloCplex.Param.TimeLi-
mit, get Main().remainingComputationTime/1000) in order to make
CPLEX stop before or at the time limit. In Figures 9 and 10, this time
limit is set to 30 minutes in parallel simulations. That is, DO mechanisms
may run much longer sequential simulations in AnyLogic, but they cannot
last more than 30 minutes when we infer what they would last in reality.

As a consequence, OptDecentr and FullCentr find the optimal solution
of their respective version of MTSP in Figures 7 and 8 because we stopped
the experimentation as soon as the time limit is reached. Hence, it was
not possible to have a point below 100%. On the contrary, Figure 9 shows
points below 100% for high values of n when the simulation stops before
CPLEX has found the optimal solution of OptDecentr. (Figure 10 has no
points below 100% because FullCentr is much quicker to optimiser.)

The most salient points to observe in Figures 9 and 10 are as follows:

• The cost of selfishness is about 30% higher for m = 5 and 60%
higher for m = 9 than the cost in the traditional MTSP: In order
to see this, we compare FullCentr (MTSP without our constraint
modelling selfishness) and OptDecentr (benchmark showing the best
results that Cluster, CNP, P2P and Auction could find):

– For the instances of small size (i.e., less than 6 cities per sales-
man for m = 5 in the lower left graph in Figure 10, and less
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Figure 9: Ratios of quality compared to OptDecentr for m = 5 (left) and
m = 9 (right) salesmen when the time limit is 30 minutes.
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Figure 10: Ratios of quality compared to FullCentr for m = 5 (left) and
m = 9 (right) salesmen when the time limit is 30 minutes.
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than 4 cities per salesman for m = 9 in lower right), OptDe-
centr finds the best DO solution because the time limit of 30
minutes does not stop this mechanism too early.

– For larger instances, OptDecentr does not have enough time to
find the optimum. Therefore, we look at the quality of Cluster
instead, because it is the best DO mechanism. In other words,
we use Cluster in order to infer the quality that OptDecentr
would obtain without the time limit for such larger instances.
In fact, OptDecentr would find the optimal solution of our mod-
ified MTSP if there were no time limit, hence we assume that
the quality of the solution found by Cluster is an upper bound
of a perfect DO mechanism.

Since the median route length of Auction reaches a plateau at about
130% (respectively, 160%) the length of FullCentr for m = 5 (re-
spectively, m = 9), we conclude that these figures are upper bounds
of the median route length of OptDecentr. As a conclusion, the
modelling of selfishness in our modified MTSP increases the total
route length by 30% (respectively, 60%) for m = 5 (respectively,
m = 9) in comparison with the traditional MTSP.

• (De-)centralisation seems to have a negligible impact on the quality
of the solution: CNP, Auction and P2P have very close results in
Figure 10 when n is large, while the second of these mechanisms
has a CA, i.e., an auctioneer. The next bullet point indicates that
this may due to the fact that this CA is not coercive.

• Coercion seems to improve the quality of the solution: Both Figures
9 and 10 suggest that the more coercive the CA in a mechanism,
the better the quality of the solution found by this mechanism:

– Ranking of mechanisms by quality of the solution: If we write
> for “is more efficient than”, then we can see in Figures 9 and
10 that FullCentr > OptDecentr > Cluster > Auction.

– Ranking of mechanisms by coercion level of their CA: The
same order applies to the coercion level of the CA in these four
mechanisms:

1. FullCentr has a more coercive CA than OptDecentr because
she ignores the selfishness of the salesmen.

2. The CA in OptDecentr is more coercive in Cluster because
she controls both allocation and routing.

3. The CA in Cluster requires to know of all cities while, as
said in the previous bullet point, she is just a mediator in
Auction.

Shortly, Figures 9 and 10 for high value of n suggest the following
ranking (from most to least efficient): FullCentr > OptDecentr > Cluster
> (Auction ≈ CNP ≈ P2P) > NoRealloc.
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6 Discussion

This discussion puts into perspective this article with regard to the general
question of the price of the selfishness in DO. This presentation is carried
out according to our contributions:

6.1 Conceptual contributions

This article focuses on one way to include DO features in human organisa-
tions – namely, the selfishness of the salesmen – into the traditional MTSP
addressed by CO. However, please notice that other pairs of CO/DO prob-
lems are possible. These other possibilities may be summarised as follows:

• Relax Assumption Hyp. 3: As aforementioned, Hyp. 3 may be re-
laxed by replacing the constraint of 1-1 exchanges by n-n exchanges.
Clearly, the cases with n > 1 may find better exchanges but a com-
binatorial number of possible exchanges would have to be considered
by salesmen.

• Modify the objective function in MTSP: As shown in Subsection
2.2, we choose to keep the same social welfare as the objective
function in the traditional MTSP, which eventually result in adding
the constraint of 1-1 exchanges with an initial endowment of cities.

Instead of such a modification of the constraints, we could have mod-
ified the objective function. For example, we could have i) given a
value vik to each City i for each Salesman k (for instance, Sales-
man 1 earns v11=e3 for visiting City 1 and v21=e4 for City 2 while
Salesman 2 receives v12=e6 and v22=e5 respectively) and ii) mod-
ified the objective function to make a trade-off between the distance
travelled and the value earned for visiting cities (for example, this
distance is transformed into a cost of fuel and this cost is subtracted
from the money earned in the cities). With such a utility function,
the salesmen would agree to increase the number of their cities when
their value is high enough.

Other examples of modifications rely on the fact that our modified
MTSP relies on the utilitarian social welfare (i.e., sum of individual
utilities), but other mappings of individual utilities to a social wel-
fare have been proposed (e.g., maximum, minimum or product of
individual utilities).

• Derive a CO problem from a DO one: Instead of adding the self-
ishness of the decision makers to a CO problem, other work in the
literature do the contrary. For instance, Sallez et al. (2010) compare
the dynamic allocation and routing in a real flexible manufacturing
system managed by a DO mechanism to a CO benchmark which
does not take all the constraints into account because of the com-
binatorial explosion.

• Change who make decisions: We assume that salesmen fight for
cities, but the opposite is also possible. It is even possible that both
salesmen and cities make decisions.
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Finally, we observe that CO can estimate the performance of DO. In
fact, OptDecentr implements CO in order to find the best solution of our
modified MTSP, and this solution is a benchmark for Cluster, CNP, P2P
and Auction.

6.2 Technical contributions

Our main technical contribution is the implementation of various mecha-
nisms solving our modified MTSP. It is interesting to notice that we have
implemented one mechanism per organisation, but other mechanisms are
possible for all the organisations in Figure 1. For example, Cluster uses
the MILP formulation proposed by Rao (1971), but others exist.10

We have chosen to measure the computation time of CPLEX only. On
the one hand, we first started to program our mechanisms with a MILP
solver written in Java, namely ojAlgo v40 (http://www.ojalgo.org in
order to have only pure Java in AnyLogic. We stopped this and turned to
CPLEX because it is a recognised benchmark while we know little about
the performance of ojAlgo. On the other hand, we also first thought
about using various tools and environments (Concorde, k-means, etc.),
next use benchmarks to compare their computation times. Unfortunately,
no recognised benchmarks exist and contradicting information may even
be found, such as “C runs faster than Java because it operates on a lower
level” and “Java runs faster than C because its virtual machine adapts the
program to the computer”.

6.3 Numerical contributions

Besides the data shown in Section 5, especially the bullet points in Sub-
section 5.2, our results are robust because each point in Figures 7, 8, 9
and 10 represent a decile calculated on 130 instances. Of course, our
conclusions at the end of Subsection 5.2 may turn out to be wrong with
other instances, as well as with other hypotheses about how to modify
MTSP in order to take the selfishness of the salesmen into account.

7 Conclusion

This article compares more or less centralised organisations in order to
quantify the cost of having selfish decision makers. For that purpose, our
first contribution is to introduce a same problem with features for both
Centralised Organisation (CO) and Decentralised Organisation (DO). We
address this issue by constraining the Multiple Travelling Salesmen Prob-
lem (MTSP) with both 1-1 exchanges of cities an an initial endowment.
Our second contribution is to be the first article comparing five decision
organisations to solve a same joint allocation and routing problem, while

10We have also tested Mechanism Cluster with the formulation by Sağlam et al. (2006) to
which we added our constraint for 1-1 exchanges. Our experimentation (not presented in this
article) shows similar performance than the formulation by Rao (1971) described in Paragraph
3.3.1, even though the obtained clusters sometimes differ.
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the few other similar comparisons only address two organisations. Our
third contribution is the quantification of the cost of decentralising the
making of decisions. We think that the most interesting result is the fact
that DO (i.e., our modified MTSP) has a median total route length which
reaches a plateau ≈30% (respectively, ≈60%) longer than CO (i.e., the
traditional MTSP) when there are five (respectively, nine) salesmen and
many cities. This stabilisation was hoped but unpredictable without exper-
imentation. We also notice that the coercion level of CA seems to impact
much more on the quality of the solution than the level of centralisation
of a mechanism.

As future work, we plan to study how our model of selfishness im-
pacts on the efficiency of the mechanisms. For that purpose, we will use
the model of preferences detailed in the discussion section in which the
salesmen make a trade-off between the value of cities and the distance
travelled, and then adapt our mechanisms to this other variant of MTSP.
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