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Abstract 

 

A complete study of the effect of different organocatalysts on the step-growth polyaddition of a five-
membered dicyclic carbonate, namely diglycerol dicarbonate, with a poly(ethylene glycol)-based diamine in 
bulk at 120 °C was first carried out. The reaction was found to be dramatically catalyst-dependent, higher rates 
being observed in the presence of strong bases, such as phosphazenes (t-Bu-P4 or P4) and 5,7-
triazabicyclo[4.4.0]dec-5-ene (TBD). Unexpectedly, the as-formed urethane linkages entirely vanished with 
time, as evidenced by FTIR and 13C NMR spectroscopies, while signals due to urea bond formation progressively 
appeared. An advantage of the chemical transformation occurring from urethane to urea linkages was further 
taken by optimizing the polymerization conditions to access a range of poly(hydroxyurea–urethane)s (PHUUs) 
with precise urethane to urea ratio in a one-pot process. Characterization of the corresponding polymers by 
rheological measurements showed that the storage modulus reached a plateau at high temperatures and at 
high urea contents. The application temperature range of poly(hydroxyurea–urethane)s could thus be 
increased from 30 to 140 °C, as for regular polyurethanes. Furthermore, SAXS and phase-contrast microscopy 
images demonstrated that increasing the urea content improved the phase separation between soft and hard 
segments of these PHUUs. Altogether, this novel, straightforward, efficient, and environmentally friendly 
strategy enables the access to non-isocyanate poly(urea–urethane)s with tunable urethane-to-urea ratio from 
five-membered dicyclic carbonates following an organocatalytic pathway. 

1. Introduction 

Non-isocyanate polyurethanes (NIPUs) have emerged as a greener alternative to conventional 

polyurethanes.(1−5) Different synthetic strategies to NIPUs have been developed, including the step-growth 

polycondensation between activated dicarbonates and diamines or, similarly, between activated dicarbamates 

and diols.(6,7) Most of the current works dedicated to isocyanate-free polyurethane synthesis are based on the 

step-growth polyaddition of bifunctional cyclic carbonates with diamines, which results in 

polyhydroxyurethanes (PHUs). In this context, five- and six-membered dicyclic carbonate monomers have been 

the most studied.(8−20) While six-membered carbonates prove more reactive than five-membered ones, their 



synthesis generally requires the use of chlorinated carbonylating agents, such as phosgene or alkyl 

chloroformates.(21−23) On the other hand, five-membered cyclic carbonates can be produced in a sustainable 

way from the chemical insertion of CO2 into naturally abundant epoxides.(24−31) Although some authors have 

recently reported the synthesis of high molecular weight NIPUs at room temperature using activated five-

membered cyclic carbonate with limited side-reactions, NIPU synthesis from five-membered cyclic carbonates 

often requires high reaction temperatures, bulk conditions, long reaction times, and, last but not least, the use 

of a catalyst to achieve high molecular weights.(32,33) Andrioletti and co-workers recently reported a rational 

study about the aminolysis of five-membered monocyclic carbonates using different organocatalysts. Their 

screening revealed that 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and the cyclohexylphenylthiourea could 

efficiently catalyze the reaction of poorly reactive amines at room temperature.(34) Nevertheless, detailed 

investigations into the effect of the (organo)catalysts on the final properties of the resulting PHUs remained 

very scarce. Henderson and co-workers confirmed that TBD enabled to catalyze PHU synthesis from five-

membered cyclic carbonates.(10) This prompted us to rationalize the effect of both a structural variation of 

organocatalysts and experimental conditions on the reaction outcomes and to probe the underlying reaction 

mechanisms. 

Poly(urea–urethane)s (PUUs) are important polymeric materials generally exhibiting high toughness and 

extensibility; they are extensively used in the textile industry (Lycra DuPont de Nemours and Co.), in foams, and 

for medical prostheses.(35,36) PUUs combine the processability of polyurethanes with the superior mechanical 

and thermal properties of polyureas that are imparted primarily by the stronger hydrogen bonding ability of 

urea moieties relatively to urethanes.(37) Whereas PUUs can be readily synthesized from isocyanate precursors 

with polyamines, there is only one report dealing with the synthesis of a PUU following a non-isocyanate route, 

namely, by melt transurethane polycondensation reaction.(38) In addition, the few works having reported the 

preparation of isocyanate-free ureas have not employed cyclic carbonates.(39,40) 

In this work, we propose a novel synthetic approach to non-isocyanate poly(hydroxyurea–urethane)s (PHUUs) 

that are characterized by a tunable urethane-to-urea ratio. For this purpose, industrially scalable five-

membered dicyclic carbonates have been used as key monomer building blocks with a diamine in the presence 

of various organocatalysts, i.e., following a metal-free route. We have indeed discovered that PHUUs can be 

effectively achieved via a two-step process, involving the prior formation of hydroxyurethane linkages and their 

partial postchemical modification into urea moieties. The final urethane-to-urea ratio strongly depends on the 

organocatalyst and the overall reaction conditions. These observations are supported by results obtained from 

model reactions with monofunctional substrates, which allows us to propose a reaction mechanism pertaining 

to this unexpected chemical transformation in the presence of peculiar organocatalysts. To the best of our 

knowledge, this is the first report on PHUU synthesis via an organocatalyzed step-growth polyaddition of 

diamines with five-membered dicyclic carbonates. 

2. Experimental Section 

2.1. Instrumentation and Materials 

Nuclear Magnetic Resonance (NMR) 

1H and 13C spectra were recorded with Bruker Avance DPX 300 or Bruker Avance 400 spectrometers. The NMR 

chemical shifts were reported as δ in parts per million (ppm) relative to the traces of nondeuterated solvent 

(e.g., δ = 2.50 ppm for d6-DMSO or δ = 7.26 for CDCl3). Data were reported as chemical shift, multiplicity (s = 

singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constants (J) given in hertz (Hz), and 

integration. 



Size Exclusion Chromatography (SEC) 

SEC was performed in THF at 30 °C using a Waters chromatograph equipped with four 5 mm Waters columns 

(300 mm × 7.7 mm) connected in series with increasing pore sizes (100, 1000, 105, and 106 Å). Toluene was 

used as a marker. Polystyrenes of different molecular weights, ranging from 2100 to 1 920 000 g mol–1, were 

used for the calibration. 

Fourier Transform Infrared (FT-IR) Spectroscopy 

FT-IR spectra were obtained by FT-IR spectrophotometer (Nicolet 6700 FT-IR, Thermo Scientific Inc., USA) using 

the attenuated total reflectance (ATR) technique (Golden Gate, spectra Tech). Spectra were recorded between 

4000 and 525 cm–1 with a spectrum resolution of 4 cm–1. All spectra were averaged over 10 scans. 

Differential Scanning Calorimetry 

A differential scanning calorimeter (DSC-Q2000, TA Instruments Inc., USA) was used to analyze the thermal 

behavior of the samples. A total of 6–8 mg of samples was first scanned from −80 to 150 °C at a heating rate of 

20 °C min–1 to eliminate interferences due to moisture. The samples were then cooled to −80 °C to remove the 

thermal history and reheated to 150 °C at 20 °C min–1. The glass transition and melting temperatures were 

calculated from the second heating run. 

Elemental Analysis 

The elemental analysis for carbon, hydrogen, and nitrogen content was performed using a Leco TruSpec Micro 

instrument (Germany) at 1000 °C using helium as transport gas. The analysis was conducted twice for 

comparison using 1–2 mg of sample. 

Mass Spectroscopy (LC-TOF-MS) 

The mass spectroscopy analysis consisted of a chromatographic separation in an ultrahigh performance liquid 

chromatograph (UPLC, Acquity system from Waters Cromatografia S.A., USA) coupled to a high-resolution mass 

spectrometer (Synapt G2 from Waters Cromatografia S.A., USA, time-of-flight analyzer (TOF)) by an 

electrospray ionization source in positive mode (ESI). The chromatographic separation was achieved using an 

Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm i.d.) with an Acquity UPLC BEH C18 1.7 μm VanGuard 

precolumn (2.1 × 5 mm) (Waters Cromatografia S.A., USA) and a binary A/B gradient (solvent A: water with 

0.1% formic acid; solvent B: methanol with 0.1% formic acid). The gradient program was established as follows: 

initial conditions were 5% B, raised to 100% B over 2.5 min, held at 100% B until 4 min, decreased to 5% B over 

the next 0.1 min, and held at 5% B until 5 min for re-equilibration of the system prior to the next injection. A 

flow rate of 0.25 mL/min was used, the column temperature was 30 °C, the autosampler temperature was 4 °C 

, and the injection volume was 7.5 μL. High-resolution mass data were acquired in SCAN mode, using a mass 

range 50–1200 u in resolution mode (fwhm ≈ 20 000) and a scan time of 0.1 s. The source temperature was set 

to 120 °C and the desolvation temperature to 300 °C. The capillary voltage was 0.5 kV and the cone voltage 15 

V. Nitrogen was used as the desolvation and cone gas at flow rates of 800 and 10 L/h, respectively. Before 

analysis, the mass spectrometer was calibrated with a sodium formate solution. A leucine–enkephalin solution 

was used for the lock mass correction, monitoring the ions at mass-to-charge ratio (m/z) 556.2771 and 

278.1141. All of the acquired spectra were automatically corrected during acquisition based on the lock mass. 

The sample was dissolved in acetone at 65 °C and diluted in methanol for the analysis (around 20 μg/mL). 

Rheometry Measurements 

Small-amplitude oscillatory experiments were performed in a stress-controlled Anton Paar Physica MCR101 

rheometer, and the experiments were carried out using 25 mm parallel plate geometry. All the experiments 



were conducted in linear viscoelastic conditions for the studied temperature range (strain = 0.5% and 

frequency 1 Hz). 

Small-Angle X-ray Scattering (SAXS) 

SAXS experiments were carried out on a Xeuss SAXS/WAXS system (Xenocs SA, France). A multilayer focused Cu 

Kα X-ray source (GeniX3D Cu ULD), generated at 50 kV and 0.6 mA, was employed. The wavelength of the X-ray 

radiation was 0.154 18 nm. A semiconductor detector (Pilatus 300K, DECTRIS, Swiss) with a resolution of 487 × 

619 pixels (pixel size 172 × 172 μm2) was applied to collect the scattering signals. The exposure time for each 

SAXS pattern was 30 min. The one-dimensional scattering intensity profiles were integrated after background 

correction from 2D SAXS patterns. 

Optical Microscopy 

The phase morphology of the samples was observed with a phase contrast microscope (Olympus BX51, Japan) 

equipped with a Linkam THMS600 hotstage (Linkam Scientific Instruments, UK). 

Reagents 

1,5,7-Triazabicyclo[4.4.0]dec-5-ene (98%) (TBD), 1,12-diaminododecane (98%), N-butylamine (99.5%), O,O′-

bis(2-aminopropyl)polypropylene glycol-block-poly(ethylene glycol)-block-polypropylene glycol (Jeffamine ED-

2003) with a molecular weight around 1900 g mol–1, p-toluenesulfonic acid monohydrate (98.5%) (PTSA), 

phosphazene base P4-t-Bu solution (0.8 M solution in hexane) (P4), and sodium methoxide (95%) were 

purchased from Sigma-Aldrich. 1,8-Diazabicyclo[5.4.0]undec-7-ene (≥98%) (DBU) and diglycerol (≥80%) were 

purchased from TCI Chemicals. 3,5-Bis(trifluoromethyl)phenyl isothiocyanate (99%), hexane (laboratory 

reagent grade), methanol (analytical reagent grade), and tetrahydrofuran (analytical reagent grade) were 

purchased from Fisher. Dimethyl carbonate (extra dry, ≥99%), dodecylamine (98%), and propylene carbonate 

(99.5%) were purchased from Acros Organics. Deuterated solvents such as CDCl3 and d6-DMSO was purchased 

from Euro-top. All materials were used without further purification. 

2.2. Synthesis of Diglycerol Dicarbonate (DGC) 

Synthesis of DGC was carried out in an adapted version of Van Velthoven et al.(41) In a 500 mL round-bottom 

flask equipped with a magnetic stirrer and a condenser, diglycerol (1 equiv, 23.18 g, 0.14 mol) and sodium 

methoxide (0.05 equiv, 0.38 g, 7 mmol) were added to a solution of dimethyl carbonate (10 equiv, 125.6 g, 

117.5 mL, 1.4 mol) under a nitrogen atmosphere. The reaction mixture was heated under reflux for 48 h. After 

cooling down to room temperature, the reaction was filtrated and concentrated under vacuum. After 

evaporation of dimethyl carbonate, the product was crystallized in methanol at −80 °C. DGC was obtained as a 

white powder after drying in the vacuum oven at 40 °C for 24 h (11.79 g, 39% yield). The structure was 

confirmed by 1H and 13C NMR spectroscopy. 1H NMR (300 MHz, d6-DMSO, δ): 4.97–4.91 (m, 1H), 4.52 (t, J = 8.5 

Hz, 1H), 4.27–4.21 (m, 1H), 3.78–3.75 (m, 1H), 3.74–3.66 (m, 1H). 13C NMR (75 MHz, d6-DMSO, δ): 154.84, 

75.40, 75.34, 70.39, 70.35, 65.88. IR (ATR, cm–1): 2998, 2927, 2888, 1765, 1546, 1481, 1371, 1340, 1259, 1168, 

1112, 1058, 956, 845, 801, 769, 711. Characterization data are consistent with previous reports.(41−43) 

2.3. Synthesis 1-(3,5-Bis(trifluoromethyl)phenyl)-3-butylthiourea (TU) 

Synthesis of TU was carried out following the procedure described elsewhere.(44) Butylamine (1.61 g, 22.1 

mmol) was added dropwise at room temperature to a stirred solution of 3,5-bis(trifluoromethyl)phenyl 

isothiocyanate (5 g, 18.44 mmol) in dry THF (50 mL). The solution was left stirring for another 4 h at room 

temperature. The reaction mixture was concentrated under vacuum, and the product was recrystallized from 

hexane. After drying under vacuum, TU was obtained as a slightly yellow powder (5.89 g, 92% yield). The 

structure was confirmed by 1H NMR spectroscopy. 1H NMR (300 MHz, d6-DMSO, δ): 9.88 (s, 1H), 8.23 (s, 2H), 



7.72 (s, 1H), 3.49 (t, 2H), 1.55 (m, 2H), 1.33 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). Characterization data are consistent 

with a previous report.(44) 

2.4. General Procedure for Polymerization Reactions 

In a typical procedure, DGC (1 equiv), diamine (1 equiv), and catalyst (0.1 equiv) were mixed together in a 25 

mL vial equipped with a magnetic stirrer. The polymerization reaction was conducted at 120 °C under stirring 

and under ambient atmosphere. Aliquots were taken at regular intervals for FTIR-ATR, NMR, DSC, and SEC 

analyses. 

2.5. General Procedure for Model Reaction 

In a typical procedure, propylene carbonate (1 equiv, 7 mmol), dodecylamine (1 equiv, 7 mmol), and catalyst 

(0.1 equiv, 0.7 mmol) were mixed together in a 25 mL vial equipped with a magnetic stirrer. The reaction was 

conducted at 120 °C under stirring and ambient atmosphere for 24 h. Aliquots were taken at specific intervals 

of time for FTIR-ATR, NMR, elemental analysis, and LC-TOF-MS. 

2.6. General Procedure for Urea Formation from Hydroxyurethane 

In this procedure, propylene carbonate (1 equiv, 7 mmol) and dodecylamine (1 equiv, 7 mmol) were mixed 

together in a 25 mL vial equipped with a magnetic stirrer. The reaction was conducted at 120 °C for 53 h in two 

parts. First, the reaction was let under stirring at 120 °C until complete conversion of propylene carbonate. 

Then, TBD (0.1 equiv, 0.7 mmol) was added in the medium, and the reaction was left stirring at 120 °C for 48 h. 

Aliquots were taken after 5 h (without TBD) and 48 h (with TBD) for FTIR and 1H NMR spectroscopy analyses. 

3. Results and Discussion 

3.1. Effect of Organocatalysts on the Polymerization Kinetics during Polyhydroxyurethane Synthesis 

Different organocatalysts were screened for the step-growth polyaddition of diglycerol dicarbonate (DGC) and 

Jeffamine ED-2003 (Mn = 1900 g mol–1) (Scheme 1a). On one hand, DGC was selected because it can be easily 

prepared from bio-based diglycerol and dimethyl carbonate with no side-reactions. On the other hand, a low 

molecular weight propylene oxide capped poly(ethylene glycol)-based diamine (Jeffamine ED-2003) was 

selected as diamine since it enables the formation of soft polyhydroxyurethanes that can be further analyzed 

by 1H NMR. In addition, Jeffamine is analogous to poly(ethylene glycol)s (PEGs) commonly employed for the 

polymerization of segmented isocyanate-based polyurethanes. 

 

Scheme 1. (a) Step-Growth Polyaddition of DGC with Jeffamine ED-2003; (b) Catalysts Used in This Study 

The organocatalysts tested included an organic acid, namely, p-toluenesulfonic acid (PTSA), organic bases of 

different pKa values, such as diazabicyclo[5.4.0]undec-7-ene (DBU), phosphazene base 1-tert-butyl-4,4,4-

tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2λ5,4λ5-catenadi(phosphazene) (P4), 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), and H-bonding donors such as 1-(3,5-bis(trifluoromethyl)phenyl)-3-

butylthiourea (TU) and potassium thioimidate (TU anion) (Scheme 1b). The TU anion was generated by 

deprotonation in THF of neutral TU with potassium methoxide, as described by Waymouth et al.(45,46) It has 



been established that these catalysts operate through specific mechanisms that can enhance the 

polymerization rate and/or selectivity.(44,45,47−49) 

Polymerization studies were performed in bulk at 120 °C by mixing equimolar amounts of DGC and Jeffamine 

ED-2003, followed by addition of 10 mol % of the catalyst. Monomer conversion was monitored by FTIR-ATR, 

through the decrease of the relative integration value of the carbonate carbonyl characteristic band at 1780 

cm–1. In order to take into account the path length of the samples, the obtained values were normalized to the 

absorbance of a band whose intensity did not change during the reaction. The total C–H stretching in the range 

3000–2850 cm–1 was thus selected. Results of these kinetics are shown in Figure 1. The polymerization rate was 

found to be highly catalyst dependent. In the absence of any catalyst, monomer conversion reached barely 70% 

after 48 h, and full conversion could not be achieved. The TU anion appeared to be the most efficient catalyst, 

as monomer conversion reached >98% within 5 min, while only 83 and 45% monomer conversions were 

observed with P4 and TBD, respectively. While differences in the reaction rates were observed at the beginning 

of the polymerization, the three organocatalysts all gave a conversion exceeding 98% within 10 h. DBU and TU, 

however, did not provide any significant effect, as the reaction did not reach completion even after 48 h (86 

and 90% conversion, respectively). 

 

Figure 1. Kinetic plot of the step-growth polymerization of DGC with Jeffamine ED-2003 at 120 °C using 
different organocatalysts. 

As for PTSA, it did not enable to reach a higher conversion than that obtained for the noncatalyzed reaction 

after 48 h. 

Analysis of the carbonyl region of FTIR spectra run at different reaction times for polymers obtained in the 

presence of the most active catalysts, i.e. P4, TBD and TU anion (Figure 2 and Figure S20), revealed an intriguing 

phenomenon. The signal at 1795 cm–1 due to the carbonyl group of the starting DGC decreased after 1 h, as 

expected, while signals attributed to the newly formed urethane bond could be observed at 1715 cm–1 (C═O 

stretching vibration) and 1530 cm–1 (N–H bending vibration). Surprisingly, a new signal appeared at 1670 cm–

1 as the reaction proceeded (10 h) that was attributed to the C═O stretching vibration of urea groups. After 48 

h of reaction, the urethane band continued to decrease in intensity, and the signal of the urea groups became 



predominant in the carbonyl region. In addition, the latter signal evolved to lower wavenumbers (1650 cm–1), 

and the N–H deformation vibration was recorded at higher wavenumbers (1550 cm–1). With DBU, PTSA, and TU 

as well as without catalyst, this behavior was not observed at this temperature. 

 

Figure 2. FTIR (left) and 13C NMR (d6-DMSO, right) spectra of products obtained at different times from the 
step-growth polymerization of DGC with Jeffamine ED-2003 performed at 120 °C using TBD as catalyst. 

To further confirm the progressive transformation of the polyhydroxyurethane precursors to 

poly(hydroxyurea–urethane)s (PHUUs), quantitative 13C NMR analysis was performed in the carbonyl region for 

higher resolution (Figure 2). Polymers were analyzed at different reaction times (1, 10, and 48 h). After 1 h, 

three different signals can be observed at 154.8, 155.3, and 155.5 ppm, respectively. While the first one is 

assigned to the DGC C═O group, the second one corresponds to the newly formed (−NH–(C═O)–O−) urethane 

linkages (containing primary and secondary hydroxyls).(41,42) After 10 h, the area of the signal attributed to 

the cyclic carbonate decreased, and the new signal appearing at 156.8 ppm can be attributed to the urea 

(−NH–(C═O)–NH−) carbonyl group. The reaction was confirmed by the complete disappearance of the carbonyl 

band associated with the five-membered cyclic carbonate monomer. Moreover, the formation of urea bond 

was also evidenced by 1H NMR, with the disappearance of the urethane NH signal over time at 6.94 ppm and 

the formation of a new peak at 5.67 ppm corresponding to the urea labile NH proton (Figure S1). In order to 

speed up the urea formation, polymerization was performed at higher temperature (i.e., 150 °C) using TBD as 

organocatalyst. Overall, we found that urea formation proceeded faster at 150 °C than at 120 °C (Figure S40). 

For example, 77% urea was achieved in 2 h at 150 °C while 24 h was required to attain a similar urea ratio at 

120 °C. 

3.2. Model Reaction 

In light of the previous results, a model reaction utilizing propylene carbonate and dodecylamine as 

monofunctional reaction partners was performed in the presence of TBD as organocatalyst (Figure 3). As 



propylene carbonate reacted with dodecylamine, diagnostic 1H NMR signals due to the methylene protons of 

the cyclic carbonate at 4.96–4.91, 4.52, and 4.27–4.20 ppm disappeared (Figure S2a). Meanwhile, new signals 

attributed to the urethane moieties were detected at 4.92–4.84 ppm (CH–OCONH compound 1), 4.76 ppm 

(CH–OH compound 1′), 3.90–4.12 ppm (CH2–OCONH compound 1′), 3.55–3.70 ppm (CH2–OH compound 1), and 

3.16 ppm (CH2–NHCOO) (Figure S2b). As the reaction proceeded, a clear evolution of the signals due to 

urethane groups was noted. These signals decreased in intensity, and a new signal due to methylene protons 

linked to the urea groups appeared at 3.16 ppm (CH2–NH). In addition, a new peak was observed at 4.30 ppm 

assigned to protons of the urea group. To our surprise, signals due to methylene protons of the cyclic 

carbonate reappeared, as a sign of the partial reversion of the process, thus regenerating hydroxyurethane 

linkages (Figure S2c). Similar findings have actually been reported by Torkelson et al.(50) These authors have 

indeed found that PHU-based networks are able to dissociate to cyclic carbonates and amine groups, under 

specific reprocessing conditions. Moreover, we noted that substantial amounts of a condensate formed at the 

early stages of the reaction. 

 

Figure 3. Evolution of the FTIR-ATR spectra with time during the aminolysis of propylene carbonate with 
dodecylamine at 120 °C using TBD as catalyst. 

Analysis by 1H NMR of this condensate revealed that it was propane-1,2-diol as side product, with characteristic 

peaks at 3.94–3.84 ppm (CH–OH), 3.63–3.58 and 3.41–3.35 ppm (CH2–OH), 2.99 ppm (OH), and 1.15 ppm (CH3) 

(Figure S3).(51) After 24 h (Figure S2c), peaks due to urethane group completely vanished, and peaks assigned 

to urea moieties were mainly detected in the 1H NMR. 

Urea formation was further analyzed by FTIR-ATR. Similar results to those of the polymerization were 

observed, i.e., disappearance of urethane moieties and appearance of high intensity signals due to urea groups 

(Figure 3). In addition, analysis of the FTIR spectra at different reaction times showed that full urea formation 

was achieved in 24 h, confirming the results obtained by NMR spectroscopy (Figure S23). Elemental and LC-



TOF-MS analyses of the aminolysis of propylene carbonate with dodecylamine after 24 h were conducted to 

characterize the final compound after its recrystallization in cold chloroform. One main compound was 

detected at m/z = 397.42. The empirical formula proposed for this protonated molecule was C25H53N2O [M + 

H+] matching the structure of 1,3-didodecylurea. In addition, elemental analysis gave experimental values that 

fitted well with this chemical formula (Figures S34 and S35 and Table S1). These results thus confirmed that 

organocatalysts such as TBD or P4 mainly generated urea groups starting from a cyclic carbonate and a primary 

amine. 

Nevertheless, the nearly complete conversion of the cyclic carbonate into urethane followed by urea formation 

suggested that the reaction mechanism followed a different pathway than the well-established amidation side-

reaction of hydroxyurethane with the primary amine.(16) 

Recent studies have reported the dissociative reversible aminolysis reaction in PHU reprocessability process; 

however, no detailed mechanism has been discussed.(50,52) Our study suggests that urea formation occurred 

in the presence of basic catalysts. A mechanism has been proposed, as illustrated in Scheme 2. It was apparent 

that urethane groups initially formed from cyclic carbonate and primary amine and further evolved into urea 

moieties. In the presence of TBD, the hydroxyl group created upon aminolysis might be deprotonated. The 

newly formed alkoxide might react with the carbonyl electrophilic center of the urethane group. We 

hypothesize that the mechanism further involves a proton transfer from the catalyst to the urethane amine 

concomitantly, followed by cleavage of the bond between the amine and the carbonyl carbon, leading to the 

formation of the cyclic carbonate and the free amine. This reaction was supported by 1H NMR data with the 

appearance of characteristic signals assigned to the cyclic carbonate monomer (Figure S2). In a second step, the 

newly formed dodecylamine can either further react with the cyclic carbonate to form the urethane compound 

again or react with another urethane group to form the linear urea and propane-1,2-diol. In the latter case, the 

strong base could deprotonate the amine, making it more nucleophilic for an attack onto another urethane 

linkage and/or facilitate the proton transfer from the amine to the propane-1,2-diol side-product after the 

cleavage of the urethane bond, yielding the urea. The presence of the two compounds was confirmed by 1H 

NMR. To further ascertain the base-promoted formation of linear ureas from hydroxyurethanes, the 

hydroxyurethane synthesized from propylene carbonate and dodecylamine was placed at 120 °C with 10 mol % 

of TBD. As expected, 1,3-didodecylurea and propylene glycol were thus generated, supporting our hypothesis 

(Figures S4 and S21). Similarly, preformed polyhydroxyurethane underwent urea formation after 48 h in the 

presence of 10 mol % TBD, which further strengthen the proposed mechanism (Figure S32). 

 

Scheme 2. Proposed Mechanism for the Formation of Urea from Urethane with TBD as Example of Base 

Catalyst 



3.3. Synthesis of Poly(hydroxyurea–urethane)s Based on DGC and Diamines 

On the basis of the findings discussed above, the scope of urea formation was expanded to the synthesis of 

various PHUUs with different urea–urethane ratios, in a one-pot process, from dicyclic carbonates. PUUs are 

considered as attractive materials owing to the higher resistance of the urea linkage to hydrolysis compared to 

the urethane one. PUUs also exhibit improved mechanical properties due to the ability of urea groups to form 

stronger hydrogen bonding compared to polyurethanes. 

We thus prepared three different PHUUs with different urethane/urea ratios by polymerizing Jeffamine ED-

2003 with DGC at 120 °C in the presence of TBD as catalyst (PHUU1, PHUU2, and PHUU3) by simply 

discontinuing the reaction at different reaction times (Scheme 2). The urethane/urea ratio was determined by 

FTIR and 1H NMR (Table1, Figure 4, and Figures S5–S7 and S24–S26). 

 

Figure 4. Representative 1H (in the area 4–7.5 ppm, left) and 13C (in the area 154–158.5 ppm, right) NMR of 
PHUU1 (0% urea) and PHUU3 (83% urea). 

  



Table 1. PHUUs Synthesized from DGC and Diamines at 120 °C Using 10 mol % of TBD as Catalyst 

       DSC SEC SAXS 

PHUU 

Jeffamine 

ED-2003 

(mol %)a 

1,12 

diaminododecane 

(mol %)a 

PEG 

content 

(wt%) 

time 

(hours) 

Ratio 

urethane/urea 

(%)b 

 

𝑇𝑔 

(°C)c 

𝑇𝑚 

(°C)c 

𝐻𝑚 

(J.g-1)d 

 

𝑀𝑛 

(g.mol-1)e 

Đe 

Long 

period (nm) 

1 100 0 90 1 100/0  -31 33 86  4000 1.8 - 

2 100 0 95 10 45/55  -37 32 77  6200 1.6 - 

3 100 0 98 48 17/83  -40 32 72  11,200 1.8 - 

4 60 40 83 3 100/0  -33 32 93  5700 1.4 11.2 

5 60 40 85 10 59/41  -38 30 90  7700 1.7 12.5 

6 60 40 87 18 43/57  -39 31 80  8700 1.6 12.5 

7 60 40 88 24 32/68  -54 29 76  8400f 1.7f 10.8 

8 60 40 90 48 16/84  -57 28 74  8100f 1.6f 9.6 

 

aCalculated according to the mol % in diglycerol dicarbonate. 
bConversions were calculated by FTIR-ATR using the carbonyl characteristic bands of urethane at 1715 cm–1 and urea at 

1670 cm–1. 
cData calculated from the second heating run of the DSC analysis. 
dData normalized to the weight fraction of PEG. 
eMn values were obtained by SEC in THF; the reported numbers are in reference to polystyrene standards. 
fThe polymers were partially soluble in THF. Analyses were performed after purification of the polymers, performed by 

dissolving and precipitating in methanol and cold ether, respectively. 

 

The thermal properties of the PHUUs compounds were then analyzed, after purification, by differential 

scanning calorimetry (Table1 and Figure S38). Low Tg values were observed for PHUU1, PHUU2, and PHUU3 

(−31, −37, and −40 °C, respectively), which was related to the presence of the soft Jeffamine segment. 

Moreover, as the urea content increased, the Tg of the final polymers decreased, which in our opinion may be 

related to a more pronounced phase separation due to (1) the presence of urea bonds which could form 

stronger hydrogen bond interaction than urethane groups and (2) because while urea groups were formed 

hydroxyl pending groups were diminished, reducing the ability of the hard segment to interact with the 

polyether based soft segment via hydrogen bonding. 

Despite their intriguing properties, one limitation of PHUs based on polyether soft segments, with respect to 

conventional polyurethanes, is their poor mechanical properties at high temperature. This is due to the lower 

ability to phase separate as strong hydrogen bonding interaction develop between pending hydroxyl groups 



and the polyether-based soft segments.(53) As Torkelson et al. have reported, PHUs consisting of oxygen-free 

soft segments, i.e., made of polybutadiene-co-acrylonitrile, exhibit sharper domain interphases, which is 

explained by a lack of hydrogen bonding between hard and soft segments.(54) Likewise, we expected phase 

separation to occur with our PHUUs due to the lesser probability for forming hydrogen bonding. The effect of 

the urea content on the thermomechanical properties was thus investigated with samples prepared from a 

mixture of two primary amines, namely, the same Jeffamine ED-2003 and 1,12-diaminododecane with a molar 

ratio = 60/40 (Table1). Five PHUUs were thus synthesized at 120 °C in the presence of 10 mol % of TBD as 

catalyst, with different urea/urethane ratios (PHUU4, PHUU5, PHUU6, PHUU7, and PHUU8) (Scheme 3). The 

urethane content was varied from 100% to 16% as determined by FTIR, 1H NMR, and 13C NMR (Figures S27–

S31, Figures S8–S13, and Figures S14–S19, respectively). 

 

Scheme 3. Synthesis of Poly(hydroxyurea–urethane)s (PHUUs) from DGC and Diamines at 120°C Using 10 mol % 

of TBD as Catalyst 

Analysis by 13C NMR of the carbonyl region expected the presence of two types of urethane groups, namely, 

one due to Jeffamine ED-2003 (155.6 and 155.3 ppm) and the other one due to 1,12-diaminododecane (156.3 

and 155.9 ppm), confirming the successful polymerization. Moreover, three different urea-type (−NH–(C═O)–

NH−) carbonyl groups could be observed at 158.1, 157.5, and 156.9 ppm. As the urea content increased, peaks 

due to the urethane carbonyls progressively disappeared (Figure S19). 

The molecular weights of the synthesized PHUUs were estimated by SEC (Table1; see also Figure S37). 

Molecular weights ranged between 4000 and 11 200 g mol–1 with dispersities ranging from 1.6 to 1.8, which 

are typical for the step-growth polyaddition reaction. 

DSC measurements of the PHUUs show soft segment glass transition temperatures (Tg) from −33 to −57 °C 

(Table1 and Figure S39). Increasing the urea content resulted in a decrease of the Tg of the soft segment of the 

polymer, likely due to a higher phase separation. This effect was more pronounced for samples containing the 

short diamine, indicating that the introduction of this compound allowed for a reorganization of the hard and 

soft segments, giving rise to a segmented phase separated structure. Regarding the semicrystalline PEG chains, 

we observed a small drop in the enthalpy of melting, as urea groups are formed during the polymerization 

which can be explained considering a change of PEG segments distribution in the polymer matrix. 

The thermomechanical properties of the five synthesized PHUUs containing the short diamine were analyzed 

by rheological measurements in parallel plates geometry. Figure 5 shows the temperature dependence of the 

storage modulus (G′) of the PHUUs. Consistent with the DSC measurements, all polymers show a drop in elastic 

modulus at around 32 °C, corresponding to the melting temperature of the aliphatic polyether chain (PEG) of 

Jeffamine ED-2003. As expected for PHUU4, without any urea domain in the hard segment, the material 

presents a direct transition from the solid state to the liquid state without a significant rubbery plateau, after 

the melting temperature of the polyether chain is reached. As described by Torkelson and co-workers, this can 

be explained by the stronger ability of polyhydroxyurethanes rather than polyurethanes to form hydrogen 



bonding between the soft and the hard phases, which limits the phase separation and thus leads to a total loss 

of rubbery plateau domain.(53) 

 

Figure 5. Temperature dependence of storage modulus (G′) of the synthesized PHUUs. 

Looking at PHUU5, PHUU6, PHUU7, and PHUU8, polymers with urea domains ranging from 41 to 84%, we also 

observed a drop on G′ upon heating near the melting temperature of Jeffamine ED-2003. However, in all these 

cases a rubbery plateau region can be observed that extends to higher temperatures as the urea content is 

increased. 

Figure 6 shows the SAXS curves of the PHUU samples at room temperature and at 60 °C (above the melting 

temperature of PEG segments). A peak was observed for all the samples at room temperature which vanished 

at 60 °C. Therefore, these peaks correspond to the long period of the lamellar structure of the matrix phase 

(PEG), which can be estimated according to d = 2π/qmax and listed in Table1. The values of long period obtained 

correspond to the average distance between the crystalline lamellar centers of PEG. When the samples are 

heated to 60 °C, the long period peaks vanished as PEG melts. For PHUU4, a broad peak was observed at 

intermediate q range and a power law at low q. For all of the other samples, only a power law was observed. 

The general SAXS features are very different from the self-assembly morphology of block copolymers with 

microphase separation. For this reason, the phase behavior was examined by phase contrast optical 

microscopy. 



 

Figure 6. SAXS patterns of the synthesized PHUUs at room temperature and at 60 °C. 

Phase contrast optical microscopy images are shown in Figure 7. All PHUU samples exhibit macroscopic phase 

separation at 40 °C. These results explain the lack of structure detected by SAXS at temperatures above the 

melting point of the PEG crystals, as the scale of phase segregation is beyond the resolution of the SAXS. The 

amount of phase-segregated domains increased from PHUU4 to PHUU8. Phase segregation was thus favored 

by the presence of urea groups. At 80 °C, a uniform phase was obtained for PHUU4. 

 

Figure 7. Phase-contrast microscopy images of PHUU4, PHUU6, and PHUU8 at (a) 40, (b) 80, (c) 120, and (d) 
200 °C. Note: the phase-contrast microscopy images of PHUU4 at 120 and 200 °C did not show any differences 
with the one obtained at 80 °C. 



On the other hand, at 200 °C, PHUU6 exhibited a single phase while PHUU8 still showed some phase-separated 

morphology. The miscibility temperatures shown in optical microscopy followed the same trend, as the 

transition temperature shown by rheology, although the former ones were higher. 

Taken together, rheometry, SAXS, and phase contrast microscopy results indicate that the poly(hydroxyurea–

urethane)s experience an order–disorder transition at temperatures well above the glass transition 

temperature of the hard segments. Upon cooling from a single-phase melt, the materials phase segregate as 

the hard segments vitrified, and further cooling leads to the crystallization of the PEG phase. 

Finally, increasing the urea content in the hard segment up to 84% (PHUU8) promoted an elastomeric behavior 

of the material well above the melting temperature of the Jeffamine polyether chain, as confirmed in the 

rheology measurement by a rubbery plateau regime up to 140 °C. This effect was attributed to the improved 

phase separation of soft and hard segments probably due to the presence of lower amounts of pending 

hydroxyl groups in the hard segment which substantially reduce the ability of PHUUs to form hydrogen bonding 

with the oxygen of the ether groups of the soft segment. Furthermore, structure–property relationship studies 

that consider the influence of the hydroxyl group in the phase separation are underway in our laboratory to 

synthesize segmented PHUUs with improved properties. 

4. Conclusion 

A new synthetic approach to poly(hydroxyurea–urethane)s in a one-pot process following an organocatalytic 

pathway starting from a five-membered dicyclic carbonate and a diamine has been developed. The 

polymerization reaction outcomes are highly catalyst dependent. During the polymerization between diglycerol 

dicarbonate and diamines, some side-reactions may take place favoring the formation of ureas. Our findings 

suggest that these side-reactions are more pronounced when using strong base catalysts such as TBD or P4. In 

order to get a better understanding of the urea formation, a model reaction between propylene carbonate and 

dodecylamine was performed showing that with strong bases such as TBD and by increasing the temperature 

mainly urea could be formed from cyclic carbonates. A mechanism has been proposed to explain the formation 

of urea from urethane after completion of the reaction. Taking advantage of this reaction, we synthesized 

different PHUUs with controlled urethane-to-urea ratio. We found that increasing the urea content led to 

phase separation in poly(hydroxyurea–urethane) even in the presence of polyether-based soft segments. 

Together, these results confirm that when using base catalysts, it is possible to synthesize isocyanate-free 

poly(hydroxyurea–urethane) in one pot and to obtain phase-separated poly(hydroxyurea–urethane)s using 

conventional polyether-based soft segments. 
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Part 1: 
1
H and 

13
C NMR spectra 

 
Figure S1. 

1
H NMR in d6-DMSO of the polymerization reaction between DGC and Jeffamine 

ED-2003 at 120°C using TBD as catalyst after a) 1 hour, b) 10 hours and c) 48 hours showing 

the change in the shifts of the NH protons. 

NH urea

NH urea

NH urethane

NH urethane

a)

b)

c)
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Figure S2. 

1
H NMR in CDCl3 in the area 3-5 ppm of the aminolysis of propylene carbonate 

with dodecylamine at 120°C using TBD as catalyst at different reaction time. (Signal of TBD 

have been labeled with *). 
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Figure S3. 

1
H NMR in CDCl3 of the condensate, propane-1,2-diol, that appeared during the 

aminolysis of propylene carbonate with dodecylamine at 120°C using TBD as catalyst. 
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Figure S4. 

1
H NMR in CDCl3 in the area 3-5 ppm of the control model reaction between 

propylene carbonate and dodecylamine at 120°C after a) 5 hr without catalyst (until complete 

conversion of propylene carbonate into urethane) and b) 48 hr after incorporation of TBD as 

catalyst. The b) NMR shows mainly proton shifts of propane-1,2-diol due to partial solubility 

of urea in CDCl3. 

 

a)

b)
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Figure S5. 

1
H NMR of PHUU1 (300 MHz, DMSO) δ (ppm) = 6.93 (bs, 1.4H, NH(CO)O), 

6,58 (bs, 0.2H, NH(CO)O), 4.90 (bs, ��), 4.74 (bs, ��), 4.67 (m, 0.6H, C�O(CO)N), 3.96-

3.82 (m, 2.9H, CH2OCH2), 3.74 (m, 2.9H, CHOH), 3.64-2.80 (m, 260H, CH2O and CH2NH), 

1.24 (s, 0.1H, CH3), 1.03 (m, 18H, CH3), 0.91-0.89 (m, 2.3H, CH3). The ratio urethane/urea 

calculated from the 
1
H NMR is 100/0. 

PHUU1



 S7

 
Figure S6. 

1
H NMR of PHUU2 (300 MHz, DMSO) δ (ppm) = 6.93 (bs, 0.7H, NH(CO)O), 

5.67 (m, 1.4H, NH(CO)NH), 4.90 (bs, ��), 4.74 (bs, ��), 4.68 (m, 0.3H, C�O(CO)N), 3.95-

3.82 (m, 1.6H, CH2OCH2), 3.74 (m, 1.8H, CHOH), 3.64-2.80 (m, 218H, CH2O and CH2NH), 

1.27 (s, 1H, CH3), 1.03 (m, 18H, CH3), 0.91-0.89 (m, 0.9H, CH3). Residual monomer has been 

labeled with *. The ratio urethane/urea calculated from the 
1
H NMR is 50/50. 

PHUU2



 S8

 
Figure S7. 

1
H NMR of PHUU3 (300 MHz, DMSO) δ (ppm) = 6.94 (bs, 0.2H, NH(CO)O), 

5.67 (m, 1.5H, NH(CO)NH), 4.57-4.48 (bs, �� and C�O(CO)N), 3.96-3.83 (m, 0.8H, 

CH2OCH2), 3.74 (m, 1.7H, CHOH), 3.64-3.20 (m, 210H, CH2O and CH2NH), 1.24 (s, 0.5H, 

CH3), 1.03 (m, 18H, CH3), 0.91-0.89 (m, 0.4H, CH3). The ratio urethane/urea calculated from 

the 
1
H NMR is 23/77. 

 

PHUU3

TBD
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Figure S8. 

1
H NMR of PHUU4 (300 MHz, DMSO) δ (ppm) = 7.06 (bs, 2.1H, NH(CO)O), 

6.92 (bs, 1.0H, NH(CO)O), 6,72 (bs, 0.5H, NH(CO)O), 5.80-5.65 (m, 1.4H, NH(CO)NH), 4.90 

(s, ��), 4.80 (s, ��), 4.67 (m, 1.9H, C�O(CO)N), 3.95-3.82 (m, 6.7H, CH2OCH2), 3.74 (m, 

4.9H, CHOH), 3.51-3.11 (m, 194H, CH2O), 2.94 (q, 4H, CH2NH), 1.37 (m, 3.8H, CH2), 1.23 

(s, 16.7H, CH2), 1.03 (m, 13.1H, CH3), 0.91-0.89 (m, 1.3H, CH3). Residual monomer has been 

labeled with *. 

PHUU4

** TBD
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Figure S9. 

1
H NMR of PHUU5 (300 MHz, DMSO) δ (ppm) = 7.06 (bs, 1.2H, NH(CO)O), 

6.92 (bs, 0.9H, NH(CO)O), 6,72 (bs, 0.5H, NH(CO)O), 5.80-5.65 (m, 3.8H, NH(CO)NH), 4.90 

(s, ��), 4.80 (s, ��), 4.67 (m, 1.9H, C�O(CO)N), 3.95-3.82 (m, 5.6H, CH2OCH2), 3.74 (m, 

4.5H, CHOH), 3.51-3.11 (m, 288H, CH2O), 2.94 (q, 4H, CH2NH), 1.37 (m, 3.5H, CH2), 1.23 

(s, 16.4H, CH2), 1.03 (m, 22.6H, CH3), 0.91-0.89 (m, 0.7H, CH3). The ratio urethane/urea 

calculated from the 
1
H NMR is 58/42. 

TBD

PHUU5
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Figure S10. 

1
H NMR of PHUU6 (300 MHz, DMSO) δ (ppm) = 7.07 (bs, 0.8H, NH(CO)O), 

6.93 (bs, 0.4H, NH(CO)O), 6,72 (bs, 0.1H, NH(CO)O), 5.80-5.65 (m, 3.9H, NH(CO)NH), 4.90 

(s, ��), 4.80 (s, ��), 4.67 (m, 1.4H, C�O(CO)N), 3.95-3.82 (m, 6.5H, CH2OCH2), 3.74 (m, 

5.8H, CHOH), 3.51-3.11 (m, 367H, CH2O), 2.94 (q, 4H, CH2NH), 1.37 (m, 4H, CH2), 1.23 (s, 

16.3H, CH2), 1.03 (m, 28.4H, CH3), 0.91-0.89 (m, 0.7H, CH3). Residual monomer has been 

labeled with *. The ratio urethane/urea calculated from the 
1
H NMR is 40/60. 

TBD* *

PHUU6
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Figure S11. 

1
H NMR of PHUU7 (300 MHz, DMSO) δ (ppm) = 7.06 (bs, 0.8H, NH(CO)O), 

6.95 (bs, 0.7H, NH(CO)O), 5.80-5.65 (m, 4.7H, NH(CO)NH), 4.90 (s, ��), 4.80 (s, ��), 4.67 

(m, 1H, C�O(CO)N), 3.95-3.82 (m, 3.8H, CH2OCH2), 3.74 (m, 4.3H, CHOH), 3.51-3.11 (m, 

300H, CH2O), 2.94 (q, 4H, CH2NH), 1.37 (m, 3.8H, CH2), 1.23 (s, 16.2H, CH2), 1.03 (m, 

25.2H, CH3), 0.91-0.89 (m, 1H, CH3). The ratio urethane/urea calculated from the 
1
H NMR is 

39/61. 

 

TBD

PHUU7
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Figure S12. 

1
H NMR of PHUU8 (300 MHz, DMSO) δ (ppm) = 7.06 (bs, 0.1H, NH(CO)O), 

6.92 (bs, 0.03H, NH(CO)O), 5.80-5.65 (m, 5.2H, NH(CO)NH), 4.60 (m, 2.2H, C�O(CO)N), 

3.74 (m, 4.9H, CHOH), 3.51-3.11 (m, 391H, CH2O), 2.94 (q, 4H, CH2NH), 1.37 (m, 3H, CH2), 
1.23 (s, 16.4H, CH2), 1.03 (m, 29.5H, CH3), 0.91-0.89 (m, 2.3H, CH3). The ratio urethane/urea 

calculated from the 
1
H NMR is 5/95. 

 
Figure S13. Evolution of the NH bands in the 

1
H NMR from PHUU4 to PHUU8. 

TBD

PHUU8

PHUU5

PHUU4

PHUU6
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NH    urethane NH    urea
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Figure S14. 

13
C NMR of PHUU4 (75 MHz, DMSO) δ (ppm) = 158.3, 157.5, 156.9 

(–NH–(C=O)–NH–), 156.3, 155.9, 155.7, 155.3 (–NH–(C=O)–O–), 75.8, 75.7, 75.5, 74.7-

74.0 (m), 73.0-71.6 (m), 70.5, 70.1, 69.8, 67.8, 65.4, 63.1, 60.1 (CH2O and CHO), 46.5, 46.4, 

46.3, 46.2, 46.1, 46.0, 45.0, 44.8, 44.7, 44.6 (CH2NH), 29.4, 29.1, 28.8, 26.3, 20.6, 19.9, 18.3, 

17.6, 17.3, 17.2, 17.1 (CH3). 

PHUU4
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Figure S15. 

13
C NMR of PHUU5 (75 MHz, DMSO) δ (ppm) = 158.1, 157.5, 156.9 

(–NH–(C=O)–NH–), 156.3, 155.9, 155.7 (–NH–(C=O)–O–),74.7-74.0 (m), 73.0-71.6 (m), 

70.5, 70.1, 67.8, 65.4, 63.1 (CH2O and CHO), 46.5, 46.3, 46.2, 46.0, 44.9, 44.8, 44.7, 44.6, 

44.5 (CH2NH), 30.1, 29.4, 29.1, 28.9, 28.8, 26.5, 26.3, 18.3, 17.6, 17.2, 17.1 (CH3). 
 

PHUU5
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Figure S16. 

13
C NMR of PHUU6 (75 MHz, DMSO) δ (ppm) = 158.1, 157.5, 156.9 

(–NH–(C=O)–NH–), 156.3, 155.9, 155.7 (–NH–(C=O)–O–), 74.7-74.0 (m), 73.0-71.6 (m), 

70.5, 70.1, 69.8, 67.8, 65.4, 63.1 (CH2O and CHO), 46.5, 46.3, 46.2, 46.1, 46.0, 44.9, 44.8, 

44.7, 44.6, 44.5 (CH2NH), 30.1, 20.6, 19.9, 18.3, 17.6, 17.3, 17.2, 17.1 (CH3). 
 

PHUU6
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Figure S17. 

13
C NMR of PHUU7 (75 MHz, DMSO) δ (ppm) = 1581, 157.5, 156.9 

(–NH–(C=O)–NH–), 156.3, 155.9, 155.7, 155.3 (–NH–(C=O)–O–), 74.7-74.0 (m), 73.0-71.6 

(m), 70.5, 70.1, 69.8, 67.8, 65.4, 63.1 (CH2O and CHO), 46.5, 46.2, 46.0, 44.9, 44.8, 44.7, 

44.6, 44.5 (CH2NH), 30.1, 29.4, 29.1, 29.0, 28.9, 28.8, 26.5, 26.3, 18.3, 17.6, 17.2, 17.1 (CH3). 
 

PHUU7
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Figure S18. 

13
C NMR of PHUU8 (75 MHz, DMSO) δ (ppm) = 158.1, 157.5, 156.9 

(–NH–(C=O)–NH–), 155.7, 155.3 (–NH–(C=O)–O–), 74.6-74.0 (m), 73.0-72.1 (m), 70.5, 

70.1, 69.8 (CH2O and CHO), 44.9, 44.8, 44.7, 44.6, 44.5 (CH2NH), 30.1, 29.1, 29.0, 28.9, 28.8, 

26.4, 18.3, 17.3, 17.2, 17.1 (CH3). 
 

 
Figure S19. Evolution of the 

13
C NMR in the carbonyl region from PHUU4 to PHUU8. 
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Part 2: FTIR-ATR spectra 
 

 

Figure S20. FTIR-ATR spectra of the polymerization reaction between DGC and Jeffamine
®

 

ED-2003 at 120°C using TBD as catalyst. 

 
Figure S21. FTIR-ATR spectra of the control model reaction between propylene carbonate 

and dodecylamine at 120°C after 5 hr without catalyst (until complete conversion of 

propylene carbonate into urethane) and 48 hr after incorporation of TBD as catalyst. 
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Figure S22. FTIR-ATR spectra of the aminolysis of propylene carbonate with dodecylamine 

at 120°C using no catalyst.  

 
Figure S23. FTIR-ATR spectra of the aminolysis of propylene carbonate with dodecylamine 

at 120°C using TBD as catalyst. 
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Figure S24. FTIR-ATR spectra of PHUU1 

 
Figure S25. FTIR-ATR spectra of PHUU2 
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Figure S26. FTIR-ATR spectra of PHUU3  

 
Figure S27. FTIR-ATR spectra of PHUU4 



 S23 

 
Figure S28. FTIR-ATR spectra of PHUU5 

 
Figure S29. FTIR-ATR spectra of PHUU6 
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Figure S30. FTIR-ATR spectra of PHUU7 

 
Figure S31. FTIR-ATR spectra of PHUU8 

 



 S25 

 
Figure S32. FTIR-ATR spectra of the control polymerization between DGC (1 equiv.), 

Jeffamine (0.6 equiv.) and 1,12-diaminododecane (0.4 equiv.) at 120°C after 7 days without 

catalyst (88% urethane conversion) and 48 hr after incorporation of TBD as catalyst 

(Urea/urethane ratio 69/31). 
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Figure S33. FTIR-ATR spectra of the PHUU obtained from the polymerization of DGC (1 

equiv.), Jeffamine (0.6 equiv.) and 1,12-diaminododecane (0.4 equiv.) at 120°C in the 

presence of 10 mol% of TBD after 7 days for reaching full urea conversion (Urea/urethane 

ratio 95/5). After 7 days, the reaction mixture became solid preventing to achieve higher urea 

ratio.   
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Part 3: LC-TOF-MS and elemental analysis 

 
Figure S34. Mass spectra of the molecule from the aminolysis of propylene carbonate with 

dodecylamine at 120°C using TBD as catalyst eluted after 3.5 min. 
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Figure S35. Mass spectra of the molecule from the aminolysis of propylene carbonate with 

dodecylamine at 120°C using TBD as catalyst eluted after 4.3 min. 

 

Table S1. Elemental analysis results from the aminolysis of propylene carbonate with 

dodecylamine at 120°C using TBD as catalyst after 24 hours. Experimental values are 

matching with the chemical formulas of 1,3-didodecylurea. 

Elemental 
composition 

C H N 

Experimental value 

(%) 
75.1 13.4 6.9 

Theoretical value 

(%) 
75.7 13.2 7.1 
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Part 4: Gel permeation chromatography data 

 
Figure S36. GPC traces of PHUU1, PHUU2 and PHUU3. 

 
Figure S37. GPC traces of PHUU4, PHUU5, PHUU6, PHUU7 and PHUU8. 
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Part 5: Differential scanning calorimetry data 

 
Figure S38. DSC curves of PHUU1, PHUU2 and PHUU3. 

 
Figure S39. DSC curves of PHUU4, PHUU5, PHUU6, PHUU7 and PHUU8. 
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Part 6: Kinetic of urea formation at different temperatures 

 

 
Figure S40. Kinetic of urea formation followed by FTIR over 48 hours at different 

temperatures from the reaction of DGC with Jeffamine ED-2003 in the presence of 10 mol% 

of TBD catalyst.  
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