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Weyl-Mahonian Statistics for Weighted Flags of

Type A-D

Roland Bacher∗

November 26, 2018

Abstract1: We relate properties of weighted flags (or multiflags) of type
A-D to statistics of the corresponding Weyl groups. For type A, we recover
the Mahonian statistics on symmetric groups. Finally, we sketch briefly an
easy extension incorporating statistics for so-called Euler-polynomials.

1 Introduction

Combinatorial statistics (or statistics for short) are combinatorially defined
N-valued functions on sets of combinatorial elements. This paper deals
with three interesting statistics on Weyl groups of the three infinite fam-
ilies A, B-C (giving rise to isomorphic Weyl groups) and D. Weyl groups
of type A are finite symmetric groups. A well-known and natural statistic
on such groups is defined by the number of inversions of a permutation σ
acting on the totally ordered set {1, . . . , d}. It gives the length of σ with
respect to the usual Coxeter generators consisting of the d−1 transpositions
(1, 2), (2, 3), . . . , (d−1, d) exchanging two consecutive integers. Another im-
portant statistic is given by summing indices of descents of a permutation.
This statistic is called the Major statistic in honour of Major Mac Mahon
who proved equidistribution of the length and the Major statistic for sym-
metric groups, see [29]. A third interesting statistic is given by Eulerian
polynomials encoding numbers of permutations with a given number of de-
scents.

All these three statistics arise naturally when counting weighted flags
over finite fields. This observation allows an extension to all Weyl groups
of the infinite families A,B-C,D (with a caveat for type D: numbers of de-
scents have to be modified slightly). Techniques coming from the theory of
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linear groups, outlined only briefly, should allow to treat the cases of the
exceptional Weyl groups.

The main part of this paper deals with the construction of the joint
statistic for inversion numbers and Major indices. These statistics are en-
coded by so-called Weyl-Mahonian polynomials. Descent numbers are a
cheap bonus outlined in a last chapter.

There exists several generalizations of the above statistics, mainly to
Weyl groups of type BC, see for example the incomplete liste [1], [2], [3],
[4], [5], [6], [7], [9], [11], [12], [13], [14], [15], [16], [17], [18], [19], [22], [23],
[24], [25], [28], [31], [32], [33], [34], [35], [36], [39], [40] of related works. Our
paper is an addition to this list.

Weyl groups are a special case of Coxeter groups, studied for example in
the monographs [8], [20], [21], [27]. Standard books of enumerative combi-
natorics are [30], [37], [38]. Finally, [10] and [26] are good introductions to
flag-varieties.

2 Main results for flags of type A

Vector-spaces are always finite-dimensional in the sequel.
A (partial) flag of a vector-space V over a field F is a sequence of sub-

spaces
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk ⊂ V

of strictly increasing dimensions 0 = dim(V0) < dim(V1) < · · · < dim(Vk−1) <
dim(Vk) ≤ dim(V ). We omit henceforth the trivial subspace V0 = {0} and
use the notation V1 ⊂ · · · ⊂ Vk for a flag of V .

A weighted flag is a flag V1 ⊂ · · · ⊂ Vk together with a sequence
w1, . . . , wk of strictly positive integers attached to the subspaces V1, . . . , Vk.
We call the sequence w1, . . . , wk the weight-sequence of the weighted flag
F = (V1 ⊂ · · · ⊂ Vk;w1, . . . , wk). The weight of such a weighted flag F is
defined as w(F ) =

∑k
i=1wi dim(Vi). It is the content of the partition, called

the weight-partition, with wi parts of size dim(Vi) ≥ i for i = 1, . . . , k.

Remark 2.1. The following definition, equivalent to weighted flags, avoids
weights and considers instead finite sequences of weakly increasing subspaces:
A partial multiflag is a weakly increasing finite sequence {0} 6= V1 ⊂ V2 ⊂
· · · ⊂ Vk of a vector space (finite-dimensional, as always). Partial multiflags
are in bijection with weighted flags: Repeat each part Vi of a weighted flag
wi times. The weighted flag F = (V1 ⊂ · · · ⊂ Vk;w1, . . . , wk) corresponds
thus to the weighted multiflag

W1 = · · · = Ww1 = V1 ⊂ Ww1+1 = · · · = Ww1+w2 = V2 ⊂

⊂ Ww1+w2+1 = · · · = Ww1+w2+w3 = V3 ⊂ · · · ⊂ Wl = Vk
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consisting of l =
∑k

i=1 wi weakly increasing subspaces (with allowed equal

consecutive subspaces Wi = Wi+1). We have of course w(F ) =
∑k

i=1 wi dim(Vi) =
∑l

i=1 dim(Wi).

We denote by F(V ) the set of all flags and by WF(V ) the set of all
weighted flags of a vector-space V .

An inversion of a permutation σ ∈ Sd acting on {1, . . . , d} is given by 1 ≤
i < i ≤ d such that σ(i) > σ(j). We write inv(σ) = |{i, j|i < j, σ(i) > σ(j)}|
for the number of inversions of a permutation σ in Sd. It is well-known that
inv(σ) corresponds to the length l(σ) of σ in terms of the Coxeter generators
(1, 2), . . . , (d − 1, d), see for example Proposition 3.1 which generalizes this
result to hyperoctahedral groups (signed permutation groups).

A descent of a permutation σ in Sd is a value i < d such that σ(i) >
σ(i+ 1). The Major index

maj(σ) =
∑

i,σ(i)>σ(i+1)

i (1)

sums up the indices of all descents of a permutation σ in Sd.
The following result relates Mahonian statistics over Sd with statistics

of weighted flags over finite fields:

Theorem 2.2. We have

∑

F∈WF(Fd
q)

tw(F ) = Md

d
∏

j=1

1

1− tj
(2)

with
Md =

∑

σ∈Sd

qinv(σ)tmaj(σ)

denoting the Mahonian statistics of Sd encoding multiplicities of elements of
given length and Major index.

Observe that the sum over elements in WF(Fd
q) is the sum over weighted

flags in an abstract d-dimensional vector-space over Fq. It does not depend
on the choice of a basis for F

d
q . Observe also that Theorem 2.2 involves a

notational abuse: the integer q representing the number of elements of a
finite field Fq (which is unique, up to isomorphism) should be considered
as a formal variable. Equalities are among formal power series in q and
t. Easy majorations show however that we get converging series in small
neighbourhoods of (0, 0) ∈ C

2.
The factor

∏d
j=1(1−tj)−1 is the generating series for partitions involving

at most d parts (or, equivalently, for partitions involving only parts of length
at most d).
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An obvious modification of Theorem 2.2 and its generalizations holds
for arbitrary fields by considering powers of q as dimensions of a cellular de-
composition (corresponding to the Bruhat decomposition of simple algebraic
groups of Lie type) of the set of all weighted flags into cells carrying affine
structures over a field F. We stick to the elementary enumerative approach
over finite fields for simplicity.

We denote by
(d
k

)

q
the q-binomial coefficient defined (for example) re-

cursively by
(

d
0

)

q
=
(

d
d

)

q
= 1 and

(

d
i

)

q
=
(

d−1
i−1

)

q
+ qi

(

d−1
i

)

q
.

Exploiting the geometric structure on the left hand side of (2) we get:

Corollary 2.3. The polynomials Md =
∑

σ∈Sd
qinv(σ)tmaj(σ) are recursively

defined by M0 = 1 and by

Md =

d−1
∑

i=0

ti





d−1
∏

j=i+1

1− tj





(

d

i

)

q

Mi (3)

(using the convention
∏d−1

j=d(1− tj) = 1).

Evaluating (3) at t = 1 yields the recursion Ld =
(

d
d−1

)

q
Ld−1 = (1 + q +

q2 + · · · + qd−1)Ld−1 and implies the well-known factorization

Ld =

d
∏

j=1

1− qj

1− q
(4)

for the generating polynomial Ld =
∑

σ∈Sd
ql(σ) enumerating elements of Sd

accordingly to their length with respect to the Coxeter generators (i, i+1).
Evaluating Md, given by Formula (3) of Corollary 2.3 at q = 1 shows

equidistribution of the length statistic with the Major statistic:

Proposition 2.4. The evaluation at q = 1 of Md factorizes as

d
∏

j=1

1− tj

1− t
.

The well-known symmetry Md(q, t) = Md(t, q) in q, t of the polynomials
Md is however not obvious from Formula (3) in Corollary 2.3.

The sequel of the paper is organized as follows:
In Sections 3 and 4 we describe analogues of Theorem 2.2 and Corollary

2.3 for Weyl groups of type B,C and D (symmetric groups are of course Weyl
groups of type A).

Section 5 sketches briefly an approach for dealing with exceptional Weyl
groups.

Sections 6-18.1 are devoted to complements and proofs.
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Section 5 contains a brief and sketchy description perhaps useful when
dealing with exceptional Weil groups (of type E,F,G).

Finally, Section 19 describes generalizations taking also into account
the number

∑k
i=1wi of a weighted flag (V1 ⊂ · · · ⊂ Vk;w1, . . . , wk), the

dimension dim(Vk) of the last subspace in a flag and statistics related to
signs in the case of Weyl groups of type BC and D. Statistics of these
numbers in the case of type A or BC involve Euler polynomials counting
descents. Details are easy to fill in and are mostly omitted.

3 Main results for flags of type B and C

We consider a finite-dimensional vector space V over a field of characteristic
6= 2 (this avoids technical problems in the symmetric case) endowed with a
non-degenerate symmetric or antisymmetric bilinear form b. A subspace L
of V is isotropic if the restriction of b to L × L is zero. We suppose that
V has isotropic subspaces of the maximal dimension ⌊dim(V )/2⌋ compat-
ible with non-degeneracy of b. Such a space is called a symplectic space
if b is antisymmetric. Symplectic spaces will always be denoted by (V, ω).
Lagrangians are maximal isotropic subspaces of symplectic spaces.

A space (V, b) is of type C if V is of even dimension and b is a non-
degenerate symplectic form, of type B if (V, b) is a quadratic space of odd
dimension and of type D if (V, b) is a quadratic space of even dimension.
Type B and C share Weyl groups: The common Weyl group of (F2d, ω)
and of (F2d+1, b) (with b a suitable symmetric bilinear form) is given by
the hyperoctahedral group S±

d of all permutations σ of {±1, . . . ,±d} such
that σ(−i) = −σ(i) for i = 1, . . . , d. The case of (F2d, b) (with b a suitable
symmetric bilinear form on a vector-space of even dimension 2d) corresponds
to the subgroup SD

d of index two in S±
d consisting of all elements σ in S±

d

such that
∏d

i=1 σ(i) = d!.
A flag of (V, b) is a flag V1 ⊂ · · · ⊂ Vk consisting only of isotropic

subspaces. Weighted flags of (V, b) and weights of flags are defined in the
obvious way. It is of course again possible to replace weighted flags by
multiflags involving only isotropic subspaces (ending with an even isotropic
subspace in the case of type D), see Remark 2.1. We denote by WF(V, b)
the set of all weighted flags of (V, b).

In order to state analogues of Theorem 2.2 and Corollary 2.3 we need
to introduce the relevant statistics on the corresponding Weyl groups. We
call these statistics Weyl-Mahonian since they extend Mahonian statistic on
symmetric groups to other Weyl groups.

We start by introducing a somewhat exotic order-relation, denoted by
<±, on the set R of real numbers. It is defined by x <± x + ǫ <± 0 <±

−x− ǫ <± −x for strictly positive x and ǫ. The induced order relation on
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Z is given by

1 <± 2 <± 3 < ± · · · <± 0 <± · · · <± −3 <± −2 <± −1 (5)

or equivalently by
(N∗, <) <± 0 <± (−N

∗, <)

with (N∗, <) (respectively (−N
∗, <) denoting the ordered set N∗ = N \ {0}

(respectively −N
∗\{0}) endowed with the usual order. In particular, (Z, <±)

is totally ordered with smallest element 1 and largest element −1. Observe
however that (Z, <±) is not well-ordered: {−1,−2,−3, . . . } has no smallest
element.

We recall that S±
d denotes the hyperoctahedral group of all 2d ·d! signed

permutations of {±1, . . . ,±d}. We consider it as the Weyl group of type C
generated by the transpositions (1, 2), (2, 3), . . . , (d − 1, d) (where (i, i + 1)
denotes the signed permutation j 7−→ j if j 6∈ {±i,±(i + 1)} and exchang-
ing the pair ±i with the pair ±(i + 1) by preserving signs) and by the
sign change (d,−d) transposing the elements of the largest pair {d,−d} of
opposite integers.

The length-function of an element in S±
d with respect to these d gener-

ators is given by the following (surely well-known) result:

Proposition 3.1. The length l±(σ) of an element σ ∈ S±
d with respect to

the generators (1, 2), (2, 3), . . . , (d − 1, d), (d,−d) is given by the formula

l±(σ) =
∑

0<i<j,σ(i)>±σ(j)

1 +
∑

0<i,σ(i)<0

(d+ 1 + σ(i)) . (6)

Proposition 3.1 of [9] gives a different formula (with respect to a slightly
different generating set).

We call a pair 0 < i < j ≤ d with σ(i) >± σ(j) an inversion of σ. In
order to avoid the use of the somewhat exotic order relation <± defined by
(5) one can replace the condition σ(i) >± σ(j) with the equivalent condition
σ(i)σ(j)(σ(i) − σ(j)) > 0.

Observe that Formula (6) boils down to Formula (1) for elements in the
subgroup Sd ⊂ S±

d of ordinary (unsigned) permutations.
The Weyl-Major index of an element σ in S±

d is defined by

Wmaj(σ) =
∑

0<i,σ(i)>σ(i+1)

i+
∑

i>0,σ(i)<0

1 . (7)

We call the polynomial

M±
d = M±

d (q, t) =
∑

σ∈S±

d

ql
±(σ)tWmaj(σ) (8)

the Weyl-Mahonian statistics of S±
d . It encodes the number of elements of

the hyperoctahedral group S±
d with given length and Weyl-Major index.

We have:
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Theorem 3.2. We have

∑

F∈WF(F2d
q ,ω)

tw(F ) = M±
d

d
∏

j=1

1

1− tj
.

Theorem 3.2 generalizes Theorem 2.2 in the following sense: Suppose
that the first d basis elements of F2d span a Lagrangian L in F

2d. Weighted
symplectic flags contained in L correspond to weighted ordinary flags of Fd

and are enumerated by restricting the sum in (8) to the subgroup Sd of
ordinary permutations.

Weyl groups of type B are also covered by Theorem 3.2 as shown by the
following result:

Theorem 3.3. We have
∑

F∈WF(F2d
q ,ω)

tw(F ) =
∑

F∈WF(F2d+1
q ,Q)

tw(F )

where WF(F2d+1
q , Q) denotes the set of weighted flags over a non-degenerate

quadratic space (F2d+1
q , Q) of odd dimension 2d + 1 over a finite field Fq of

odd characteristic such that the quadratic form Q admits a d-dimensional
isotropic subspace.

Theorem 3.2 implies the following corollary which expresses the Weyl-
Mahonian statistics M±

d on S±
d in terms of ordinary Mahonian statistic

M0, . . . ,Md (given recursively by Corollary 2.3) on symmetric groups:

Corollary 3.4. We have

M±
d =

d
∑

k=0

tk





k−1
∏

j=0

1− q2d−2j

1− qk−j









d
∏

j=k+1

(1− tj)



Mk .

Corollary 3.4 is of course an analogon of Corollary 2.3 for hyperoctahe-
dral groups.

Remark 3.5. The function defined by (7) is called Weyl-Mahonian index
in order to avoid confusion with the flag-Major index of [3] extending the
Major index in a different way to S±

d (and more generally to wreath-products
of Sd with finite cyclic group).

4 Main results for flags of type D

We denote by H = H(F) the hyperbolic plane over a field F realized as
the quadratic space F

2 endowed with a norm given by the quadratic form
(x, y) 7−→ xy.
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We denote by I a fixed maximal d-dimensional isotropic subspace (also
called a metabolizer) of Hd. As always, a flag F = (V1 ⊂ · · · ⊂ Vk) is
again a strictly increasing sequence of non-trivial isotropic subspaces of Hd

(with Hd denoting the orthogonal sum of d copies of H). The I-parity
(or simply the parity) of a flag ending with Vk is the parity of the integer
dim(Vk/(Vk ∩ I)) = dim(Vk)− dim(Vk ∩ I). Flags of even parity are simply
called even flags. We denote by Fe(Hd) the set of all even flags and by
WFe(Hd) the set of all weighted even flags.

We consider now Weyl groups of type D, given by the subgroup SD
d of

the hyperoctahedral S±
d consisting of all signed permutations σ such that

∏d
i=1 σ(i) = d!. Given an element σ ∈ SD

d we set

lD(σ) =
∑

0<i<j,σ(i)>±σ(j)

1 +
∑

0<i,σ(i)<0

(d+ σ(i)) . (9)

We will see in Proposition 17.1 that lD defines the natural length function
on Weyl groups of type D.

The Weyl-Major index Wmaj(σ) of elements in SD
d coincides with the

Weyl-Major index in S±
d and is also given by Formula (7).

The generating series of Weyl-Major statistics on SD
d has a nice factor-

ization given by the following result:

Theorem 4.1. We have

∑

σ∈SD
d

tWmaj(σ) =
(1− t)d + (1 + t)d

2

d
∏

j=1

1− tj

1− t
. (10)

We call the polynomial

MD
d = MD

d (q, t) =
∑

σ∈SD
d

ql
D(σ)tWmaj(σ) (11)

the Weyl-Mahonian statistics of SD
d . It encodes the number of elements of

SD
d with given length and Weyl-Major index.
We have:

Theorem 4.2. We have

∑

F∈WFe(Hd
q)

tw(F ) = MD
d

d
∏

j=1

1

1− tj

with Hd
q denoting the orthogonal sum of d hyperbolic planes over a finite field

Fq of odd characteristic and with WFe(Hd
q) denoting the set of all weighted

even flags (with respect to a fixed maximal isotropic subspace I of Hd
q).
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The analogue of Corollaries 2.3 and 3.4 for type D is given by:

Corollary 4.3. The polynomials MD
d for the Weyl-Mahonian statistics on

Weyl groups of type D are given by the formula

MD
d =

d
∑

k=0

tk





d
∏

j=k+1

(1− tj)





(

d

k

)

q





⌊k/2⌋
∑

l=0

(

k

2l

)

q

ql(2d+2l−2k−1)



Mk (12)

where
(d
k

)

q
are q-binomials (see for exemple Corollary 2.3) and where Mk,

defined for example by Corollary 2.3, gives the Mahonian statistic on Sk .

Remark 4.4. The parity condition in the type D case is due to the existence
of two orbits (defined by the parity condition) of maximal isotropic subspaces.

5 Modifications for exceptional types

We denote by G a simple group of Lie type over an algebraically closed
field (say over C for simplicity). Borel subgroups are maximal connected
solvable subgroups of G. We fix a Borel subgroup B0 and a maximal torus
T0 contained in B0. The Weyl group W of G is the finite quotient group
N0/T0 with N0 denoting the normalizer of T0 in G. We get thus a Bruhat
decomposition G =

⋃

w∈W B0wB0 with W denoting the Weyl group of G,
represented by suitable elements of N0. A cell B0wB0/B0 can be identified
with an affine space whose points index all associated Borel subgroups (given
by conjugates of B0 by elements of B0wB0). The dimension of such a cell
B0wB0/B0 is given by the natural length lW (w) of w with respect to the
standard generators associated to simple roots. To each Borel group B in
a cell B0wB0, we associate the parabolic subgroup PB of G generated by
B and by representants in N0 of all standard generators g ∈ W such that
l(wg) = l(w) + 1. In accordance with our previous terminology we call such
a parabolic group PB standard. (Warning: This is not the usual meaning of
“standard” in the theory of Lie groups.) Its structure depends only on the
cell B0wB0 under consideration. The standard parabolic group associated
to B0 is G. In the opposite direction, standard parabolics associated to
B0wB0 for w the Coxeter element are simply Borel groups of B0wB0.

Parabolic subgroups play the role of partial flags and standard parabolic
groups play the role of standard flags. The standard weight of a stan-
dard parabolic subgroup PB is defined as the sum of dimensions over all
non-trivial invariant subspaces of ρ(PB) with ρ denoting the adjoint repre-
sentation. (Warning: Weights of flags and weights of representations are of
course unrelated.)

An arbitrary parabolic subgroup P ′ contained in a standard parabolic
group PB is generated by B and by a subset G′

B ⊂ GB with B and GB ⊂ N0

9



(representating a subset of standard generators of W ) generating the stan-
dard parabolic subgroup PB . A standard parabolic subgroup PB contains
thus 2♯(GB) different parabolic subgroups containing B (corresponding to all
flags refining the standard flag associated to the standard parabolic sub-
group PB). Weights associated to a parabolic subgroup P ′ are defined by
sequences of strictly positive integers indexed by invariant subspaces of ρ(P ′)
where ρ denotes the adjoint representation of G. (The associated weight is
then given by

∑

iwi dim(Vi) where the sum is over all invariant subspaces
Vi of ρ(P

′) with associated weight wi ∈ {1, 2, . . . }.)
Working out the technical details of this machinery turns the determina-

tion of the Weyl-Mahonian statistics on the six exceptional Weyl groups of
type E,F,G (for the flags of which there exists to my knowledge no obvious
easy combinatorial description) into finite computations.

6 Complements for weighted flags

The empty flag is reduced to the trivial (and omitted) subspace V0 = {0}.
It is the unique flag of weight 0 as a weighted flag.

A flag V1 ⊂ V2 ⊂ · · · ⊂ Vk of a finite-dimensional vector space V is
complete if k = dim(V ) (and thus dim(Vi) = i for i = 0, . . . ,dim(V )). A
flag is maximal if dim(Vk) = dim(V ) and nonmaximal otherwise. Complete
flags are maximal.

Every flag F = (V1 ⊂ · · · ⊂ Vk) can be endowed with the minimal weight
∑k

i=1 dim(Vi) defined by the weight-sequence w1 = w2 = · · · = wk = 1. Any
other weight sequence yields a strictly larger weight for F .

A weighted flag (V1 ⊂ · · · ⊂ Vk;w1, . . . , wk) of V defines a function
µ : V −→ N by setting µ(v) =

∑

i,v∈Vi
wi. We call the value µ(v) the

(weighted) multiplicity of v. We have of course µ(v) = 0 if and only if v is
in the complement of Vk.

A flag F = (V1 ⊂ V2 ⊂ · · · ⊂ Vk) of a d-dimension vector space V can
be encoded by a basis f1, . . . , fd such that f1, f2, . . . , fdim(Vi) span Vi for all
i and by the strictly increasing sequence 0 < dim(V1) < dim(V2) < · · · <
dim(Vk) of dimensions. If F is weighted with weight sequence w1, . . . , wk,
the decreasing sequence µ(f1) ≥ µ(f2) ≥ · · · ≥ µ(fk) of multiplicities of
basis vectors as above defines the conjugate partition of the weight partition
and we have thus

k
∑

i=1

wi dim(Vi) =

d
∑

i=1

µ(fi) .

We call the partition defined by µ(f1), . . . , µ(fdim(Vk)) the conjugate (weight)
partition. A weighted flag is of course also uniquely defined by a basis
f1, . . . , fd as above and by the conjugate partition µ(f1), . . . , µ(fd) involving
at most d non-zero parts.
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7 q-binomials and proofs of Corollary 2.3 and Propo-

sition 2.4

The following lore is easy and well-known (see for example Proposition 1.3.18
of [37]):

Proposition 7.1. The number of k-dimensional subspaces of Fd
q is given by

the q-binomial
(

d

k

)

q

=
k
∏

j=1

qd+1−j − 1

qj − 1
.

Proof of Corollary 2.3. We start by sorting weighted flags of Fd
q according

to the dimension i = dim(Vω) ∈ {0, 1, . . . , d − 1} of their last and largest
subspace Vω. By Proposition 7.1 there are

(

d
i

)

q
possibilities for the choice

of Vω and we get thus the identity

∑

F∈WF(Fd
q)

tw(F ) =
d
∑

i=0

ti
(

d

i

)

q

∑

F∈WF(Fi
q)

tw(F )

equivalent to

(1− td)
∑

F∈WF(Fd
q)

tw(F ) =
d−1
∑

i=0

ti
(

d

i

)

q

∑

F∈WF(Fi
q)

tw(F )

which is the generating series of all weighted non-maximal flags.
Applying Theorem 2.2 on both sides we get

Md

d−1
∏

j=1

1

1− tj
=

d−1
∑

i=0

ti
(

d

i

)

q

Mi

i
∏

j=1

1

1− tj

which yields the result multiplying both sides with
∏d−1

j=1(1− tj).

Proof of Proposition 2.4. Equality holds trivially for d = 1. Induction yields
for the evaluation Ad of Md at q = 1

Ad =

d−1
∑

i=0

ti





d−1
∏

j=i+1

(1− tj)





(

d

i

) i
∏

j=1

1− tj

1− t

=

d−1
∏

j=1

(1− tj)

((

d
∑

i=0

(

d

i

)

ti

(1− t)i

)

−
td

(1− t)d

)

=

d−1
∏

j=1

(1− tj)

(

(

1 +
t

1− t

)d

−
td

(1− t)d

)

=

d
∏

j=1

1− tj

1− t
.
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8 Canonical presentations of weighted flags

We associate to a flag F = (V1 ⊂ V2 ⊂ · · · ⊂ Vk) of Fd a uniquely defined
canonical basis f1, . . . , fd of Fd such that Vi is spanned by f1, . . . , fdim(Vi)

for all i.
The canonical presentation of a weighted flag is given by its canonical

basis f1, . . . , fd together with its conjugate weight-partition µ(f1), . . . , µ(fd).
Canonical presentations are given algorithmically and thus uniquely deter-
mined.

The canonical basis f1, . . . , fk is constructed algorithmically as follows:
If Vk is a strict subspace of Fd, we increase the flag by adding a last space

Vk+1 = F
d with degenerate multiplicity µ(v) = 0 on elements in Vk+1 \ Vk.

The length of a non-zero element v = (x1, . . . , xj , 0, . . . , 0) in F
d is the

largest integer j corresponding to a non-zero coordinate xj ∈ F \ {0}.
Let f1 be the unique element of smallest length and last coordinate 1

in V1. Set λ(1) = length(f1). If V1 is of dimension larger than 1, define
f2 as the unique shortest non-zero element of V1 with last coordinate 1 and
coordinate xλ(1) = 0. If V1 is one-dimensional, define f2 similarly using V2.
Set λ(2) = length(f2).

More generally, suppose f1, . . . , fi−1 with i < d already constructed. Let
j be the smallest index such that Vj is not spanned by f1, . . . , fi−1. The
vector fi is defined as the unique shortest element in F

d of Vj \ (Ff1 + · · ·+
Ffi−1) with last coordinate 1 and with coordinates xλ(1) = xλ(2) = · · · =
xλ(i−1) = 0. We set λ(i) = length(fi).

This construction yields a basis f1, . . . , fd of Fd such that Vi is spanned
by f1, . . . , fdim(Vi) for all i. We call f1, . . . , fd the canonical basis.

The sequence λ(f1), λ(f2), . . . of lengths of the canonical basis defines a
permutation i 7−→ λ(fi) of Sd. We λ the length-permutation. The length-
permutation is uniquely defined in terms of the canonical basis.

Observe that many flags share a common canonical basis, see Remark
9.1 for more.

We will see in Proposition 9.3 that weighted flags corresponding to a
given standard basis of Fd are in one-to-one correspondence with partitions
having at most d parts. Each such flag contributes one monomial to the
factor

∏d
j=1(1−tj)−1 appearing in Formula(2) of Theorem 2.2. The constant

term 1 corresponds to the standard flag, introduced and studied in the next
Section.

Remark 8.1. The construction of the canonical basis is equivalent to the
Bruhat decomposition BWB = SLd(F) of special linear groups. The length-
permutation λ belongs to the Weyl group Sd of SLd(F) and indexes the
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Schubert cell BλB containing the matrix with rows f1, . . . , fd−1, (−1)sign(λ)fd
(with sign(λ) denoting the signature of λ).

9 Standard flags

A flag F = (V1 ⊂ · · · ⊂ Vk ⊂ F
d) of F

d consisting of k subspaces is a
standard flag if F is a nonmaximal flag (contained in a strict subspace Vk

of Fd) associated to a length-permutation with k descents. (Recall that a
descent is an index i < d such that σ(i) > σ(i + 1).) Since λ(i) < λ(i + 1)
if i 6∈ {dim(V1), . . . ,dim(Vk)}, standard flags involve the minimal number of
subspaces determining a given length-permutation. Every canonical basis
defines a unique standard flag defined by dim(Vi) = j if j is the i-th descent
of the corresponding length-permutation. Any abstract flag F = U1 ⊂
· · · ⊂ Ul with canonical basis f1, . . . , fd is a refinement of the standard flag
V1 ⊂ · · · ⊂ Vk defined by f1, . . . , fd in the following sense: there exists a
strictly increasing sequence 1 ≤ j1 < · · · < jk ≤ l such that Vi = Uji . We
denote by st(F ) the standard flag associated to the canonical basis of a flag
F . In particular, every standard flag can be refined to a unique complete flag
(U1 ⊂ · · · ⊂ Ud) by definining Vi as the span of the first i elements f1, . . . , fi
of its canonical basis. Standard flags are thus in one-to-one correspondence
with complete flags. (Observe however that the definition of complete flags
is independent of the choice of a basis. Standard flags are defined in F

d with
respect to the natural basis of Fd. The map F 7−→ st(F ) associating to a
complete flag F the standard flag st(F ) is thus only defined for complete
flags of Fd.)

Remark 9.1. A canonical basis f1, . . . , fd with length permutation λ hav-
ing k descents is the canonical basis of exactly 2d−k different abstract flags:
Each quotient space Vi/Vi−1 of the standard flag can indeed be refined in
2dim(Vi)−dim(Vi−1)−1 different ways (corresponding to the 2dim(Vi)−dim(Vi−1)−1

different compositions of the natural integer dim(Vi) − dim(Vi−1)) into ab-
stract flags having the same canonical basis.

The standard weight of a standard flag F = (V1 ⊂ · · · ⊂ Vk) is given by

wmin(F ) =

k
∑

i=1

dim(Vi) .

It corresponds to the smallest possible weight-sequence w(V1) = · · · =
w(Vk) = 1. The associated weight-multiplicities are given by µ(fj) = k+1−i
if dim(Vi−1) < j ≤ dim(Vi) and by µ(fj) = 0 for j > dim(Vk).

The standard weight of a standard flag has the following combinatorial
characterization:

13



Proposition 9.2. The standard weight wmin(F ) of a standard flag F =
(V1 ⊂ · · · ⊂ Vk) with length permutation λ ∈ Sd is given by the Major index

maj(λ) =
∑

i,λ(i)>λ(i+1)

i

of λ.

We leave the obvious proof to the reader.
We illustrate the notion of a standard flag and of its minimal weight

by an example. We consider a canonical basis f1, . . . , f9 of F9 with length
permutation (λ(1), λ(2), . . . , λ(9)) = (6, 3, 8, 1, 4, 9, 7, 2, 5) the permutation
illustrating the Wikipedia entry “Permutation” at the time of writing. Di-
mensions dim(Vi)−dim(Vi−1) of quotient-spaces Vi/Vi−1 correspond to (non-
final) maximal ascending runs (maximal sets of consecutive integers on which
λ is increasing). The ascending runs of λ are

run λ(run)

1 6
2, 3 3, 8
4, 5, 6 1, 4, 9
7 7
8, 9 2, 5

and correspond to the composition 1+2+3+1+2 of d = 9. Since the Major
index

∑

i,σ(i)>σ(i+1) i of λ is the sum of preimages (or indices) of maximal
elements in non-final ascending runs (maximal sets of consecutive integers
on which the permutation is increasing), the Major index of our example
equals 1 + 3 + 6 + 7 = 17. An associated standard flag is given by

V1 = Ff1,

V2 = Ff1 + Ff2 + Ff3,

V3 = Ff1 + · · ·+ Ff6,

V4 = Ff1 + · · ·+ Ff7

for a suitable basis f1, . . . , f9 with weight-multiplicities µ(f1) = 4, µ(f2) =
µ(f3) = 3, µ(f4) = µ(f5) = µ(f6) = 2, µ(f7) = 1, µ(f8) = µ(f9) = 0. The
standard weight of this standard flag is given by 4 ·1+3 ·2+2 ·3+1 ·1 = 17
and is thus equal to the Major index of σ.

The observation that the standard weight of a standard flag is the small-
est possible weight among all weighted flags sharing a given canonical basis
can be refined into the following result:

Proposition 9.3. Let F = (U1 ⊂ · · · ⊂ Ul) be a weighted flag with as-
sociated standard flag st(F ) = (V1 ⊂ · · · ⊂ Vk). There exists a partition

14



α1, . . . , αd of wF (F )−wmin(st(F )) such that the weight-multiplicities µF (fi)
for F are given by

µF (fi) = µmin(fi) + αi

with µmin(fi) defining the standard weight-multiplicities of the associated
standard flag st(F ).

The weight of F is given by

wF (F ) = wmin(F ) +

d
∑

i=1

αi .

Proposition 9.3 implies the following result:

Corollary 9.4. We have

∑

F∈st−1(Fst)

tw(F ) = tw(Fst)
d
∏

i=1

1

1− ti

where w(Fst) is the standard weight of a standard flag Fst and where st−1(Fst)
is the set of all weighted flags with associated standard flag Fst.

Proof. This follows from the easy observation that any partition α1, . . . , αd

defines a sequence of weight-multiplicities w(fi) = αi + wmin(fi) on the
standard basis f1, . . . , fd.

Proof of Proposition 9.3. We have to show that the sequence α1, . . . , αd de-
fined by αi = µF (fi)−µmin(fi) has decreasing non-negative values. Suppose
first that we have αi < αi+1. Since µmin(fi)−µmin(fi+1) ≤ 1 and since µF (fi)
is decreasing, the inequality αi < αi+1 is only possible if µF (fi) = µF (fi+1)
and µmin(fi) = 1+µmin(fi+1). This contradicts the fact that F contains all
subspaces of the associated standard flag st(F ).

Non-negativity of αi follows from α1 ≥ α2 ≥ · · · ≥ αd = µF (fd) −
µmin(fd) = µF (fd)− 0 ≥ 0.

10 Canonical bases with a given length-permutation

Proposition 10.1. The set B(λ) of all canonical bases of Fd with length-
permutation λ ∈ Sd is an affine vector-space of dimension

inv(λ) =
∑

i<j,λ(i)>λ(j)

1 .

The crucial ingredients for proving Theorem 2.2 are Corollary 9.4 and
the following result:
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Corollary 10.2. Denoting by Fst(F
d) the set of all standard flags of Fd we

have
∑

F∈Fst(Fd
q)

twst(F ) =
∑

λ∈Sd

tmaj(λ)qinv(λ)

where wst(F ) denotes the standard weight of a standard flag F and where
maj and inv denote the Major index and the number of inversions of a
permutation λ in Sd.

Proof of Corollary 10.2. We apply Propositions 9.2 and 10.1 to the sum over
all elements of Sd.

Proof of Proposition 10.1. We construct the set B(λ) of all canonical bases
of Fd with length-permutation λ in Sd.

The first element f1 = (x1,1, x1,2, . . . , x1,λ(1)−1, 1, 0, . . . , 0) has λ(1) − 1
arbitrary coefficients followed by a coefficient x1,λ(1) = 1. Coefficients with
indices larger than λ(1) are 0. More generally, the i-th basis element fi of
a canonical basis has prescribed coeffients xi,λ(j) = 0 for j = 1, . . . , i − 1,
xi,λ(i) = 1, xi,j = 0 for j > λ(i). All remaining coefficients are free. Such
coefficients are in bijection with j > i such that λ(j) < λ(i). Their number
is thus the number of inversions i < j, λ(i) > λ(j) involving i as their
smaller argument. This shows that there are qinv(λ) canonical bases of Fd

q

with length-permutation a given element λ in Sd.

The Rothe-diagram of λ visualizes the nature of the coefficients occuring
in a canonical basis of the set B(λ) constructed while proving Proposition
10.1: Bullets • represent coefficients 1, crosses × represent free coefficients
and blanks represent coefficients which are necessarily 0.

For example, the Rothe diagram of permutation (λ(1), λ(2), . . . , λ(9)) =
(6, 3, 8, 1, 4, 9, 7, 2, 5) of S9 is given by

i\λ(i) 1 2 3 4 5 6 7 8 9

1 × × × × × •

2 × × •

3 × × × × × •

4 •

5 × •

6 × × × •

7 × × •

8 •

9 •

,

cf. the section “Numbering permutations”of the Wikipedia entry “Permuta-
tion”in [41]. Its 18 crosses correspond to the 18 inversions giving the length
of λ. Each cross has indeed exactly one bullet at its right and one bullet
below it. The lines i < j indexing these two bullets define an inversion
λ(i) > λ(j) of λ.
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11 Type C: Symplectic flags

A symplectic space V is always of even dimension 2d and has a basis
e1, . . . , ed, f1, . . . , fd such that ω(ei, fi) = −ω(fi, ei) = 1 and ω(ei, ej) =
ω(fi, fj) = ω(ei, fj) = 0 if i 6= j. We denote a symplectic space over a field
F henceforth by (F2d, ω) or F

2d for short. A subspace W of V is isotropic
if the restriction of ω to W ×W is identically zero. Lagrangians in (F2d, ω)
are maximally isotropic subspaces and are of dimension d.

A symplectic flag of (F2d, ω) is a flag V1 ⊂ V2 ⊂ · · · ⊂ Vk of F2d which is
contained in a Lagrangian of F2d. The symplectic form ω restricts thus to 0
on Vk×Vk and Vk is of dimension at most d. A symplectic flag is maximal if
dim(Vk) = d and complete if k = d. Complete symplectic flags are maximal.

Weighted flags and weights of flags are defined in the obvious way. We
denote by WF(F2d, ω) the set of all weighted symplectic flags of the sym-
plectic space (F2d, ω).

11.1 Proof of Corollary 3.4

The proof of Corollary 3.4 is essentially identical to the proof of Corollary
2.3. The main ingredient is the following well-known result which can be
seen as an analogue of q−binomial coefficients:

Lemma 11.1. (i) Given an odd prime power q, the symplectic space (F2d
q , ω)

and a non-degenerate orthogonal space of dimension 2d+1 over Fq have both
q2d isotropic elements.

(ii) Given an odd prime power q, the symplectic space (F2d
q , ω) and a

non-degenerate orthogonal space of dimension 2d+ 1 over Fq have both

k−1
∏

j=0

q2d−j − qj

qk − qj
=

k−1
∏

j=0

1− q2d−2j

1− qk−j
(13)

isotropic subspaces of dimension k.

We leave the proof to the reader.

Proof of Corollary 3.4. Assertion (ii) of Lemma 11.1 and Theorem 2.2 imply

∑

F∈WF(F2d
q ,ω)

tw(F ) =

d
∑

k=0

tk





k−1
∏

j=0

q2d−2j − 1

qk−j − 1



Mk

k
∏

j=1

1

1− tj
.

Use of Theorem 3.2 and multiplication by
∏d

j=1(1− tj) end the proof.
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11.2 Small values and a few properties for M±
d

The first few polynomials M±
d are as follows: M±

1 = 1 + qt, coefficients of
M±

2 ,M±
3 are given by

1 q q2 q3 q4

1 1
t 1 1 1
t2 1 1 1
t3 1

1 q q2 q3 q4 q5 q6 q7 q8 q9

1 1
t 1 1 1 1 1
t2 1 2 2 2 2 1 1
t3 1 1 3 2 2 3 1 1
t4 1 1 2 2 2 2 1
t5 1 1 1 1 1
t6 1

and coefficients of M±
4 are given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
t 1 1 1 1 1 1 1
t2 1 2 2 3 3 3 3 2 2 1 1
t3 1 2 4 4 6 6 6 6 5 4 2 2
t4 1 2 4 6 7 8 9 9 8 7 5 3 2 1
t5 1 3 5 7 9 10 12 10 9 7 5 3 1
t6 1 2 3 5 7 8 9 9 8 7 6 4 2 1
t7 2 2 4 5 6 6 6 6 4 4 2 1
t8 1 1 2 2 3 3 3 3 2 2 1
t9 1 1 1 1 1 1 1
t10 1

(with columns yielding the coefficients of 1, q, . . . , q16). Maximal degrees in
q and t of M±

d are due to the Coxeter element c(i) = −i, i = 1, . . . , d (which

is the unique non-trivial central element in S±
d ) of maximal length

(d
2

)

+
(d+1

2

)

= d2 and maximal flag-Major index
(d
2

)

+ d =
(d+1

2

)

contributing the

monomial qd
2
t(

d+1
2 ) of leading degree in q and t to M±

d . The easy identities

l(σ)+l(c◦σ) = d2 andWmaj(σ)+Wmaj(c◦σ) =
(d+1

2

)

imply the symmetry

t(
d

2)qd
2
M±

d (1/q, 1/t) = M±
d (q, t), obvious in the above examples.

The polynomial M±
d evaluates to 2dd! at q = t = 1.

Corollary 3.4 and Formula (4) yield the well-known factorization

M±
d (q, 1) =

∑

σ∈S±

d

ql(σ) =

d
∏

j=1

1− q2j

1− q

(analogous to the factorization for Sd given by (4)) for the generating poly-
nomial of lengths in the hyperoctahedral group S±

d (obtained by evaluating
M±

d at t = 1).
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A similar computation (again using Corollary 3.4 and Formula (4)) yields
the factorization

M±
d (1, t) = (1 + t)dMd(1, t) = (t+ 1)d

d
∏

j=1

tj − 1

t− 1

at q = 1.
The easy congruence

(

d

i

)

q

≡
i−1
∏

j=0

1− q2d−2j

1− qi−j
(mod qd+1−i)

implies thatMd andM±
d have identical coefficients of total degree degt+degq

at most d. We have thus limd→∞Md(q, q) = limd→∞M±
d (q, q) ∈ Z[[q]] for

coefficient-wise convergency.

12 The length-function of S±
d

We remind the reader that a pair i < j such that σ(i) >± σ(j) (with <± de-
fined by Formula (5)) is an inversion of an element σ in the hyperoctahedral
group S±

d . (Readers annoyed by the order relation <± can replace the con-
dition σ(i) >± σ(j) by the equivalent condition σ(i)σ(j)(σ(i) − σ(j)) > 0.)

Inversions i < j can be classified by their sign-pattern into three types:
σ(i) > σ(j) > 0, σ(i) < 0 < σ(j) and 0 > σ(i) > σ(j) depicted graphically
by

•
•

,
•

•
and

•
•

using hopefully self-explanatory notations.
Non-inversions i < j are similarly classified into 0 < σ(i) < σ(j), σ(i) >

0 > σ(j) and σ(i) < σ(j) < 0 represented by

•
•

,
•

•
and

•
•

We call the contribution
∑

0<i,σ(i)<0(d+1+ σ(i)) to l(σ) (given by For-
mula (6)) the sign-part of the length.

We denote the ordinary transpositions (i, i + 1) of M±
d by si for i =

1, . . . , d − 1 and we denote by sd the sign change of the last coordinate
(exchanging d and −d).

Proof of Proposition 3.1. For the sake of concision, we denote by l the func-
tion of Proposition 3.1 defined by (6). The length 0 of the identity permu-
tation σ(i) = i for i ∈ {1, . . . , d} is obviously given by l(σ) = 0.
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If i < d, the map σ 7−→ σ ◦ si does not affect the sign-part of σ in S±
d .

Moreover, since i < i+1 is an inversion of σ if and only if it is a non-inversion
of σ ◦ si and vice-versa, the number of inversions of σ ◦ si and of σ differ
exactly by 1 for i = 1, . . . , d− 1. This implies |l(σ)− l(σ ◦ si)| = 1 for i < d.

We prove now that this holds also for i = d, i.e. we have |l(σ)−l(σ◦sd)| =
1: Up to replacing σ with σ ◦ sd we can suppose σ(d) = a > 0. We depict σ
schematically by the following representation

σ(j) i1 i2 i3 i4 d

•4
a •

•3
•2

−a ◦
•1

(the horizontal line represents 0, the vertical line separates the last index
d from previous ones, the last value of σ, respectively of σ̃ = σ ◦ sd, is
represented by •, respectively ◦). We denote by ij indices taking values
depicted by •j , i.e.

−d ≤ σ(i1) < −a < σ(i2) < 0 < σ(i3) < a < σ(i4) ≤ d .

The following Table depicts the status with respect to inversions (Yes for
inversions, No for non-inversions) of σ and σ̃ = σ ◦ sd for ij < d:

j σ(ij) >± σ(d) σ̃(ij) >± σ̃(d)

1 Yes No
2 Yes Yes
3 No No
4 Yes No

Setting
νj = ♯{i < d|i is of type ij}

(where ”type” means represented by •j) we get now

l(σ ◦ sd)− l(σ) = d+ 1− a− ν1 − ν4
= d+ 1− a− (d− a)
= 1

using the trivial identity ν1 + ν4 = d− a. This shows the equality

|l(σ) − l(σ ◦ sd)| = 1. (14)

So far we have proven that l(σ), given by Formula (6) of Proposition
3.1, is at least equal to the length of σ in terms of the generators s1, . . . , sd.
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Indeed, since composition with a generator changes the value of l exactly by
1 and since l(σ) = 0 if σ is the identity, at least l(σ) generators are necessary
for writing an arbitrary element σ of S±

d .
Equality holds if we show that for each σ with strictly positive l(σ)

there exists a generator si such that l(σ ◦ si) = l(σ) − 1. We consider thus
an arbitrary signed permutation σ of S±

d .
If σ(d) < 0, then l(σ ◦ sd) = l(σ) − 1 as can be seen after interchanging

σ, σ ◦ sd and applying the identity (14).
If σ(d) > 0 then σ is either the identity or there exists a largest integer

i < d such that either σ(i) < 0 < σ(i + 1) or σ(i) > σ(i + 1) > 0. In both
cases, i < i+ 1 defines an inversion of σ but not of σ ◦ si and we have thus
l(σ ◦ si) = l(σ)− 1.

Remark 12.1. The proof of Proposition 3.1 is algorithmic. Given an ele-
ment σ 6= id of S±

d , we choose an index i1 (for example as large as possible)
such that σ ◦ si1 is of shorter length than σ and we iterate until arriving at
the identity s ◦ si1 ◦ si2 ◦ · · · ◦ sil (with l = l(σ) denoting the length of σ given
by Formula (6) in Proposition 3.1). This leads to a shortest expression

σ = sil ◦ sil−1
◦ · · · ◦ si1

of σ using l = l(σ) (not necessarily different) generators sij belonging to the
set {s1 = (1, 2), s2 = (2, 3), . . . , sd−1 = (d−1, d), sd = (d,−d)}. Every short-
est expression with respect to the Coxeter generators s1, . . . , sd is obtained
in this way.

Denoting a signed partition σ by (σ(1), . . . , σ(d)), we get for example
for σ = (−2,−3, 1) (of length 6, it has 3 inversions and a sign-part of
(4− 2) + (4− 3) = 3):

σ (−2,−3, 1) 6
σ ◦ s2 (−2, 1,−3) 5

σ ◦ s2 ◦ s3 (−2, 1, 3) 4
σ ◦ s2 ◦ s3 ◦ s1 (1,−2, 3) 3

σ ◦ s2 ◦ s3 ◦ s1 ◦ s2 (1, 3,−2) 2
σ ◦ s2 ◦ s3 ◦ s1 ◦ s2 ◦ s3 (1, 3, 2) 1

σ ◦ s2 ◦ s3 ◦ s1 ◦ s2 ◦ s3 ◦ s2 (1, 2, 3) 0

(with the last column indicating lengths) when choosing always largest pos-
sible indices. This gives for σ = (−2,−3, 1) the expression

σ = (s2 ◦ s3 ◦ s1 ◦ s2 ◦ s3 ◦ s2)
−1 = s2 ◦ s3 ◦ s2 ◦ s1 ◦ s3 ◦ s2

in terms of the generators s1 = (2, 1, 3), s2 = (1, 3, 2), s3 = (1, 2,−3).
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13 The canonical half-basis of a symplectic flag

We embed a flag F = (V1 ⊂ · · · ⊂ Vk) of F2d = (F2d, ω) canonically in a
Lagrangian (maximal isotropic subspace) L(Vk) depending only on Vk and
we associate to such a flag a length-permutation σ ∈ S±

d and a canonical
basis f1, . . . , fd of L(Vk) such that f1, . . . , fdim(Vi) span Vi for i = 1, . . . , k.

We identify the symplectic space F2d with⊕d
i=1(Fbi+Fb−i), i ∈ {1, . . . , d},

endowed with the symplectic form ω(bi, bj) = 0 if i + j 6= 0, ω(bi, b−i) =
−ω(b−i, bi) = 1 for i = 1, . . . , d.

We order indices of coordinates xi of an element
∑d

i=1(xibi + x−ib−i)
in F

2d always increasingly with respect to the order relation <± giving the
order relation

1 <± 2 <± 3 <± · · · <± −3 <± −2 <± −1

of (5). We write thus elements of F2d in the form

(x1, x2, . . . , xd−1, xd, x−d, x−d+1, . . . , x−2, x−1) . (15)

We use this order also on indices of the standard basis of (F2d, ω) writing it
in the form

b1, b2, b3, . . . , bd−1, bd, b−d, b1−d, b2−d, . . . , b−2, b−1 .

We call the position of the index i with respect to the order <± the
length of a basis element bi. More precisely, the length λ(bi) of bi ∈ F

2d is
given by

λ(bi) =

{

i if i > 0,
2d+ 1− i if i < 0.

The length λ(x) of x = (x1, . . . , xd, x−d, . . . , x−1) ∈ F
2d is the maximal

length of a basis-vector involved with non-zero coefficient. The length of an
element depends crucially on the dimension 2d of the surrounding symplectic
space as shown by the following example: The element 3b2 + b3 − 5b−3

of (F6, ω) with coordinate-vector (0, 3, 1,−5, 0, 0) has length 4. The same
element 3b2+b3−5b−3 has length 6 when considered as an element of (F8, ω)
since its coordinate-vector is then given by (0, 3, 1, 0, 0 − 5, 0, 0).

Let F = (V1 ⊂ V2 ⊂ · · · ⊂ Vk) be a symplectic flag of F2d. We associate
to F a basis f1, . . . , fd of a canonically defined maximal Lagrangian L con-
taining Vk and a length-permutation σ ∈ S±

d as follows: f1 is the element
of minimal length in V1 \ {0} with last non-zero coordinate 1. We define
σ(1) as the unique element of {±1, . . . ,±d} such that f1 and bσ(1) have
the same length. More generally, given f1, . . . , fi (with i < d) we define
fi+1 as follows: If dim(Vk) > i, let j ≤ k be the smallest index such that
dim(Vj) > i and let gi+1 be the shortest non-zero element all whose non-zero
coordinates have indices in {±1, . . . ,±d} \ {±σ(1), . . . ,±σ(i)}, which has a
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last non-zero coordinate with coefficient 1 and which is such that there ex-
ist constants λ1, . . . , λi in F with gi+1 +

∑i
k=1 λkb−σ(k) ∈ Vj \ {⊕i

k=1Ffk}.

Set fi+1 = gi+1 +
∑i

k=1 λkb−σ(k) and define σ(i + 1) as the unique integer
of {±1, . . . ,±d} \ {±σ(1), . . . ,±σ(i)} such that gi+1 and bσ(i+1) have the
same length. If dim(Vk) ≤ i < d proceed similarly by considering gi+1 in

F
2d \

(

⊕i
j=1Ffi

)

and define the constants λ1, . . . , λi in order to get orthog-

onality (with respect to ω) of fi+1 = gi+1 +
∑i

k=1 λkb−σ(k) with f1, . . . , fi.
In particular σ(d) < 0 implies dim(Vk) = d (and the flag F is maximal).
An important point of this construction is the observation that the gen-

erally non-zero coordinates x−σ(1), x−σ(2), . . . , x−σ(i) of fi+1 are not involved
in the “length” of gi+1 defining σ(i + 1). These coordinates are only used
for forcing the orthogonality relations ω(fi+1, f1) = · · · = ω(fi+1, fi) = 0.

Observe that the length-permutation σ belongs to the subgroup Sd of
ordinary permutations in S±

d if and only if the flag F is contained in the max-
imal Lagrangian generated by b1, . . . , bd. The construction of the canonical
basis f1, . . . , fd coincides then with the construction of the canonical basis
of F considered as an ordinary (non-symplectic) flag of Fd = Fb1+ · · ·+Fbd.

Observe also that the lengths of bσ(i) and bσ(i+1) are increasing if fi, fi+1 ∈
Vj \ Vj−1 for some j. Two such consecutive integers contribute however a
descent to the flag-Major index of σ if σ(i) > 0 > σ(i+ 1).

We call a maximal flag F = (V1, . . . , Vk) of F
2d standard if σ(d) < 0 and

if bσ(dim(Vi)) is longer than bσ(dim(Vi)+1) whenever i < k. A non-maximal flag
F = (V1, . . . , Vk) is standard if bσ(dim(Vi)) is longer than bdim(Vi)+1 for i ≤ k
(recall that a flag is maximal if and only if Vk is d-dimensional).

Every symplectic flag V1 ⊂ · · · ⊂ Vk contains a unique standard subflag
Vi1 ⊂ · · · ⊂ Vij (for some integer j ≤ k and for i1 < i2 < · · · < ij a subset of
{1, . . . , j}) with the same length-permutation.

The standard weight of a standard flag F = (V1 ⊂ · · · ⊂ Vk) is given in
the usual way by

∑k
i=1 dim(Vi) and is the minimal weight for F considered

as a weighted flag.
Theorem 3.2 will be an easy consequence of the following generalization

of Theorem 10.2:

Theorem 13.1. We have
∑

F∈Fst(F2d
q ,ω)

twst(F ) =
∑

σ∈S±

d

ql
±(σ)tWmaj(σ)

where Fst(F
2d
q , ω) denotes the set of all standard flags of (F2d

q , ω) and where
wst(F ) is the standard weight of a standard flag F .

Theorem 13.1 will be proven in the next section by showing that the set
of all standard flags of (F2d

q , ω) with length-permutation σ ∈ S±
d contains

ql
±(σ) elements and that all these standard flags have the same standard

weight Wmaj(σ).
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13.1 Half-bases with given length-permutation

We denote by B(σ) the set of all half-bases of F2d with associated length-
permutation σ. The set B(id) for example corresponds to the half-basis
b1, b2, . . . , bd associated to the empty flag. The half-basis b−1, b−2, . . . , b−d

belongs to B(c) where c(i) = −i is the Coxeter element. The standard flag
associated to b−1, b−2, . . . , b−d is the complete flag V1, . . . , Vi = ⊕i

j=1Fb−j, . . . , Vd =

⊕d
j=1Fb−j. The set B(c) corresponds to complete generic flags and is in some

sense as large as possible.

Proposition 13.2. The set B(σ) of all half-bases of F
2d with associated

length-permutation σ is in one-to-one correspondence with the vector space
F
l(σ) where l(σ) is given by Formula (6) of Proposition 3.1.

Proof. (We suggest to contemplate the example given in Section 13.2 while
reading the proof.) Elements f1, . . . , fd of B(σ) are of the following form:
fi has a coefficient 1 (represented by a bullet • in the example of Section
13.2) at position σ(i), has coefficients 0 (represented by empty spaces in
the example of Section 13.2) at positions σ(1), . . . , σ(i− 1) and at positions
not of the form −σ(1), . . . ,−σ(i − 1) which follow σ(1) (with indices in
the order 1, 2, 3, . . . , d,−d,−d+1,−d+2, . . . ,−2,−1 given by <±) and has
arbitrary coefficients (represented by × or ⊗∗ in Section 13.2, see below
for explanations) at positions not of the form ±σ(1), . . . ,±σ(i − 1) which
precede σ(i). The coefficients at positions −σ(1), . . . ,−σ(i−1) (represented
by ⊥ in Section 13.2) are uniquely determined by orthogonality of fi with
f1, . . . , fi−1.

Proposition 13.2 will follow from the fact that the number of arbitrary
free coefficients of such a half-basis f1, . . . , fd in B(σ) equals the length l(σ)
of σ.

Free coefficients of fi are of two types: We call such a coefficient involved
in fi of inversion-type (represented by a cross × in the example of Section
13.2) if it corresponds to an index k before σ(i) with j = σ−1(k) > i (ie.
if there exists j > i such that the index σ(j) = k comes before σ(i) with
respect to the order 1, 2, 3, . . . , d,−d,−d+ 1, . . . ,−2,−1 given by <±).

The total number of such coefficients (which are all free) is given by the
inversion contribution

∑

0<i<j,σ(i)>±σ(j) 1 to l(σ) in Formula (6).
The remaining free coefficients (represented by tensor products ⊗ in

Section 13.2) of fi correspond to indices k <± σ(i) such that σ(−k) ≥ i.
We call such indices of sign-type. If σ(i) > 0, free coefficients of sign-type
involved in fi correspond to integers j > i such that 0 < −σ(j) < σ(i). If
σ(i) < 0, free coefficients of sign-type have indices −σ(j) for j > i such that
σ(j)| > −σ(i) > 0 and −σ(j) for j ≥ i such that σ(j) < 0. (In particular, if
σ(i) < 0, the coefficient of −σ(i) is always free of sign-type). The following
simplified Rothe diagrams (with the second double vertical bar separating
positive from negative indices) resume the different cases for free coefficients
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of sign-type (the meaning of the indices will be explained later):

i : ⊗j •

j : •

i : ⊗j3 ⊗i ⊗i ⊗i •

j1 : •

j2 : •

j3 : •

We will show that the number of coefficients of sign-type is given by the
last summand

∑

0<i,σ(i)<0(d+ 1 + σ(i)) of Formula (6) defining l(σ).
We associate an integer (written as an index of ⊗ in Section 13.2) in the

set {1 ≤ i ≤ d σ(i) < 0} to each free coefficient of sign-type in the following
way: A free coefficient of sign-type is associated to i (with σ(i) < 0) if
it corresponds either to a free coefficient of fi with σ(i) < 0 whose index
belongs to the set

{−σ(i),±(1 − σ(i)), . . . ,±d}

or if it corresponds to a coefficient indexed by −σ(i) of fj with j < i such
that |σ(j)| > −σ(i).

We claim that every free coefficient of sign-type is associated to an integer
i with σ(i) < 0 and that there are exactly d+1+σ(i) such free coefficients of
sign-type associated to i. This ends the proof since it implies the existence
of exactly

∑

i>0,σ(i)<0 d+ 1 + σ(i) free coefficients of sign-type.
Let us first consider a free coefficient of sign-type, say a coefficient of

index k involved in fi. Since it is a free coefficient, we have k <± σ(i).
Suppose first that σ(i) > 0. This implies 1 < k < σ(i). Since it is a free
coefficient of sign-type, there exists j > i such that k = −σ(j) < σ(i) and
the coefficient is associated to j. Suppose now σ(i) < 0. There exists again j
such that k = −σ(j). If k < 0, then |k| = |σ(j)| > |σ(i)| and the coefficient
is associated to i. If k > 0 then the free coefficient is associated to i if
k ≥ −σ(i) and to j otherwise.

At last we have to show that there are d + 1 + σ(i) free coefficients of
sign-type associated to an integer i such that σ(i) < 0. This is realized by a
bijection between such coefficients and the set {−σ(i),−σ(i)+1, . . . , d−1, d}
of all d + 1 + σ(i) integers between −σ(i) and d. Indeed, let k be such an
integer. There exists j such that |σ(j)| = k. If j > i then the coefficient
of b−k in fi is of sign-type. If j ≤ i then the coefficient of b−σ(i) in fj is of
sign-type.

13.2 Rothe diagrams

The proof of Proposition 13.2 can be visualized by generalizing the notion
of a Rothe diagram to the symplectic setting. The Rothe diagram of the
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signed permutation (σ(1), . . . , σ(6)) = (−5, 3,−1, 6, 4,−2) is then given by

i\σ(i) 1 2 3 4 5 6 −6 −5 −4 −3 −2 −1

1 ⊗3 ⊗6 × × ⊗1 × ⊗1 •

2 ⊗3 ⊗6 • ⊥

3 ⊗3 ⊗3 × ⊥ × ⊗3 ⊗3 ⊥ × •

4 ⊥ ⊗6 × ⊥ • ⊥

5 ⊥ ⊗6 • ⊥ ⊥ ⊥

6 ⊥ ⊗6 ⊥ ⊥ ⊥ ⊥ •

Crosses × (corresponding to the seven inversions

(1, 3), (1, 4), (1, 5), (3, 4), (3, 5), (3, 6), (4, 5)

defining intersections of rows and columns delimited with bullets) and tensor
products ⊗i (with indices i = 1, 3, 6 corresponding to the 3 negative values
σ(1) = −5, σ(3) = −1, σ(6) = −1) are arbitrary elements, bullets • represent
1, symbols for perpendicularity ⊥ are coefficients determined uniquely by
orthogonality relations and empty cases represent coefficients which are 0.
The length l(σ) of σ is given by Formula (6) and equals the number of crosses
× (corresponding to the seven signed inversions

1 < 2, 1 < 4, 1 < 5, 3 < 4, 3 < 5, 3 < 6, 4 < 5

of σ whose number is counted by the first summand of (6)) added to the
number of tensor products ⊗i for i ∈ {1, 3, 6} (corresponding to the three
negative values σ(1) = −5, σ(3) = −1, σ(6) = −2). More precisely, the
number of symbols ⊗i is given by 6 + 1 + σ(i) for i ∈ {1, 3, 6}.

14 Standard weights of standard flags associated

to elements of B(σ)

Proposition 14.1. For every element σ of S±
d , the standard weight of a

standard flag associated to a half-basis in B(σ) is given by the Weyl-Major
index

Wmaj(σ) =
∑

i>0,σ(i+1)<σ(i)

i+
∑

i>0,σ(i)<0

1

(cf. Formula (7)) of σ.

We illustrate Proposition 14.1 by the example of Section 13.2. Stan-
dard flags associated to (σ(1), . . . , σ(6)) = (−5, 3,−1, 6, 4,−2) are given by
(V1, V2, V3, V4) where

V1 = Ff1,

V2 = Ff1 + Ff2 + Ff3,

V3 = Ff1 + Ff2 + Ff3 + Ff4,

V4 = Ff1 + Ff2 + Ff3 + Ff4 + Ff5 + Ff6
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with standard weight
∑4

i=1 dim(Vi) = 1 + 3 + 4 + 6 = 14.
The ascending runs of σ are

run σ(run)

1, 2 −5, 3
3, 4 −1, 6
5 4
6 −1

and correspond to the composition 2 + 2 + 1+ 1 of d = 6. The Weyl-Major
index of σ equals thus also

(2 + 4 + 5) + 3 = 14

(with the summand 3 corresponding to the three elements i such that σ(i) <
0).

Proof of Proposition 14.1. We consider a symplectic standard flag F = (V1 ⊂
· · · ⊂ Vk−1 ⊂ Vk) with associated length-permutation σ ∈ S±

d . We have to
show that F has standard weight Wmaj(σ).

We prove Proposition 14.1 by induction on d. If d = 1, the unique ele-
ment of B(id) corresponds to the empty standard flag of weight Wmaj(id) =
0 and elements of B(c) associated to the Coxeter element c(1) = −1 define
complete flags F(x, 1) in (F2, ω). They are standard flags of standard weight
1 = Wmaj(c).

Given an integer d ≥ 2, we denote by σ̂ ∈ S±
d−1 the signed permutation

obtained by “erasing” σ(d). More precisely, σ̂(i) for i ∈ {1, . . . , d − 1} is
defined by

σ̂(i) =







σ(i) if |σ(i)| < |σ(d)|,
σ(i) − 1 if σ(i) > |σ(d)|,
σ(i) + 1 if σ(i) < −|σ(d)| .

We transform the canonical half-basis f1, . . . , fd associated to F into a

canonical half-basis f̂1, . . . , f̂d−1 of F
2(d−1)
q with associated length-permutation

σ̂ as follows: We remove first the coefficients corresponding to indices ±σ(d)
from all vectors f1, . . . , fd−1. The destroyed orthogonality (with respect to
the symplectic form) is now restored by correcting the coefficients of fi with
indices −σ(1),−σ(2), . . . ,−σ(i− 1) (the correction is defined uniquely). Fi-
nally, we rename indices of absolute value larger than |σ(d)| by keeping their
signs and decreasing their absolute value by 1. We call the resulting elements
f̂1, . . . , f̂d−1. We denote the standard flag associated to f̂1, . . . , f̂d−1 by F̂ .
It is obviously associated with the length-permutation σ̂.

The induction step follows now from the equality

Wmaj(σ)−Wmaj(σ̂) = wst(F )− wst(F̂ )
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(with wst denoting the standard weight of a standard flag) which we are
going to establish.

The proof splits into six cases given by the relative positions of the three
integers 0, σ(d− 1), σ(d). The following table resumes the six cases:

∆Wmaj V̂ω ∆wst

0 < σ(d− 1) < σ(d)
•

•
0 V̂k 0

σ(d − 1) < 0 < σ(d)
•

•
0 V̂k 0

σ(d) < 0 < σ(d− 1)
•

•
d V̂k−1 d

σ(d) < σ(d− 1) < 0
•

•
d V̂k−1 d

0 < σ(d) < σ(d− 1)
•

•
d− 1 V̂k−1 d− 1

σ(d − 1) < σ(d) < 0
•

•
1 V̂k 1

The first column describes all six possible relative positions of 0, σ(d −
1), σ(d). The second column depicts them graphically using the conven-
tions for Rothe diagrams (positive indices are separated from negative in-
dices by a vertical bar). The third and fifth columns contain the differences
Wmaj(σ) − Wmaj(σ̂), respectively wst(F ) − wstF̂ ). The fourth column
gives the index ω of the largest space in the standard flag F̂ .

The cases 0 < σ(d − 1) < σ(d) and σ(d − 1) < 0 < σ(d) are similar:
Vk does not involve fk and corresponds to V̂k. The standard flags F and
F̂ have identical weights (with respect to the standard weight). An easy
computation shows that σ and σ̂ have identical Weyl-Major indices.

The cases σ(d) < 0 < σ(d− 1) and σ(d) < σ(d− 1) < 0 are also similar:
The standard flag F̂ ends in both cases with the “projection” V̂k−1 spanned
by f̂1, . . . , f̂dim(Vk−1) of Vk−1 while F ends with a Lagrangian Vk of dimension

d. This implies that weights of F and F̂ differ by d and an easy computation
shows that this holds also for the Weyl-Major indices.

In the case 0 < σ(d) < σ(d− 1), the space Vk is spanned by f1, . . . , fd−1

while the largest space of F̂ is V̂k−1 spanned by f̂1, . . . , f̂dim(Vk−1). This
implies a difference of d − 1 for the weights of the standard flags F and
F̂ . The same difference is realized by the flag-Major indices Wmaj(σ) and
Wmaj(σ̂) of the corresponding length-permutations.

Finally, in the last case σ(d− 1) < σ(d) < 0, the space V̂k is a maximal
Lagrangian of dimension d−1 while Vk is a maximal Lagrangian of dimension
d. This implies a difference of 1 between weights and the same difference of
1 is also realized by Weyl-Major indices.
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14.1 Proof of Theorem 3.2

Proof. Analogues of Proposition 9.3 and Corollary 9.4 hold obviously in the
symplectic setting.

15 Type B: Orthogonal groups of odd dimension

For simplicity, we work again only over finite fields of odd characteristic.

Sketch of Proof of Theorem 3.3. We consider again the order <±, see (5).
Coordinate-vectors of an element in F

2d+1 are always given in the form

(x1, x2, . . . , xd, x0, x−d, x1−d, . . . , x−2, x−1) .

We endow the vector space F
2d+1 generated by b±1, . . . , b±d, b0 over a field

of odd characteristic with the quadratic form

Q(x1, . . . , xd, x0, x−d, . . . , x−1)) = x20 +
d
∑

i=1

xix−i .

We consider the following bijection between elements of the set BC(λ)
of canonical bases for the symplectic space and the set BB(λ) of canonical
bases (defined in the obvious way) for the quadratic space (F2d+1

q , Q).
The coordinates (x1, . . . , xd, x0, x−d, . . . , x−1) of the i-th vector fi in a ba-

sis in BB(λ) are as follows: Coordinates with indices<± λ(i) in {0,±1, . . . ,±d}\
{±λ(1), . . . ,±λ(i)} are free. The coordinate xλ(i) equals 1. The coordinates
x−λ(1), . . . , x−λ(i−1) are determined by orthogonality of fi to f1, . . . , fi−1.
The coordinate x−λ(i) of fi is determined by isotropy of fi (it is in fact
always equal to 0 if λ(i) > 0). All coordinates >± λ(i) with indices in
{λ(1), . . . , λ(i − 1)} or with indices in {0,±1, . . . ,±d} \ {±λ(1), . . . ,±λ(i)}
are zero. Observe that x−λ(i) is never free. However x0 is free if λ(i) < 0
and it is equal to 0 otherwise. This shows that elements of BB(λ) behave
exactly in the same way as elements of BC(λ). We leave the easy details to
the reader.

We illustrate this Section by the Rothe diagram “of type B” associated
to the signed permutation (σ(1), . . . , σ(6)) = (−5, 3,−1, 6, 4,−2). Using
conventions analogous to those of Section 13 it is given by

i\σ(i) 1 2 3 4 5 6 0 −6 −5 −4 −3 −2 −1

1 ⊗3 ⊗6 × × ⊥ × ⊗1 ⊗1 •

2 ⊗3 ⊗6 • ⊥ ⊥

3 ⊥ ⊗3 × ⊥ × ⊗3 ⊗3 ⊗3 ⊥ × •

4 ⊥ ⊗6 × ⊥ • ⊥ ⊥

5 ⊥ ⊗6 • ⊥ ⊥ ⊥ ⊥

6 ⊥ ⊥ ⊥ ⊗6 ⊥ ⊥ ⊥ •

.
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16 Type D: Orthogonal groups in even dimensions

As in Section 15, all finite fields are of odd characteristic.
We denote by H = H(F) the hyperbolic plane over a field F realized

as the quadratic space F
2 endowed with the quadratic form (x, y) 7−→ xy,

called norm in the sequel.
We denote by I a fixed maximal d-dimensional isotropic subspace of

Hd (denoting d orthogonal copies of H). As always, a flag F = (V1 ⊂
· · · ⊂ Vk) is a strictly increasing sequence of non-trivial isotropic subspaces
of Hd. The I-parity of a flag ending with Vk is the parity of the integer
dim(Vk/(Vk ∩ I)) = dim(Vk)− dim(Vk ∩ I). Flags of even parity are simply
called even flags. We denote by Fe(Hd) the set of all even flags and by
WFe(Hd) the set of all weighted even flags.

Remark 16.1. The parity condition of type D flags has the following expla-
nation: Two complete flags of type D are related by an isometry of determi-
nant 1 if and only if they are both even or both odd. Otherwise an isometry
of determinant −1 is needed. The set of all complete flags of type D decays
thus into two orbits under the action of the simple linear group of Lie type
D.

In contrast, complete flags of type A,B,C are always related by an iso-
morphism (of the corresponding structure) of determinant 1 and the action
of the corresponding simple linear group is thus transitive.

16.1 Proof of Corollary 4.3

Proposition 16.2. The space Hd over the finite field Fq contains exactly

ql(2d+l−2k−1)/2

(

d

k

)

q

(

k

l

)

q

isotropic subspaces V of dimension k such that dim(V/(V ∩ I)) = l.

Proof. There are
(d
l

)

q
different l-dimensional subspaces of the d-dimensional

quotient space Hd/I. Such a subspace A ⊂ Hd/I can be lifted in qdl−(
l+1
2 )

ways into an l-dimensional isotropic subspace Ã of Hd. We add to Ã a k− l
dimensional subspace B of I∩Ã⊥. This can be done in

(d−l
k−l

)

q
different ways.

The subspace V = Ã+B has the required properties. Such subspaces arise
however with multiplicity ql(k−l). Indeed, for B,B′ ⊂ Ã⊥ ∩ I, the equality
Ã + B = Ã′ + B′ holds if and only if B = B′ and Ã′ = Ã (mod B). The
total number of such spaces is thus given by

(

d

l

)

q

(

d− l

k − l

)

q

qdl−(
l+1
2 )−l(k−l)

which amounts to the formula given by Proposition 16.2.
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16.2 First values and some properties of the polynomials MD
d

for type D

The first few polynomials MD
d are as follows: MD

1 = 1, coefficients of
MD

2 ,MD
3 are given by

1 q q2

1 1
t 1
t2 1
t3 1

1 q q2 q3 q4 q5 q6

1 1
t 1 1
t2 1 1 1 1 1
t3 1 1 2 1 1 1
t4 1 2 2 1
t5 1 1 1

and coefficients of M±
4 are given by

1 q q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

1 1
t 1 1 1
t2 1 2 1 1 1 1 2 1 1
t3 1 1 3 3 4 4 3 3 1 1
t4 1 2 3 4 5 6 6 5 3 1
t5 1 3 6 7 8 7 6 3 1
t6 1 3 5 6 6 5 4 3 2 1
t7 1 1 3 3 4 4 3 3 1 1
t8 1 1 2 1 1 1 1 2 1
t9 1 1 1
t10 1

Evaluation of MD
d at t = 1 yields

1− qd

1− q

d−1
∏

j=1

1− q2j

1− q
.

(Proof amounts to equality

⌊d/2⌋
∑

l=0

(

d

2l

)

q

ql(2l−1) =

d−1
∏

j=1

(1 + qj) .)

Evaluating the obvious identity

M±
d =

d
∑

k=0

tk





d
∏

j=k+1

(1− tj)





(

d

k

)

q

(

k
∑

l=0

(

k

l

)

q

ql(2d+l−2k−1)/2

)

Mk
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at t = 1 and comparing with ??? we get

d
∑

j=0

(

d

j

)

q

q(
j

2) =

d−1
∏

j=0

(1 + qj) .

The following result generalizes the classical binomial theorem (corre-
sponding to the case q = 1):

Theorem 16.3. We have

d
∑

j=0

(

d

j

)

q

q(
j+a

2 )tj = q(
a

2)
d−1
∏

j=0

(1 + tqj+a) .

for all d ∈ N.

Proof. The identity holds trivially for d = 0. The recursive definition
(d+1

j

)

q
=
( d
j−1

)

q
+ qj

(d
j

)

q
implies

d+1
∑

j=0

(

d+ 1

j

)

q

q(
j+a

2 )tj

=
d+1
∑

j=1

(

d

j − 1

)

q

q(
(j−1)+(a+1)

2 )t(j−1)+1 + q−a
d
∑

j=0

(

d

j

)

q

qj+a+(j+a

2 )tj

= (t+ q−a)q(
a+1
2 )

d−1
∏

j=0

(1 + qa+1+j)

= q(
a

2)
d
∏

j=0

(1 + tqa+j)

which ends the proof by induction.

Proof of Theorem 10. Evaluating MD
d , given by Corollary 4.3, at q = 1 we

get

d
∏

j=1

(1− tj) +

d
∑

k=1

tk
d
∏

j=k+1

(1− tj)

(

d

k

)

2k−1
k
∏

j=1

1− tj

1− t

=
d
∏

j=1

(1− tj)

(

1 +
1

2

d
∑

k=1

(

2t

1− t

)k (d

k

)

)

=

d
∏

j=1

(1− tj)
1

2

(

1 +

(

1 +
2t

1− t

)d
)

.
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Simplification yields

(1− t)d + (1 + t)d

2

d
∏

j=1

1− tj

1− t
.

which ends the proof.

17 The length function for type D

We consider the usual generators of the Weyl group of type D given by
si = (i, i + 1), i < d and sd(d − 1) = −d, sd(d) = 1 − d, sd(i) = i for
i 6∈ {±(d− 1),±d}.

Proposition 17.1. The length lD(σ) of an element σ ∈ SD
d with respect to

the generators s1, . . . , sd is given by the formula

lD(σ) =
∑

0<i<j,σ(i)>±σ(j)

1 +
∑

0<i,σ(i)<0

(d+ σ(i)) (16)

with >± denoting the order-relation of Z defined by (5).

Observe that the length lD(σ) of an element σ ∈ SD
d with respect to the

generators s1, . . . , sd ∈ SD
d is always bounded above by its length l(σ) with

respect to the natural generators s1, . . . , sd of S±
d . Equality holds if and

only if σ ∈ Sd. More precisely, the difference is exactly the even number
of elements in −N∩ {σ(1), . . . , σ(d)}, as can be seen by comparing Formula
(16) with Formula (6).

Proof of Proposition 17.1. The proof is by induction on the length and com-
pletely analogous to the proof of Proposition 3.1.

The result holds of course if σ is the identity.
The crucial point for induction is again the equality |lD(σ)−lD(σ◦sd)| =

1. (The behaviour with respect to the d − 1 first generators σ1, . . . , σd−1 is
as in the proof of Proposition 3.1.) We denote lD simply by l until the end
of the proof.

We write a = σ(d − 1) and b = σ(d).
We consider two cases, depending on the sign of ab.
We discuss first the case ab > 0. If a > b, we replace σ by σ̃ = σ ◦ sd−1.

We have then l(σ) = l(σ̃) + 1 and l(σ ◦ sd) = l(σ̃ ◦ sd) + 1. We can thus
assume that a < b. Up to replacing σ with σ◦sd, we can furthermore assume
that 0 < a < b. The following representation, similar to the representation
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used in the proof of Proposition 3.1, depicts all possible subcases:

σ(j) i1 i2 i3 4 i5 i6 d− 1 d

•6
b •

•5
a •

•4
•3

−a ◦
•2

−b ◦
•1

(the horizontal line represents 0, the vertical line separates the two last
indices d− 1 and d from previous ones, the last two values of σ, respectively
of σ̃ = σ ◦ sd, are represented by •, respectively ◦). We denote by ij indices
taking values depicted by •j , i.e.

σ(i1) < −b < σ(i2) < −a < σ(i3) < 0 < σ(i4) < a < σ(i5) < b < σ(i6) .

The following Table represents the status with respect to inversions (Yes for
inversions, No for non-inversions) of σ and σ̃ = σ ◦ sd for ij < (d − 1) and
for ij < d:

j σ(ij) >± σ(d − 1) σ(ij) >± σ(d) σ̃(ij) >± σ̃(d− 1) σ̃(ij) >± σ̃(d)

1 Yes Yes No No
2 Yes Yes Yes No
3 Yes Yes Yes Yes
4 No No No No
5 Yes No No No
6 Yes Yes No No

Setting
νj = ♯{i < d− 1|i is of type ij}

we get now

l(σ ◦ sd)− l(σ) = d− a+ d− b− 2ν1 − ν2 − ν5 − 2ν6
= 2d− a− b− (2(ν1 + ν6) + (ν2 + ν5))
= 2d− a− b− (2(d − b) + (b− 1− a))
= 1

where we have used the trivial identities ν1+ν6 = d−b and ν2+ν5 = b−1−a.
This settles the case ab > 0.

We consider now the case of ab < 0 with a = σ(d − 1), b = σ(d). If
a < 0 < b, we set σ̃ = σ◦sd−1. Since l(σ)−l(σ̃) = 1 and l(σ◦sd)−l(σ̃◦sd) = 1
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we can replace σ with σ̃ without loss of generality. We can thus assume
a = σ(d − 1) > 0 > −b = σ(d). Up to replacing σ with σ ◦ sd, we can
moreover assume that a < b. The situation is now represented by

σ(j) i1 i2 i3 4 i5 i6 d− 1 d

•6
b ◦

•5
a •

•4
•3

−a ◦
•2

−b •
•1

The table describing inversions involving d− 1 or d is

j σ(ij) >± σ(d − 1) σ(ij) >± σ(d) σ̃(ij) >± σ̃(d− 1) σ̃(ij) >± σ̃(d)

1 Yes No Yes No
2 Yes Yes Yes No
3 Yes Yes Yes Yes
4 No No No No
5 Yes No No No
6 Yes No Yes No

(with σ̃ = σ ◦ sd, as before).
Defining the numbers νi as above, we get

l(σ ◦ sd)− l(σ) = (d− a)− (d− b)− (ν2 + ν5)
= b− a− (b− 1− a)
= 1

which settles the case ab < 0.
Since l(σ) and l(σ ◦ si) differ always exactly by 1, the length of an a

element σ in SD
d is at least l(σ). Let now σ be a non-trivial element of SD

d

(we have of course l(id) = 0 for the identity permuation id of SD
d ). If σ

has an inversion then it has an inversion involving two consecutive indices
i, j = i + 1 and replacing σ with σ ◦ si decreases its length l by one. If
σ 6= id is without inversions then it ends with σ(d−1) = −2, σ(d) = −1 and
applying sd decreases its length by 1.

The proof of Proposition 17.1 is again algorithmic. We illustrate it by
considering the permutation (σ(1), . . . , σ(4)) = (−2, 4,−3, 1) of SD

4 . It has
length 8 (the pairs (1, 2), (1, 3), (1, 4), (2, 4), (3, 4) define inversions and we
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get a two sign-contributions 4+σ(1) = 4− 2 = 2 and 4+σ(3) = 4− 3 = 1).
We denote a permutation τ of SD

4 always by (τ(1), . . . , τ(4)). We have

σ (−2, 4,−3, 1) 8
σ ◦ s3 (−2, 4, 1,−3) 7

σ ◦ s3 ◦ s2 (−2, 1, 4,−3) 6
σ ◦ s3 ◦ s2 ◦ s1 (1,−2, 4,−3) 5

σ ◦ s3 ◦ s2 ◦ s1 ◦ s2 (1, 4,−2,−3) 4
σ ◦ s3 ◦ s2 ◦ s1 ◦ s2 ◦ s4 (1, 4, 3, 2) 3

σ ◦ s3 ◦ s2 ◦ s1 ◦ s2 ◦ s4 ◦ s3 (1, 4, 2, 3) 2
σ ◦ s3 ◦ s2 ◦ s1 ◦ s2 ◦ s4 ◦ s3 ◦ s2 (1, 2, 4, 3) 1

σ ◦ s3 ◦ s2 ◦ s1 ◦ s2 ◦ s4 ◦ s3 ◦ s2 ◦ s3 (1, 2, 3, 4) 0

yielding the minimal expression

σ = s3 ◦ s2 ◦ s3 ◦ s4 ◦ s2 ◦ s1 ◦ s2 ◦ s3

of σ in terms of the generators

s1 = (2, 1, 3, 4), s2 = (1, 3, 2, 4), s3 = (1, 2, 4, 3), s4 = (1, 2,−4,−3) .

18 Halfbases for type D

Half-bases for type D are similar to half-bases in the symplectic case. The
only difference is the fact that the coefficient of index −λ(i) in fi is always
determined by isotropy. (It is free in the symplectic case if λ(i) < 0. This
difference in behaviour translates to a difference of 1 in the summands of
the second summation occuring in Formulae (6) and (16).) We illustrate
this by the Rothe diagram of (σ(1), . . . , σ(6)) = (−5, 3,−1,−6, 4,−2) which
is given by

i\σ(i) 1 2 3 4 5 6 −6 −5 −4 −3 −2 −1

1 ⊗3 ⊗6 × × ⊥ × ⊗1 •

2 ⊗3 ⊗6 • ⊥ ⊥

3 ⊥ ⊗3 × ⊥ × ⊗3 ⊗3 ⊥ × •

4 ⊥ ⊗6 × ⊥ ⊥ • ⊥

5 ⊥ ⊗6 • ⊥ ⊥ ⊥ ⊥

6 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ •

18.1 Proof of Theorem 4.1

Up to obvious modifications, the proof is as for the type C.
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19 Incorporating statistics for Eulerian polynomi-

als of type A and BC

According to [9], a descent of an element w in a Weyl group W is a canonical
generator si such that w ◦ si is shorter than w. Using our conventions, it is
easy to check that the number of descents of σ in Sd or in S±

d is given by

β(σ) = δ(σ(d) < 0) +
∑

1≤i<d,σ(i)>± σ(i+1)

1 (17)

where δ(true) = 1 and δ(false) = 0.
Formula (17) does not coincide with the number of descents in Weyl

groups of type D (the difference is however always bounded by 1).
We consider now the extended Weyl-Mahonian statistics defined by

M̃∗
d =

∑

σ∈S∗
d

ql
∗(σ)sβ(σ)tWmaj(σ)

of type A,BC and D.
Given a weighted flag F = (V1 ⊂ · · · ⊂ Vk;w1, . . . , wk), we set α(F ) =

∑k
i=1wi. We have obviously α(F ) ≤ w(F ) =

∑k
i=1 wi dim(Vi).

Straightforward modifications of the proofs of Theorems 2.2, 3.2 and 4.1
show easily the following result:

Theorem 19.1. We have

∑

F∈WF(∗,q)d

sα(F )tw(F ) = M̃∗
d

d
∏

j=1

1

1− stj

with WF(∗, q)d denoting the obvious set of weighted flags of type ∗ with ∗
standing for A,BC or D.

Formulae for M̃∗
d are given by the following result:

Theorem 19.2. For type A we get

M̃d =





d−1
∏

j=1

1− stj



+ s
d−1
∑

k=1

tk
(

d

k

)

q





d−1
∏

j=k+1

1− stj



 M̃k . (18)

For type BC we get

M̃±
d =





d
∏

j=1

1− stj



+ s

d
∑

k=1

tk





k−1
∏

j=0

1− q2d−2j

1− qk−j









d
∏

j=k+1

1− stj



 M̃k .

(19)
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For type D we get

M̃D
d =





d
∏

j=1

1− stj



+ (20)

+ s

d
∑

k=1

tk
(

d

k

)

q





⌊k/2⌋
∑

l=0

(

k

2l

)

q

ql(2d+2l−2k−1)









d
∏

j=k+1

1− stj



 M̃k .

(21)

Proofs for Theorem 19.2 are straightforward generalizations of proofs for
Corollaries 2.3, 3.4 and 4.3.

Observe that M̃∗
d incorporates the so-called Euler statistic counting de-

scents for type A and type BC. For type D, the polynomials M̃D
d incorporate

slightly different statistic.
Acknowledgements. I thank Michel Brion, Pierre de la Harpe and

Emmanuel Peyre for corrections, interesting discussions, remarks or com-
ments.
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