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We demonstrate that symmetry breaking opens a new degree of freedom to tailor the energy-
momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative
practical structures, we show that breaking symmetry enables an on-demand tuning of the local
density of states of a same photonic band from zero (Dirac cone dispersion) to infinity (flatband
dispersion), as well as any constant density over an adjustable spectral range. As a proof-of-concept,
we experimentally demonstrate the transformation of a very same photonic band from conventional
quadratic shape to Dirac dispersion, flatband dispersion and multivaley one, by finely tuning the
vertical symmetry breaking. Our results provide an unprecedented degree of freedom for optical
dispersion engineering in planar integrated photonic devices.

Engineering the energy-momentum dispersion of pho-
tonic structures is at the heart of contemporary optics
research. This fundamental feature molds the light prop-
agation [1], dictates the coupling with free space [2], and
tailors light-matter interactions [3]. Such a dispersion
engineering is generally achieved through a designed pe-
riodic arrangement of materials with different permit-
tivities in photonic crystals, metamaterials and meta-
surfaces. Recently, two particular types of dispersions
have been intensively studied: flatband dispersion [4–
13] and Dirac dispersion [15–28]. The first one pro-
vides slow light of zero group velocity with high den-
sity of states for a broad range of the Brillouin zone,
thus greatly enhances light-matter interaction and non-
linear behaviors for low-threshold micro-lasers and infor-
mation processing applications [30, 31]. Moreover, flat-
band gives rise to localized stationary eigenstates which
are extremely sensitive to disorder effects due to an in-
finite effective mass [7, 14]. This suggests new regime
of light localization [8, 9] other than conventional con-
cepts such as Anderson localization [32, 33] and optical
bound states in continuum [34, 35]. Being an opposite
extreme to flat dispersion, Dirac dispersion (double Dirac
cones with no bandgap) corresponds to massless pho-
tonic states. By analogy with the propagation of elec-
trons in graphene, Dirac photons propagation could lead
to phenomena such as Klein tunneling [19] and Zitterbe-
wegung [20] for photons. Moreover, photonic Dirac dis-
persion opens the way to realize large-area single mode
lasers [21, 22]; and enables many exotic physical features
such as zero-refractive index materials for transformation
optics applications [15, 17, 18] and photonic topologi-
cal insulator [23–28]. Due to their completely opposite
characteristics, flatband and Dirac dispersion are usually
attributed to different bands of the photonic structures
(2D tight-binding lattices [5, 6, 8, 9], accidental degen-
eracy in 2D photonic crystal [15–18]). Other configu-
rations exhibit the sole presence of flatband states (1D

tight-binding lattices [7, 10], dispersion engineering with
hybrid micro cavities [11, 13]).

In this Letter, we propose a general and simple the-
oretical approach of High-index-Contrast subwavelength
dielectric Gratings (HCGs) with broken symmetry, which
are shown to provide a new degree of freedom for the de-
sign of photonic dispersion, and hence for the control
of spatial and spectral characteristics of light. We show
that breaking symmetry opens the way to the generation
of any local density of photonic states from zero (Dirac
cone) to infinity (flatband), as well as any constant den-
sity over an adjustable spectral range for the same pho-
tonic band. Such a unique concept is emphasized and
exemplified with two illustrative cases: “fishbone” and
“comb” structures. As a proof-of-concept, the transfor-
mation of a Dirac-band to a flatband in a “comb” grating
structure is experimentally demonstrated by simply tun-
ing the vertical symmetry breaking. We emphasize that
our approach is very generic and can be applied to the
design of a wide variety of devices for free space as well
as planar integrated photonics.

Inside the wide family of periodic photonic structures,
HCGs have played a fast growing part during the last 20
years [36–38]. Apart from rare exceptions [39–41] reports
in the literature are essentially dedicated to HCGs with
non-broken vertical symmetry. HCG with broken vertical
symmetry [39–41] can be represented by two symmetric
HCGs of same period a in close near field proximity and
with a lateral offset δ × a as schematized in Fig.1(a). In
the following, we present an intuitive analytical model
to describe such structures. At this stage, the considered
modes operate below the light cone. We will discuss later
the situation where the guided modes lie partly inside the
light cone and behave as Bloch resonances. In our model,
the ω(kx) dispersion characteristic will be derived from
different coupling processes undergone by the forward
(a1+, a2+) and backward (a1−, a2−) fundamental zero-
order waves of the two non-corrugated waveguide struc-
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tures. The dispersion engineering is focused in the (ω, kx)
region in the vicinity of the first Brillouin zone boundary
(i.e. X point), where first-order diffractive coupling pro-
cesses between backward and forward wave components
are the most effective. A phenomenological description

of coupling processes within the two symmetric gratings
as well as of cross coupling processes occurring between
them can be obtained using the coupled mode theory
formalism. In the base formed by [a1+, a1−, a2+, a2−],
the equations of coupled mode theory end up in a 4 × 4
Hermitian Hamiltonian H, given by:

H =


ω1 + v1kx U1 + β1U2e

iφ Vf 0
U1 + β1U2e

−iφ ω1 − v1kx 0 Vf
Vf 0 ω2 + v2kx U2e

iφ + β2U1

0 Vf U2e
−iφ + β2U1 ω2 − v2kx

 (1)

U1,2 are the diffractive coupling rates between the for-
ward and backward waves in each of the two grating
structures when considered as far apart. The factors β1,2
account for a supplementary diffractive coupling rate,
which is induced by one grating on the evanescent part of
the guided modes of the other grating. The coefficients
e±iφ with φ = 2πδ correspond to the first-order difrrac-
tion phase-shift at X point between the two gratings due
to the lateral offset. ω1,2 and v1,2 are respectively the en-
ergies and the group velocities of the propagating waves
in the two non-corrugated waveguiding structures (the
first Brillouin boundary is taken as the origin of the kx
vector coordinates). Vf stands for the evanescent cou-
pling rate between waves of different gratings but prop-
agating in the same direction. The anti-diagonal terms
of H correspond to the coupling processes between for-
ward and backward waves of different gratings. These
couplings are second-order terms that can be neglected
in our model. Eigenfunctions or dispersion characteris-
tics can be derived from diagonalization of H, yielding
the eigenmode characteristics. Intuitively, breaking the
vertical symmetry provides a very versatile tool for dis-
persion engineering of the coupled grating system: even
and odd modes of the structure are no more eigenstates
since they are allowed to couple and their hybridization
results in a wide range of eigenmodes endowed with a rich
variety of dispersion characteristics. Such hybridization
requires a spectral overlap of even and odd modes, which
is achieved when the diffractive coupling rates U1,U2 ex-
ceed the evanescent coupling rate Vf . This requirement is
typically satisfied in high index contrast structures. With
this approach, we derive a physically insightful analyti-
cal model of dispersion characteristics, which we confront
below to RCWA (Rigorous Coupled-Wave Analysis) sim-
ulations in selected illustrating examples.

To illustrate the dispersion engineering concept pre-
sented previously, two cases studies are investigated [see
Fig.1(b),(c)]. The first structure, called “fishbone”, is
formed by two super-imposed identical gratings with ad-
justable lateral alignment [Fig.1(b)]. This simple struc-

FIG. 1. (Color online). (a) Sketch of a HCG with broken
vertical symmetry. (b,c) Elementary cell of “fishbone”(b) and
“comb”(c) structure with double period perturbation.

ture can be used to continuously explore a wide range of
vertical symmetry configurations, starting from the clas-
sical case of non broken vertical symmetry, where grat-
ings are aligned or in phase (off-set ratio δ = 0, no phase-
shift), all the way to the case of misaligned gratings by
half a period (δ = 0.5, or φ = π). In this example,
we will consider a “fish-bone” structure consisting of two
gratings of hydrogenated amorphous silicon (a-Si) with
refractive index naSi = 3.15, thickness h = 0.21µm, pe-
riod a = 0.35µm, and surrounded by silica of refractive
index nSiO2=1.5. The offset δ is the only joystick needed
to “shape” the dispersion.

We first investigate the reflectivity/transmission char-
acteristics of the structure with the help of RCWA analy-
sis. While such method cannot give direct access to wave-
guided optical modes below the light cone, the latter can
however be brought from the boundary (X point) to the
center (Γ point) of the first Brillouin zone by a double-
period design perturbation approach with perturbation
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magnitude α [see Fig.1(b)] [42, 43]. Wave-guided modes
are then turned into wave-guided resonances, whose ra-
diative lifetime τrad depends only on α (τrad ∝ α−2). Our
theoretical model with the Hamiltonian H is still valid
if the radiative coupling is much smaller than the other
couplings (i.e. diffraction and evanescent), thus requir-
ing α� 1. From now on, we choose α = 0.1. The upper
part of Figs.2(a-e) depicts RCWA calculations of the an-
gularly resolved reflectivity spectrum with TE-polarized
incident light (i.e. along y-axis) for different values of
δ. At δ = 0 [aligned gratings, see Fig.2(a)], one may
readily identify the two fundamental wave-guided modal
components, which split into the high index dielectric
(a-Si) and low index dielectric (silica) modes, separated
by the first bandgap. One may also observe the first
excited a-Si mode. As expected, the field distribution
[Fig.2(f)] shows a vertical even (odd) symmetry for the
fundamental (1st excited) modes; and light is primarily
concentrated in a-Si (silica) for high (low) refractive in-
dex modes. Misaligning the two gratings (δ 6= 0) breaks
the vertical symmetry and results in profound changes in
the dispersion characteristics, as a result of strong cou-
pling processes and of hybridization occurring between
even and odd modes. At δ = 0.2, [see Figs.2(b),(g)], a
flatband is generated at Γ, where not only the group ve-
locity but also the curvature (second derivative) of the
dispersion characteristic vanishes. Note that the phase-
shift φ = 2πδ = 0.4π corresponds to cosφ = 0.31, which
is very close to the optimum value 1/3 predicted by the
analytical model, corresponding to a minimum of the
fourth derivative [44]. Increasing δ further results in the
formation of multivalley dispersions: multiple extremes
separated by quasi-linear regions in the dispersion char-
acteristic [see Figs.2(c,d)], whose spectral range and slope
appear to be finely controlled by the choice of δ. Finally,
with δ = 0.5, dispersion curves exhibit Dirac cones at Γ
[see Figs.2(e,h)]. It is important to highlight that this
degeneracy is not “accidental” and is robust to variation
of h and a; the only condition being that the diffractive
couplings of the two sub-gratings exhibit a π phase-shift
between them (i.e. δ = 0.5)[44].

The lower-part of Figs.2(a-e) depicts analytical calcu-
lation of the photonic dispersion using the Hamiltonian
based theoretical model described previously. Note that
only 4 fitting parameters are required (the two gratings
are identical), and a single set of parameters is used to
fit the results of RCWA simulations for every value of
δ: ω1,2 = 940meV , U1,2 = 147meV , v1,2 = 80meV.µm,
Vf = 119meV . The factors β1,2 are chosen to be zero
since the supplemental diffractive coupling is negligible
with respect to the direct diffractive coupling. The an-
alytical calculations reproduce perfectly all dispersion
characteristics given by the numerical simulations, in par-
ticular the flatband and Dirac dispersion. Thus our ana-
lytical model is successfully validated.

The second structure, called “comb” structure [see

FIG. 2. (Color online). (a-e) Upper-part: Numerical sim-
ulation of the angle-resolved reflectivity spectrum with TE-
polarized incident light for different values of δ of the “fish-
bone” structure; Lower-part: Analytical calculation of the
photonic dispersion using the Hamiltonian based theoretical
modeling. (f) Numerical simulation of the electric-field dis-
tribution of the three modes shown in (a). (g,h) Zoom of the
rectangular selection area of (b,e) to highlight the flatband
and Dirac cones.

Figs.1(c)] is representative of a more standard configu-
ration. It consists of an asymmetric a-Si grating, which
is viewed as two superimposed non separated symmetric
gratings, the second “grating” being non corrugated. A
straightforward “joy-stick” to tune the vertical symme-
try breaking is the etch depth ratio ε (etch depth = ε×h,
where h is the total thickness of the grating), which may
span the range 0 to 1. In this example, we choose the
thickness h = 0.55µm and the period a = 0.32µm. Fig-
ures 3(a-e) show RCWA simulations of dispersion char-
acteristics versus analytical calculations, for different ε.
Increasing the asymmetry results in a dramatic modu-
lation of dispersion curves: quadratic dispersions at low
symmetry breaking [ε = 0.8, see Fig.3(a)] transform to
Dirac cones [ε = 0.75, see Figs.3(b,g)], flatband [ε = 0.62,
see Figs.3(c,h)], then M-shaped and W-shaped multival-
ley dispersions [Figs.3(d,e)]. Again, the dispersion en-
gineering is achieved via the hybridization between odd
and even guided modes carried in the structures, shown
in Fig.3(f). But differently to the “fishbone” case, the
Dirac dispersion of “comb” structure corresponds to an
accidental degeneracy [15, 16] between an odd and an
even mode of the structure. In other words, the value of
ε corresponding to Dirac dispersion depends strongly on
the value of the ratio a/h.

As a proof-of-concept, we experimentally demonstrate
Dirac cones, flatband and multivalley dispersions in
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FIG. 3. (Color online). (a-e) Upper-part: Numerical sim-
ulation of the angle-resolved reflectivity spectrum with TE-
polarized incident light for different values of ε of the “comb”
structure; Lower-part: Analytical calculation of the photonic
dispersion using the Hamiltonian based theoretical modeling.
(f) Numerical simulation of the electric-field distribution of
the three modes shown in (a). (g,h) Zoom of the rectangu-
lar selection area of (b,e) to highlight the flatband and Dirac
cones.

“comb” structure. Our sample consists of asymmetric a-
Si gratings on silica, fabricated via electron beam lithog-
raphy and ionic dry etching [44]. Note that a trans-
formation from Dirac cones to flatband requires only
a slight modification of the vertical symmetry break-
ing [see Figs.3(b,c)]. It allows to adopt a practical ap-
proach to obtain different dispersion characteristics for
the same layer stack and etching depth: i) All struc-
tures (80µm × 80µm) have the same etch depth ratio
ε = 0.74, thus exhibit strong vertical symmetry break-
ing; ii) The odd-even mode coupling is finely tuned by
varying the filling factor FF of the top grating. The
sample design is presented in Fig.4(a). The top grating
is of period a = 0.31µm, 0.4µm thickness and pertur-
bation magnitude α = 0.1. The thickness of the non-
corrugated waveguide is 0.14µm . Scanning Electron Mi-
croscope (SEM) image of the structure corresponding to
FF = 0.72 is shown in Figs.4(b). A white optical beam
(halogen lamp) is focused onto the sample via a micro-
scope objective (NA=0.42). The reflectivity is collected
via the same objective and then captured in Fourier space
onto the sensor of an infrared camera; the latter is cou-
pled to a spectrometer [44]. The upper panels of Figs.4(c-
f) show experimental angle-resolved reflectivity spectrum
of TE polarization when the filling factor is varied from
FF = 0.5 to FF = 0.72. A transformation from Dirac
dispersions [Fig.4(c)] to flatband [Fig.4(f)] of the same
photonic band is clearly evidenced. We also highlight

FIG. 4. (Color online). (a) Sketch of the sample design. (b)
SEM images (top-view) correspond to structure of FF = 0.72.
The scale bar is 1µm. Rectangular selection indicate an ele-
mentary cell. (c-f) Upper part: Experimental angle-resolved
reflectivity spectrum with TE-polarized incident light for dif-
ferent values of FF ; Lower part: Numerical simulation of the
angle-resolved reflectivity spectrum with TE-polarized inci-
dent light for different values of FF . Red dashed lines are
analytical calculations using the Hamiltonian based model.

the observation of a M-shaped dispersion [Fig.4(f)]. The
experimental results are perfectly consistent with both
the RCWA numerical simulations and the analytical cal-
culations [see lower panels of Figs.4(c-f)]. Note that the
refractive index provided by ellipsometry measurements
are used as input for RCWA simulations. The slight en-
ergy shift between the observed spectra and the theoret-
ical prediction is likely due to thickness and groove size
difference.

While dispersion engineering by mixing modes of dif-
ferent natures has been suggested by different groups [11,
13]), our theoretical proposal and experimental demon-
strations show an unprecedented degree of freedom to tai-
lor the dispersion characteristics of photonic structures,
whose curvature can be finely tuned from zero to infin-
ity. This opens an unique playground for both exotic
Dirac and flatband physics. In particular, it will be pos-
sible to study the light delocalization when a dispersion
is gradually transformed from flatband (exceptional lo-
calized states and ultra sensitive to disorders [7–9, 14])
to Dirac cones (very robust versus disorder effect of An-
derson localization [29]).

Another attractive prospect is the integration of active
material in these designs, for example by placing quan-
tum wells in the non corrugated part of the “comb” struc-
ture, or by depositing monolayers of 2D material on top
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of the structure via exfoliation. In the weak light-matter
coupling regime, one can expect to obtain ultra-compact,
low-threshold micro-lasers with flatband states; and large
area single mode with Dirac states [21, 22]. In addition,
linear dispersion characteristics with on-demand group
velocity can also be obtained: the group velocity around
the Dirac point can be finely controlled from the group
velocity of the non-corrugated waveguides down to theo-
retically zero [44]. These remarkable features are highly
desired in a variety of non-linear photonics applications
such as ultra-compact mode-locked lasers. Moreover,
our concept can be used in strong coupling regime [46]
to control the properties of polariton condensates and
lasers [47, 48]. Note that dispersion engineering in po-
laritonic systems has been mostly achieved by patterning
Fabry-Perot cavity into microstructure, which requires
etching the active layer [49, 50]. Adopting our design,
the active layer will be unpatterned - an ideal configura-
tion to obtain the strong coupling regime with fragile 2D
materials [51]. We also highlight the possibility to use
multivalley dispersion in the strong coupling regime to
obtain spontaneous momentum symmetry breaking and
two-mode squeezing [52], as well as the observation of the
Josephson effect in momentum space [53].

In conclusion, we have demonstrated both theoretically
and experimentally how to utilize the vertical symmetry
breaking to engineer the dispersion characteristics of pho-
tonic structures. For the first time, a very same disper-
sion band can be finely transformed from conventional
quadratic shape to Dirac cones, flatband and multivalley
one. We would like to emphasize that the theoretical ap-
proach developed in the present work is very generic in
that it offers general design rules and predicts the uni-
versal set of dispersion characteristics for a wide range
of configurations. Such generality applies to any type of
photonic structure involving two coupled gratings with
broken symmetry. This includes HCG membrane devices
with vertical broken symmetry operating above the light
cone as well as HCG waveguide devices with lateral bro-
ken symmetry operating below the light cone. Plenty
of room is left for an extra wide variety of configura-
tions, with, among other prospects, the extension to 2D
photonic crystal slab, which naturally lend themselves to
additional degrees of freedom in 3D manipulation of light
(e.g. angular and polarization resolution).

The authors gratefully acknowledge R. Orobtchouk for
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for fruitful discussions. The authors would like to thank
the staff from the NanoLyon Technical Platform for help-
ing and supporting in the realization of the structures.
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search Agency (ANR) under the project PICSEL (ANR-
15-CE24-0026).

∗ hai-son.nguyen@ec-lyon.fr
[1] O. E. Martinez, J. P. Gordon, and R. L. Fork, J. Opt.

Soc. Am. A 1, 1003-1006 (1984)
[2] S. Fan, P. R.Villeneuve, J. D. Joannopoulos, and E. F.

Schubert, Phys. Rev. Lett. 78, 3294 (1997).
[3] S. Noda, M. Fujita, and T. Asano, Nat. Physics 1, 449-

458 (2007).
[4] D. L. Bergman, C. Wu, and L. Balents, Phys. Rev. B 78,

125104 (2008).
[5] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys.

Rev. Lett. 106, 236803 (2011).
[6] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.

Solnyshkov, G. Malpuech, E. Galopin, A. Lemâıtre, J.
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M. Soljačić, Opt. Lett. 39, 2072-2075 (2014).
[23] F. D. M. Haldane, and S. Raghu, Phys. Rev. Lett. 100,

013904 (2008).
[24] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z.

Chen, A. Szameit, and M. Segev, Phys. Rev. Lett. 111,
103901 (2013).

[25] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit, Nature 496, 196 (2013).

[26] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos,
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[42] N-V-Q. Tran, S. Combrié, P. Colman, A. DeRossi, and
T. Mei, Phys. Rev. B 82, 075120 (2010).

[43] L. Milord, E. Gerelli, C. Jamois, A. Harouri, C. Cheva-
lier, P. Viktorocitch, X. Letartre, and T. Benyattou,
Appl. Phys. Lett. 106, 121110 (2015).

[44] Supplemental Materials at URL ... for further informa-
tion about the analytical derivation of dispersion charac-
teristics, sample fabrication and experimental setup

[45] M. Hueck, S. Blaaberg, and J. Mork, Opt. Express 18
18003-18014 (2010)

[46] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa,
Phys. Rev. Lett. 69, 3314 (1992).

[47] J. Kasprazak, M. Richard, S. Kundermann, A. Baas, P.
Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H.
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