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ΦAbstract – A hybrid analytical-numerical method to predict 
the no-load magnetic flux density in an axial flux permanent 
magnet (AFPM) machine is presented in this paper. It involves 
the method of separation of variables. This leads to express the 
magnetic scalar potential (MSP) by a series where each term is 
the product of three functions. The function depending on the 
radial coordinate is determined by means of a 1-D finite 
difference method (FD) instead of using Bessel functions. The 
functions depending on the axial and azimuthal coordinates are 
described by Fourier series. The results obtained by this method 
are compared to the results obtained by 3D finite element 
analysis (FEA). 

Index Terms—Axial flux, finite difference method, Fourier 
series, magnetic scalar potential, permanent magnet (PM), 
separation of variables. 

I. NOMENCLATURE

B Magnetic flux density
H  Magnetic field intensity
M Residual magnetization
Ω  Magnetic scalar potential
µ0 Permeability of free space
hm PM length in the z direction
g Air-gap length in the z-direction
R0 Lower radial bound of the

problem
R1 Higher radial bound of the

problem
Rint Internal radius of the PM
Rext External radius of the PM
r,θ,z Cylindrical coordinates
ωnk r dependent Fourier series

coefficients determined by finite
difference method

Mnk, Mn0   Fourier series coefficients of M 
p   Number of pairs of poles   
αp   arc pole in the angular direction 
αq   arc pole in the axial direction 
τ   Half period of M in the z-   

           direction 
nc    Number of conductors per poles 

  per phase 
N    Rotational speed of the AFPM 

  machine 
IM   Maximum current intensity 

ΦT. Carpi, Y. Lefevre and C. Henaux are with Laboratoire Plasma et 
Conversion d’Energie (LAPLACE), University of Toulouse, CNRS, 31000 
Toulouse, France (email: {tcarpi, lefevre, henaux}@laplace.univ-tlse.fr). 

II. INTRODUCTION

HE growing interest in axial-flux permanent magnet 
(AFPM) machines, due to its good torque-to-weight 

ratio [1], requires fast magnetic flux prediction for sizing or 
optimization studies for example.  
 Analytical modeling of PM machines by the separation of 
variable technique provides fast and good results compared to 
finite elements method (FEM). The method of separation of 
variables is suitable for 2D problems [2]-[4] but becomes 
more complicated when applied to a 3D problem such as an 
AFPM machine due to a second separation constant to 
handle. A quasi-3D model based on a 2-D resolution at the 
mean radius is proposed in [5]. [6] makes the 3-D solution 
possible by using a Fourier integral in the radial coordinate 
while [7] uses a two variable Fourier series in angular and 
axial coordinate by means of the image method. Apart from 
the separation of variable technique, an analytical solution 
based on the integral transform method is proposed in [8] 
while [9] uses free-space Green’s function method. 
Nevertheless, these solutions involve Bessel functions which 
increase the complexity of the problem and calculation time. 
 The purpose of this paper is to present an alternative 
technique to model the open-circuit magnetic flux density in 
an AFPM machine. It consists in a hybrid approach, partially 
analytical, partially obtained by finite difference (FD) 
method. The problem is first described analytically with the 
help of Fourier series and separation of variables to finally 
apply the FD method to the radial coordinate which is the 
most complicated to handle.  

III. PROBLEM DEFINITION

A. Geometry and Assumptions

A four pairs of poles AFPM machines is considered with
axially alternatively magnetized surface-mounted permanent 
magnets as shown in Fig. 1.  

Fig. 1.  3-D representation of a pair of poles of the AFPM machine. 
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To simplify the problem, the following assumptions are 
made: 

- Because of the air-space between the magnets, we
assume that the permeability in the magnets and the air is the 
same and equal to µ0. Therefore, magnetic constitutive laws 
give us the relation between magnetic field and magnetic flux 
density:  

( ) ( )1
0

MHB += μ

- Back-irons have infinite permeability so the boundary
conditions at the planes z = 0 and z = hm + g are taken as 
Neumann boundary. 

- The problem is limited in the radial direction with
parallel flux boundary conditions on cylinders at r = R0 and r 
= R1.  

Fig. 2.  Periodical extension in the z direction in a cylindrical cut-view of the 
AFPM machine. 

Fig. 3.  Angular (a) and axial (b) dependency of the magnetization. 

B. Fourier series Magnetization Description

Homogeneity of permeability inside and between the
magnets allows describing the residual magnetization M as a 
Fourier series in the angular coordinate. To reduce even more 
the number of regions and thus simplify the problem, 
Neumann boundary conditions can be replaced by a 
periodical extension of the residual magnetization in the z-
direction by virtue of the method of images [7] as shown in 
Fig. 2.  
 Thus, in the cylindrical coordinate system, M has only a 
component in the axial direction and can be expressed as a 
Fourier series of two variables θ and z: 
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where p is the number of pairs of poles and τ is the half 
period of the signal in the z-direction (τ = hm + g) and Mnk 
and Mn0 are the Fourier series coefficients. They are 
calculated from the waveforms of Mz(z) and Mz(θ) shown in 
Fig. 3. 
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where αp and  αq  are the arc pole coefficients in the angular 
direction and the axial direction respectively.  
 Therefore, there are three regions to be considered 
separated by cylindrical surfaces at r = Rint and r = Rext. Air 
regions I (R0 ≥ r ≥ Rint ) and III (Rext ≥ r ≥ R1), and the PM 
region II (Rint ≥ r ≥ Rext) are shown in Fig. 4.  

Fig. 4.  Representation of the different regions considered in the problem. 

In this problem, a one-sided AFPM machine is considered. 
However, the image method, illustrated in Fig. 1, 
demonstrates that the technique presented in this paper can be 
applied to a double-sided AFPM machine as the Fourier 
series description allow to compute the solution for z > hm + 
g. Thus, the same description can be applied for a double
sided AFPM machine as shown in Fig. 5. The winding
distribution is, as in the one-sided AFPM machine, placed at
the plane z > hm + g.

Fig. 5.  Periodical extension in the z-direction of a double-sided AFPM 
machine represented in a cylindrical cut-view. 



IV. SOLUTION OF THE PROBLEM

C. Separation of variables

The problem is now described so that the separation of
variables is more convenient to apply. Indeed, the definition 
of the three regions implies two boundary conditions at r = 
R0 and r = R1 and two interface conditions at r = Rint and r = 
Rext.  

This open circuit study enables to write Maxwell’s 
equations as follow: 

( )5Ω−= gradH

( )60=Bdiv

Combining (1), (5) and (6) yields to the partial differential 
equation: 

( )7Mdiv=ΔΩ
 The divergence of M is expressed, in cylindrical 
coordinates as: 

( )8
1

z
z

MM

rr
r

M

r
r

M
Mdiv

∂

∂
+

∂

∂
+

∂

∂
+=

θ
θ

M has only an axial component, therefore: 
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Then, (7) become, for each region considered: 
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Using the separation of variables [10], Ω is considered to 
be the product of three functions each dependent on only one 
coordinate of the cylindrical coordinate system: 

( )13)(.)(.)( zhgrf θ=Ω
 Incorporating (13) in the Laplacian leads to three separated 
ordinary differential equations for f, g and h: 

( )

( )

( )


















−=
∂

∂

−=
∂

∂

=
















+−
∂
∂

+
∂

∂

162
22

2

152
12

2

1402
22

2
11

2

2

h
z

h

g
g

f
rr

f

rr

f

α

α
θ

α
α

α1
2 and α2

2 are the separation constants and can be chosen 
either positive or negative. Their sign is chosen in order to fit 
the form of the sources, indeed (15) and (16) are solved with 
a linear combination of sines and cosines function. Equation 
(14) is a Bessel differential equation and gives modified

Bessel functions of first and second kind of order α1 as the 
solution [11]: 
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where A, B, C, D, E and F are arbitrary coefficients. 
 Handling Bessel functions add to the complexity of the 
problem and involve additional numerical functions to 
approach them. The method presented here proposes solving 
the r dependence differential equation by finite difference 
method which is easy to implement and might produce a 
solution close enough to FEM method to be considered as a 
useful alternative model. It may provide a fast and precise 
model of the magnetic flux density produced by the 
permanent magnets compared to analytical models proposed 
in [6] and [7] in which the expressions of the air-gap 
magnetic flux density are relatively complex. Thus, the 
solution f including Bessel functions is not considered, and an 
alternative solution involving finite difference method is 
presented. 

D. Finite Difference Method

Due to the description of the magnetization given in (2)
and the equations in the different regions (10), (11) and (12), 
the solution can be assumed with the same form as the second 
member of (11) also described in (9). Moreover, α1 and α2 are 
identified to np and kπ/τ respectively and discretize the values 
of α1 and α2.  
 With the help of the two variable Fourier series description 
and the principle of superposition, the general solution is 
written as follow: 
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where ωnk are the r dependent Fourier series coefficients to 
be determined by FD method. An additional term ωn0 should 
be added to the solution (20) but will not be considered as it 
will vanish from the Bz component of the magnetic flux 
density according to (21). 
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 Combining (20) and the partial differential equations in 
regions I, II and III yields to the following ordinary 
differential equations over the r dependent Fourier series 
coefficient in each region: 
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 There are n x k equations to solve for each region. The FD 



method is then applied for R0 ≥ r ≥ R1 and for all couples (n, 
k). The discretization of the radius is achieved with a variable 
step as shown in Fig. 6.  

Fig. 6. Definition of variables used in FD method with a variable step. 

 The second order Taylor approximation are used to 
compute the derivatives of ωnk given in (25) and (26). 
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 where ui represents the value of ωnk for r = ri and hi the 
step between ri+1 and ri. Therefore, differential equations 
(22), (23) and (24) in each region along with discretization 
proposed in (25) and (26) yields to three solutions for all 
radius between R0 > r >Rint , Rint > r > Rext and Rext > r > R1. 
The problem formulated by (22), (23) and (24) after 
discretization leads to the following system in each region: 
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where Ank is the matrix of rank (n, k) of the coefficients of the 
components of the vector vnk (i) = ui and Bnk is the vector 
whose components are the second member of each 
differential equation. The formulation (27) is now completed 
by boundary and interface conditions at r = R0, r = Rint, r = 
Rext and r = R1.  
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Traduced in MSP and then in DF it yields to: 
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 The problem can now be formulated generally by the 
following matrix equation: 
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and Bnk(i) = Mnk in the region II and 0 in region I and III. To 
compute the final solution Bz (r,θ,z), the solution of (36), 
constitutive law (21) and the general form of the solution (20) 
are combined: 
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 The axial magnetic flux is discretized in r and then can be 
computed for any value of θ and z.  

E. Electromotive Force and Torque

The main advantage of this technique is that all
information of the AFPM such as back electromotive force 
(emf) and torque can be deduced from the z component of the 
magnetic flux density. Furthermore, it can be computed for 
any winding distribution. 
 In an AFPM machine, conductors are placed on a radial 
line. Therefore, to be as accurate as possible, meshing of the 
problem has to be discretized radially and angularly in order 
to get each point on a radial line corresponding to a 
conductor. The conductors are considered to be radial 
filaments placed at the plane z = hm + g between radius Rint 
and Rext. 
 The back emf is the rate of change of the magnetic flux 
density. Thus, the elementary back emf generated over a 
single conductor is computed according to the following 
expression: 
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where ω is the angular speed of the AFPM machine and θ the 
relative angular position of the stator compared to the rotor. 
The total back emf is then deduced from this elementary 
calculation depending on the winding distribution. The 
winding distribution considered is a simple three phase 
winding and is shown in Fig. 7.  

Fig. 7. Winding distribution considered in the problem.  



Then, the total back emf is deduced from (21): 
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where etot is the total back emf over the phase one, eF1 and eR2 
are the elementary back emf generated respectively over the 
forward conductor and the backward conductor of the phase 
one, nc is the number of conductors per pole per phase and p 
is the number of pairs of poles of the AFPM machine.  

 The same way, the elementary torque is computed over a 
single conductor with unitary current and unitary number of 
conductors per pole per phase in order to apply it over any 
kind of winding distribution: 
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 Phases are powered by sinusoidal currents of magnitude 
IM, the total torque is computed at the time when the current 
of the phase 1, 2 and 3 are respectively equal to IM, -IM/2 and       
-IM/2, in other words, at maximum torque. The torque per
phase is then:
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where Ik is the current of the phase k, TFk and TRk are 
respectively the elementary torques exerted on the forward 
conductor of the phase k and on the backward conductor of 
the phase k. Total torque is then deduced by summation. 

V. STUDIED AXIAL FLUX MACHINE

The AFPM considered here is slotless and its parameters 
are given in Table 1. The complete view of the machine is 
shown in Fig 8. The conductors are considered as filaments 
and each color represent one phase. 

TABLE I 
PARAMETERS OF THE AFPM MACHINE 

Parameter Value

Br 1.29 T 
hm 5 mm 
g 6 mm 
R0 10 mm 
R1 32 mm 
Rint 13.5 mm 
Rext 28.5 mm 
p 4 
αp 0,8 
N 1500 tr/min 
nc 12 
IM 2 A 

Some experiments are currently being performed on the 
same kind of machine. These experimental results will be 
presented in the final article to validate the model.  

The model is thus applied to a pair of poles of this AFPM 
machine. The torque and back emf are deduced from the axial 
component of the magnetic flux density Bz (39) according to 
(40)-(42). 

Fig. 8. Complete view of the AFPM considered in the study. 

VI. FINITE ELEMENT COMPARISON

To confirm the validity of the solution previously 
presented, a finite element analysis based on scalar potential 
formulation is performed on ANSYS/Emag 3D [12]. 

The conditions of both calculation methods have to be the 
same, therefore, the same boundary conditions are set: 
normal flux at planes z = 0 and z = hm + g and parallel flux at 
cylindrical planes r = R0 and r = R1. Also, the permeability is 
set to µ0 for both magnets region and air region.  
 To perform a complete comparison, both computation 
methods will be achieved on a radial line, for z = hm + g/2 
and θ = 0, a circumferential line at r = Rint + 0.8.(Rext-Rint) 
and z = hm + g/2 and an axial line at r = Rint + 0.8.(Rext-Rint) 
and θ = 0. Thus, the comparison is made on three plots that 
will show the validity of the model in accordance with r, θ 
and z independently.  
 Fig. 9 and Fig. 10 show the air gap field generated by three 
poles respectively in the magnets at the plane z = hm/2 and in 
the air gap at the plane z = hm + g/2. 

Fig. 9. Axial flux density distribution at the plane z = hm/2. 

Fig. 10. Axial flux density distribution at the plane z = hm + g/2. 



 The magnetization is a square wave and therefore 
requires many harmonics to reach the waveform shown in 
Fig. 3. Even if the waveforms from Fig. 11 are unsquared, the 
expression of axial magnetic flux density involves Mz 
expression (modulated by µ0) and thus may alter the quality 
of the signal. The axial magnetic flux density as a function of 
z is the most influenced by this feature. Indeed, considering 
both magnets and air-gap region, the root mean square error 

(a) 

(b) 

(c) 
Fig. 11. Axial flux density as a function of axial coordinate (a), angular 
coordinate (b) and radial coordinate (c) by hybrid analytical-FD method and 
FEM. 

goes from 6% for 11 harmonics and globally decrease until 
1.5% for 101 harmonics but is not monotonous. This is due to 
the square wave of the axial magnetic flux density in the 
magnets region which induces a large error for a low number 
of harmonics.  

Thus, most of the error comes from the magnets region. 
Considering only the air-gap region, which is of our interest, 
the error becomes smoother and below 1.5% beyond 16 
harmonics as shown in Fig. 12. 

Radial and angular dependence are less affected by the 
quality of the magnetization and the RMS error is about 2% 
and 1.6% respectively in accordance with radial and angular 
coordinate.  
 This method includes several nested loops so the 
computation time increase exponentially with respect to the 
number of harmonics and the discretization step. The results 
presented here are computed for 16 harmonics and 1 894 053 
points in the volume considered for a total computation time 
of nine seconds. Fig. 12 shows that it not necessary to reach a 
high harmonic order to obtain a reasonable accuracy of the 
model. Despite the low number of harmonics, the waveforms 
are smooth and the error is below 2% on each plot.  

Fig. 12. Accuracy and computation time in accordance with the number of 
harmonics. 

 Back emf and torque waveforms are deduced from the 
axial component of the magnetic flux density over the plane z 
= hm + g as presented in section IV. The computation is made 
for both calculation methods for the winding distribution 
given in Fig. 7 at the moment of maximum torque defined 
previously, and for all angular position of the rotor compared 
to the stator. The angular position θ = 0° is set to be the one 
shown in Fig. 7 and the rotor is rotating counter-clockwise. 
 Fig. 13 and 14 show the back emf and torque waveforms 
versus angular position. 
 Both methods are very close; indeed, the RMS error 
between the hybrid solution and the FEM is 0.70% and 
0.46% respectively for the back emf and the torque. This 
validates the correctness of the hybrid solution. Errors on 
back emf and torque between the proposed method and the 
FEM are directly related to the error on Bz but it gives an 
additional point of comparison as it is calculated at the plane 
z = hm + g.  



Fig. 13. Back emf waveform computed for the given winding distribution 
depending on the relative angular position of the rotor compared to the 
stator. 

Fig. 14. Total torque waveform computed for the given winding distribution 
depending on the relative angular position of the rotor compared to the 
stator. 

VII. CONCLUSION

 The method proposed here to predict the magnetic flux 
density in an AFPM machine is an efficient alternative to 
fully analytical models proposed in [6], [7]. Indeed, the 1-D 
finite difference method is easy to set up, and the calculation 
time is more than acceptable for a small number of 
harmonics. Nevertheless, the magnetization description 
requires a lot of harmonics and may bring in some additional 
error but remains reasonable. Finally, the axial component of 
the magnetic flux density provides access to back emf and 
torque of the AFPM machine for any kind of winding 
distribution.  
 This method can be adapted to all types of magnets 
distributions and to other kind of problems as long as it can 
be described by Fourier series and the separation of variables. 
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