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Scalar image velocimetry (SIV) is the technique to extract velocity vectors from
scalar field measurements. The usual technique involves minimising a cost functional,
that penalises the deviation from the scalar conservation equation. This approach
requires the measured scalar field to be sufficiently resolved and relatively noise free,
such that space and time derivatives of the measured scalar field can be accurately
evaluated. We quantify these requirements for a synthetic two-dimensional (2-D)
turbulent flow field by evaluating the velocity reconstruction accuracy as a function
of the temporal and spatial resolution and the noise level. We propose an improved
SIV scheme, that reconstructs not only the velocity field but also the scalar field,
which does not require approximating the space and time derivatives of the measured
scalar field. Improved velocity reconstruction is demonstrated for the 2-D synthetic
field. We furthermore apply the scheme to interferograms of the thickness field of
a falling soap film, where 2-D turbulence is generated by an array of cylindrical
obstacles. The statistics of the reconstructed velocity field are within 10 % of laser
Doppler velocimetry measurements.

Key words: mathematical foundations, variational methods

1. Introduction
Scalar image velocimetry (SIV) is the reconstruction of the fluid velocity field

u from measurements of a scalar field ψ , that is advected by u. The technique
is applied in weather forecasting models using e.g. satellite images of clouds or
ocean temperature (see e.g. Kalnay 2003). SIV also finds applications in medical
flow imaging and in experimental fluid mechanics. For instance in the laser induced
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fluorescence (LIF) technique a fluid is seeded with fluorescent molecules and laser
light is focused into a thin sheet, where it is absorbed by the fluorescent molecules
followed by spontaneous emission of light which is recorded by a camera (see
e.g. Su & Dahm 1996). Assuming that the recorded light intensity is proportional
to the fluorescence concentration ψ , the velocity field u can be reconstructed by
invoking the scalar transport equation: ∂tψ + ∇ · (uψ) − λ∇2ψ = 0, where λ is the
scalar diffusivity. A direct inversion of the scalar transport equation only provides the
component of u that is normal to ψ isolines: u⊥= (−∂tψ+λ∇

2ψ)∇ψ/|∇ψ |2. Finding
all components of u requires additional constraints, e.g. conservation of hydrodynamic
variables. These constraints are naturally implemented using a variational technique,
involving a minimisation of a cost functional J . Previous works have used the
following cost functional, which penalises the deviation from the scalar transport
equation (see e.g. Su & Dahm 1996; Liu & Shen 2008; Papadakis & Mémin 2008;
Corpetti et al. 2009):

J = 1
2‖∂tψ +∇ · (uψ)− λ∇2ψ‖2. (1.1)

Throughout this work we assume that the norm ‖·‖ is based on the inner product
〈· , · 〉, which, when applied to two vector (or scalar) fields a and b reads 〈a, b〉 =∫

dV a · b. Reconstructing u using (1.1) is limited to cases where ψ is sufficiently
smooth and well resolved in space and time, such that the space and time derivatives
of the measured scalar field ψ can be accurately approximated. In the present work
we alleviate these restrictions by formulating a variational scheme, that reconstructs
not only the velocity field u but also the scalar field φ, which is not to be confused
with the measured scalar field ψ . This scheme minimises the difference between φ
and ψ :

J = 1
2‖ψ − φ‖

2, (1.2)

under the constraint of conserving fluid momentum, fluid mass and scalar field. As
opposed to (1.1), equation (1.2) does not require approximating space and time
derivatives of ψ . Therefore (1.2) is expected to perform better than (1.1), when the
spatial or temporal resolution is low or the noise is high.

In this paper, we verify this hypothesis by comparing the velocity reconstruction
based on (1.1) (Method 1) to that based on (1.2) (Method 2). In § 2 we formulate
Method 1 and Method 2 and in § 3 we compare the accuracy of both Methods for
a two-dimensional (2-D) synthetic, decaying, turbulent flow field. In § 4 we apply
Method 2 to experimental data of the thickness field of a turbulent soap film. The
statistics of the reconstructed velocity field are compared to laser Doppler velocimetry
measurements. Conclusions are summarised in § 5.

2. Method derivation
2.1. Introductory remarks

In this work we formulate a new SIV method (Method 2) to reconstruct the space
and time dependent velocity field u, pressure field p and scalar field φ from noisy
scalar field measurements ψ at discrete times t = iτ , where i is an integer and τ is
the time interval between measurements, which is referred to as the sampling time.
The reconstruction method divides the time domain into segments, where the start t0=

(i− 1)τ and the end t1= t0+ τ of the ith segment coincide with the ith and (i+ 1)th
scalar measurements. The reconstruction scheme solves a sequence of optimisation
problems for the unknown state variable w = (u, p, φ) at the start of each segment,
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i.e. at t = t0. We use a subscript on a field variable to indicate a time instance, e.g.
w0 = w(t0). Finding w0 in each segment involves an iterative scheme, and the initial
guess for the iteration is taken from the reconstructed field w1 at t = t1 obtained in
the preceding segment. It is noted that the segment time is arbitrarily chosen to be
equal to the sampling time. Although beyond the scope of this work, using segment
times larger than τ might improve the performance of the method.

2.2. Method 1
Before we derive Method 2, we first derive Method 1, which is a previously proposed
SIV scheme (Papadakis & Mémin 2008; Corpetti et al. 2009). Method 1 reconstructs
velocity and pressure, which corresponds to the state variable: w= (u, p). In each time
segment, Method 1 finds the initial conditions for the state variable w0, by minimising
the deviation from the scalar conservation equation at the start t0 as well as at the end
t1 of the segment. The corresponding cost functional for Method 1 reads:

J =
1
2

(∑
i=0,1

‖∂tψi +∇ · (uiψi)− λ∇
2ψi‖

2
+ κ‖∇2u0‖

2

)
. (2.1)

In (2.1) κ is a regularisation constant and the regularisation term κ‖∇2u0‖
2 is

added to suppress the large wavenumber content of u, which is important when
the reconstruction method is confronted with noisy scalar measurement data and
is prone to instability. Including regularisation terms is standard practice in inverse
problems such as SIV (see e.g. Corpetti et al. 2006), and the mathematical theory
of regularisation can be found in e.g. Tikhonov & Arsenin (1977). It is noted, that
there is no need to add a pressure regularisation term, e.g. κ‖∇2p0‖

2, since in the
present methodology, p0 is regularised due to its coupling to the regularised u0, via
the equation of state, which is given by the incompressibility condition in (2.2) below.

It is noted, that in the hypothetical case of reconstructing flows with very large
Reynolds numbers, one could resort to the ‘large eddy simulation’ technique, where
the effect of the unresolved scales is modelled by adding dissipative terms to the
equations of motion (equation (2.2) below). It would be interesting to investigate to
what extent the regularisation terms in (2.1), could serve this purpose, and to relate
the corresponding regularisation strength κ to the grid size. This however is beyond
the present scope, which is restricted to the ‘direct numerical simulation’ technique,
where the reconstructed hydrodynamic and scalar fields are fully resolved on the
computational grid.

Equation (2.1) is minimised under the constraint, that the velocity field u and
the pressure field p are governed by the Navier–Stokes equations and the continuity
equation:

R(w)=
(
∂tu+ u · ∇u+∇p− ν∇2u

∇ · u

)
= 0. (2.2)

Here ν is the fluid kinematic viscosity. Adding constraint (2.2) to (2.1) using the
Lagrange multiplier ŵ = (û, p̂) results in the following constrained cost functional,
which is referred to as the Lagrangian L:

L=
1
2

(∑
i=0,1

‖∂tψi +∇ · (uiψi)− λ∇
2ψi‖

2
+ κ‖∇2u0‖

2

)
+

∫ t1

t0

〈ŵ,R(w)〉 dt. (2.3)
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Reconstructing velocity fields from scalar fields 351

As ψ is discretely sampled in time, the time derivative ∂tψi in (2.3) is approximate. In
§ 3.2 we study the effect of the sampling time on the reconstruction accuracy, where
we use the second-, third- and fourth-order finite difference approximations for the
time derivative of the measured scalar field:

∂tψi = τ
−1


1
2ψi+1 −

1
2ψi−1: second order

−
1
6ψi+2 +ψi+1 −

1
2ψi −

1
3ψi−1: third order

−
1

12ψi+2 +
2
3ψi+1 −

2
3ψi−1 +

1
12ψi−2: fourth order

(2.4)

Spatial derivatives are computed using the Fourier collocation method, and in § 3.3, we
study the effect of the spatial resolution, by artificially removing large wavenumbers
from the measured scalar field.

Minimising L (equation (2.3)) with respect to w0 involves computing the gradient
of L with respect to w0, i.e. δL/δw0. To derive an expression for δL/δw0, we start
by writing the variation of the Lagrangian δL due to an infinitesimal variation in the
state variable δw= (δu, δp):

δL =
∑
i=0,1

〈∂tψi +∇ · (uiψi)− λ∇
2ψi, δ[∇ · (uiψi)]〉 + κ〈∇

2u0, δ[∇
2u0]〉

+

∫ t1

t0

〈ŵ, δR(w)〉. (2.5)

We rewrite the various terms in (2.5) using integration by parts; see e.g. Gunzburger
(2003):

δL = 〈−ψ0∇[∂tψ0 +∇ · (u0ψ0)− λ∇
2ψ0] + κ∇

4u0 − û0, δu0〉

+ 〈−ψ1∇[∂tψ1 +∇ · (u1ψ1)− λ∇
2ψ1] + û1, δu1〉

+

∫ t1

t0

〈R̂(w, ŵ), δw〉, (2.6)

where R̂ is the adjoint operator of the linearised version of R (equation (2.2)):

R̂(w, ŵ)=
(
−∂tû− u · (∇û+∇ûT

)−∇p̂− ν∇2û
−∇ · û

)
, (2.7)

and where ∇ûT is the transposed of ∇û. In (2.6) the û0 and û1 are time-boundary
terms, that are obtained by integrating by parts the time derivative term in 〈ŵ, δR(w)〉.
For simplicity, we restrict ourselves to periodic domains, which negates the space-
boundary terms, that are produced by integrating by parts the space derivative terms
in 〈ŵ, δR(w)〉.

From (2.6) we find, that the functional derivative of L (equation (2.3)) with respect
to w0 = (u0, p0) equals:

δL
δw0
=


δL
δu0

δL
δp0

=(−ψ0∇[∂tψ0 +∇ · (u0ψ0)− λ∇
2ψ0] + κ∇

4u0 − û0
0

)
. (2.8)
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This expression for δL/δw0 contains the Lagrange multiplier ŵ= (û, p̂). The evolution
equation of this quantity as well as its initial and final conditions are found by
demanding that δL (equation (2.6)) equals zero under arbitrary, infinitesimal δw:

R̂(w, ŵ)= 0, (2.9a)
−ψ1∇[∂tψ1 +∇ · (u1ψ1)− λ∇

2ψ1] + û1 = 0, (2.9b)
−ψ0∇[∂tψ0 +∇ · (u0ψ0)− λ∇

2ψ0] + κ∇
4u0 − û0 = 0. (2.9c)

Equations (2.7) and (2.9a) govern the evolution of the Lagrange multiplier ŵ, showing
that û is incompressible and it is advected by u, and it is subjected to diffusion.
Remarkably, the diffusion coefficient −ν of this transport equation is negative, and
therefore this equation is integrated backward in time from t = t1 to t = t0. The
‘starting’ conditions ŵ1 at t = t1 are given by (2.9b), while the ‘final’ conditions
ŵ0 at t = t0 define the optimisation update direction of w0 via (2.8). This direction
approaches zero, when w0 reaches an extremum of L, which corresponds to (2.9c).

Equation (2.9c) also shows that the regularisation term in the cost functional
(equation (2.1)) effectively adds a pulse of hyper viscosity to the transport equations
at t= t0. The order of the hyper viscosity, which in this case equals four, depends on
the exponent on the velocity gradient in the κ-term in (2.1), which in this case equals
two. For a unit exponent we would have recovered normal, second-order viscosity
(see e.g. Corpetti et al. 2006). Fourth-order viscosity is chosen above second-order
viscosity however, since the former affects more selectively the large wavenumbers,
while leaving small wavenumbers intact.

2.3. Method 2
Next we derive Method 2. In addition to velocity and pressure, which are reconstructed
by Method 1, Method 2 also reconstructs the scalar field. The corresponding state
variable reads: w = (u, p, φ). Consequently, Method 2 requires some 30 % more
computational effort than Method 1. In each time segment, Method 2 finds the
initial conditions for the state variable w0, by minimising the deviation between the
reconstructed scalar field φ and the measured scalar field ψ at the start t0 as well as
at the end t1 of the segment. The corresponding cost functional for Method 2 reads:

J =
1
2

(∑
i=0,1

‖φi −ψi‖
2
+ κ‖∇2φ0‖

2
+ κ‖∇2u0‖

2

)
. (2.10)

It is noted that the regularisation constant κ for the velocity field is chosen to be
equal to that for the scalar field. This choice requires that ∇2u0 is of the same order
of magnitude as ∇2φ0. When variables are non-dimensionalised, such that u0 ∼ φ0,
this condition is met when the smallest length scale of u0 is of the same order of
magnitude as that of φ0. This requirement restricts the applicability of (2.10) to cases
where the Schmidt number Sc= ν/λ∼ 1. Extending the method to arbitrary Schmidt
number requires having two distinct regularisation parameters.

Equation (2.10) is minimised under the constraint that w1 is related to w0 via the
conservation equations of fluid momentum, fluid mass and scalar:

R(w)=

∂tu+ u · ∇u+∇p− ν∇2u
∇ · u

∂tφ + u · ∇φ − λ∇2φ

= 0. (2.11)
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Reconstructing velocity fields from scalar fields 353

Adding constraint (2.11) to (2.10) using the Lagrange multiplier ŵ = (û, p̂, φ̂)
results in the following constrained cost functional, which is again referred to as the
Lagrangian L:

L=
1
2

(∑
i=0,1

‖φi −ψi‖
2
+ κ‖∇2φ0‖

2
+ κ‖∇2u0‖

2

)
+

∫ t1

t0

〈ŵ,R(w)〉 dt. (2.12)

Minimising L with respect to w0 involves computing the gradient of L with respect to
w0, i.e. δL/δw0. To derive an expression for δL/δw0 we start by writing the variation
of the Lagrangian δL due to an infinitesimal variation of the state variable δw =
(δu, δp, δφ):

δL=
∑
i=0,1

〈φi −ψi, δφi〉 + κ〈∇
2u0, δ(∇

2u0)〉 + κ〈∇
2φ0, δ(∇

2φ0)〉 +

∫ t1

t0

〈ŵ, δR(w)〉.

(2.13)
We rewrite the regularisation terms and the Lagrange multiplier term in (2.13) using
integration by parts (see e.g. Gunzburger 2003):

δL = 〈φ1 −ψ1 + φ̂1, δφ1〉 + 〈κ∇
4φ0 + φ0 −ψ0 − φ̂0, δφ0〉

+ 〈û1, δu1〉 + 〈κ∇
4u0 − û0, δu0〉 +

∫ t1

t0

〈R̂(w, ŵ), δw〉, (2.14)

where R̂ is the adjoint of the linearised version of R (equation (2.11)):

R̂(w, ŵ)=

−∂tû− u · (∇û+∇ûT
)−∇p̂− ν∇2û− φ∇φ̂

−∇ · û
−∂tφ̂ − u · ∇φ̂ − λ∇2φ̂

 . (2.15)

In (2.14) the û0, û1, φ̂0 and φ̂1 are time-boundary terms, that are produced by
integrating by parts the time derivative terms in 〈ŵ, δR(w)〉. It is again noted that we
restrict ourselves to periodic domains, which negates the space-boundary terms, that
are produced by integrating by parts the space derivative terms in 〈ŵ, δR(w)〉. It is
shown in § 4, that, when confronted with non-periodic, scalar measurement data, the
periodic reconstruction method performs surprisingly well, except for a small region
near the boundaries.

From (2.14) we find, that the functional derivative of L (equation (2.12)) with
respect to w0 = (u0, p0, φ0) equals:

δL
δw0
=



δL
δu0

δL
δp0

δL
δφ0

=
 κ∇4u0 − û0

0

κ∇4φ0 + φ0 −ψ0 − φ̂0

 . (2.16)

This expression for δL/δw0 contains the Lagrange multiplier ŵ. The evolution
equation of this quantity as well as its initial and final conditions are found by
demanding that δL (equation (2.14)) equals zero under arbitrary, infinitesimal δw:
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R̂(w, ŵ)= 0, (2.17a)
û1 = 0, φ1 −ψ1 + φ̂1 = 0, (2.17b)

κ∇4u0 − û0 = 0, κ∇4φ0 + φ0 −ψ0 − φ̂0 = 0. (2.17c)

Equations (2.15) and (2.17a) govern the evolution of the Lagrange multiplier ŵ =
(û, p̂, φ̂), showing that û is incompressible and is forced along gradients of φ̂, and
that both û and φ̂ are advected by u and are subjected to diffusion. The diffusion
coefficients −ν and −λ of these transport equations are negative, and therefore these
equations are integrated backward in time from t= t1 to t= t0. The ‘starting’ conditions
ŵ1 at t = t1 are given by (2.17b), while the ‘final’ conditions ŵ0 at t = t0 define the
optimisation update direction of w0 via (2.16). This direction approaches zero, when
w0 reaches an extremum of L, which corresponds to (2.17c).

2.4. Final remarks
The SIV schemes used in this work (Method 1 and Method 2) find w0 using the
Polak–Rebiere variant of the conjugate gradient method (Polak 1971), which updates
w0 along a search direction h related to δL/δw0. The initial guess for w0 is w1 from
the previous time segment, and the step length along h is varied using Brent’s line
minimisation algorithm (Brent 2013), until the minimum of J (equation (2.1) for
Method 1 or (2.10) for Method 2) in this direction is found. The conjugate gradient
algorithm is continued until the relative change in J between two consecutive
iterations drops below 0.01. Both Method 1 and Method 2 typically require ∼102

conjugate gradient steps and ∼10 Brent minimisation steps per conjugate gradient
step. Therefore the computational effort of both methods is equivalent to that of ∼103

computational fluid dynamics simulations.

3. Methods comparison
3.1. Set-up

In this section we compare the performance of Method 1 (equation (2.1)) and
Method 2 (equation (2.10)) in reconstructing the velocity field u from a series of
synthetic scalar fields ψi. In these tests, we know the exact equations that govern
the measured scalar field, which in the ‘reconstruction literature’ is referred to as
the ‘perfect model’ assumption. In § 4 below, we analyse experimental data of soap
film thickness fluctuations. In those tests, the governing equations are not entirely
known, which adds an additional layer of uncertainty to the problem. In the present
section we focus on the effects of the temporal resolution, i.e. the sampling time τ ,
the spatial resolution and the measurement noise. In Method 1 we use the second-,
third- and fourth-order finite difference approximations for the time derivative of the
measured scalar field ∂tψ (equation (2.4)).

To compare their respective performances we apply both methods to a synthetic
scalar field ψ in a two-dimensional (2-D) incompressible, decaying turbulent flow on
a square, biperiodic domain of size L = 2π. We generate a reference velocity field
v and a reference scalar field ψ using numerical simulation of the hydrodynamic
equations and the scalar transport equation in the absence of forcing mechanisms
(equation (2.11)). Spatial derivatives in these equations are computed using the
Fourier basis functions. Time integration is performed using the second-order explicit
Adams–Bashforth scheme for the advection terms and the second-order implicit
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FIGURE 1. Autocorrelation C of the synthetic fluid velocity and scalar fields as functions
of the separation distance at t= 1.

Crank–Nicolson scheme for the diffusion terms. The number of grid points is
N2
= 1282 and the numerical integration time step is 1t= 1× 10−3. The reconstruction

is applied to the time interval 0 < t < 4. The initial reference velocity and scalar
fields are constructed by assigning random numbers to the Fourier components of the
wave vectors with absolute value |k| 6 8, while the remaining Fourier components
are assumed zero. The initial velocity and scalar fields are normalised, such that
U =‖v‖= 1 and ‖ψ‖= 1 at t= 0. The diffusivity is λ= 2.2× 10−3 and the viscosity
is ν= 7.3× 10−4, which corresponds to a Reynolds number of Re=UL/ν= 8.6× 103

based on and the initial velocity scale U and a Schmidt number of Sc= ν/λ= 1/3,
indicating that the smallest velocity length scale is of the same order of magnitude
as the smallest scalar length scale.

To quantify the size of the turbulent structures we compute the autocorrelation
function C, which is plotted for both v and ψ at t = 1 in figure 1. Defining the
correlation length scale L as the distance where C = 1/2, we observe from figure 1
that for both v as well as for ψ , L∼ 10−1 at t= 1. Given the velocity scale of U ≈ 1
we estimate the correlation time as T = L/U ∼ 10−1. It is noted that in decaying
turbulence L and T grow in time (not shown) and the above numbers are order
of magnitude estimates. With time, the decaying flow field looses structure, and
the spatial and temporal derivatives weaken. Therefore to stringently test both SIV
methods, we restrict the reconstruction to 0< t< 4.

In § 3.2 we study the effect of the temporal resolution on the velocity reconstruction,
by using varying sampling times τ . To illustrate the magnitude of a typical value for
τ , we show in figure 2(a,b) two consecutive scalar field samples, using τ = 0.4.

In § 3.3 we study the effect of the spatial resolution, by subjecting the synthetic
scalar field to a low pass filter, with a varying cutoff wavenumber. Figure 2(c) shows
a low pass filtered scalar field, where the cutoff wavenumber equals kc= |kc| = 48π/L.

In § 3.4 we study the effect of scalar noise, by adding at each time step an
independent random number to each Fourier component of the synthetic scalar
field. The random numbers are drawn from a uniform distribution with zero mean
and a standard deviation, that is η times the absolute value of the corresponding
Fourier coefficient. Parameter η is referred to as the noise level. To illustrate the
effect of noise, we show in figure 2(d) a synthetic scalar field, that is subjected
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(a) (b) (c) (d)

FIGURE 2. (a,b) Two consecutive samples at t = 1 (a) and t = 1.4 (b) of the synthetic
scalar field, using a sampling time of τ = 0.4. (c) Low pass filtered, synthetic scalar field,
using a cutoff wavenumber of |kc|L/(2π)= 24. (d) Noisy, synthetic scalar field, using a
noise level of η= 0.5.
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FIGURE 3. (a) Reconstruction error ε (equation (3.1)) versus time t, using noise level
η = 0 and various sampling times τ , for Method 1 (filled markers) using regularisation
constant κ = 0, and for Method 2 (open markers) using κ = 0 for τ < 0.1 and κ = 6× 10−7

for τ > 0.1. Note, that the correlation time is estimated in § 3.1 as: T ≈ 0.1. (b) ε versus
τ at t = 4 using η = 0 for Method 1 using κ = 0, and for Method 2 using κ = 0 for
τ < 0.1 and κ = 6 × 10−7 for τ > 0.1. The time derivative of ψ in the cost functional
of Method 1 (equation (2.1)) is approximated using second-, third- and fourth-order finite
difference schemes (equation (2.4)). The lines are drawn to guide the eye. (c) ε versus
κ at t = 4 using Method 2, η = 0 and τ = 0.4. These data show, that for τ = 0.4, the
unregularised Method 2 is unstable, and that the optimum regularisation strength equals
κ ∼ 6× 10−7.

to a noise level of: η ≈ 0.5 (50 %). It is shown in § 3.4, that for very large η, i.e.
η & 10, the finite difference approximations in Method 1 become meaningless, and
the reconstruction deteriorates. It is furthermore shown, that for η∼ 1, which is still a
considerable amount of noise, Method 1 may produce accurate results. This behaviour
demonstrates the merits of performing the space–time integral minimisation.

3.2. Effect of temporal resolution
We start by studying the accuracy of Method 1 in the absence of noise, i.e. η = 0,
as a function of the sampling time τ , which has been varied between 0.025 and
3.2. Unless stated otherwise we use the second-order finite difference approximation
(equation (2.4)) of ∂tψ in (2.1). All the corresponding reconstruction runs were stable
with zero regularisation strength κ = 0. Figure 3(a) shows for various values of τ the
reconstruction error ε as a function of time.

ε =
‖u− v||2

‖v‖2
, (3.1)
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Reconstructing velocity fields from scalar fields 357

where it is recalled, that u is the reconstructed velocity and v is the reference velocity
field. It is noted, that for clarity, figure 3(a) only shows results up to τ = 0.4, since
results for larger τ fall on top of each other. It is seen in figure 3(a), that with time,
the error first decreases and after a few time units reaches a steady value. Recalling
the time segmentation described in § 2, this time dependent behaviour indicates, that
the reconstruction depends on the quality of the initial guess for the initial condition at
the start of each segment. In the first segment the initial guess is zero, while in each
consecutive segment the initial guess gets closer to the ‘exact’ solution, explaining the
observed decrease in ε with time.

Figure 3(b) shows the final and steady error ε, which is taken at t= 4, as a function
of the sampling time, in the range: 0.025 6 τ 6 3.2. The reconstruction error ε is
seen to increase with τ . There are two causes for this behaviour. The first cause is
related to the ill posedness of the initial value problem for chaotic systems, which
corresponds to the cost functional developing multiple minima, when τ exceeds a
threshold (see e.g. Pires, Vautard & Talagrand 1996). Figure 3(b) shows that in the
present system this threshold is of the order of 0.1, which is in the same range as the
estimated correlation time T ; see § 3.1. The second cause for the increase in ε with
τ (figure 3b) is the error in the discretisation of ∂tψ in (2.1). To study this effect
we have repeated the reconstruction, using third- and fourth-order finite difference
schemes (equation (2.4)). The results in figure 3(b) show only marginal improvements,
by using higher-order time discretisation schemes. Therefore we use the second-order
scheme in the remainder of this work.

Next, we evaluate the performance of Method 2 in reconstructing the velocity field
from noise-free scalar fields (η = 0). We still focus on the effect of the sampling
time τ , which is varied between 0.025 and 3.2. We found that in the current set-up,
Method 2 is unstable for τ & 0.1. Since we employ the ‘direct numerical simulation’
technique, this instability is not triggered by a lack of energy dissipation due to
unresolved scales. Instead, it is believed, that the instability is related to the ill
posedness of the problem, as discussed above. In order to stabilise these cases we
use regularisation κ-terms in (2.10). The optimal κ is determined by trial and error.
Figure 3(c) shows the reconstruction error ε (equation (3.1)) for various values of
the regularisation strength κ using τ = 0.4. It is seen, that the optimum value is
κ ∼ 6× 10−7, while for smaller values the method is unstable, and for larger values
the error increases.

Figure 3(a,b) shows the reconstruction error ε of Method 2, alongside with that
of Method 1. Figure 3(a) shows ε as a function of time t for various values of the
sampling time τ , while figure 3(b) shows ε as a function of τ for a fixed value of
t = 4. For Method 2 we have used κ = 0 for τ < 0.1 and κ = 6× 10−7 for τ > 0.1.
The comparison demonstrates the improved performance of Method 2 in the range
0.05< τ < 1. It is moreover observed, that with increasing τ , the error of Method 2
continues to grow, and the corresponding reconstructed velocity becomes increasingly
noisy and finally unstable. This behaviour is in contrast to that of Method 1, whose
error saturates, and whose solution remains stable for large τ . We elaborate on the
stability issue in § 3.4. It is noted, that for τ & 1, the error of Method 1: ε∼ 1, which
is smaller than ε & 1 for Method 2, but both reconstructions are too inaccurate to be
useful.

3.3. Effect of spatial resolution
Next we consider the effect of the spatial measurement resolution, on the performance
of Method 1 and Method 2. Since our numerical method operates in Fourier space,
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FIGURE 4. Reconstruction error ε (equation (3.1)) versus low pass, cutoff wavenumber
kc, using sampling time τ = 0.025, noise level η= 0 and regularisation strength κ = 0, for
Method 1 and Method 2.

we vary the spatial resolution, by subjecting the synthetic scalar fields, to a low pass
filter, with a variable cutoff wavenumber kc = |kc|. In physical space, this operation
is equivalent to coarse graining, with a grain size of ∼ k−1

c . Since the unfiltered
reference field has a spatial resolution of 128× 128, and the domain size is L= 2π,
the maximum cutoff wavenumber is 64, which corresponds to no filtering. In the
following, we use Method 1 and Method 2 to reconstruct the velocity field on the
128 × 128 grid, based on low pass filtered scalar fields, where kc is varied between
8 and 64. We use a sampling time of τ = 0.025, a noise level of η = 0 and a
regularisation strength of κ = 0. Under these conditions, both methods provide equal
accuracy, with ε ≈ 10−2, when applied to the fully resolved (kc = 64) synthetic scalar
field; see figure 3(b).

In figure 4, we compare the reconstruction error of both methods, as a function of
the spatial resolution of the measured scalar field, i.e. as a function of kc. As expected
the error of both methods increases with decreasing kc, i.e. when removing flow
features with increasing length scales. Perhaps unexpected, at low spatial resolution,
Method 2 somewhat underperforms compared to Method 1. This result reflects
that both methods are based on the same governing equations, and therefore they
reconstruct the missing information in a similar fashion. It furthermore shows, that
the Fourier approximation of the derivatives of resolved modes, is unaffected by the
removal of unresolved modes. When the (resolved) modes are contaminated by noise
however, then the discretisation errors do become important, and this is discussed in
§ 3.4.

3.4. Effect of noise
We now turn our focus to the effect of the scalar noise. Figure 5(b) visualises the
vorticity of the reconstructed flow field ∇× u using Method 1, τ = 0.1, η= 0.29 and
κ = 0. For comparison we show the reference solution in figure 5(a). It is noted that
the vorticity fields in figure 5 vary in magnitude and to allow a proper visualisation
we have used different mappings between the vorticity and the grey scale values in
each of the panels.
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(a) (b) (c) (d) (e)

FIGURE 5. Vorticity visualisation at t = 4 of the reference simulation (a) and of the
reconstruction using τ = 0.1 and η= 0.29 for Method 1 using κ = 0 (b), κ = 1.9× 10−4

(c), κ = 6.0× 10−3 (d), and for Method 2 using κ = 6.0× 10−7 (e).

As expected figure 5(b) shows, that scalar noise results in velocity reconstruction
noise. For the case of figure 5(b) the noise is concentrated at the small length
scales. As an effect the large-scale flow structures, which are reasonably accurately
reconstructed, are hardly visible in figure 5(b). To substantiate this point we plot in
figure 6(a) the relative error spectrum εk:

εk =

∣∣∣∣∫ [u− v] exp(−ik · x) dV
∣∣∣∣2∣∣∣∣∫ v exp(−ik · x) dV

∣∣∣∣2
. (3.2)

This quantity measures the relative difference between the reconstruction and the
reference velocity field, at wave vectors with an absolute value of k. The filled
squares in figure 6(a) correspond to the case, that is visualised in figure 5(b). It is
seen that the large scales are captured relatively well with: εk ∼ 10−1. The small
scales on the other hand are heavily contaminated by noise with: εk ∼ 102.

In order to suppress the large wavenumber noise in the reconstruction, a
regularisation term is added to the cost functional (equation (2.1)). The value for
the regularisation constant κ must be chosen with care as to suppress the small-scale
noise, while leaving the large-scale flow structures intact. Figure 5(c,d) shows that
with increasing κ , the small-scale noise diminishes but also the large-scale structures
become less accurate. This is confirmed by the relative error spectra in figure 6(a),
which shows that for intermediate κ = 1.9 × 10−4 (filled diamonds) the error is
reduced over the entire spectrum. For large κ = 6.0 × 10−3 (filled triangles) on the
other hand, although slightly better at the small scales, the error increases significantly
at the large scales.

Figure 6(b) shows the corresponding reconstruction error ε (equation (3.1)) as a
function of κ . The figure demonstrates that for κ ∼ 6× 10−4 the reconstruction error is
minimum. For this optimum regularisation strength there is however still small-scale
noise observed in the visualisation (figure 5c). Despite this the large-scale structures
are distinguishable and resemble those of the reference field (figure 5a). Increasing
κ beyond the optimum value results in a smooth velocity reconstruction, but also
in a large ε. The corresponding large-scale structures (figure 5d) no longer resemble
the reference field (figure 5a). It is noted that for severe noise levels, up to η = 16,
Method 1 produced stable results, without regularisation, i.e. κ = 0.

The stability behaviour is different for Method 2, where instability is triggered by
a relatively small amount of noise η & 0.1. Method 2 can efficiently be stabilised
however using the regularisation terms in (2.10). Again the regularisation constant κ
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FIGURE 6. (a) Relative error spectrum εk (equation (3.2)) versus wavenumber k using
sampling time τ = 0.1 and noise level η = 0.29 for Method 1 (filled markers) using
various regularisation constants κ , and for Method 2 (open markers) using κ = 6.0× 10−7.
(b) Reconstruction error ε (equation (3.1)) versus κ using Method 1, τ = 0.1 and η= 0.29.
The dashed line indicates the ε-value for κ=0. (c) ε versus κ using Method 2, τ =0.1 and
η=0.29. (d) ε versus η using τ =0.2. Comparison between Method 1 using κ=6.0×10−4

and Method 2 using κ = 6.0× 10−7.

was found by trial and error. Figure 6(c) shows the corresponding ε as a function of
κ using τ = 0.1 and η = 0.29. It is observed that under these conditions, Method 2
is unstable for κ . 10−7, while for κ & 10−7 the error is a non-monotonic function
of κ with an optimum value at around κ ∼ 6× 10−7. It is noteworthy that this value
is roughly the same as in § 3.2, where the instability set in due to a relatively large
sampling time τ . The corresponding vorticity visualisation (figure 5e) is free of noise
and resembles the reference field (figure 5a) well.

The relative error spectrum εk in figure 6(a) shows the improved accuracy of
Method 2 over Method 1, when confronted with measurement noise, and when using
the optimum regularisation parameters. In this regard, it is noted that, as defined
in (3.2), εk clearly visualises the k-dependence of the reconstruction error, which is
hidden when directly comparing the energy spectra Ek (not shown):

Ek =

∣∣∣∣∫ v exp(−ik · x) dV
∣∣∣∣2. (3.3)

It may seem peculiar, that the optimum κ for Method 1 (figure 6b) is three orders of
magnitude larger than that for Method 2 (figure 6c). This difference can be explained
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Reconstructing velocity fields from scalar fields 361

however by an order of magnitude analysis of the various terms in the cost functionals
for Method 1 (equation (2.1)) and for Method 2 (equation (2.10)). As discussed in § 2
the regularisation terms κ‖∇2u‖2 and κ‖∇2φ‖2 are of the same order of magnitude
provided that variables are properly scaled and the Schmidt number is Sc= ν/λ∼ 1.
To estimate the appropriate value for κ we balance the magnitude of the regularisation
terms to that of the remaining term, which is ‖∂tψ +∇ · (uψ)− λ∇2ψ‖2 in Method 1
and ‖φ −ψ‖2 in Method 2. The ratio of κ in Method 1: κ1 to that of Method 2: κ2
is therefore proportional to the ratio of these remaining terms, i.e. κ1/κ2∼‖∂tψ +∇ ·

(uψ)− λ∇2ψ‖2/‖φ−ψ‖2. Assuming that u∼ψ ∼ φ∼ 1 and that ∇∼ kmax=N/2 we
estimate κ1/κ2 ∼ (N/2)2 ≈ 4× 103, where N = 128 is the number of grid points per
dimension. This explains that Method 1 requires a regularisation strength that is three
orders of magnitude larger than that of Method 2.

In figure 6(d) we compare the reconstruction error ε for Method 1 and Method 2 as
a function of the noise level η, that has been varied between 3.1×10−2 6η61.6×101.
Here we use a sampling time of τ = 0.2 and we have kept the regularisation constant
fixed to κ = 6 × 10−4 for Method 1 and to κ = 6 × 10−7 for Method 2. It is noted
that these κ values were optimised for τ = 0.1 and η= 0.29 (see figure 6b,c), which
are different from the parameters used in figure 6(d). It would be possible to derive
optimum κ values for each data point in figure 6(d), but this would only marginally
alter the results and has therefore been omitted. Figure 6(d) shows that for η. 0.1 the
error in both methods is insensitive to η. For η & 0.1 the error in Method 1 grows
gradually and reaches a stable value for η& 10. The error in Method 2, on the other
hand, grows rapidly for η&0.1, and for this particular κ the solution becomes unstable
for η&1. Although Method 1 is stable for large noise levels η&10, the reconstruction
error of Method 1 equals: ε ∼ 1, under these conditions.

4. Application to soap film turbulence

Finally, we apply SIV to experimental data of the thickness field of a turbulent
soap film. The experimental set-up is sketched in figure 7(a) and a photograph of
the set-up is provided in figure 7(b). This set-up has previously been used to study
two dimensional turbulence; see e.g. Greffier, Amarouchene & Kellay (2002). In the
experiment, a 2 % detergent (Fairy Dreft) in water solution is injected at the top
of a two-dimensional channel, that consists of two nylon wires, with a thickness of
0.5 mm. The channel has a straight section with a length of l2 = 1 m and a width
of D = 0.06 m. The wires are configured to form a diverging channel entrance and
a converging channel exit, as to allow fluid injection and collection, respectively.
As sketched in figure 7(a), three cylinders with a radius of 4 mm are placed in
the film. The distance between the cylinder centres is 12 mm. The cylinders induce
flow disturbances that evolve into 2-D turbulence; see figure 8(a). The downstream
distance to the cylinders is denoted x and the distance to the centreline is denoted y.
Film thickness and velocity measurements are taken between x= 0.06 and 0.45 m. In
this region the flow speed is relatively constant and around U≈ 2 m s−1. The average
film thickness is estimated as h0 =Q/DU = 3 µm, where the volumetric flow rate is
Q= 3× 10−7 m3 s−1.

Velocity fluctuations induce fluctuations in the film thickness h(x, y, t). Experiments
under similar conditions have shown, that these fluctuations are around hrms≈ 100 nm
(Greffier et al. 2002), which are small compared to the average thickness of
h0≈3 µm. It has been argued theoretically (Bruinsma 1995), as well as experimentally
(Wu et al. 1995; Greffier et al. 2002), that the film behaves nearly as a 2-D
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l3

l2

l1

yx
g

D

U

Cylindrical obstacles

LDV

Soap film

(a) (b)

FIGURE 7. (a) Gravity g drives a 3 µm thick soap film with a velocity of around
U = 2 m s−1 between two wires, that form a vertical channel, with a diverging width, a
constant width D= 0.06 m and a converging width. The lengths of the respective sections
are l3 = 0.7 m, l2 = 1 m and l1 = 0.45 m. Soap is collected at the channel exit, pumped
upwards and injected at the channel entrance. Three cylinders are placed in the film to
generate 2-D turbulence. The downstream distance to the cylinders and the wall normal
distance to the channel centreline are denoted x and y, respectively. (b) Photograph of the
set-up, showing the cylindrical obstacles, the LDV probe and the soap film.

incompressible fluid, and that the thickness field is a passive scalar, that is being
advected by the flow, but with an unusual dissipative term:

∂th+ u · ∇h=−σ∇4h. (4.1)

Here σ is referred to as the thickness hyper diffusivity, which is conceived to be a
function of the fluid viscosity and the fluid surface tension (Bruinsma 1995), and has
an estimated value of σ ∼ 10−18 m4 s−1.

In the experiment, variations in h are visualised by illuminating the film with eight
mercury lamps (Proxistar 85w 5500k) behind a diffuser and recording the reflected
light using a high speed colour camera (Phantom v641), with an exposure time of
300 µs, and a frame rate of 2000 Hz. Reflections from both sides of the film produce
an interference pattern in the recorded image ψ(x, y, t), as shown in figure 8(a,b).
The pattern is sharpened by isolating the green channel from the recordings. The
interference pattern is periodic, when h varies over half of the wavelength of the
recorded light. However, since variations in h are fewfold smaller than the wavelength,
this periodicity may be ignored. Therefore, ψ is assumed to be proportional to h, and
to behave as a passive scalar.

Since the exact form of (4.1) is uncertain (Chomaz 2001; Auliel et al. 2015), and
since Method 2 requires diffusive regularisation (κ-terms in (2.10)), we do not attempt
to accurately reconstruct the dissipative range of the scalar energy spectrum. As an
effect, we do not incorporate the fourth-order diffusion of (4.1) into Method 2, but
instead, we replace −σ∇4h in (4.1), with the usual, second-order diffusion λ∇2h, and
apply Method 2 without further modification. The substitute diffusivity (λ in (2.11)) is
chosen to be equal to the kinematic viscosity, which is assumed to be that of water
λ = ν = 10−6 m2 s−1. Furthermore, to stabilise the method, we use a regularisation
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(a) (b)

(c)

FIGURE 8. (a) The soap film thickness field between 0.06< x< 0.43 m and −0.027< y<
0.027 m is visualised by the interference pattern of reflected light. (b) The interference
pattern in an interrogation window between 0.201 < x < 0.254 m and −0.027 < y <
0.027 m. (c) The y component of the reconstructed velocity field in the interrogation
window, that corresponds to the interference pattern, shown in figure 8(b).

strength of κ= 1.2× 10−11 m4. Despite these unphysical assumptions at the dissipative
scales, it is shown below, that Method 2 correctly reproduces the statistics of the
energy containing velocity fluctuations.

It is noted, that for this case, Method 1 (equation (2.1)) does not produce a
reasonable velocity reconstruction (not shown). This is most likely due to inaccurate
approximations of the spatial derivatives of the noisy, high frequency content of the
interference patterns (figure 8b). To improve on these aspects, we have developed
Method 2, which does not rely on computing spatial nor temporal derivatives of the
measured scalar field. Therefore, the subsequent discussion focusses on Method 2.

We apply Method 2 to a square domain (interrogation window) with a size of
0.053 m. A snapshot of the recorded light intensity ψ in the window is shown in
figure 8(b). The velocity and the scalar fields are reconstructed on a computational
grid, where the number of grid points N2

= 1802 is one quarter of the number
of pixels in the interrogation window, which corresponds to a grid spacing of
1x = 2.94 × 10−4 m. The computational time step is 1t = 2 × 10−5 s, which is
one twenty-fifth of the sampling time τ = 5× 10−4 s.

Method 2 assumes periodic boundary conditions, which are not satisfied
experimentally. In order to mitigate the detrimental effects of these unphysical
conditions, the interrogation window moves downwards with a velocity of 1.88 m s−1.
In the moving window the turbulent eddies evolve without being advected by the
mean flow, and can therefore be observed for a long period of time. Furthermore,
the moving window minimises the influx of unknown information at the cross-stream
boundaries.
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FIGURE 9. (a) The standard deviation of the velocity components ux,rms and uy,rms for y=0
as functions of x. Comparison between SIV reconstruction (lines) and LDV measurement
(markers). (b) The mean streamwise velocity component ux for y= 0 as a function of x.
Comparison between SIV reconstruction (line) and LDV measurement (markers). (c) The
reconstructed, mean streamwise velocity component ux as a function of x and y. The
cylinders induce a cross-stream variation of ux with a local minimum on the centreline.

Figure 8(c) shows a snapshot of the y-component of the velocity reconstruction. It is
seen that effects, due to the assumed periodicity of the experimental data, are confined
to a thin (few pixels) region at the cross-stream boundaries. Apparently these effects
propagate from the boundaries inward with a speed, that is small compared to the
speed of the reconstruction.

The total recorded time is one second, which corresponds to 2000 frames. The
interrogation window takes 0.17 s to move from the top to the bottom of the
recorded image. This translation corresponds to a sequence of 340 images. From the
2000 recorded images, we extract a total of 30 such sequences, by varying the time,
at which the window starts moving from the top to the bottom. This starting time
is increased by 0.028 s, for each consecutive sequence, which corresponds to the
translation of the window over its own size.

To validate Method 2 we compare the reconstructed velocity statistics to laser
Doppler velocimetry (LDV) measurements of the streamwise x and wall normal y
velocity components on the centreline y= 0 as a function of the downstream position
x. To this end, the fluid is dispersed with 1.1 µm polystyrene beads (SIGMA).
Figure 9(a) shows the measured profiles of the standard deviations, i.e. turbulent
intensities, of the streamwise velocity ux,rms (triangles) and wall normal velocity uy,rms
(squares). The data show that uy,rms is 5 % smaller than ux,rms and both quantities
decrease as functions of x. In the same figure, we show the reconstructed ux,rms
(solid line) and uy,rms (dashed line). These quantities are zero at the start of the
reconstruction, which is at x= 0.06 m, and increase until x= 0.2 m, after which they
decrease. The initial growth of the turbulent intensity reflects, that the reconstruction
requires time to develop. As discussed in § 3.2, this development is related to the time
segmentation, where the initial guess for the reconstruction of each segment is taken
from the reconstruction of the previous segment. Therefore the reconstructed turbulent
intensity is zero at x= 0.06 m, increases with x, and approaches the converged profile
at x = 0.2 m. For x > 0.2 m the reconstructed uy,rms is 5 % smaller than ux,rms, and
the profiles are within 5 % of the experimental data.

In figure 9(b) we show the profile of the mean streamwise velocity component
ux, obtained by LDV (squares). It is observed, that the mean flow accelerates
from ux = 1.6 m s−1 at x = 0.06 m to ux = 2.4 m s−1 at x = 0.43 m. The
corresponding, reconstructed velocity profile is also plotted (line) in figure 9(b). Since
the interrogation window moves with a velocity of 1.88 m s−1, the reconstructed mean
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flow starts at ux = 1.88 m s−1 at x = 0.06 m. With increasing x, the reconstructed
ux decreases and approaches the converged profile at x = 0.15 m. After x = 0.15 m,
the reconstructed ux follows the upward trend of the LDV data. There is a 10 %
discrepancy between the reconstructed ux and the LDV data. This may be attributed
to steep variations of the mean flow in the y-direction (see figure 9c), in combination
with non-converged Reynolds averages, slight off-centreline positioning of the LDV
probe, as well as small differences in the positioning of the cylinders, and the flow
speed during the video imaging and the LDV data acquisition.

5. Conclusions
We have analysed the performance of two scalar image velocimetry (SIV) methods,

being an earlier proposed method (Method 1) and a new method (Method 2).
Method 1 requires approximating the space and time derivatives of the measured
scalar field ψ . Consequently when the scalar measurement resolution is relatively
low, or when the scalar fields are relatively noisy, discretisation errors deteriorate
the velocity reconstruction. Method 2 improves on these aspect by reconstructing not
only the velocity field but also the scalar field, without approximating the space and
time derivatives of ψ .

We have demonstrated the improvement of Method 2 over Method 1 for a
synthetic, 2-D decaying turbulent flow field. The results show that Method 2 produces
smaller reconstruction errors, especially when sampling rates are relatively low, and
when there is considerable noise in the measurements. Despite being more accurate
Method 2 is observed to be less stable than Method 1. Stability is however efficiently
restored by adding regularisation terms to the cost functional, which effectively add
pulses of hyper viscosity and hyper diffusivity to the conservation equations of
momentum and scalar. Although Method 1 is stable without regularisation, a similar
regularisation term is shown to improve the accuracy of Method 1, when confronted
with noisy measurement data.

To further demonstrate Method 2, we analysed thickness field measurements
in a gravity driven, turbulent soap film. The mean and standard deviations of
the reconstructed velocity field are within 10 % of laser Doppler velocimetry
measurements. The method therefore provides an alternative to particle image
velocimetry, to experimentally obtain instantaneous velocity fields in turbulent soap
films.

It is finally noted, that, even though we have focussed on 2-D test problems, the
proposed Method 2 generalises to three spatial dimensions in a straightforward way.
In fact, benefits of Method 2 over Method 1, are expected to be more pronounced in
three than in two dimensions. This expectation is based on the notion that Method 2
requires smaller sampling rates than Method 1, and that volumetric sampling rates
tend to be smaller than planar sampling rates. For instance acquiring 3-D laser
induced fluorescence data requires time consuming sweeps of the laser sheet through
the measurement volume (see e.g. Su & Dahm 1996) or 3-D tomographic imaging,
which typically operates at a lower sampling rate than planar imaging.

Acknowledgements
This research is supported by the National Research Foundation Singapore under

its Campus for Research Excellence and Technological Enterprise programme. The
Center for Environmental Sensing and Modeling is an interdisciplinary research
group of the Singapore MIT Alliance for Research and Technology. We also wish to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
47

.2
10

.2
45

.1
81

, o
n 

06
 S

ep
 2

01
8 

at
 1

8:
29

:5
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.559
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
VILQUIN
Rectangle

VILQUIN
Rectangle



366 J. J. J. Gillissen, A. Vilquin, H. Kellay, R. Bouffanais and D. K. P. Yue

acknowledge the financial support from the Department of Mathematics of University
College London.

REFERENCES

AULIEL, M. I., CASTRO, F., SOSA, R. & ARTANA, G. 2015 Gravity-driven soap film dynamics in
subcritical regimes. Phys. Rev. E 92 (4), 043009.

BRENT, R. P. 2013 Algorithms for Minimization Without Derivatives. Courier Corporation.
BRUINSMA, R. 1995 Theory of hydrodynamic convection in soap films. Physica A 216 (1–2), 59–76.
CHOMAZ, J.-M. 2001 The dynamics of a viscous soap film with soluble surfactant. J. Fluid Mech.

442, 387–409.
CORPETTI, T., HÉAS, P., MÉMIN, E. & PAPADAKIS, N. 2009 Pressure image assimilation for

atmospheric motion estimation. Tellus A 61 (1), 160–178.
CORPETTI, T., HEITZ, D., ARROYO, G., MEMIN, E. & SANTA-CRUZ, A. 2006 Fluid experimental

flow estimation based on an optical-flow scheme. Exp. Fluids 40 (1), 80–97.
GREFFIER, O., AMAROUCHENE, Y. & KELLAY, H. 2002 Thickness fluctuations in turbulent soap

films. Phys. Rev. Lett. 88 (19), 194101.
GUNZBURGER, M. D. 2003 Perspectives in Flow Control and Optimization. SIAM.
KALNAY, E. 2003 Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University

Press.
LIU, T. & SHEN, L. 2008 Fluid flow and optical flow. J. Fluid Mech. 614, 253–291.
PAPADAKIS, N. & MÉMIN, É. 2008 Variational assimilation of fluid motion from image sequence.

SIAM J. Imaging Sci. 1 (4), 343–363.
PIRES, C., VAUTARD, R. & TALAGRAND, O. 1996 On extending the limits of variational assimilation

in nonlinear chaotic systems. Tellus A 48 (1), 96–121.
POLAK, E. 1971 Computational Methods in Optimization: A Unified Approach. Academic.
SU, L. K. & DAHM, W. J. 1996 Scalar imaging velocimetry measurements of the velocity gradient

tensor field in turbulent flows. I. Assessment of errors. Phys. Fluids 8 (7), 1869–1882.
TIKHONOV, A. N. & ARSENIN, V. Y. 1977 Solutions of Ill-Posed Problems. Winston.
WU, X. L., MARTIN, B., KELLAY, H. & GOLDBURG, W. I. 1995 Hydrodynamic convection in a

two-dimensional Couette cell. Phys. Rev. Lett. 75 (2), 236–239.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

55
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
47

.2
10

.2
45

.1
81

, o
n 

06
 S

ep
 2

01
8 

at
 1

8:
29

:5
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.559
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
VILQUIN
Rectangle

VILQUIN
Rectangle


	A space–time integral minimisation method for the reconstruction of velocity fields from measured scalar fields
	Introduction
	Method derivation
	Introductory remarks
	Method 1
	Method 2
	Final remarks

	Methods comparison
	Set-up
	Effect of temporal resolution
	Effect of spatial resolution
	Effect of noise

	Application to soap film turbulence
	Conclusions
	Acknowledgements
	References


