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ABSTRACT. In [KS16], the authors proved, using a deep independence result
of Kloosterman sheaves, that the polygonal paths joining the partial sums of
the normalized classical Kloosterman sums S

(
a,b0; p

)
/p1/2 converge in the

sense of finite distributions to a specific random Fourier series, as a varies over(
Z/pZ

)×, b0 is fixed in
(
Z/pZ

)× and p tends to infinity among the odd prime

numbers. This article considers the case of S
(
a,b0; pn)

/pn/2, as a varies over(
Z/pnZ

)×, b0 is fixed in
(
Z/pnZ

)×, p tends to infinity among the odd prime
numbers and n Ê 2 is a fixed integer. A convergence in law in the Banach space
of complex-valued continuous function on [0,1] is also established, as (a,b)
varies over

(
Z/pnZ

)×× (
Z/pnZ

)×, p tends to infinity among the odd prime
numbers and n Ê 2 is a fixed integer. This is the analogue of the result obtained
in [KS16] in the prime moduli case.

In memory of Kevin Henriot.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The shape of the path induced by various partial exponential sums has been
considered by many people since the seventies. See for instance [Leh76], [Lox83]
for the case of Gauß sums, [Lox85] for polynomial exponential sums of higher
degree, [BG13], [BGGS13] and [GS07] for the case of character sums. Very recently,
E. Kowalski and W. Sawin successfully investigated the case of partial Kloost-
erman sums of prime moduli in [KS16]. The main purpose of this work is to
consider the case of partial Kloosterman sums to prime power moduli and to give
a probabilistic meaning to graphs like the one given in Figure 1.11.

More precisely, let p be a prime number and n Ê 1 an integer. For a and b in
Z/pnZ, the corresponding normalized Kloosterman sum of modulus pn is the
real number given by

Klpn (a,b) := 1

pn/2
S

(
a,b; pn)= 1

pn/2

∑
1ÉxÉpn

p-x

e

(
ax +bx

pn

)

where as usual x stands for the inverse of x modulo pn and e(z) := exp(2iπz) for
any complex number z. For a and b in

(
Z/pnZ

)×, the associated partial sums are
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1The axes are orthonormal but a rotation by π/2 has been applied to the real plot of t 7→

Kl672 (t ; (1,1)).

1



2 G. RICOTTA AND E. ROYER

FIG 1.1. Plot of t 7→Kl672 (t ; (1,1))

the ϕ(pn) = pn−1(p −1) complex numbers

Kl j ;pn (a,b) := 1

pn/2

∑
1ÉxÉ j

p-x

e

(
ax +bx

pn

)
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for j in J n
p := {

j ∈ {1, . . . , pn}, p - j
}
. If we write J n

p = { j1, . . . , jϕ(pn )} with

j1 < j2 < ·· · < jϕ(pn )

then the corresponding Kloosterman path γpn (a,b) is defined by

γpn (a,b) =
ϕ(pn )−1⋃

j=1

[
Kl ji ;pn (a,b),Kl ji+1;pn (a,b)

]
.

This is the polygonal path obtained by concatenating the closed segments[
Kl j1;pn (a,b),Kl j2;pn (a,b)

]
for j1 and j2 two consecutive indices in J n

p . Finally, one defines a continuous map
on the interval [0,1]

t 7→Klpn (t ; (a,b))

by parametrizing the path γpn (a,b), each segment
[
Kl j1;pn (a,b),Kl j2;pn (a,b)

]
for

j1 and j2 two consecutive indices in J n
p being parametrized linearly by an interval

of length 1/(ϕ(pn)−1).
For a fixed b0 in

(
Z/pnZ

)×, the function a 7→ Klpn (∗; (a,b0)) is viewed as a
random variable on the probability space

(
Z/pnZ

)× endowed with the uniform
probability measure with values in the Banach space of complex-valued continu-
ous functions on [0,1] endowed with the supremum norm, say C 0([0,1],C).

Remark 1.1– In particular, with our definition, Klpn (0; (a,b)) is defined y

∃ lim
t→0

Klpn (t ; (a,b)) = 1

pn/2
e

(
a +b

pn

)
=Klpn (0; (a,b)).

The Kloosterman path does not start at the origin, in contrast with [KS16].

Let µ be the probability measure given by

µ= 1

2
δ0 +µ1 (1.1)

for the Dirac measure δ0 at 0 and

µ1( f ) = 1

2π

∫ 2

x=−2

f (x)dxp
4−x2

for any real-valued continuous function f on [−2,2].

Theorem A (Convergence of finite distributions)– Let n Ê 2 be a fixed integer.
For any odd prime number p, fix an element b0 in

(
Z/pnZ

)×. Let (Uh)h∈Z be a
sequence of independent identically distributed random variables of probability
lawµ defined in (1.1) and letKl be the C 0([0,1],C)-valued random variable defined
by

∀t ∈ [0,1], Kl(t ) = tU0 +
∑

h∈Z∗

e(ht )−1

2iπh
Uh .

The sequence of C 0([0,1],C)-valued random variablesKlpn (∗; (∗,b0)) on
(
Z/pnZ

)×
converges in the sense of finite distributions2 to the C 0([0,1],C)-valued random
variable Kl as p tends to infinity among the prime numbers.

2See appendix A for a precise definition of the convergence in the sense of finite distributions.



4 G. RICOTTA AND E. ROYER

Remark 1.2– We have chosen to parametrize the partial sums of the Kloosterman
sums so that successive sums always correspond to adding one more term. This
implies that partial sums at integers divisible by p are not defined. Another
definition would be to define Kl j ;pn (a,b) for all integer j and to interpolate in the
usual way. The geometric path, namely the image of t 7→Klpn (t ; (a,b)), would
be unchanged and there is no doubt that the same results hold for this different
definition.

Remark 1.3– All the main properties of the random variable Kl are given in Propo-
sition 3.1. As already said, this theorem is the analogue of the result proved by
E. Kowalski and W. Sawin in [KS16] when n = 1 for a different random Fourier
series given by

∀t ∈ [0,1], K (t ) := tST0 +
∑

h∈Z∗

e(ht )−1

2iπh
STh

where (STh)h∈Z is an independent identically distributed sequence of random
variables of probability law µST , the classical Sato-Tate measure also called the
semi-circle law. The fact that K and Kl have the same analytic shape heavily
depends on the completion method. The fact that K and Kl are different on a
probabilistic point of view is not very surprising since Klpn (a,b) is a sum over a
finite field when n = 1, which requires deep techniques from algebraic geometry,
and a character sum when n Ê 2, which can be computed explicitly via elementary
but not so easy techniques. Thus, the fact that Kloosterman paths of prime moduli
and of prime powers moduli behave differently on a probabilistic point of view is
quite expected.

Remark 1.4– Nevertheless, the referee kindly informed us that both this measure
µ and the random series Kl occur when dealing with the path induced by Salié
sums of prime moduli. In addition, let us recall that µST is the direct image under
the trace map of the probability Haar measure on the compact group SU2(C)
whereas, according to [Kel10, Remark 1.2], µ is the direct image under the trace
map of the probability Haar measure on the normalizer of a maximal torus in
SU2(C).

Remark 1.5– In particular, choosing t = 1, Theorem A implies that the normalized
Kloosterman sums Klpn (a,b0) get equidistributed in [−2,2] with respect to the
measure µ, as a ranges over

(
Z/pnZ

)× and p tends to infinity among the odd
prime numbers for a fixed integer n Ê 2 and b0 is a fixed element in

(
Z/pnZ

)×.

Remark 1.6– It is worth mentioning that the proof of this theorem requires
A. Weil’s version of the Riemann hypothesis in one variable. See Proposition
4.8.

The function (a,b) 7→Klpn (t ; (a,b)) is viewed as a C 0([0,1],C)-valued random
variable on the probability space

(
Z/pnZ

)×× (
Z/pnZ

)× endowed with the uni-
form probability measure. Theorem A trivially implies that the sequence of
C 0([0,1],C)-valued random variables Klpn (∗; (∗,∗)) converges in the sense of fi-
nite distributions to the C 0([0,1],C)-valued random variable Kl as p tends to
infinity among the prime numbers too.

Theorem B (Convergence in law)– Let n Ê 2 be a fixed integer and p be an odd
prime number. The sequence of C 0([0,1],C)-valued random variablesKlpn (∗; (∗,∗))
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on
(
Z/pnZ

)× × (
Z/pnZ

)× converges in law3 to the C 0([0,1],C)-valued random
variable Kl as p tends to infinity among the prime numbers.

Remark 1.7– Once again, this theorem is the analogue of the result proved by
E. Kowalski and W. Sawin in [KS16] when n = 1.

Remark 1.8– For a fixed n Ê 2 and a fixed b0 in
(
Z/pnZ

)×, we expect that the
sequence of C 0([0,1],C)-valued random variables Klpn (∗; (∗,b0)) on

(
Z/pnZ

)×
converges in law to the C 0([0,1],C)-valued random variable Kl as p tends to
infinity among the prime numbers too. Nevertheless, such result seems to be out
of reach given the current technology. It relies on expected uniform non-trivial
individual bounds for incomplete Kloosterman sums

1

pn/2

∑
x∈I

e

(
ax +b0x

pn

)
¿ p−δ

for some δ > 0 and where I is an interval of
(
Z/pnZ

)× of length close to pn/2.
See [KS16, Remark 3.3] and [Kow16, Page 52] for a discussion on such issues in
the prime moduli case.

In [KS16], the authors deduce from their limit theorems the distribution of the
maximum of the partial sums of prime moduli they consider. Their techniques
would lead to a straightforward analogue in the case of prime powers moduli
investigated in this work.

One can mention that it seems quite natural to consider the same questions
in the regime4 p a fixed prime number and n Ê 2 tends to infinity. This problem,
both theoretically and numerically, seems to be of completely different nature.

Finally, it makes sense to consider the distribution of paths associated to other
exponential sums of prime powers moduli and to ask whether a distribution
result remains true. For instance, one could be tempted to look at

Kpn (a) = 1

pn/2

∗∑
1ÉxÉpn

e

(
fa(x)

pn

)
where fa = ga/ha with ga and ha in Z[x] depending on a parameter a modulo
pn . The symbol ∗ means that the summation is over the elements x satisfying
p - ha(x). These exponential sums can be computed explicitly. See [IK04, Lemma
12.2, Lemma 12.13] for instance. One key step would be to evaluate asymptotically

1

ϕ
(
pn

) ∑
a∈(Z/pnZ)×

∏
τ∈Z/pnZ

Kpn (a +τ)µ(τ)

for µ= (
µ(τ)

)
τ∈Z/pnZ

a pn-tuple of non-negative integers.
Organization of the paper. The explicit description of the Kloosterman paths
is given in Section 2. The relevant random Fourier series, which occurs as an
asymptotic process in Theorem A and Theorem B, is defined and studied in
Section 3. Section 4 contains the asymptotic evaluation of the moments of the
random variable Klpn (∗; (∗,∗)) whereas the tightness of this sequence of random
variables is established in Section 5. The proofs of Theorem A and Theorem B are
completed in Section 6. A probabilistic toolbox is provided in appendix A.

3See appendix A for a precise definition of the convergence in law in the Banach space
C 0([0,1],C).

4Or even worse any intermediate regime.
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Notations– The main parameter in this paper is an odd prime p, which tends to
infinity. Thus, if f and g are some C-valued function of the real variable then the
notations f (p) = O A(g (p)) or f (p) ¿A g (p) mean that | f (p)| is smaller than a
"constant", which only depends on A, times g (p) at least for p large enough.

n Ê 2 is a fixed integer.
For any real number x and integer k, ek (x) := exp

(2iπx
k

)
.

For any finite set S, |S| stands for its cardinality.
We will denote by ε an absolute positive constant whose definition may change

from one line to the next one.
The notation

∑× means that the summation is over a set of integers coprime
with p.

Finally, if P is a property then δP is the Kronecker symbol, namely 1 if P is
satisfied and 0 otherwise.

Acknowledgements– The authors would like to thank the referee for her or his un-
usual careful reading of the manuscript and very useful suggestions that improved
the presentation of the paper.

The authors would like to thank E. Kowalski for his encouragements and for
sharing with us his enlightening lectures notes [Kow16]. They also thank F. Martin
for fruitful discussion related to Proposition 4.7.

Part of this paper was worked out in Université Blaise Pascal (Clermont-Ferrand,
France) in June 2016. The first author would like to thank this institution for its
hospitality and inspiring working conditions.

2. EXPLICIT DESCRIPTION OF THE KLOOSTERMAN PATH

Let us construct the Kloosterman path γ(a,b) for a and b in
(
Z/pnZ

)×.
We enumerate the partial Kloosterman sums and define z j ((a,b); pn) to be the

j -th term of
(
Kl j ;pn (a,b)

)
j∈J n

p
. More explicitly, we organise the partial Klooster-

man sums in pn−1 blocks each of them containing p −1 successive sums. For
1 É k É pn−1, the k-th block containsKl(k−1)p+1;pn (a,b), . . . ,Klkp−1;pn (a,b). These
sums are numbered by defining

z(k−1)(p−1)+`((a,b); pn) =Kl(k−1)p+`;pn (a,b) (1 É `É p −1).

It implies that the enumeration is given by

z j ((a,b); pn) =Kl
j+

⌊
j−1
p−1

⌋
;pn (a,b) (1 É j <ϕ(pn)) (2.1)

For any j ∈ {1, . . . ,ϕ(pn)−1}, we parametrize the segment]
z j ((a,b); pn), z j+1((a,b); pn)

]
and obtain the parametrization of γpn (a,b) given by

∀t ∈ [0,1], Klpn (t ; (a,b)) =α j ((a,b); pn)

(
t − j −1

ϕ(pn)−1

)
+ z j ((a,b); pn)

with

α j ((a,b); pn) = (ϕ(pn)−1)
(
z j+1((a,b); pn)− z j ((a,b); pn)

)
and

j = ⌈(
ϕ(pn)−1

)
t
⌉

.
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Since
]
z j ((a,b); pn), z j+1((a,b); pn)

]
has length p−n/2, we have

|α j ((a,b); pn)| É ϕ(pn)−1

pn/2
(2.2)

and ∣∣Klpn (t ; (a,b))− z j ((a,b); pn)
∣∣É 1

pn/2
. (2.3)

3. ON THE RELEVANT RANDOM FOURIER SERIES

The moments of the measure µ defined in (1.1) are given by∫
x∈R

xmdµ(x) =
{

1 if m = 0,
δ2|m

2

( m
m/2

)
otherwise.

(3.1)

Let U be a random variable of law µ on a probability space (Ω,A ,P ). By (3.1),
the value of the expectation of such random variable is 0 and its variance equals
1. In addition, µ is also the law of the random variable −U since the probability
measure µ is symmetric.

Let (Uh)h∈Z be a sequence of independent random variables of law µ on a
probability space (Ω,A ,P ). One defines for t in [0,1] the symmetric partial sums

KlH (t ;ω) := tU0(ω)+ ∑
1É|h|ÉH

e(ht )−1

2iπh
Uh(ω)

for any integer H Ê 1 and any ω ∈Ω. Let t ∈ [0,1] and ω ∈Ω. If KlH (t ;ω) has a
limit when H tends to infinity, we denote by Kl(t ;ω) this limit, namely

Kl(t ;ω) := tU0(ω)+ ∑
h∈Z∗

e(ht )−1

2iπh
Uh(ω)

It turns out that Kl(t ;ω) is closely related to the set of Fourier random series,
which have been intensively studied in [Kah85].

Proposition 3.1 (Properties of the random series)– The following properties
hold.

• For any t in [0,1], the random series Kl(t ;∗) converges almost surely, hence
in law.

• For almost all ω ∈Ω, the random series Kl(∗;ω) is a continuous function
on [0,1].

• For any t in [0,1], the Laplace transform

E
(
eλℜe (Kl(t ;∗))+µℑm (Kl(t ;∗))

)
is well-defined for all non-negative integers λ and µ. In particular, Kl(∗;ω)
has moments of all orders.

• Finally, for any t in [0,1],

||KlH (t ;∗)||∞ ¿ log(H) (3.2)

and

|E (|Kl(t ;∗)−KlH (t ;∗)|)|¿ H−1/2 (3.3)

for any H Ê 1.
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Remark 3.2– In particular, the map

Kl : (Ω,A ,P ) → (
C 0 ([0,1],C) , ||.||∞

)
ω 7→ Kl(∗;ω) : [0,1] → C

t 7→ Kl(t ;ω)

defines a random variable on the probability space (Ω,A ,P ) with values in the
Banach space of continuous complex-valued functions on the segment [0,1]
endowed with the supremum norm ||.||∞.

Remark 3.3– The proof is omitted since it is very close to the proof of [KS16,
Proposition 2.1]. The reader may have a look at [Kow16, Section 4] too.

4. ASYMPTOTICS OF COMPLEX MOMENTS

In this section, b0 is a fixed element in
(
Z/pnZ

)×. Let k Ê 1 be a fixed in-
teger, t = (t1, . . . , tk ) be a fixed k-tuple of elements in [0,1] with t1 < ·· · < tk ,
n = (n1, . . . ,nk ) and m = (m1, . . . ,mk ) be two fixed k-tuples of non-negative inte-
gers. Let us define

`(m +n) :=
k∑

i=1
(mi +ni ) .

The purpose of this section is to find an asymptotic formula for the complex
moments defined by

Mpn (t ;m,n;b0) := 1

ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

Klpn (ti ; (a,b0))
mi
Klpn (ti ; (a,b0))ni . (4.1)

The following proposition describes the asymptotic expansion of these moments.
Its proof will be given at the very end of this section since it requires a series of
intermediate results.

Proposition 4.1 (Asymptotic expansion of the moments)– If

p > max(`(m +n),2n −5) (4.2)

then

Mpn (t ;m,n,b0) = E
(

k∏
i=1

Kl(ti ;∗)
mi
Kl(ti ;∗)ni

)
+O`(m+n),ε

(
log`(m+n) (pn)(

p− 4(n−1)
2n +ε+p−1/2

))
for any ε> 0 and where the implied constant only depends on `(m +n) and ε.

For a in
(
Z/pnZ

)×, let us define a step function on the segment [0,1] by, for
any k ∈ {

1, . . . , pn−1
}
,

∀t ∈
(

k −1

pn−1 ,
k

pn−1

]
, �Klpn (t ; (a,b0)) := 1

pn/2

×∑
1ÉxÉxk (t )

epn
(
ax +b0x

)
. (4.3)

where
xk (t ) :=ϕ(pn)t +k −1.

In addition, let us define for h in Z/pnZ and 1 É k É pn−1,

∀t ∈
(

k −1

pn−1 ,
k

pn−1

]
, αpn (h; t ) := 1

pn/2

∑
1ÉxÉxk (t )

epn (hx) . (4.4)



KLOOSTERMAN PATHS OF PRIME POWERS MODULI 9

These coefficients are nothing else than the discrete Fourier coefficients of the
finite union of intervals given by 1 É x É xk (t ) with (p, x) = 1 for 1 É k É pn−1. All
their useful properties are encapsulated in the following lemma.

Lemma 4.2 (The completion method)–
• For Hpn any complete system of residues modulo pn ,

�Klpn (t ; (a,b0)) = 1

pn/2

∑
h∈Hpn

αpn (h; t )Klpn (a −h,b0). (4.5)

• For any integer h and any real number t ∈ [0,1],

αpn (h; t ) É pn/2 ×
{

1 if h = 0,
1

2|h| if |h| É (pn −1)/2 and h 6= 0.
(4.6)

• For any integer h and any real number t ∈ [0,1],

1

pn/2
αpn (h; t ) =β(h; t )+O

(
1

pn

)
(4.7)

where

β(h; t ) =
{

t if h = 0,
e(ht )−1

2iπh otherwise.

Remark 4.3– The proof is omitted since it is very close to the proof of [KS16,
Lemma 2.3, Proposition 2.4]. The reader may have a look at [Kow16, Section 4]
too.

Let us also define the corresponding moment

�Mpn (t ;m,n;b0) := 1

ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

�Klpn (ti ; (a,b0))
mi �Klpn (ti ; (a,b0))ni . (4.8)

The following lemma reveals that it is enough to prove an asymptotic formula
for �Mpn (t ;m,n;b0).

Lemma 4.4 (Approximation of the moments)– One has

Mpn (t ;m,n;b0) = �Mpn (t ;m,n;b0)+O

(
log`(m+n)(pn)

pn/2

)
.

Remark 4.5– The proof is omitted but relies on Lemma 4.2, which implies that∑
h∈Hpn

|αpn (h; t )| É 4pn/2 log(pn) (4.9)

for Hpn = {
(1−pn)/2, . . . , (pn −1)/2

}
, which is admissible since p is odd, and

is close to the proof of [KS16, Proposition 2.4]. The reader may have a look
at [Kow16, Section 4] too. Note that both Lemma 4.7 and (4.9) entail that∣∣∣Klpn (t ; (a,b))−�Klpn (t ; (a,b))

∣∣∣É 6

pn/2
(4.10)

for any a, b in
(
Z/pnZ

)× and any t ∈ [0,1].
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The crucial ingredient in the proof of Proposition 4.1 is the asymptotic evalu-
ation of the complete sums of products of shifted Kloosterman sums Spn (µ;b0)
defined by

Spn (µ;b0) := 1

ϕ(pn)

∑
a∈(Z/pnZ)×

∏
τ∈Z/pnZ

Klpn (a +τ,b0)µ(τ) (4.11)

for µ= (
µ(τ)

)
τ∈Z/pnZ

a sequence of pn-tuples of non-negative integers different
from the 0-tuple.

The following notations will be used throughout this section. Let us define for
such sequence µ

T(µ) := {
τ ∈Z/pnZ,µ(τ) Ê 1

}⊂Z/pnZ,

T(µ) := {
τ mod p,τ ∈T(µ)

}⊂Z/pZ

Let Bpn (µ) be the subset of the |T(µ)|-tuples b = (bτ)τ∈T(µ) of integers in
{1, . . . , (p −1)/2} satisfying

∀(τ,τ′) ∈T(µ)2, b2
τ−τ≡ b2

τ′ −τ′ mod p (4.12)

and

∀τ ∈T(µ), p - b2
τ−τ. (4.13)

Let `= (`τ)τ∈T(µ) be a
∣∣T(µ)

∣∣-tuple of integers. For any integer j in {1, . . . ,n−1},
let us define

mb,`( j , j ) = ∑
τ∈T(µ)

`τbτ
2 j−1

(4.14)

and the the following associated object

N(µ,`; w) := ∑
b∈Bpn (µ)

mb,`(1,1)≡w mod p
∀ j∈{2,...,n−1}, mb,`( j , j )≡0 mod p

1 (4.15)

for any w modulo p.
Finally, let

Apn (µ) :=
{

a ∈ (
Z/pnZ

)× ,∀τ ∈T(µ), a +τ ∈ ((
Z/pÃ§nZ

)×)2
}

. (4.16)

Firstly, let us prove and recall some useful facts related to Kloosterman sums of
prime powers moduli.

Lemma 4.6 (Kloosterman sums of prime powers moduli)– Let p be an odd prime
number satisfying p Ê 2n −5 and a be an integer.

• If a is divisible by p or a is not a square modulo p then Klpn (a,1) = 0.
• If a is a non-zero square modulo p then

Klpn (a,1) = 2

(
s

pn

)
cos

(
4πs

pn +θpn

)
where

θpn =
{

0 if 2 | n or p ≡ 1 mod 4,

π/2 if 2 - n and p ≡ 3 mod 4

and s is any solution of

s2 ≡ a mod pn .
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• The bound ∣∣Klpn (a,1)
∣∣É 2 (4.17)

holds.
• Let a be a non-zero square modulo p. There exists some integers c ′0, . . .c ′n−1

satisfying

∀m ∈ {0, . . . ,n −1}, c ′m 6= 0 and νp (c ′m) = 0 (4.18)

and some integers k and b ∈ {0, . . . , (p −1)/2} depending on a and p so that

sa,pn = b
n−1∑
m=0

c ′mb
2m

pmkm (4.19)

is a solution of s2 ≡ a mod pn , where b stands for the inverse of b modulo
pn .

Proof of lemma 4.6. The three first items are standard. See [IK04, Chapter 12
Equation (12.39)]. In particular, recall that a is a non-zero square modulo p is
equivalent to saying that a is a non-zero square modulo pn .

Let us consider the last one. The elements of
((
Z/pZ

)×)2
are given by

b2, 1 É b É (p −1)/2.

Thus,
a ≡ b2 mod p

for some 1 É b = ba,p É (p −1)/2 so that

a = b2 +pk

for some k = ka,b,p in Z. The congruence to be solved becomes

s2 ≡ a = b2 +pk ≡ b2
(
1+b

2
pk

)
mod pn

where b stands for a representative of the inverse of b modulo pn . Let us define
the p-adic integers5 c0 = 1, c1 = 1/2 and

∀m Ê 2, cm := (−1)m−1(2m −3)!

22(m−1)m!(m −2)!
= 1/2(1/2−1) . . . (1/2−m +1)

m!
.

Obviously,

∀m Ê 1, cm =−2m −3

2m
cm−1

so that
∀m ∈ {0, . . . ,n −1}, νp (cm) = 0 (4.20)

since p Ê 2n −5. If x ∈ pZp then, by [Kob84, Chapter IV.1], the power series∑
mÊ0

cm xm ∈Zp [[x]]

converges in the p-adic norm to a square root of 1+x. As a consequence, one has

s ≡ b
n−1∑
m=0

c ′mb
2m

pmkm mod pn

where the coefficients c ′m are some integers satisfying c ′0 = 1 and

∀m Ê 1, c ′m ≡ cm mod pn , 0 É c ′m < pn .

5Recall that the prime p is odd.
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In particular, if 0 É m É n −1 then

c ′m 6= 0 and νp (c ′m) = νp (cm) = 0.

by (4.20). �

The following proposition contains the upper-bound for N(µ,`; w) defined in
(4.15).

Proposition 4.7 (A counting argument)– Let µ= (
µ(τ)

)
τ∈Z/pnZ

be a sequence of

pn-tuples of non-negative integers satisfying |T(µ)| = |T(µ)| and ` a |T(µ)|-tuple
of integers satisfying

∀τ ∈T(µ), |`τ| < p

and ` 6= 0. One uniformly has

N(µ,`; w) ¿|T(µ)| 1

for any w mod p where the implied constant only depends on |T(µ)|.
Proof of proposition 4.7. Let k := |T(µ)| for simplicity.

Let us assume that k = 1. In this case, T(µ) = {τ0} and one has

`τ0 bτ0 = mb,`(1,1) ≡ w mod p,

which fixes the value of bτ0 since `τ0 is coprime with p.
Let us assume from now on that k Ê 2. One has

N(µ,`; w) = ∑
c mod p
(p,c)=1

∑
b∈Bpn (µ)

mb (1,1)≡w mod p
∀ j∈{2,...,n−1}, mb ( j , j )≡0 mod p

∀τ∈T(µ), b2
τ≡c+τ mod p

1. (4.21)

Note that for a fixed c, there is at most one tuple b since their coordinates satisfy
the given quadratic equations modulo p. The basic idea to show that there is a
bounded number of integers c modulo p is to find a polynomial, which vanishes
on these c’s and whose degree only depends on k.

Let us consider the polynomial

Q(a; X ) = ∏
ε=(ετ)τ∈T(µ)∈{±1}k

(
X − ∑

τ∈T(µ)
ετaτ

)
∈ Fp [a, X ]

in the variables aτ,τ ∈T(µ), and X .
This polynomial can be written as

Q(a; X ) =
2k−1∑
i=0

Qi (a) X 2i +X 2k

where Qi ∈ Fp [a] is a homogeneous polynomial of degree 2k −2i for 0 É i É 2k−1,
which only involves even powers of ai (0 É i É k). The fact that only even powers
of X occur easily follows from the fact that if ε belongs to {±1}k then so does −ε.
The fact that each monomial only contains even powers of ai for 1 É i É k is due
to the obvious invariance property given by

∀ε ∈ {±1}k , Q(ε.a; X ) =Q(a; X )

where . stands for the coordinates by coordinates product between tuples.
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The previous discussion implies that

R`(Y ; X ) :=
( ∏
τ∈T(µ)

Yτ

)2k

Q(`.Y −1; X ) =
2k−1∑
i=0

Ri ,` (Y ) X 2i +
( ∏
τ∈T(µ)

Yτ

)2k

X 2k

where Y = (Yτ)τ∈T(µ) and Y −1 = (
Y −1
τ

)
τ∈T(µ) and for 0 É i É 2k−1, Ri ,` ∈ Fp

[
Y 2

]
is

a homogeneous polynomial of degree (k −1)2k +2i , which only involves even
powers of Yτ for τ ∈T(µ). Here, Y 2 = (

Y 2
τ

)
τ∈T(µ).

Let us denote by ψ the ring morphism from Fp
[
Y 2

]
to Fp [Z ] defined by

∀τ ∈T(µ), ψ
(
Y 2
τ

)= Z +τ.

Let us assume that (p, w) = 1. Note that if the tuple b satisfies the con-
straints given in (4.21) then R`(b; w) = 0 since the contribution of ε= (1, . . . ,1) in
Q(`.b−1; w) is exactly w−mb,`(1,1) ≡ 0 mod p. Thus, c is a root of the polynomial

ψ(R`(Y ; w)), which is of degree k2k−1 and leading coefficient w2k 6= 0 mod p. As
a consequence, the number of c’s in (4.21) is less than k2k−1.

Let us assume that w ≡ 0 mod p. Let τ0 in T(µ) satisfying

p - `τ0 ,

which exists by the conditions of the tuple `.
Let us consider

S`(Y ) :=
( ∏
τ∈T(µ)

Yτ

)2k−1

Q
(

˜̀.Ỹ
−1

;`τ0 Y −1
τ0

)
∈ Fp [Ỹ ,Yτ0 ]

where Ỹ
−1 = (

Y −1
τ

)
τ∈T(µ)\{τ0} and ˜̀= (`τ)τ∈T(µ)\{τ0} . This polynomial is homoge-

nous of degree (k −1)2k−1 and only involves even powers of Yτ for τ ∈T(µ).
Thus, the polynomial U =ψ(S`(Y )) ∈ Fp (Z ) is of degree less than (k −1)2k−2.

Let us show that this polynomial is of degree at least one. If not, all the coefficients
but the constant one of the polynomial U vanish. If the tuple b satisfies the
constraints given in (4.21) then S`(b) = 0 because of the contribution of ε =
(−1, . . . ,−1) in Q

(
˜̀.Ỹ

−1
;`τ0 Y −1

τ0

)
. This implies that U (c) = 0 and that U is the

constant polynomial of value 0. Choosing Z =−τ0 leads to

`2k−1

τ0

∏
τ∈T(µ)
τ 6=τ0

(τ−τ0)2k−1 ≡ 0 mod p

so that

`τ0 ≡ 0 mod p

since the τ’s are distinct modulo p. This is a contradiction.
Finally, the c’s satisfy the polynomial equation U (c) = 0 of degree at least 1 and

less than (k −1)2k−2. As a consequence, the number of c’s in (4.21) is less than
(k −1)2k−2. �

The following proposition contains the asymptotic evaluation of the cardinality
of the set Apn (µ) defined in (4.16).
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Proposition 4.8 (Applying A. Weil’s version of the Riemann hypothesis)– Let
µ= (

µ(τ)
)
τ∈Z/pnZ

be a sequence of pn-tuples of non-negative integers. If p is odd
then ∣∣Apn (µ)

∣∣= ϕ(pn)

2|T(µ)|

(
1+O

(
2|T(µ)||T(µ)|

p1/2

))
. (4.22)

Remark 4.9– The equation (4.22) is an asymptotic expansion if and only if

2|T(µ)||T(µ)|
p1/2

→ 0 (4.23)

as p tends to infinity among the prime numbers.

Proof of proposition 4.8. Obviously,∣∣Apn (µ)
∣∣= pn−1

∑
a∈(Z/pZ)×

∀τ∈T(µ),a+τ∈((Z/pZ)×)2

1

= pn−1
∑

a∈(Z/pZ)×

∀t∈T(µ),a+t∈((Z/pZ)×)2

1

= pn−1
∑

a∈(Z/pZ)×

∏
t∈T(µ)

(a+t ,p)=1

1

2

(
χ2(a + t )+1

)

where χ2 is the quadratic character modulo the odd prime number p.
At this point, the problem becomes a variant of the question considered by

H. Davenport in 1931 of counting elements x modulo p such that both x, x +
1, . . . , x +k are quadratic residues modulo p uniformly with respect to the integer
k Ê 1. See for instance [Kat80, Section 1.4.2]. Thus, the end of the proof is
omitted. �

The core of the proof of proposition 4.1 is the following result.

Proposition 4.10 (Moments of shifted Kloosterman sums)– Letµ= (
µ(τ)

)
τ∈Z/pnZ

be a sequence of pn-tuples of non-negative integers satisfying∑
τ∈Z/pnZ

µ(τ) É M (4.24)

for some absolute positive constant M and |T(µ)| = |T(µ)|. If

p > max(M ,2n −5) (4.25)

then

Spn (µ;b0) =
[ ∏
τ∈Z/pnZ

δ2|µ(τ)

(
µ(τ)

µ(τ)/2

)] ∣∣Apn (µ)
∣∣

ϕ(pn)
+OM ,ε

(
p− 4(n−1)

2n +ε
)

(4.26)

for any ε> 0 and where the implied constant only depends on M and ε.

Remark 4.11– In particular, for any non-negative integer m,

1

ϕ(pn)

∑
a∈(Z/pnZ)×

Klpn (a,b0)m = δ2|m
1

2

(
m

m/2

)
+Om,ε

(
p− 4(n−1)

2n +ε
)

(4.27)
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for any ε> 0 under (4.25). In other words, under the same assumption,

1

ϕ(pn)

∑
a∈(Z/pnZ)×

Klpn (a,b0)m = E(U m)+Om,ε

(
p− 4(n−1)

2n +ε
)

where U is any real-valued random variable of law the probability measure µ
defined in (1.1). Hence, by (3.1), the normalized Kloosterman sums Klpn (a,b0)
become equidistributed in [−2,2] with respect to the measure µ as briefly in-
dicated in Remark 1.5. Such equidistribution result was stated without proof
in [Kel10, Remark 1.1]. This measure has already occured in [Kel10], where the
author proves that the twisted normalized Kloosterman sums Klpn (a,χ) for a
fixed a in Z/pnZ and χ ranging over the Dirichlet characters of modulus pn get
equidistributed with respect to µ as p tends to infinity.

Remark 4.12– It follows from the results proved in [GVW16] that if 1 É m É pn−1

then
1

ϕ(pn)

∑
a∈(Z/pnZ)×

Klpn (a,1)m = E(U m)

where U is any real-valued random variable of law the probability measure µ,
which agrees with (4.27).

Remark 4.13– For any integer r Ê 1, any non-negative integers m1, . . . ,mr and
any distinct integers τ1, . . . ,τr , the previous proposition implies that

1

ϕ(pn)

∑
a∈(Z/pnZ)×

r∏
i=1

Klpn (a +τi ,b0)mi = E
(

r∏
i=1

U mi

i

)
+Om1+···+mr ,ε

(
p− 4(n−1)

2n +ε
)

for any ε> 0 and for any sequence of real-valued independent random variables
(Ui )1ÉiÉr of law the probability measure µ under (4.25) provided that

p > max
1Éi , jÉr

|τi −τ j |.

In other words, the r -tuple
(
Klpn (a +τi ,b0)

)
1ÉiÉr gets equidistributed in [−2,2]r

with respect to the measure ⊗rµ.

Proof of proposition 4.10. Firstly,

Klpn (a +τ,b0) =Klpn (b0a +b0τ,1)

since b0 is coprime with p. The change of variable a′ = b0a in Spn (µ;b0) com-
bined with the change of multiplicities

µ(τ) =
{
µ(τ′) if τ= b0τ

′,
0 otherwise

for τ ∈Z/pnZ implies that one has to prove this proposition only for b0 = 1. Thus,
b0 = 1 up to the completion of the proof.

Let us come back to the moment Spn (µ). By Lemma 4.6,

Spn (µ) = 1

ϕ(pn)

∑
b∈Bpn (µ)

∏
τ∈T(µ)

(
bτ
pn

)µ(τ)

∑
a∈Z/pnZ

∀τ∈T(µ),a≡b2
τ−τ mod p

∏
τ∈T(µ)

(
2cos

(
4πsa+τ,pn

pn +θpn

))µ(τ)

.
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Recall that s2
a+τ,pn ≡ a +τ mod pn . In addition, the second condition in (4.13) is

satisfied since a has to be coprime with p.
Now, recall that6

(2cos(x))M =
M∑

m=0

(
M

m

)
cos((M −2m)x)

for any real number x and any non-negative integer M . Thus,

Spn (µ) = 1

ϕ(pn)

∑
b∈Bpn (µ)

∏
τ∈T(µ)

(
bτ
pn

)µ(τ)

∑
a∈Z/pnZ

∀τ∈T(µ),a≡b2
τ−τ mod p

∏
τ∈T(µ)

µ(τ)∑
uτ=0

(
µ(τ)

uτ

)
cos

[(
µ(τ)−2uτ

)(4πsa+τ,pn

pn +θpn

)]
.

(4.28)

One can split Spn (µ) into Spn (µ) =MTpn (µ)+Errpn (µ) where

MTpn (µ) := 1

ϕ(pn)

∑
b∈Bpn (µ)

∏
τ∈T(µ)

(
bτ
pn

)µ(τ)

∑
a∈Z/pnZ

∀τ∈T(µ),a≡b2
τ−τ mod p

∏
τ∈T(µ)

∑
2uτ=µ(τ)

(
µ(τ)

uτ

)
cos

[(
µ(τ)−2uτ

)(4πsa+τ,pn

pn +θpn

)]

and Errpn (µ) is the remaining term. Note that MTpn (µ) is nothing else than the
term obtained when the multiplicities µ(τ) are even and uτ =µ(τ)/2.

Let us start with MTpn (µ). Obviously, MTpn (µ) = 0 unless

∀τ ∈T(µ), 2 |µ(τ).

Hence

MTpn (µ) =
[ ∏
τ∈T(µ)

δ2|µ(τ)

(
µ(τ)

µ(τ)/2

)] ∣∣Apn (µ)
∣∣

ϕ(pn)
.

Let us bound Errpn (µ). Trivially,

Errpn (µ) ¿M sup
`∈∏

τ∈T(µ)[−µ(τ),µ(τ)]
6̀=0

Errpn (µ,`)

where

Errpn (µ,`) = 1

ϕ(pn)

∑
b∈Bpn (µ)

∣∣∣∣∣∣∣∣∣
∑

a∈Z/pnZ

∀τ∈T(µ),a≡b2
τ−τ mod p

epn

( ∑
τ∈T(µ)

`τsa+τ,pn

)∣∣∣∣∣∣∣∣∣
:= 1

ϕ(pn)

∑
b∈Bpn (µ)

∣∣Errpn (µ,`,b)
∣∣ .

for any |T(µ)|-tuple ` of integers with the properties written above.

6The referee kindly informed us that this expansion can be interpreted as an expansion in terms
of Chebychev polynomials of the first kind, which are orthogonal polynomials for the measure µ.
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Let us fix from now on a |T(µ)|-tuple `= (`τ)τ∈T(µ) of integers different from
the tuple 0 and satisfying

∀τ ∈T(µ), |`τ| Éµ(τ) É M < p (4.29)

by (4.24). Let τ0 be a fixed element of T(µ). For b in Bpn (µ), (4.12) implies that

∀τ ∈T(µ),∃dτ ∈Z, b2
τ−τ= b2

τ0
−τ0 −dτp.

One gets a |T(µ)|-tuple d = (dτ)τ∈T(µ) of integers. The change of variables

a = bτ2
0
−τ0 +up

with u mod pn−1 so that

a +τ= b2
τ0
−τ0 +up +τ= b2

τ+ (dτ+u)p

and (4.19) entail that

Errpn (µ,`,b) = ∑
u mod pn−1

epn

( ∑
τ∈T(µ)

`τsb2
τ+(dτ+u)p,pn

)

= ∑
u mod pn−1

epn

( ∑
τ∈T(µ)

`τbτ
n−1∑
m=0

c ′mbτ
2m

pm(dτ+u)m

)
= ∑

u mod pn−1

epn (Pb(u))

where

Pb(u) := ∑
τ∈T(µ)

`τbτ
n−1∑
m=0

c ′mbτ
2m

pm(dτ+u)m (4.30)

is a polynomial in the variable u of degree less than n−1 with integer coefficients.
Note that all the quantities defined here and below depend on the tuples µ, `, b
and d but we only state the dependence on b for simplicity. One can check that

Pb(u) =
n−1∑
j=0

a j (b)u j

where

∀ j ∈ {0, . . . ,n −1}, a j (b) =
n−1∑
r= j

(
r

j

)
c ′r mb(r, j )pr

and

∀ j ∈ {0, . . . ,n −1},∀r ∈ { j , . . . ,n −1}, mb(r, j ) = ∑
τ∈T(µ)

`τbτ
2r−1

d r− j
τ .

An important fact is that p j divides a j (b) for any j ∈ {0, . . . ,n −1}. Note also that
when r = j , the quantity mb(r, j ) gets simpler and does not depend on the tuple
d since mb( j , j ) = mb,`( j , j ) previously defined in (4.14) for 1 É j É n − 1. In
particular,

mb(1,1) = ∑
τ∈T(µ)

`τbτ.

Let us define

j (b) := sup
({

j ∈ {1, . . . ,n −1}, pn - a j (b)
}) ∈ {1, . . . ,n −1}∪ {−∞}.
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Having this notation in mind,

Errpn (µ,`,b) = ∑
u mod pn−1

epn

(
n−1∑
j=0

a j (b)u j

)
.

This new polynomial in the exponential sum is still denoted by Pb (u) for simplic-
ity, even though some terms are missing.

The strategy to find an upper-bound for Errpn (µ,`) is to decompose it into

Errpn (µ,`) = 1

ϕ(pn)

∑
b∈Bpn (µ)
j (b)=−∞

∣∣Errpn (µ,`,b)
∣∣+ 1

ϕ(pn)

∑
b∈Bpn (µ)

j (b)=1

∣∣Errpn (µ,`,b)
∣∣

+ 1

ϕ(pn)

∑
b∈Bpn (µ)

j (b)∈{2,...,n−1}

∣∣Errpn (µ,`,b)
∣∣ (4.31)

and to proceed as follows.

• In the first term of (4.31), the exponential sum Errpn (µ,`,b) is bounded
trivially by pn−1 but the counting of the tuples b is done carefully;

• In the third term of (4.31), Weyl’s differencing process enables us to find
an upper-bound for the exponential sum Errpn (µ,`,b) and the counting
of the tuples b is done trivially by ¿ p. Note that this term only occurs if
n Ê 3.

• In the second term of (4.31), both the exponential sum Errpn (µ,`,b) and
the counting of the tuples b are handled carefully.

Let us define N = pn−1 for simplicity.
Let us begin with the third term of (4.31). The purpose is to show that if

b ∈Bpn (µ) with j (b) ∈ {2, . . . ,n −1} then

Errpn (µ,`,b) ¿ε pn−1− 4(n−1)
2n +ε (4.32)

for any ε> 0 and where the implied constant only depends on ε. For these tuples
b, Pb(u) is a polynomial of degree j (b) and leading coefficient divisible by p j (b).
Let us define a j (b)(b) = pkα j (b) where j (b) É k É n − 1 and p - α j (b). We are
tempted to apply Weyl’s differencing process (see [Wey21]). By [IK04, Proposition
8.2]), one gets ∣∣Errpn (µ,`,b)

∣∣É 2N ×E 21− j (b)
(4.33)

where

E := 1

N j (b)

∑
−N<`1,...,` j (b)−1<N

min

(
N ,

∣∣∣∣∣∣∣∣α j (b) j (b)!`1 . . .` j (b)−1

pn− j (b)

∣∣∣∣∣∣∣∣−1
)

.

As usual, ||∗ || stands for the distance to the nearest integer. The contribution to
Σ j (b) of the integers satisfying `1 . . .` j (b)−1 = 0 is trivially bounded by 1/N . Up to
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this error term,

E = 1

N j (b)

∑
0 6=|`|<N j (b)−1

d j (b)−1(`)min

(
N ,

∣∣∣∣∣∣∣∣α j (b) j (b)!`

pn−k

∣∣∣∣∣∣∣∣−1
)

= 1

N j (b)

(n−1)( j (b)−1)−1∑
i=0

∑
0 6=|`|<N j (b)−1

p i ||`

d j (b)−1(`)min

(
N ,

∣∣∣∣∣∣∣∣α j (b) j (b)!`

pn−k

∣∣∣∣∣∣∣∣−1
)

= 1

N j (b)

(n−1)( j (b)−1)−1∑
i=0

∑
0 6=|`|< N j (b)−1

pi

(p,`)=1

d j (b)−1(p i`)min

(
N ,

∣∣∣∣∣∣∣∣α j (b) j (b)!`

pn−k−i

∣∣∣∣∣∣∣∣−1
)

.

The contribution to E of the non-negative integers i less than n −k −1 can be
written as

1

N j (b)

∑
0ÉiÉ(n−1)( j (b)−1)−1

iÉn−k−1

∑
|v |É(

pn−k−i−1
)
/2

(p,v)=1∑
0 6=|`|< N j (b)−1

pi

`≡α j (b) j (b)!v mod pn−k−i

d j (b)−1(p i`)min

(
N ,

∣∣∣∣∣∣∣∣ v

pn−k−i

∣∣∣∣∣∣∣∣−1)

and is bounded by (pN )ε/N . The contribution of the remaining integers i is
trivially bounded by (pN )ε/pn−k , which is less than (pN )ε/N . As a consequence,∣∣Errpn (µ,`,b)

∣∣¿ε (pN )εN 1−21− j (b) É (pN )εN 1−22−n
,

which implies (4.32).
About the first term of of (4.31), let us show that

1

ϕ(pn)

∑
b∈Bpn (µ)
j (b)=−∞

∣∣Errpn (µ,`,b)
∣∣¿ pn−1

ϕ(pn)
N(µ,`;0) (4.34)

where N(µ,`; w) is defined in (4.15) for any w modulo p. The exponential sum
in (4.31) is trivially bounded by pn−1. Now, let b in Bpn (µ) with j (b) = −∞. If
1 É j É n −1 then pn divides a j (b), which implies that

c ′j mb( j , j ) ≡ 0 mod p

and mb( j , j ) ≡ 0 mod p since c ′j is coprime with p for p Ê 2n −5 by (4.18). This
implies (4.34).

Finally, let us prove that

1

ϕ(pn)

∑
b∈Bpn (µ)

j (b)=1

∣∣Errpn (µ,`,b)
∣∣¿ 1

ϕ(pn)

n−1∑
k=1

pn−k
∑

v mod pn−k

(p,v)=1

1

|v |N
(
µ,`;c ′1v pk−1

)
.

(4.35)
For these tuples b, Pb(u) is a polynomial of degree 1 and leading coefficient
divisible by p. By [IK04, Equation (8.6)],∣∣Errpn (µ,`,b)

∣∣É 1

2
min

(
2N ,

∣∣∣∣∣∣∣∣ a1(b)

pn

∣∣∣∣∣∣∣∣−1)
(4.36)
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so that ∑
b∈Bpn (µ)

j (b)=1

∣∣Errpn (µ,`,b)
∣∣É n−1∑

k=1

∑
b∈Bpn (µ)

pk ||a1(b)

∣∣∣∣∣
∣∣∣∣∣ a1(b)/pk

pn−k

∣∣∣∣∣
∣∣∣∣∣
−1

=
n−1∑
k=1

∑
v mod pn−k

(p,v)=1

∑
b∈Bpn (µ)

a1(b)/pk≡v mod pn−k

∣∣∣∣∣∣∣∣ v

pn−k

∣∣∣∣∣∣∣∣−1

=
n−1∑
k=1

pn−k
∑

v mod pn−k

(p,v)=1

1

|v |
∑

b∈Bpn (µ)

a1(b)/pk≡v mod pn−k

1.

Now, if b inBpn (µ) satisfies a1(b)/pk ≡ v mod pn−k then this implies c ′1mb (1,1) ≡
a1(b)/p ≡ v pk−1 mod p with c ′1 coprime with p by (4.18). This is exactly (4.35).

By (4.31), (4.32), (4.32) and (4.34), one gets

Errpn (µ,`) ¿ε p− 4(n−1)
2n +ε + N(µ,`;0)

p
+

n−1∑
k=1

1

pk

∑
v mod pn−k

(p,v)=1

1

|v |N
(
µ,`;c ′1v pk−1

)
(4.37)

for any ε > 0. Everything boils down to bounding N(µ,`; w) uniformly with
respect to w mod p. Proposition 4.7 implies that

Errpn (µ,`) ¿ε p− 4(n−1)
2n +ε

for any ε> 0. �

The following lemma will be used in the proof of Proposition 4.1.

Lemma 4.14– Let M Ê 2 be an integer. If ah is a sequence of real numbers indexed
by non-negative integers satisfying

∀h ∈N, 0 É ah É
{

1 if h = 0,
1
h otherwise

then

ΣM = ∑
0Éh1,...,hMÉpn

∃i 6= j ,hi≡h j mod p
hi 6=h j

M∏
i=1

ahi ¿
logM (

pn
)

p
.

Proof of lemma 4.14. Let us proceed by induction on M . If M = 2 then

Σ2 = 2a0
∑

1ÉhÉpn

p|h

ah + ∑
1Éh1,h2Épn

h1≡h2 mod p

ah1 ah2 ¿
log

(
pn−1

)
p

+ log
(
pn

)
log

(
pn−1

)
p

.

Let us assume that M Ê 3. We use the combinatorial identity given in [KR14,
Lemma 7.1], which entails that

ΣM =
M∑

s=1

∑
σ∈P (M ,s)

∑
0Éh1,...,hsÉpn

∃i 6= j ,hi≡h j mod p
hi 6=h j

s∏
u=1

aσu

hu
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where
∀u ∈ {1, . . . , s}, σu := ∣∣σ−1 ({u})

∣∣
and for 1 É s É M , P (M , s) stands for the set of surjective functions

σ : {1, . . . , M } → {1, . . . , s}

satisfying

∀ j ∈ {1, . . . , M } , σ( j ) = 1 or ∃k < j ,σ( j ) =σ(k)+1.

The sum over h1, . . . ,hs can be decomposed into∑
0Éh1,...,hsÉpn

h1,...,hs distinct
∃i0,hi0=0

∃ j 6=i0,h j≡0 mod p

s∏
u=1

aσu

hu
+ ∑

0Éh1,...,hsÉpn

h1,...,hs distinct
∃i0,hi0=0
∀i 6=i0,p-hi

∃i 6= j 6=i0,hi≡h j mod p

s∏
u=1

aσu

hu
+ ∑

1Éh1,...,hsÉpn

h1,...,hs distinct
∃i 6= j ,hi≡h j mod p

s∏
u=1

aσu

hu
.

The first sum is trivially bounded whereas the second and third sums are bounded
by induction. This gives

ΣM ¿
M∑

s=1

∑
σ∈P (M ,s)

(
logs−2 (

pn
)

log
(
pn−1

)
p

+ logs−2 (
pn

)
log

(
pn−1

)
p

+ logs−1 (
pn

)
log

(
pn−1

)
p

)
,

which ensures the result. �

Let us give now the proof of Proposition 4.1

Proof of proposition 4.1. By Lemma 4.4, it is enough to consider �Mpn (t ;m,n,b0).
Recall that Hpn = {

(1−pn)/2, . . . , (pn −1)/2
}
.

By (4.5),

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

( ∑
ui∈Hpn

αpn (ui ; ti )Klpn (a −ui ,b0)

)mi
( ∑

vi∈Hpn

αpn (vi ; ti )Klpn (a − vi ,b0)

)ni

since the complete Kloosterman sums are real numbers. Expanding the powers,
one gets

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

∑
ui=

(
ui ,1,...,ui ,mi

)∈H
mi
pn

∑
v i=

(
vi ,1,...,vi ,ni

)∈H
ni
pn

mi∏
ei=1

αpn (ui ,ei ; ti )Klpn (a −ui ,ei ,b0)
ni∏

fi=1
αpn (vi , fi ; ti )Klpn (a − vi , fi ,b0).

Let us set for 1 É i É k,

hi =
(
hi ,1, . . . ,hi ,mi ,hi ,mi+1, . . . ,hi ,mi+ni

)= (
ui ,1, . . . ,ui ,mi , vi ,1, . . . , vi ,ni

) ∈ H mi+ni
pn

and
h = (h1, . . . ,hk ) ∈ H`(m+n)

pn .
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Exchanging the order of summations, one is led to

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

αpn (hi , j ; ti )
mi+ni∏

j=mi+1
αpn (hi , j ; ti )

1

ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

mi+ni∏
j=1

Klpn (a −hi , j ,b0).

By Lemma 4.14 and (4.6), the contribution of the tuples h different from the
tuple 0 and whose components are not distinct modulo p is bounded by

¿`(m+n)
log`(m+n) (pn

)
p

(4.38)

where the implied constant only depends on `(m +n).
Thus, up to all the previous error terms,

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∗∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

αpn (hi , j ; ti )
mi+ni∏

j=mi+1
αpn (hi , j ; ti )

1

ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

mi+ni∏
j=1

Klpn (a −hi , j ,b0) (4.39)

where the ∗ means that the summation is over the tuples h = (
hi , j

)
1ÉiÉk

1É jÉmi

whose

components are either equal or distinct modulo p, namely

hi , j = hk,` or p - hi , j −hk,`

for any (i , j ) 6= (k,`) in the relevant ranges.
Note that by (4.11),

1

ϕ(pn)

∑
a∈(Z/pnZ)×

k∏
i=1

mi+ni∏
j=1

Klpn (a −hi , j ,b0) = Spn (µh ;b0)

where µh = (
µh(τ)

)
τ∈Z/pnZ

is the pn-tuple of non-negative integers defined by

∀τ ∈Z/pnZ, µh(τ) :=
k∑

i=1

∣∣{ j ∈ {1, . . . ,mi +ni },−hi , j ≡ τ mod pn}∣∣ .

Note also that ∑
τ∈Z/pnZ

µh(τ) = `(m +n)

so that∣∣{τ mod p,τ ∈Z/pnZ,µh(τ) Ê 1
}∣∣= ∣∣{τ ∈Z/pnZ,µh(τ) Ê 1

}∣∣É `(m +n)

according to the property satisfied by the relevant tuples h in (4.39).
Hence, one can apply Proposition 4.10. By (4.6), the contribution of the error

term is bounded by

¿`(m+n),ε log`(m+n) (pn)
p− 4(n−1)

2n +ε
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for any ε> 0, where the implied constant only depends on `(m +n) and ε. Thus,
up to the previous error terms,

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

αpn (hi , j ; ti )
mi+ni∏

j=mi+1
αpn (hi , j ; ti )

[ ∏
τ∈Z/pnZ

δ2|µh (τ)

(
µh(τ)

µh(τ)/2

)] ∣∣Apn (µh(τ))
∣∣

ϕ(pn)

where Apn (µh(τ)) is defined in (4.16).
Let us apply Proposition 4.8. By (4.6), the contribution of the error term is

bounded by

¿`(m+n)
log`(m+n) (pn

)
p

p

where the implied constant only depends on `(m +n) and, up to all the previous
error terms,

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

αpn (hi , j ; ti )
mi+ni∏

j=mi+1
αpn (hi , j ; ti )

[ ∏
τ∈Z/pnZ

δ2|µh (τ)

(
µh(τ)

µh(τ)/2

)]
1

2|T(µh )| .

It should be pointed out that the fact that

∣∣T(µh)
∣∣= ∣∣∣T(µh)

∣∣∣
is crucial since recognizing the moments of the measure µ requires the left-hand
side of the previous equation whereas the right-hand side appears by Proposition
4.8.

By (3.1),

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∗∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

αpn (hi , j ; ti )
mi+ni∏

j=mi+1
αpn (hi , j ; ti )

E

(
k∏

i=1

mi+ni∏
j=1

Uhi , j

)

for any finite sequence of real-valued independent random variables (Uh)h∈Z/pnZ

of law the probability measure µ defined in (1.1). The fact that

E

(
k∏

i=1

mi+ni∏
j=1

Uhi , j

)
= E

( ∏
τ∈Z/pnZ

Uµ(τ)
τ

)
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has also been used. One can add the missing tuples h at the admissible cost given
in (4.38) so that, up to all the previous error terms,

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

αpn (hi , j ; ti )
mi+ni∏

j=mi+1
αpn (hi , j ; ti )

E

(
k∏

i=1

mi+ni∏
j=1

Uhi , j

)
.

Let us approximate the coefficients αpn (h; t ). By (4.7) and (4.6), one gets, up to
all the previous error terms,

�Mpn (t ;m,n;b0) = 1

pn`(m+n)/2

∑
h∈H`(m+n)

pn

k∏
i=1

mi∏
j=1

β(hi , j ; ti )
mi+ni∏

j=mi+1
β(hi , j ; ti )

E

(
k∏

i=1

mi+ni∏
j=1

Uhi , j

)
+O`(m+n)

(
log`(m+n)−1 (

pn
)

pn

)
.

Reverting the computation done at the very beginning of the proof of this propo-
sition, one is led to

�Mpn (t ;m,n;b0) = E
(

k∏
i=1

Kl pn−1
2

(ti )
mi
Kl pn−1

2
(ti )ni

)
up to all the previous error terms and where

Kl pn−1
2

(t ;∗) = ∑
|h|É pn−1

2

β(h; t )Uh(∗).

Finally, by (3.2) and (3.3) in Proposition 3.1, up to all the previous error terms,

�Mpn (t ;m,n;b0) = E
(

k∏
i=1

Kl(ti )
mi
Kl(ti )ni

)
+O`(m+n)

(
log`(m+n) (pn

)
pn/2

)
where

Kl(t ;∗) = ∑
h∈Z

β(h; t )Uh(∗)

for any sequence of real-valued independent random variables (Uh)h∈Z of law
the probability measure µ. �

5. THE TIGHTNESS CONDITION

5.1. The counting ingredient. The following lemma states, without any proof,
the version of Hensel’s lemma, which will be used in the proof of Lemma 5.2. This
result is so standard that we do not give any reference too.

Lemma 5.1 (Hensel’s lemma)– Let k be a positive integer and f be a polynomial
with integer coefficients. Assume that x0 is a solution modulo pk of the congruence
f (x) ≡ 0 mod pk .

• If p - f ′(x0) then there is exactly one solution modulo pk+1 of the congru-
ence f (x) ≡ 0 mod pk+1 congruent to x0 modulo pk .

• If p | f ′(x0) and f (x0) ≡ 0 mod pk+1 then there are exactly p solutions
modulo pk+1 of the congruence f (x) ≡ 0 mod pk+1 congruent to x0 mod-
ulo pk . They are given by x0 +pk j for j modulo p.
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Lemma 5.2 (Hensel’s lemma in degree 2)– Let n Ê 1 be an integer and f (X ) =
X 2 − sX +π be a polynomial of degree 2 with integer coefficients satisfying s ≡
π+ 1 mod pn . Assume that p` || π− 1 for some integer ` Ê 1. The number of
solutions of the congruence f (x) ≡ 0 mod pn equals{

2p` if 1 É `É n/2−1,

pn/2 if n/2 É `É n,

if n is even, and {
2p` if 1 É `É (n −1)/2,

p(n−1)/2 if (n −1)/2+1 É `É n,

if n is odd.

Remark 5.3– This lemma is proved by a quite technical induction on n Ê 1 but
understanding the set of solutions for 1 É n É 3 of f (x) ≡ 0 mod pn gives an idea
of how the induction works.

Proof of lemma 5.2. In this proof, recall that p |π−1.
Obviously, 1 is the only solution of the congruence f (x) ≡ 0 mod p with s ≡

π+1 mod p.
Let us quickly check what happens for n = 2. One has f (1) ≡ 0 mod p2 and

f ′(1) = 2− s ≡ 0 mod p. By Lemma 5.1, the only solutions of f (x) ≡ 0 mod p2

with s ≡π+1 mod p2 are 1+pk1 for 0 É k1 < p.
Let us do the case n = 3. For 0 É k1 < p, 1+pk1 is a solution of f (x) ≡ 0 mod p2

satisfying f ′(1+pk1) ≡ 0 mod p and

f
(
1+pk1

)≡ pk1(1−π+pk1) mod p3.

If k1 = 0 then by Lemma 5.1, 1+ p2k2 for 0 É k2 < p are the only solutions of
f (x) ≡ 0 mod p3 congruent to 1 modulo p2. Otherwise, p ||π−1 and k1,π must
be the unique invertible integer modulo p satisfying pk1,π ≡π−1 mod p2. Then,
by Lemma 5.1 1+pk1,π+p2k2 for 0 É k2 < p are the solutions of f (x) ≡ 0 mod p3

congruent to 1+pk1,π modulo p2. We have just seen that the solutions of f (x) ≡
0 mod p3 with s ≡π+1 mod p3 are

• 1+p2k2 for 0 É k2 < p,
• 1+pk1,π+p2k2 for 0 É k2 < p and if p ||π−1 and pk1,π ≡π−1 mod p2.

Note that the previous simple use of Hensel’s lemma proves Lemma 5.2 for
1 É n É 3. We will conclude by induction on n Ê 2.

Let us set

(`1(n),`2(n)) :=
{

(n/2−1,n/2) if n is even,

((n −1)/2,(n −1)/2) if n is odd.

Let us prove that for any n Ê 2, the solutions of the congruence f (x) ≡ 0 mod
pn for any polynomial f (X ) = X 2 − sX +π of degree 2 with integer coefficients
satisfying s ≡π+1 mod pn are

1+pn−1kn−1

where 0 É kn−1 < p and for any 2 É m É `2(n),

1+pn−mkn−m +·· ·+pn−1kn−1
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where 0 < kn−m < p, 0 É kn−m+1, . . . ,kn−1 < p provided that pm |π−1 and for any
2 É m É `1(n),

1+pmkm,π+·· ·+pn−m−1kn−m−1,π+pn−mkn−m +·· ·+pn−1kn−1

where 0 É kn−m , . . . ,kn−1 < p provided that pm || π−1. Here, the numbers ku,π,
m É u É n −m −1, are fixed integers modulo p satisfying

pmkm,π+·· ·+pn−m−1kn−m−1 ≡π−1 mod pn−m .

In particular, km,π is invertible modulo p. This fact trivially implies Lemma 5.2
for n Ê 2. The cases n = 1, n = 2 and n = 3 have just been seen above.

Let n Ê 2. Let us assume that the result holds at the rank n and let us check
that it remains true at the rank n +1. For instance, let us assume that n is even.
We do not provide the proof when n is odd since this is completely similar.

For 0 É kn−1 < p, xn := 1+pn−1kn−1 is a solution of f (x) ≡ 0 mod pn , which
satisfies f ′(xn) ≡ 0 mod p and

f (xn) ≡ pn−1kn−1
(
1−π+pn−1kn−1

)
mod pn+1.

By Lemma 5.1, the only solutions of f (x) ≡ 0 mod pn+1 congruent to xn are

• 1+pnkn for 0 É kn < p if kn−1 = 0,
• 1+pn−1kn−1 +pnkn for 0 < kn−1 < p, 0 É kn < p and if p2 |π−1.

Let 2 É m É `2(n) = n/2. Assume that pm |π−1. For 0 É kn−m+1, . . . ,kn−1 < p
and 0 < kn−m < p, xm,n := 1+ pn−mkn−m + ·· · + pn−1kn−1 is a solution f (x) ≡
0 mod pn , which satisfies f ′(xm,n) ≡ 0 mod p and

f (xm,n) ≡ pn (
kn−m +·· ·+pm−1kn−1

)(1−π
pm +pn−2mkn−m +·· ·+pn−1−mkn−1

)
mod pn+1.

If 2 É m < n/2 then by Lemma 5.1, the only solutions of f (x) ≡ 0 mod pn+1

congruent to xm,n are

1+pn−mkn−m +·· ·+pn−1kn−1 +pnkn

where 0 < kn−m < p, 0 É kn−m+1, . . . ,kn < p provided that pm+1 |π−1. If m = n/2
then by Lemma 5.1, the only solutions of f (x) ≡ 0 mod pn+1 congruent to xn/2,n

are
1+pn/2kn/2,π+pn/2+1kn/2+1 +·· ·+pn−1kn−1 +pnkn

where 0 É kn/2+1, . . . ,kn < p provided that pn/2 ||π−1 and pn/2kn/2,π ≡π−1 mod
pn/2+1.

Let 1 É m É `1(n) = n/2−1. Assume that pm ||π−1. For 0 É kn−m , . . . ,kn−1 < p,

xm,n := 1+pmkm,π+·· ·+pn−m−1kn−m−1,π+pn−mkn−m +·· ·+pn−1kn−1

is a solution f (x) ≡ 0 mod pn , which satisfies f ′(xm,n) ≡ 0 mod p and

f (xm,n) ≡ pn (
km,π+·· ·+pn−2m−1kn−m−1,π+pn−2mkn−m +·· ·+pn−1−mkn−1

)
(

1−π+pmkm,π+·· ·+pn−1−mkn−m−1,π

pn−m +kn−m +pkn−m+1 +·· ·+kn−1pn−1−m
)

mod pn+1.

By Lemma 5.1, the only solutions of f (x) ≡ 0 mod pn+1 congruent to xm,n are

1+pmkm,π+·· ·+pn−mkn−m,π+pn−m+1kn−m+1 +·· ·+pnkn
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where 0 É kn−m+1, . . . ,kn < p and where

pmkm,π+·· ·+pn−mkn−m,π ≡π−1 mod pn−m+1.

This completes the induction on n. �

Proposition 5.4 (The counting ingredient)– Let n Ê 1 be an integer and I be a
non-empty interval in

(
Z/pnZ

)×. The number of quadruples (x1, x2, x3, x4) ∈ I 4

satisfying

x1 +x2 ≡ x3 +x4 mod pn

x1 +x2 ≡ x3 +x4 mod pn

is bounded by an absolute positive constant times n|I |2.

Proof of proposition 5.4. Let us denote by Nk,`(pn ; I ) the number of these quadru-
ples (x1, x2, x3, x4) satisfying pk || x3 +x4 and p` || x3 −x4 for some fixed integers
k,` ∈ {0, . . . ,n}, which must satisfy k`= 0 since p is odd. Let (x1, x2, x3, x4) be such
a quadruple. Let us fix x4. There are at most |I | such x4. The bijective change of
variables yi = x4xi for 1 É i É 3 leads to the system

y1 + y2 ≡ y3 +1 mod pn

y1 + y2 ≡ y3 +1 mod pn

where the triple (y1, y2, y3) belongs to
(
x4I

)3 and whose components satisfy pk ||
y3 +1 and p` || y3 −1. Let us set

s = y1 + y2 and $= y1 y2.

The previous system becomes

s ≡ y3 +1 mod pn (5.1)

and

$s ≡ y3 +1 mod pn .

Thus,

1 ≡ y3 y3 ≡ (s −1)($s −1) mod pn

so that s(s − ($+1)) ≡ 0 mod pn and

s ≡$+1 mod pn−k . (5.2)

Let f (X ) = X 2 − sX +$. Obviously, y1 and y2 are solutions modulo pn of the
congruence

f (x) ≡ 0 mod pn . (5.3)

Note also that

f (X ) ≡ (X −1)(X −$) mod pn−k (5.4)

by (5.2). In particular, if n −k Ê 1 then the only solutions modulo p of

f (x) ≡ 0 mod p

are 1 and $, which satisfy f ′($) ≡− f ′(1) =$−1 mod p by (5.2). Let us consider
three distinct cases.

First case: k = 0 and 0 É `É n. In this case, p - s by (5.1) and p` ||$−1 since
y3 −1 ≡ s −2 ≡$−1 mod pn by (5.1) and (5.2). Let us fix y3, which implies that s
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is fixed by (5.1) and $ is fixed by (5.2). There are ¿ 1+|I |/p` such y3. By Lemma
5.2, the number N`(pn) of solutions modulo pn of the congruence (5.3) satisfies

N`(pn) ¿


p` if n is even and 0 É `É n/2−1,

pn/2 if n is even and n/2 É `É n,

p` if n is odd and 0 É `É (n −1)/2,

p(n−1)/2 if n is odd and (n −1)/2+1 É `É n.

In total,

N0,`(pn ; I ) ¿|I |
(
1+ |I |

p`

)
min

(
N`(pn), |I |).

Second case: 1 É k É n −1 and `= 0. In this case, pk || s by (5.1) and p -$−1
by (5.1) and (5.2). Let us fix y3, which implies that s is fixed by (5.1) and $ is
fixed modulo pn−k by (5.2). There are ¿ 1+|I |/pk such y3. By Lemma 5.2, the
congruence f (x) ≡ 0 mod pn−k has exactly two solutions. Hence, the same holds
for the number of pairs (y1, y2) modulo pn−k . In total,

Nk,0(pn ; I ) ¿|I |
(
1+ |I |

pk

)(
1+ |I |

pn−k

)
¿|I |2.

Third case: k = n and `= 0. In this case y3 ≡−1 mod pn is fixed and given y1,
y2 is fixed. In total,

Nn,0(pn ; I ) ¿|I |2.

Altogether, the number of quadruples (x1, x2, x3, x4) equals

n∑
`=0

N0,`(pn ; I )+
n−1∑
k=1

Nk,0(pn ; I )+Nn,0(pn ; I )

and is bounded by ¿ n|I |2. �

5.2. The fourth moment of incomplete Kloosterman sums.

Proposition 5.5 (Bounding the fourth moment)– Let n Ê 2 be an integer and I
be a non-empty interval in

(
Z/pnZ

)×. One has

M4(I ) := 1

ϕ
(
pn

)2

∑
(a,b)∈(Z/pnZ)××(Z/pnZ)×

∣∣∣∣∣ 1

pn/2

∑
x∈I

epn
(
ax +bx

)∣∣∣∣∣
4

¿ n|I |2
ϕ

(
pn

)2 .

Proof of proposition 5.5. Expanding the fourth power, one is led to

M4(I ) = 1

ϕ
(
pn

)2 p2n

∑
(x1,x2,x3,x4)∈I 4

 ∑
a∈(Z/pnZ)×

epn (a(x1 +x2 −x3 −x4))


 ∑

b∈(Z/pnZ)×
epn

(
b(x1 +x2 −x3 −x4)

) .

The orthogonality of additive characters ensures that∑
c∈(Z/pnZ)×

epn (cz) = pnδz≡0 mod pn −pn−1δz≡0 mod pn−1
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for any z in Z/pnZ. Thus,

M4(I ) = 1

ϕ
(
pn

)2

∑
(x1,x2,x3,x4)∈I 4

x1+x2≡x3+x4 mod pn

x1+x2≡x3+x4 mod pn

1− 1

ϕ
(
pn

)2 p

∑
(x1,x2,x3,x4)∈I 4

x1+x2≡x3+x4 mod pn

x1+x2≡x3+x4 mod pn−1

1

− 1

ϕ
(
pn

)2 p

∑
(x1,x2,x3,x4)∈I 4

x1+x2≡x3+x4 mod pn−1

x1+x2≡x3+x4 mod pn

1+ 1

ϕ
(
pn

)2 p2

∑
(x1,x2,x3,x4)∈I 4

x1+x2≡x3+x4 mod pn−1

x1+x2≡x3+x4 mod pn−1

1.

Proposition 5.4 completes the proof. �

5.3. The tightness condition via Kolmogorov’s criterion.

Proposition 5.6 (Tightness)– Let n Ê 2 be an integer. The sequence of C 0([0,1],C)-
valued random variablesKlpn (∗; (∗,∗)) on the random space

(
Z/pnZ

)××(
Z/pnZ

)×
where p is an odd prime number is tight.

Proof of proposition 5.6. Let us show that if 0 É s, t É 1 then

1

ϕ
(
pn

)2

∑
(a,b)∈(Z/pnZ)××(Z/pnZ)×

∣∣Klpn (t ; (a,b))−Klpn (s; (a,b))
∣∣4 ¿ n|t − s|2 (5.5)

where the implied constant is absolute. The bound (5.5) is enough by Proposition
A.1 to ensure the tightness of the sequence of C 0([0,1],C)-valued random vari-
ables Klpn (∗; (∗,∗)) as p tends to infinity among the odd prime numbers. One
can assume that 0 É s < t É 1.

First range: 0 É t − s É 1
/(
ϕ

(
pn

)−1
)

so that

pn É 4

t − s
. (5.6)

Let us show that ∣∣Klpn (t ; (a,b))−Klpn (s; (a,b))
∣∣É 2

p
t − s,

which implies (5.5) in this range. Let us assume that

j −1

ϕ
(
pn

)−1
É t É j

ϕ
(
pn

)−1

where 1 É j Éϕ(
pn

)−1. Two cases can occur.
First case:

j −1

ϕ
(
pn

)−1
É s < t É j

ϕ
(
pn

)−1
.

In this case,

∣∣Klpn (t ; (a,b))−Klpn (s; (a,b))
∣∣= ∣∣α j ((a,b); pn)

∣∣ (t − s) É ϕ
(
pn

)−1

pn/2
(t − s)

É 2
p

t − s

by (2.2) and (5.6).
Second case:

j −2

ϕ
(
pn

)−1
É s É j −1

ϕ
(
pn

)−1
É t É j

ϕ
(
pn

)−1
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where 2 É j Éϕ(
pn

)−1. In this case,∣∣Klpn (t ; (a,b))−Klpn (s; (a,b))
∣∣É ∣∣Klpn (t ; (a,b))− z j ((a,b); pn)

∣∣
+ ∣∣z j ((a,b); pn)−Klpn (s; (a,b))

∣∣ .

The first term is less than∣∣α j ((a,b); pn)
∣∣(t − j −1

ϕ
(
pn

)−1

)
whereas the second term is less than∣∣α j−1((a,b); pn)

∣∣( j −1

ϕ
(
pn

)−1
− s

)
.

Altogether,

∣∣Klpn (t ; (a,b))−Klpn (s; (a,b))
∣∣É ϕ

(
pn

)−1

pn/2
(t − s) É 2

p
t − s

by (2.2) and (5.6).
Second range: t − s Ê 1

/(
ϕ

(
pn

)−1
)

so that

pn Ê 1

t − s
. (5.7)

Let us assume that

j −1

ϕ
(
pn

)−1
< s É j

ϕ
(
pn

)−1
and

k −1

ϕ
(
pn

)−1
< t É k

ϕ
(
pn

)−1

where 1 É j É k −1 Éϕ(
pn

)−2. In other words,

j = ⌈
(ϕ

(
pn)−1)s

⌉
and k = ⌈

(ϕ
(
pn)−1)t

⌉
.

By (4.10) and Hölder’s inequality,

1

ϕ
(
pn

)2

∑
(a,b)∈(Z/pnZ)××(Z/pnZ)×

∣∣Klpn (t ; (a,b))−Klpn (s; (a,b))
∣∣4

=M4(Is,t )+O

(
1

p2n

)
=M4(Is,t )+O

(
(t − s)2)

where Is,t is the non-empty interval in
(
Z/pnZ

)× given by(
x j (s) =ϕ(

pn)
s + j −1 , xk (t ) =ϕ(

pn)
t +k −1

]∩ (
Z/pnZ

)× .

Its length satisfies

|Is,t | = bxk (t )c−⌈
x j (s)

⌉
Éϕ(

pn)
(t − s)+⌈

(ϕ
(
pn)−1)t

⌉−⌈
(ϕ

(
pn)−1)s

⌉
É 4(ϕ

(
pn)−1)(t − s)+1

É 8(ϕ
(
pn)−1)(t − s)

since (ϕ
(
pn

)−1)(t − s) Ê 1. Proposition 5.5 implies (5.5). �
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6. PROOF OF THEOREM A AND THEOREM B

Let us prove Theorem A. By Proposition 3.1, the random variable Kl has
moments to all orders. Thus, we are allowed to use the method of moments.
Proposition 4.1 leads to the result.

Theorem B is implied by Theorem A.3, Theorem A and Proposition 5.6.

APPENDIX A. PROBABILISTIC TOOLS

This section contains some probabilistic results needed in this work. The main
reference for both the statements and their proof is [Kow16].

Let us say a few words about random variables with values in the Banach
space C 0([0,1],C) of C-valued continuous function on [0,1] endowed with the
supremum norm. Confer [Kow16, Section B.9] for more details. For each n Ê 1,
let Xn be a random variable on the random space (Ωn ,An ,Pn) with values in
C 0([0,1],C). Let X be a C 0([0,1],C)-valued random variable.

The sequence (Xn)nÊ1 converges to X in the sense of finite distributions if for
all integers k Ê 1 and all k-tuples (t1, . . . , tk ) with

0 É t1 < ·· · < tk É 1,

the sequence of Ck -valued random vectors (Xn(t1), . . . , Xn(tk )) converge in law to
the random vector (X (t1), . . . , X (tk )).

The sequence (Xn)nÊ1 converges in law to X if for any C-valued continuous
and bounded map ϕ on the Banach space C 0([0,1],C), the sequence of complex
numbers

(
E
(
ϕ(Xn)

))
nÊ1 converges to E(ϕ(X )).

Each Xn induces a probability measure µn on the Banach space by

∀A ⊂C 0([0,1],C), µn(A) =Pn
(
X −1

n (A)
)

.

The sequence (Xn)nÊ1 is said to be tight if for any ε> 0, there exists a compact
subset K of C 0([0,1],C) satisfying

∀n Ê 1, µn(K ) Ê 1−ε.

A practical criterion for tightness is due to Kolmogorov.

Proposition A.1 (Kolmogorov’s criterion for tightness)– If there existsα> 0 and
δ> 0 so that

∀(s, t ) ∈ [0,1]2, E
(|Xn(s)−Xn(t )|α)¿|s − t |1+δ

then (Xn)nÊ1 is tight.

Remark A.2– This is [Kow16, Proposition B.9.5 Page 82].

Last but not least, the main tool of this work is Prokhorov’s criterion for con-
vergence in law in C 0([0,1],C).

Theorem A.3 (Prokhorov’s criterion)– If (Xn)nÊ1 converges to X in the sense of
finite distributions and (Xn)nÊ1 is tight then (Xn)nÊ1 converges in law in the sense
of C 0([0,1],C)-valued random variables.

Remark A.4– This is [Kow16, Theorem B.9.4 Page 82].
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