
HAL Id: hal-01917261
https://hal.science/hal-01917261v1

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acoustic flat lensing using an indefinite medium
M. Dubois, Julien Perchoux, A L Vanel, Clément Tronche, Y Achaoui, G

Dupont, K Bertling, A Rakic, T Antonakakis, S Enoch, et al.

To cite this version:
M. Dubois, Julien Perchoux, A L Vanel, Clément Tronche, Y Achaoui, et al.. Acoustic flat lensing
using an indefinite medium. Physical Review B: Condensed Matter and Materials Physics (1998-2015),
2019, 99, pp.100301(R). �10.1103/PhysRevB.99.100301�. �hal-01917261�

https://hal.science/hal-01917261v1
https://hal.archives-ouvertes.fr


Acoustic flat lensing using an indefinite medium

M. Dubois1, J. Perchoux2, A. L. Vanel3, C. Tronche2, Y. Achaoui4, G. Dupont5, K. Bertling6,
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2 LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK
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Acoustic flat lensing is achieved here by tuning a phononic array to have indefinite medium be-
haviour in a narrow frequency spectral region along the acoustic branch in the irreducible Brillouin
zone (IBZ). This is confirmed by the occurrence of a flat band along an unusual path in the IBZ and
by interpreting the intersection point of isofrequency contours on the corresponding isofrequency
surface; coherent directive beams are formed whose reflection from the array surfaces create lensing.
Theoretical predictions using a mass-spring lattice approximation of the phononic crystal (PC) are
corroborated by time-domain experiments, airborne acoustic waves generated by a source with a
frequency centered about 10.6 kHz, placed at three different distances from one side of a finite PC
slab, constructed from polymeric spheres, yield distinctive focal spots on the other side. These ex-
periments evaluate the pressure field using optical feedback interferometry and demonstrate precise
control of the three-dimensional wave trajectory through a sonic crystal.

PACS numbers: 41.20.Jb,42.25.Bs,42.70.Qs,43.20.Bi,43.25.Gf

The band spectra of photonic [1, 2] and phononic [3]
crystals can be interpreted to predict a rich array of inter-
esting physical effects, for instance anomalous refraction
[1, 4] and all-angle-negative refraction [5] amongst many
others; understanding these spectra underpins advances
in electronic properties, wave transport in photonics and
acoustics, as well as in interference phenomena through-
out many fields of physical and engineering sciences.

In this Letter we report experimental results where an
image of a volumetric source through a three-dimensional
phononic crystal (PC) forms according to the physics of
indefinite media [6], see Fig. 1. The image is not created
by tilting the crystal as in acoustic superlenses [7], or at
low frequencies using effective media [8] nor by negative
refraction acoustic flat lenses using metamaterials [9, 10].
Instead we identify critical points on the isofrequency
surfaces, for a simple cubic array of rigid spheres, where
beam-like trajectories are formed and use these beams,
and their reflections, to create lensing; this is using the
properties of indefinite media [6].

The first experimental proof of a three-dimensional flat
acoustic lens in 2004 [7] used 0.8-mm tungsten carbide
beads surrounded by water, with the beads closely packed
in a face-centered cubic crystal structure along the body
diagonal (ΓR crystal direction); the lensing function was
above the phononic band gap of the PC and at 1.57 MHz
with the pressure waves focused into a tight spot (about
5 mm). We give an alternative design to this PC lens,
based upon a different physical mechanism, also exhibit-
ing focusing reminiscent of the Veselago-Pendry conver-
gent flat lens [11, 12], see Fig. 1. Superlensing can be
also achieved with hyperbolic media [13, 14].

As in [7] we use an array of sound-hard spheres, al-
though now in air, take a primitive cubic array, and
image pressure waves by optical feedback interferome-
try (OFI) [15] to verify our predictions experimentally.
This methodology was developed to perform pressure
wave imaging through the monitoring of the refractive
index changes in transparent media ; the OFI system
has advantages over optical imaging systems based on
opto-acoustic effect [16, 17] of compactness and simplic-
ity of optical configuration. We operate on the acoustic
branch at 10.6 kHz, and we take a cubic array of 40 poly-
mer spheres 1.38 cm in diameter with a center-to-center
spacing a = 1.5 cm.

We gain physical insight and design the crystal by
drawing upon simple discrete mass-spring models. Pow-
erful numerical methods, e.g. the plane-wave and mul-
tipole expansions, have been developed that solve the
Schrödinger [18], Maxwell [19, 20] and Navier [3, 21]
equations, and other popular numerical algorithms

We also highlight that identifying the critical points,
and the nature of the modes, responsible for the focusing
effect, from the standard band diagram, see Fig. 2(a), go-
ing around the edges of irreducible Brillouin Zone (IBZ)
is not sufficient for accurate interpretation or identifica-
tion of frequencies of interest. The complexity of the
complete band structure of a 3D phononic crystal (PC)
is only appreciated by looking at isofrequency surfaces,
see Fig. 2(b): The full dispersion surfaces live in four-
dimensions, so cannot be plotted as such.

For the physical model we use the acoustic pressure
field, p, that satisfies the wave equation: p̈ = c2∇2p,
where c is the sound speed in air (taken as 330 m/s), ∇2
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FIG. 1: Envelope of pressure amplitude measured at time
t = 1.1 ms for three source positions: (a) 6.4 cm; (b) 4.8 cm;
(c) 3.2 cm; Wavelength in air is 3.2cm at 10.3 kHz for a sound
velocity of 330 m/s. Schematics show the source position
(not in the field of view) and a dotted ellipsoid surrounds the
focal spot on the left side of the lens. Linear color scale is in
arbitrary units (same calibration for the three experiments).
See Supplemental Material at [URL] for a movie showing the
dynamics of the lens for t ∈ [0.624, 2.176] ms.

is the spatial Laplacian and the dot decoration denotes
time differentiation. We operate in the frequency domain
where f is the wave frequency in Hertz.

We begin by considering an infinite PC, and invok-
ing Bloch’s theorem [22, 23] to consider a single cubic
cell of sidelength a, containing a sound-hard sphere (the
polymeric spheres are effectively rigid) with Bloch con-
ditions applied to the cell faces. The Bloch wave-vector
κ = (κ1, κ2, κ3) characterizes the phase-shift going from
one cell to the next and dispersion curves for the contin-
uum case in Figs. 2,3 are computed with finite element
methods using Comsol Multiphysics, the discrete ana-
logue is a three-dimensional mass-spring lattice of iden-
tical masses placed upon a cubic lattice, the dispersion
relation is explicit:

f ∼ (fX/
√

2)
√

3− cos(aκ1)− cos(aκ2)− cos(aκ3). (1)

At pointX the standing wave frequency of the continuum
model is fX that provides the comparison in Fig. 2(a);
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FIG. 2: Dispersion curves and isofrequency surfaces: (a) Band
diagram for the continuum model (black solid) of a cubic ar-
ray of rigid spheres, 1.38 cm in diameter with a center-to-
center spacing d = 1.5 cm, versus the discrete spring-mass
model (blue dotted) with red dashed line showing frequency
fI = 10.6 kHz. (b) Superimposed isofrequency surfaces for
both continuous (transparent outer surface) and discrete (in-
ner surface) models at frequency fI , with position of the crit-
ical point I shown. (c) IBZ used in (a).

the acoustic branch of the continuum acoustic model
is captured very well by this simple discrete model (to
within a multiplicative rescaling).

We give both continuum and discrete dispersion curves
and construct two sets of curves: The conventional ones
using the standard IBZ (Fig. 2(a) ΓXMR) and a second
set using a supercell which highlights a flatband that is
not seen in the conventional approach and for which we
use the path ΓX ′M ′R′ from Fig. 2(c).

At first sight it is not clear that there is any advantage
in using a supercell and folding the Brillouin zone (BZ),
the conventional path can under some rather exotic cir-
cumstances miss important details such as the stop band
minima/maxima not occuring at the edges of the BZ
[24, 25], but this is not our current focus. Instead we note
that one can, in 2D, miss flat bands inside the BZ that
lead to strong anisotropy [26]. We will operate at 10.6
kHz which looks a completely innocuous frequency in the
conventional band diagram of Fig. 2(a), but in the folded
band-diagram of Fig. 3(a,b) we see a nearly-flat or com-
pletely (for continuous and discrete cases respectively)
flat band connecting R′X ′ at that frequency. Further
exploring this frequency, we show isofrequency surfaces
for the discrete and continuous cases in Fig. 2(b) with
the flat lines unfolded, where they form square contours,
and placed upon the surface. These squares intersect at
8 points, one of which we label I for future reference, and
for which the direction ΓI points along ΓR to the cor-
ners of the BZ. This point I is where three lines cross, and
for which the group velocity directed along those lines is
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zero, clearly the group velocity itself is not completely
zero but this intersection creates a critical point and en-
ergy is preferentially directed along ΓI; the discrete the-
ory is given by [27]. Since the full isofrequency surfaces
are captured by the discrete model, see Fig. 2(b), then by
extension so is the physics. With this insight we could
simply use the discrete model henceforth, but we also
computed full FE simulations for the continuum model
at the frequency fI = 10.6 kHz that we have identified.
Computations of large finite cubic arrays of spheres show
that indeed much of the energy is directed to the corners,
along the path predicted, and concentrated rays form (see
[27] for discrete computations). These rays are reflected
from the faces, of the large finite experimental array, per-
pendicular to the source and then refocus at the other
side as seen in Fig. 1.
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FIG. 3: Supercell dispersion curves in the folded IBZ
(ΓX ′M ′R′) for (a) the continuum model of 8 spheres and (b)
the discrete lattice approximation of 8 masses: A flat mode
highlighted by red dashed rectangle appears between R′X ′

that is absent in the conventional path Fig. 2(a). The folded
BZ is shown in blue in Fig. 2(c).

The strongly anisotropic directionality of the highly
concentrated rays is suggestive that the underlying char-
acter of the equations has changed from elliptic to hy-
perbolic, with the rays being characteristics. This inter-
pretation is confirmed using high frequency homogenisa-
tion [28] to generate an effective medium equation, local
to the point I, characterised by a tensor that shows, in
frequency, when the equations become hyperbolic. The
long-scale pressure envelope field, P , satisfies

T∇2P − (f2 − fI2)P = 0, (2)

where T is a diagonal matrix and we see immediately that
entries T11, T22, T33 with the same sign leads to an elliptic
equation, conversely opposite signs leads to a hyperbolic
equation. We draw upon [27] where the discrete effective
medium is created, the coefficients at frequency fI have
T11 = T22 = −8.6 and T33 = 17.2, showing the effective

FIG. 4: Top-view of the experimental setup with photograph
as inset. The interferometric sensor consists of a commercial
laser diode with a packaged monitoring photodiode, focusing
optics, custom made laser driver and signal amplification cir-
cuits. Raster scanning uses two long-range translation stages.

medium to have indefinite medium behaviour at point
I in the IBZ ΓXMR (notably by reflections there are
eight such points in the overall BZ sharing the same T
values up to a permutation). We note that in [27], such
an effective medium is termed hyperbolic medium, but
differs from the physics described in [14].

To validate these model predictions, the experimental
PC, as shown in the inset of Fig. 4, was built using 1.38
cm-diameter polylactid polymer spheres machined with
a 3D printer and connected to form a 10 × 10 × 4 cubic
array with 1.5 cm lattice spacing. Each sphere is attached
to its neighbors by 6 small cylinders 0.2 cm in diameter.

The pressure field is measured point-by-point with a
broadband interferometric laser probe based on the OFI
sensing scheme [29, 30]. The laser light is emitted to-
wards a distant target and is partially back-reflected to-
wards the laser cavity where it produces interferences
with the inner cavity light. These intra-cavity interfer-
ences generate variations of the laser emitted power that
can be recorded using any photodetector or directly by
monitoring the laser diode voltage [31]. The pressure
variations are sensed using the opto-acoustic effect that
induces changes of the refractive index [32] and thus of
the optical path between the laser diode and the reflec-
tor in the so-called external cavity where the sound wave
propagates. Bertling et al. [15], who first proposed this
measurement technique, stated that, under the condition
that the optical path change remains weak with regards
to the laser half-wavelength, the variation of the laser
power P(t) follows a simple relationship with the refrac-
tive index variation such as

P(t) = P0 cos

(
2πν

∫ L

0

2δn(z, t)

c
dz + φ

)
, (3)
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FIG. 5: Experimental measurements: Spectrum at the focus
point (red solid line) for a source 6.4 cm from the lens. Black
dotted line shows the Gaussian window used to filter the time-
dependent signal (centered at 10.3 kHz, FWHM of 5.2 kHz).
The normalized filtered time trace is shown in the inset.

where P0 is the power variation amplitude, L is the
length of the external cavity (i.e. the distance from
the laser to the reflector), ν is the laser frequency,
δn(z, t) is the variation of the refractive index, c is the
celerity of light in vacuum and φ is a constant phase term.

The reflector consists of a rigid metallic surface covered
by a retro-reflective tape and the sensor is a commercial
laser diode emitting a single wavelength of 1310 nm asso-
ciated with an in-package monitoring photodiode whose
amplified current is the sensor signal. An aspheric lens fo-
cusses the laser beam on the reflector located at 180 mm
so that the phononic crystal structure of total length
150 mm fits in-between the sensor and the reflector.
The speaker is driven by a function generator producing
bursts with 12 periods of a sinusoidal signal at 10.6 kHz
and with a maximum achievable power of 96 dBA. Under
these conditions, the changes of the optical path in the
external cavity are much less than the half wavelength
of the laser diode and the sensor signal is an image of
the changes of refractive index integrated along the light
round-trip in the external cavity [15].

The loudspeaker and crystal are mounted on a metal-
lic rod assembly, so the wave propagation axis is perpen-
dicular to the crystal surface at its center. The assem-
bly moves along a 150 mm × 210 mm grid in steps of
1.5 mm using two long range translation stages while the
interferometer remains in a fixed position. To reconstruct
the spatio-temporal pressure distribution , each measure-
ment is synchronized with the function generator signal
for phase reference. The acoustic burst generation, the
scanning displacement and the acquisition with a sam-
pling rate of 1 MS/s are controlled using a National In-
strument multifunction data acquisition card. The data
is spectrally filtered to obtain the acoustic response to a
narrower Gaussian pulsed excitation with chosen central
frequency and bandwidth. This post processing allows
us to explore the spectral region of interest in the band
diagram and validate the discrete spring-mass model pre-
dictions. In addition, a median filter is applied to remove

spatial coarse noise. The spectrum at the focal spot on
the other side of the lens is presented in Fig. 5, and
it shows maximum transmitted power around 10.3 kHz.
The inset shows the time trace at the same location once
the Gaussian window centered at 10.3 kHz is applied to
the signal. This experimental observation of the focus-
ing effect confirms the theoretical prediction of the dy-
namic anisotropy of the rigid sphere medium leading to
the physics of indefinite media [6].

One interesting aspect of the focusing effect through
an indefinite medium is the specific conjugation relation
between the source and the focal point. As for negative
index lenses, one expects to conserve the distance be-
tween the source and the image while moving the source
closer to the lens [11, 12]. We investigate this effect by
repeating the previous experiment with a point source
located at 4.8 cm (1.5 wavelength) and 3.2 cm (1 wave-
length) away from the sphere lattice. Fig. 1 presents
three snapshots of the envelope of the pressure ampli-
tude at time t = 1.1 ms for the three source positions.
Identical Gaussian filtering centered at 10.3 kHz is ap-
plied to every measurement. A dotted ellipsoid is super-
imposed on the results to denote the position of the focal
spot. A schematic depicts the position of the source in
every case. The position of the focal spot is moved fur-
ther away from the sphere lattice as the source is brought
closer. Moreover, the distance between source and image
is almost kept constant in the three experiments. This
distance corresponds to three times the thickness of the
lens (±4%). Finally, it is important to point out that in
each of these experiments, the lateral resolution of the
focal spot verifies the Abbe diffraction limit. This ob-
servation confirms the connection between the focusing
effect observed through this rigid sphere lattice and the
indefinite medium behavior predicted by the dispersion
relation.

We performed time-harmonic FE computations for
sources of central frequencies 9.5, 10 and 10.5 kHz that
are in excellent agreement with experimental results at
frequencies 9, 10 and 11 kHz (with a bandwidth of 1 kHz),
and confirm ‘X’-shape emissions . The offset between
theoretically predictions and experiments arises from the
assumption of rigid spheres approximating elastic spheres
and also from the finite experiment and unwanted minor
reflections from the edges of the experimental PC.

In conclusion, acoustic pressure waves, interacting with
an array of solid spheres surrounded by air, are shown to
have highly anisotropic directivity leading to a lensing
effect for a source placed outside, thereby opening new
avenues in indefinite medium-type metamaterial physics
[6] . Experimental results are in excellent agreement with
numerical and asymptotic results. We observe a focusing
effect reminiscent of that found in 2D with all-angle neg-
ative refraction [5] by tilting an array, or in 3D [7] where
again the array is tilted, i.e. orientated as a face-centered
cubic crystal. Here we take advantage of a critical point,
hidden in the usual IBZ dispersion curves, that provides
highly directional energy propagation along rays; thus
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the array need to be tilted for lensing. This highly direc-
tional behaviour is related to a radical change of char-
acter of the underlying effective equation from elliptic
to hyperbolic which exemplifies both the high degree of
wave control available in phononic crystals and the im-

portance of a simple predictive model.
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