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Abstract

We studyMilner’s encoding of the call-by-value _-calculus into the

c-calculus.We show that, by tuning the encoding to two subcalculi

of the c-calculus (Internal c andAsynchronous Local c ), the equiv-

alence on _-terms induced by the encoding coincides with Lassen’s

eager normal-form bisimilarity, extended to handle [-equality. As

behavioural equivalence in the c-calculus we consider contextual

equivalence and barbed congruence. We also extend the results to

preorders.

A crucial technical ingredient in the proofs is the recently-intro-

duced technique of unique solutions of equations, further devel-

oped in this paper. In this respect, the paper also intends to be an

extended case study on the applicability and expressiveness of the

technique.

Keywords pi-calculus, lambda-calculus, full abstraction, call-by-

value

Introduction

Milner’s work on functions as processes [17, 18], that shows how

the evaluation strategies of call-by-name _-calculus and call-by-

value _-calculus [1, 21] can be faithfullymimicked in thec-calculus,

is generally considered a landmark in Concurrency Theory, and

more generally in Programming Language Theory. The compari-

son with the _-calculus is a significant expressiveness test for the

c-calculus. More than that, it promotes the c-calculus to be a basis

for general-purpose programming languages in which communi-

cation is the fundamental computing primitive. From the _-calculus

point of view, the comparison provides the means to study _-terms

in contexts other than purely sequential ones, and with the instru-

ments available to reason about processes. Further, Milner’s work,

and the works that followed it, have contributed to understanding

and developing the theory of the c-calculus.

More precisely, Milner shows the operational correspondence

between reductions in the _-terms and in the encoding c-terms.

He then uses the correspondence to prove that the encodings are

sound, i.e., if the processes encoding two _-terms are behaviourally

equivalent, then the source _-terms are also behaviourally equiv-

alent in the _-calculus. Milner also shows that the converse, com-

pleteness, fails, intuitively because the encodings allow one to test

the _-terms in all contexts of the c-calculus — more diverse than

those of the _-calculus.

The main problem that Milner work left open is the character-

isation of the equivalence on _-terms induced by the encoding,

whereby two _-terms are equal if their encodings are behaviourally
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equivalent c-calculus terms. The question is largely independent

of the precise form of behavioural equivalence adopted in the c-

calculus because the encodings are deterministic (or at least con-

fluent). In the paper we consider contextual equivalence (that co-

incides with may testing and trace equivalence) and barbed con-

gruence (that coincides with bisimilarity).

For the call-by-name _-calculus, the answer was found shortly

later [24, 26]: the equality induced is the equality of Lévy-Longo

Trees [15], the lazy variant of Böhm Trees. It is actually also pos-

sible to obtain Böhm Trees, by modifying the call-by-name encod-

ing so to allow also reductions underneath a _-abstraction, and

by including divergence among the observables [29]. These results

show that, at least for call-by-name, the c-calculus encoding, while

not fully abstract for the contextual equivalence of the _-calculus,

is in remarkable agreement with the theory of the _-calculus: sev-

eral well-known models of the _-calculus yield Lévy-Longo Trees

or Böhm Trees as their induced equivalence [4, 14, 15].

For call-by-value, in contrast, the problem of identifying the

equivalence induced by the encoding has remained open, for two

main reasons. First, tree structures in call-by-value are less studied

and less established than in call-by-name. Secondly, proving com-

pleteness of an encoding of _ into c requires sophisticated proof

techniques. For call-by-name, for instance, a central role is played

by bisimulation up-to contexts. For call-by-value, however, existing

proof techniques, including ‘up-to contexts’, appeared not to be

powerful enough.

In this paper we study the above open problem for call-by-value.

Ourmain result is that the equivalence induced on _-terms by their

call-by-value encoding into the c-calculus is eager normal-form

bisimilarity [12, 13]. This is a tree structure for call-by-value, pro-

posed by Lassen as the call-by-value counterpart of Lévy-Longo

Trees. Precisely we obtain the variant that is insensitive to[-expan-

sion, called [-eager normal-form bisimilarity.

To obtain the results we have however to make a few adjust-

ments to Milner’s encoding and/or specialise the target language

of the encoding. These adjustments have to dowith the presence of

free outputs (outputs of known names) in the encoding. We show

in the paper that this brings problems when analysing _-terms

with free variables: desirable call-by-value equalities fail. An ex-

ample is given by the law:

� (G+ ) = G+ (1)

where � is _I.I and + is a value. Two possible solutions are:

1. rule out the free outputs; this essentially means transplant-

ing the encoding onto the Internal c-calculus [25], a version

of the c-calculus in which any name emitted in an output

is fresh;

2. control the use of capabilities in the c-calculus; for instance

taking Asynchronous Local c [16] as the target of the trans-

lation. (Controlling capabilities allows one to impose a di-

rectionality on names, which, under certain technical con-

ditions, may hide the identity of the emitted names.)
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In the paper we consider both approaches, and show that in

both cases, the equivalence induced coincides with[-eager normal-

form bisimilarity.

In summary, there are two contributions in the paper:

1. Showing that Milner’s encoding fails to equate terms that

should be equal in call-by-value.

2. Rectifying the encoding, by considering different target cal-

culi, and investigating Milner’s problem in such a setting.

The rectificationwemake does not really change the essence of the

encoding – in one case, the encoding actually remains the same.

Moreover, the languages used are well-known dialects of the c-

calculus, studied in the literature for other reasons. In the encod-

ing, they allow us to avoid certain accidental misuses of the names

emitted in the communications. The calculi were not known at the

time of Milner’s paper [18].

A key role in the completeness proof is played by a technique

of unique solution of equations, recently proposed [7]. The struc-

ture induced by Milner’s call-by-value encoding was expected to

look like Lassen’s trees; however existing proof techniques did not

seem powerful enough to prove it. The unique solution technique

allows one to derive process bisimilarities from equations whose

infinite unfolding does not introduce divergences, by proving that

the processes are solutions of the same equations. The technique

can be generalised to possibly-infinite systems of equations, and

can be strengthened by allowing certain kinds of divergences in

equations. In this respect, another goal of the paper is to carry out

an extended case study on the applicability and expressiveness of

the techniques. Then, a by-product of the study are a few further

developments of the technique. In particular, one such result al-

lows us to transplant uniqueness of solutions from a system of

equations, for which divergences are easy to analyse, to another

one. Another result is about the application of the technique to

preorders.

Finally, we consider preorders — thus referring to the preorder

on _-terms induced by a behavioural preorder on their c-calculus

encodings. We introduce a preorder on Lassen’s trees (preorders

had not been considered by Lassen) and show that this is the pre-

order on _-terms induced by the call-by-value encoding, when the

behavioural relation onc-calculus terms is the ordinary contextual

preorder (again, with the caveat of points (1) and (2) above). With

the move from equivalences to preorders, the overall structure of

the proofs of our full abstraction results remains the same. How-

ever, the impact on the application of the unique-solution tech-

nique is substantial, because the phrasing of this technique in the

cases of preorders and of equivalences is quite different.

Further related work. The standard behavioural equivalence in

the _-calculus is contextual equivalence. Encodings into thec-calculus

(be it for call-by-name or call-by-value) break contextual equiv-

alence because c-calculus contexts are richer than those in the

(pure) _-calculus. In the paper we try to understand how far be-

yond contextual equivalence the discriminating power of the c-

calculus brings us, for call-by-value. The opposite approach is to

restrict the set of ’legal’ c-contexts so to remain faithful to con-

textual equivalence. This approach has been followed, for call-by-

name, and using type systems, in [5, 31].

Open call-by-value has been studied in [3], where the focus

is on operational properties of _-terms; behavioural equivalences

are not considered. An extensive presentation of call-by-value, in-

cluding denotational models, is Ronchi della Rocca and Paolini’s

book [22].

In [7], the unique-solution technique is used in the complete-

ness proof for Milner’s call-by-name encoding. That proof essen-

tially revisits the proof of [26], which is based on bisimulation up-

to context. We have explained above that the case for call-by-value

is quite different.

Structure of the paper. We recall basic definitions about the call-

by-value _-calculus and the c-calculus in Section 1. The technique

of unique solution of equations is introduced in Section 2, together

with some new developments. Section 3 presents our analysis of

Milner’s encoding, beginning with the shortcomings related to the

presence of free outputs. The first solution to these shortcomings

is to move to the Internal c-calculus: this is described in Section 4.

For the proof of completeness, in Section 4.2, we rely on unique

solution of equations; we also compare such technique with the

‘up-to techniques’. The second solution is to move to the Asyn-

chronous Local c-calculus: this is discussed in Section 5. We show

in Section 6 how our results can be adapted to preorders and to con-

textual equivalence. Finally in Section 7 we highlight conclusions

and possible future work.

1 Background material

Throughout the paper, R ranges over relations. The composition

of two relations R and R ′ is written R R ′. We often use infix nota-

tion for relations; thus % R & means (%,&) ∈ R . A tilde represents

a tuple. The 8-th element of a tuple %̃ is referred to as %8 . Our no-

tations are extended to tuples componentwise. Thus %̃ R &̃ means

%8 R &8 for all components.

1.1 The call-by-value _-calculus

We let G and ~ range over the set of _-calculus variables. The set Λ

of _-terms is defined by the grammar

" := G | _G ." | "1"2 .

Free variables, closed terms, substitution, U-conversion etc. are de-

fined as usual [4, 8]. Here and in the rest of the paper (including

when reasoning about c processes), we adopt the usual “Baren-

dregt convention”. This will allow us to assume freshness of bound

variables and names whenever needed. The set of free variables

in the term " is fv("). We group brackets on the left; therefore

"#! is ("# )!. We abbreviate _G1. · · · . _G= ." as _G1 · · · G= ." , or

_G̃ ." if the length of G̃ is not important. Symbol Ω stands for the

always-divergent term (_G . GG)(_G . GG).

A context is a term with a hole [·], possibly occurringmore than

once. If � is a context, � ["] is a shorthand for � where the hole

[·] is substituted by " . An evaluation context is a special kind of

context, with exactly one hole [·], and in which the inserted term

can immediately run. In the pure _-calculus values are abstractions

and variables.

Evaluation contexts �e := [·] | �e" | +�e
Values + := G | _G ."

In call-by-value, substitutions replace variables with values; we

call them value substitutions.

Eager reduction (or Vv-reduction), −→ ⊆ Λ × Λ, is determined

by the rule:

�e[(_G .")+ ] −→ �e["{+ /G}] .
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We write =⇒ for the reflexive transitive closure of −→. A term

in eager normal form is a term that has no eager reduction.

Proposition 1.1. 1. If " −→ " ′, then �e["] −→ �e["
′]

and "f −→ " ′f , for any value substitution f .

2. Terms in eager normal form are either values or of the shape

�e [G+ ].

Therefore, given a term" , either" =⇒ " ′ where" ′ is a term

in eager normal form, or there is an infinite reduction sequence

starting from " . In the first case, " has eager normal form " ′,

written " ⇓ " ′, in the second " diverges, written " ⇑. We write

" ⇓ when" ⇓ " ′ for some" ′.

Definition 1.2 (Contextual equivalence). Given ", # ∈ Λ, we

say that" and # are contextually equivalent, written" ≃Λ

ct # , if

for any context � , we have � ["] ⇓ iff � [# ] ⇓.

1.2 Tree semantics for call-by-value

We recall eager normal-form bisimilarity [12, 13, 30].

Definition 1.3 (Eager normal-form bisimulation). A relation R

between _-terms is an eager normal-form bisimulation if, whenever

" R # , one of the following holds:

1. both" and # diverge;

2. " ⇓ �e [G+ ] and # ⇓ � ′
e[G+

′] for some G , values+ ,+ ′, and

evaluation contexts �e and � ′
e with + R + ′ and �e[I] R

� ′
e [I] for a fresh I;

3. " ⇓ _G ." ′ and # ⇓ _G .# ′ for some G , " ′, # ′ with " ′ R

# ′;

4. " ⇓ G and # ⇓ G for some G .

Eager normal-form bisimilarity,-, is the largest eager normal-form

bisimulation.

Essentially, the structure of a _-term that is unveiled by Defini-

tion 1.3 is that of a (possibly infinite) tree obtained by repeatedly

applying Vv-reduction, and branching a tree whenever instantia-

tion of a variable is needed to continue the reduction (clause (2)).

We call such trees Eager Trees (ETs) and accordingly also call eager

normal-form bisimilarity the Eager-Tree equality.

Example 1.4. Relation - is strictly finer than contextual equiv-

alence ≃Λ

ct: the inclusion - ⊆ ≃Λ

ct follows from the congruence

properties of - [12]; for the strictness, examples are the following

equalities, that hold for ≃Λ

ct but not for -:

Ω = (_~.Ω)(G+ ) G+ = (_~.G+ )(G+ ) .

Example 1.5 ([ rule). The [-rule is not valid for -. For instance,

we have Ω 6- _G . ΩG . The rule is not even valid on values, as we

also have _~.G~ 6- G . It holds however for abstractions: _~. (_G .")~ -

_G ." when ~ ∉ fv(").

The failure of the [-rule_~.G~ 6- G is troublesome as, under any

closed value substitution, the two terms are indeed eager normal-

form bisimilar (as well as contextually equivalent). Thus [-eager

normal-form bisimilarity [12] takes [-expansion into account so to

recover such missing equalities.

Definition 1.6 ([-eager normal-form bisimulation). A relation R

between _-terms is an [-eager normal-form bisimulation if, when-

ever " R # , either one of the clauses of Definition 1.3, or one of

the two following additional clauses, hold:

5. " ⇓ G and # ⇓ _~.# ′ for some G , ~, and # ′ such that

# ′ ⇓ �e[G+ ], with ~ R + and I R �e [I] for some value + ,

evaluation context �e, and fresh I.

6. the converse of (5), i.e., # ⇓ G and" ⇓ _~." ′ for some G , ~,

and " ′ such that " ′ ⇓ �e[G+ ], with + R ~ and �e[I] R I

for some value + , evaluation context �e, and fresh I.

Then [-eager normal-form bisimilarity, -[ , is the largest [-eager

normal-form bisimulation.

We sometimes call relation -[ the [-Eager-Tree equality.

Remark 1.7. Definition 1.6 coinductively allows [-expansions to oc-

cur underneath other[-expansions, hence treeswith infinite[-expansions

may be equated with finite trees. For instance,

G -[ _~.G~ -[ _~.G (_I.~I) -[ _~.G (_I.~ (_F . IF)) -[ . . .

A concrete example is given by taking a fixpoint . , and setting 5
def
=

(_IG~.G (I~)). We then have. 5 G =⇒ _~.G (. 5 ~), and thenG (. 5 ~) =⇒

G (_I.~ (. 5 I)), and so on. Hence, we have G -[ . 5 G .

1.3 The c-calculus, Ic and ALc

In all encodings we consider, the encoding of a _-term is para-

metric on a name, i.e., it is a function from names to c-calculus

processes. We also need parametric processes (over one or sev-

eral names) for writing recursive process definitions and equations.

We call such parametric processes abstractions. The actual instan-

tiation of the parameters of an abstraction � is done via the ap-

plication construct � 〈0̃〉. We use %,& for processes, � for abstrac-

tions. Processes and abstractions form the set of c-agents (or sim-

ply agents), ranged over by �. Small letters 0,1, . . . , G, ~, . . . range

over the infinite set of names. The grammar of the c-calculus is

thus:

� := % | � (agents)

% := 0 | 0(1̃). % | 0〈1̃〉. % | .0 % (processes)

| %1 | %2 | !0(1̃). % | � 〈0̃〉

� := (0̃) % |  (abstractions)

In prefixes 0(1̃) and 0〈1̃〉, we call 0 the subject and 1̃ the object.

When the tilde is empty, the surrounding brackets in prefixes will

be omitted.We often abbreviate .0.1% as (.0,1)% . An input prefix

0(1̃). % , a restriction .1 % , and an abstraction (1̃) % are binders for

names 1̃ and 1, respectively, and give rise in the expected way to

the definition of free names (fn) and bound names (bn) of a term or

a prefix, and U-conversion. An agent is name-closed if it does not

contain free names. As in the _-calculus, following the usual Baren-

dregt convention we identify processes or actions which only dif-

fer on the choice of the bound names. The symbol = will mean

“syntactic identity modulo U-conversion”. Sometimes, we use
def
=

as abbreviation mechanism, to assign a name to an expression to

which we want to refer later.

We use constants, ranged over by  for writing recursive defini-

tions. Each constant has a defining equation of the form 
△
= (G̃) % ,

where (G̃) % is name-closed; G̃ are the formal parameters of the con-

stant (replaced by the actual parameters whenever the constant is

used).

Since the calculus is polyadic, we assume a sorting system [19]

to avoid disagreements in the arities of the tuples of names carried

by a given name and in applications of abstractions. We will not
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present the sorting system because it is not essential. The reader

should take for granted that all agents described obey a sorting.

A context � of c is a c-agent in which some subterms have been

replaced by the hole [·] or, if the context is polyadic, with indexed

holes [·]1, . . . , [·]=; then � [�] or � [�̃] is the agent resulting from

replacing the holes with the terms � or �̃.

We omit the operators of sum and matching (not needed in the

encodings). We refer to [19] for detailed discussions on the oper-

ators of the language. We assign parallel composition the lowest

precedence among the operators.

Operational semantics. The operational semantics of thec-calcu-

lus is standard [28] (including the labelled transition system). The

reference behavioural equivalence for c-calculi will be the usual

barbed congruence. We recall its definition, on a generic subset L

of c-calculus processes. A L-context is a process of L with a sin-

gle hole [·] in it (the hole has a sort too, as it could be in place of

an abstraction). We write % ⇓0 if % can make an output action

whose subject is 0, possibly after some internal moves. (We make

only output observable because this is standard in asynchronous

calculi; adding also observability of inputs does not affect barbed

congruence on the synchronous calculi we will consider.)

Definition 1.8 (Barbed congruence). Barbed bisimilarity is the largest

symmetric relation ≃
·

on c-calculus processes such that % ≃
·

&

implies:

1. If % =⇒ % ′ then there is & ′ such that & =⇒ & ′ and % ′ ≃
·

& ′.

2. % ⇓0 iff & ⇓0 .

Let L be a set of c-calculus agents, and �, � ∈ L. We say that

� and � are barbed congruent in L, written � ≃L �, if for each

(well-sorted) L-context � , it holds that � [�] ≃
·

� [�].

Remark 1.9. Barbed congruence has been uniformly defined on pro-

cesses and abstractions (via a quantification on all process contexts).

Usually, however, definitions will only be given for processes; it is

then intended that they are extended to abstractions by requiring

closure under ground parameters, i.e., by supplying fresh names as

arguments.

As for all contextually-defined behavioural relations, so barbed

congruence is hard to work with. In all calculi we consider, it can

be characterised in terms of ground bisimilarity, under the (mild)

condition that the processes are image-finite up to ≈. (We recall

that the class of processes image-finite up to ≈ is the largest subset

IF of c-calculus processes which is derivation closed and such

that % ∈ IF implies that, for all actions `, the set {% ′ | %
`
==⇒ % ′}

quotiented by ≈ is finite. The definition is extended to abstractions

as by Remark 1.9.) All the agents in the paper, including those ob-

tained by encodings of the _-calculus, are image-finite up to≈. The

distinctive feature of ground bisimilarity is that it does not involve

instantiation of the bound names of inputs (other than by means

of fresh names), and similarly for abstractions. In the remainder,

we omit the adjective ‘ground’.

Definition 1.10 (Bisimilarity). A symmetric relation R on c-pro-

cesses is a bisimulation, if whenever % R& and %
`
−→ % ′, then

&
ˆ̀

==⇒ & ′ for some & ′ with % ′ R& ′.

Processes % and& are bisimilar, written % ≈ & , if % R& for some

bisimulation R .

We will use two subcalculi: the Internal c-calculus (Ic ), and the

Asynchronous Local c-calculus (ALc ), obtained by placing certain

constraints on prefixes.

Ic . In Ic , all outputs are bound. This is syntactically enforced by

replacing the output construct with the bound-output construct

0(1̃). % , which, with respect to the grammar of the ordinary c-

calculus, is an abbreviation for .1̃ 0〈1̃〉. % . In all tuples (input, out-

put, abstractions, applications) the components are pairwise dis-

tinct so to make sure that distinctions among names are preserved

by reduction.

ALc . ALc is defined by enforcing that in an input0(1̃). % , all names

in 1̃ appear only in output position in % . Moreover, ALc being asyn-

chronous, output prefixes have no continuation; in the grammar of

the c-calculus this corresponds to having only outputs of the form

0〈1̃〉. 0 (which we will simply write 0〈1̃〉). In ALc , to maintain the

characterisation of barbed congruence as (ground) bisimilarity, the

transition system has to be modified [16], allowing the dynamic

introduction of additional processes (the ‘links’, sometimes also

called forwarders).

Theorem 1.11. 1. In Ic , on agents that are image-finite up to≈,

barbed congruence and bisimilarity coincide.

2. In ALc , on agents that are image-finite up to ≈ and where no

free name is used in input, barbed congruence and bisimilarity

coincide.

All encodings of the _-calculus (into Ic and ALc ) in the paper

satisfy the conditions of Theorem 1.11. Thus we will be able to

use bisimilarity as a proof technique for barbed congruence. (In

part (2) of the theorem, the condition on inputs can be removed

by adopting an asynchronous variant of bisimilarity; however, the

synchronous version is easier to use in our proofs based on unique

solution of equations).

2 Unique solutions in Ic and ALc

Weadapt the proof technique of unique solution of equations, from [7]

to the calculi Ic and ALc , in order to derive bisimilarity results.

The technique is discussed in [7] on the asynchronous c-calculus

(for possibly-infinite systems of equations). The structure of the

proofs for Ic and ALc is similar; in particular the completeness

part is essentially the same because bisimilarity is the same. The

differences in the syntax of Ic , and in the transition system of ALc ,

show up only in certain technical details of the soundness proofs.

We need variables to write equations. We use capital letters

-,., / for these variables and call them equation variables. The

body of an equation is a name-closed abstraction possibly contain-

ing equation variables (that is, applications can also be of the form

- 〈0̃〉). We use � to range over such expressions; and E to range

over systems of equations, defined as follows. In the definitions

below, the indexing set � can be infinite.

Definition 2.1. Assume that, for each 8 of a countable indexing set

� , we have a variable -8 , and an expression �8 , possibly containing

some variables. Then {-8 = �8 }8 ∈� (sometimes written -̃ = �̃) is

a system of equations. (There is one equation for each variable -8 ;

we sometimes use -8 to refer to that equation.)

A system of equations is guarded if each occurrence of a variable

in the body of an equation is underneath a prefix.

4
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� [�̃ ] is the abstraction resulting from � by replacing each vari-

able -8 with the abstraction �8 (as usual assuming �̃ and -̃ have

the same sort).

Definition 2.2. Suppose {-8 = �8 }8 ∈� is a system of equations.

We say that:

• �̃ is a solution of the system of equations for ≈ if for each 8 it

holds that �8 ≈ �8 [�̃ ].

• The system has a unique solution for ≈ if whenever �̃ and �̃

are both solutions for ≈, we have �̃ ≈ �̃ .

Definition 2.3 (Syntactic solutions). The syntactic solutions of

the system of equations -̃ = �̃ are the recursively defined con-

stants K
�̃,8

△
= �8 [K̃�̃ ], for each 8 ∈ � , where � is the indexing set of

the system.

The syntactic solutions of a system of equations are indeed so-

lutions of it.

A process % diverges if it can perform an infinite sequence of

internal moves, possibly after some visible ones (i.e., actions dif-

ferent from g); formally, there are processes %8 , 8 ≥ 0, and some =,

such that % = %0
`0
−−→ %1

`1
−−→ %2

`2
−−→ . . . and for all 8 > =, `8 = g .

We call a divergence of % the sequence of transitions
(
%8

`8
−−→ %8+1

)
8 .

In the case of an abstraction, � has a divergence if the process � 〈0̃〉

has a divergence, where 0̃ are fresh names. A tuple of agents �̃ is

divergence-free if none of the components �8 has a divergence.

The following result is the technique we rely on to establish

completeness of the encoding. As announced above, it holds in

both Ic and ALc .

Theorem 2.4. In Ic and ALc , a guarded system of equations with

divergence-free syntactic solutions has unique solution for ≈.

Techniques for ensuring termination, hence divergence freedom,

for the c-calculus have been studied in, e.g., [6, 27, 32].

2.1 Further Developments

We present some further developments to the theory of unique

solution of equations, that are needed for the results in this paper.

The first result allows us to derive the unique-solution property for

a system of equations from the analogous property of an extended

system.

Definition 2.5. A system of equations E′ extends system E if

there exists a fixed set of indices � such that any solution of E can

be obtained from a solution of E′ by removing the components

corresponding to indices in � .

Theorem 2.6. Consider two systems of equations E′ and E where

E′ extends E. If E′ has a unique solution, then the property also holds

for E.

We shall use Theorem 2.6 in Section 4.2, in a situation where we

transform a certain system into another one, whose uniqueness of

solutions is easier to establish.

Remark 2.7. We cannot derive Theorem 2.6 by comparing the syn-

tactic solutions of the two systems E′ and E. For instance, the equa-

tions - = g .- and - = g . g . g . . . have (strongly) bisimilar syntactic

solutions, yet only the latter equation has the unique-solution prop-

erty. (Further, Theorem 2.6 allows us to compare systems of different

size.)

The second development is a generalisation of Theorem 2.4 to

preorders; we postpone its presentation to Section 6.

3 Milner’s encodings

3.1 Background

Milner noticed [17, 18] that his call-by-value encoding can be eas-

ily tuned so to mimic forms of evaluation in which, in an appli-

cation "# , the function " is run first, or the argument # is run

first, or function and argument are run in parallel (the proofs are

actually carried out for this last option).We chose here the first one,

because it is more in line with ordinary call-by-value. A discussion

on the ‘parallel’ call-by-value is deferred to Section 7.

The core of any encoding of the _-calculus into a process calcu-

lus is the translation of function application. This becomes a par-

ticular form of parallel combination of two processes, the function

and its argument; Vv-reduction is then modeled as process interac-

tion.

The encoding of a _-term is parametric over a name; this may

be thought of as the location of that term, or as its continuation. A

term that becomes a value signals so at its continuation name and,

in doing so, it grants access to the body of the value. Such body is

replicated, so that the valuemay be copied several times. When the

value is a function, its body can receive two names: (the access to)

its value-argument, and the following continuation. In the trans-

lation of application, first the function is run, then the argument;

finally the function is informed of its argument and continuation.

In the original paper [17], Milner presented two candidates for

the encoding of call-by-value _-calculus [21]. They follow the same

idea of translation, but with a technical difference in the rule for

variables. One encoding, V, is so defined:

V[[_G ."]]
def
= (?) ? (~). !~ (G, @).V[["]]〈@〉

V[["# ]]
def
=

(?) (.@ )(V[["]]〈@〉 | @(~)..A (V[[# ]]〈A 〉 | A (F).~〈F, ?〉))

V[[G]]
def
= (?) ?〈G〉

In the other encoding,V ′, application and _-abstraction are treated

as inV ; the rule for variables is:

V ′[[G]]
def
= (?) ? (~). !~ (I,@).G 〈I, @〉 .

The encodingV is more efficient thanV ′, as it uses fewer com-

munications.

3.2 Some problems with the encoding

The immediate free output in the encoding of variables inV breaks

the validity of Vv-reduction; i.e., there exist a term " and a value

+ such thatV[[(_G .")+ ]] 6≈ V[["{+/G}]] [23]. The encodingV ′

fixes this by communicating, instead of a free name, a fresh pointer

to that name. Technically, the initial free output of G is replaced by

a bound output coupledwith a link toG (the process !~ (I,@).G 〈I, @〉,

receiving at~ and re-emitting at G). Thus Vv-reduction is validated [23].

(The final version of Milner’s paper [18], was written after the re-

sults in [23] were known and presents only the encoding V ′.)

Nevertheless, V ′ only delays the free output, as the added link

contains itself a free output. As a consequence, we can show that

other desirable equalities of call-by-value are broken. An example

is law (1) from the Introduction, as stated by Proposition 3.1 below.

This law is desirable (and indeed valid for contextual equivalence,

5
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I[[_G ."]]
def
= (?) ? (~). !~ (G, @).I[["]]〈@〉

I[[G]]
def
= (?) ? (~).~ ⊲ G

I[["# ]]
def
= (?) .@

(
I[["]]〈@〉 | @(~)..A

(
I[[# ]]〈A 〉 |

A (F).~(F ′, ? ′). (F ′
⊲F | ? ′ ⊲ ?)

) )

Figure 1. The encoding into Ic

or the Eager-Tree equality) intuitively because, in any substitution

closure of the law, either both terms diverge, or they converge

to the same value. The same argument holds for their _-closures,

_G . G+ and _G . � (G+ ). We recall that ≃c is barbed congruence in

the c-calculus.

Proposition 3.1. For any value + , we have:

V ′[[� (G+ )]] ;c V ′[[G+ ]] and V[[� (G+ )]] ;c V[[G+ ]] .

(The law is violated also under coarser equivalences, such as

contextual equivalence.) Technically, the reason why the law fails

in c can be illustrated when + = ~, for encoding V . We have:

V[[G~]]〈?〉 ≃c G (E)..F (E 〈F, ?〉 | !F (D).~〈D〉)

V[[� (G~)]]〈?〉 ≃c G (E). (.F, @)(E 〈F, @〉 | !F (D).~〈D〉

| @(I).? (I ′). !I ′(F ′).I〈F ′〉)

In presence of the normal form G~, the identity � becomes observ-

able. Indeed, in the second term, a fresh name, @, is sent instead

of continuation ? , and a link between @ and ? is installed. This

corresponds to a law which is valid in ALc , but not in c .

This problem can be avoided by iterating the transformation

that takes us from V to V ′ (i.e., the replacement of a free output

with a bound output so to avoid all emissions of free names). Thus

the target language becomes Internal c ; the resulting encoding is

analysed in Section 4.

Another solution is to control the use of name capabilities in

processes. In this case the target language becomes ALc , and we

need not modify the initial encodingV . This situation is analysed

in Section 5.

Moreover, in both solutions, the use of link processes validates

the following law — a form of [-expansion — (the law fails for

Milner’s encoding into the c-calculus):

_~.G~ = G

In the call-by-value _-calculus this is a useful law (that holds be-

cause substitutions replace variables with values).

4 Encoding in the Internal c-calculus

4.1 Encoding and soundness

Figure 1 presents the encoding into Ic , derived from Milner’s en-

coding by removing the free outputs as explained in Section 3. Pro-

cess 0 ⊲ 1 represents a link (sometimes called forwarder; for read-

ability we have adopted the infix notation 0 ⊲ 1 for the constant

⊲). It transforms all outputs at 0 into outputs at 1 (therefore 0,1

are names of the same sort). Thus the body of 0 ⊲ 1 is replicated,

unless 0 and 1 are continuation names (names such as ?,@, A over

which the encoding of a term is abstracted). The definition of the

constant ⊲ therefore is:

⊲
△
=




(?,@) ? (G).@(~).~ ⊲ G

if ?, @ are continuation names

(G,~) !G (?, I).~ (@,F). (@ ⊲ ? | F ⊲ I)

otherwise

(The distinction between continuation names and the other sorts

of names is not necessary, but simplifies the proofs.)

The encoding validates Vv-reduction.

Lemma 4.1 (Validity of Vv-reduction). For any ",# in Λ, " −→

# implies I[["]] ≈ I[[# ]].

The structure of the proof of soundness of the encoding is sim-

ilar to that for the analogous property for Milner’s call-by-name

encoding with respect to Levy-Longo Trees [26]. The details are

however different, as in call-by-value both the encoding and the

trees (the Eager Trees extended to handle [-expansion) are more

complex.

We first need to establish an operational correspondence for the

encoding. For this wemake use of an optimised encoding, obtained

from the one in Figure 1 by performing a few (deterministic) re-

ductions, at the price of a more complex definition. Precisely, in

the encoding of application, we remove some of the initial com-

munications, including those with which a term signals that it has

become a value. Correctness of the optimisations is established by

algebraic reasoning.

Using the operational correspondence, we then show that the

observables for bisimilarity in the encoding c-terms imply the ob-

servables for [-eager normal-form bisimilarity in the encoded _-

terms. The delicate cases are those in which a branch in the tree of

the terms is produced— case (2) of Definition 1.3 — and where an[-

expansion occurs — thus a variable is equivalent to an abstraction,

cases (5) and (6) of Definition 1.6.

For the branching, we exploit a decomposition property on c-

terms, roughly allowing us to derive from the bisimilarity of two

parallel compositions the componentwise bisimilarity of the single

components. For the [-expansion, if I[[G]] ≈ I[[_I."]], where

" ⇓ �e[G+ ], we use a coinductive argument to derive+ -[ I and

�e[~] -[ ~, for ~ fresh; from this we then obtain _I." -[ G .

Lemma 4.2 (Soundness). For any ", # ∈ Λ, if I[["]] ≈ I[[# ]]

then" -[ # .

4.2 Completeness and Full Abstraction

To ease the reader into the proof, we first show the completeness

for -, rather than -[ .

The system of equations. Suppose R is an eager normal-form

bisimulation. We define a (possibly infinite) system of equations

ER , solutions of which will be obtained from the encodings of the

pairs in R . We then use Theorem 2.4 and Theorem 2.6 to show that

ER has a unique solution.

We assume an ordering on names and variables, so to be able to

view (finite) sets of these as tuples. Moreover, if � is an abstraction,

say (0̃) % , then (~̃) � is an abbreviation for its uncurrying (~̃, 0̃) % .

There is one equation -",# = �",# for each pair (",# ) ∈ R .

The body �",# is essentially the encoding of the eager normal

form of " and # , with the variables of the equations represent-

ing the coinductive hypothesis. To formalise this, we extend the

6
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encoding of the _-calculus to equation variables by setting

I[[-",# ]]
def
= (?) -",# 〈~̃, ?〉 where ~̃ = fv(",# ) .

We now describe the equation -",# = �",# , for (",# ) ∈ R .

The equation is parametrised on the free variables of" and # (to

ensure that the body �",# is a name-closed abstraction) and an

additional continuation name (as all encodings of terms). Below

~̃ = fv(", # ).

1. If" ⇓ G and # ⇓ G , then the equation is the encoding of G :

-",# = (~̃) I[[G]]

= (~̃, ?) ? (I).I ⊲ G

2. If " ⇑ and # ⇑, then the equation uses a purely-divergent

term; we choose the encoding of Ω:

-",# = (~̃) I[[Ω]]

3. If " ⇓ _G ." ′ and # ⇓ _G .# ′, then the equation encodes

an abstraction whose body refers to the normal forms of

" ′, # ′, via the variable -"′,# ′ :

-",# = (~̃) I[[_G .-"′,# ′ ]]

= (~̃, ?) ? (I). !I (G, @).-"′,# ′ 〈~̃ ′ , @〉

4. If" ⇓ �e[G+ ] and# ⇓ � ′
e[G+

′], we separate the evaluation

contexts and the values, as in Definition 1.3. In the body of

the equation, this is achieved by: (8) rewriting �e [G+ ] into

(_I.�e[I])(G+ ), for some fresh I, and similarly for � ′
e and

+ ′ (such a transformation is valid for -); and (88) referring

to the variable for the evaluation contexts,-�e [I ],�
′
e [I ]

, and

to the variable for the values,-+,+ ′ . This yields the equation

(for I fresh):

-",# = (~̃) I[[(_I.-�e [I ],�
′
e [I ]

) (G -+,+ ′)]]

As an example, suppose (� , _G .") ∈ R , where � = _G . G and

" = (_I~.I)GG ′ . The free variables of " are G and G ′. We obtain

the following equations:

1. -�,_G ." = (G ′) I[[_G .-G," ]]

= (G ′, ?) ? (~). !~ (G,@).-G," 〈G, G ′, @〉

2. -G," = (G, G ′) I[[G]]

= (G, G ′, ?) ? (~).~ ⊲ G

Solutions of ER . Having set the system of equations for R , we

now define solutions for it from the encoding of the pairs in R .

We can view the relation R as an ordered sequence of pairs (e.g.,

assuming some lexicographical ordering). Then R8 indicates the

tuple obtained by projecting the pairs in R onto the 8-th compo-

nent (8 = 1, 2). Moreover ("9 , # 9 ) is the 9-th pair in R , and ~̃ 9 is

fv("9 , # 9 ).

We write Ic [[R1]] for the closed abstractions resulting from the

encoding ofR1, i.e., the tuplewhose 9-th component is (~̃ 9 ) I[["9 ]],

and similarly for Ic [[R2]].

Lemma 4.3. Ic [[R1]]and I
c [[R2]]are solutions of ER .

Proof. We show that each component of Ic [[R1]] is solution of

the corresponding equation, i.e., for the 9-th component we show

(~̃ 9 ) I[["9 ]] ≈ �"9 ,# 9
[Ic [[R1]]].

We reason by cases over the shape of the eager normal form of

"9 , # 9 . The most interesting case is when"9 ⇓ �e [G+ ], in which

case we use the following equality (for I fresh), which is proved

using algebraic reasoning:

I[[(_I.�e[I])(G+ )]] ≈ I[[�e [G+ ]]] . (2)

We also exploit the validity of Vv for ≈ (Lemma 4.1). 2

Unique solution for ER . We use Theorem 2.6 to prove unique-

ness of solutions for ER . The only delicate requirement is the one

on divergence for the syntactic solution. We introduce for this an

auxiliary system of equations, E′
R
, that extends ER , and whose

syntactic solutions have no g-transition and hence trivially sat-

isfy the requirement. Like the original system ER , so the new one

E′
R
is defined by inspection of the pairs in R; in E′

R
, however, a

pair of R may sometimes yield more than one equation. Thus, let

(",# ) ∈ R with ~̃ = fv(",# ).

1. When " ⇑ and # ⇑, the equation is

-",# = (~̃, ?) 0 .

2. When " ⇓ + and # ⇓ + ′, we introduce a new equation

variable -V
+,+ ′ and a new equation; this will allow us, in the

following step (3), to perform some optimisations. The equa-

tion is

-",# = (~̃, ?) ? (I).-V
+,+ ′ 〈I, ~̃

′〉 ,

andwe have, accordingly, the two following additional equa-

tions corresponding to the cases where values are functions

or variables:

-V
_G ."′,_G .# ′ = (I, ~̃) !I (G, @).-"′,# ′ 〈~̃ ′ , @〉

-V
G,G = (I, G) I ⊲ G

3. When " ⇓ �e [G+ ] and # ⇓ �e[G+
′], we refer to -V

+,+ ′ , in-

stead of -+,+ ′ , so to remove all initial reductions in the cor-

responding equation for ER . The first action thus becomes

an output:

-",# =

(~̃, ?) G (I, @). (-V
+,+ ′ 〈I, ~̃

′〉 | @(F).-�e [F ],�′
e [F ] 〈~̃

′′ , ?〉)

Lemmas 4.4 and 4.5 are needed to apply Theorem 2.6. (In the

statement of Lemma 4.4, ‘extend’ is as by Definition 2.5.)

Lemma 4.4. The system of equations E′
R

extends the system of

equations ER .

Proof. The new system E′
R
is obtained from ER by modifying the

equations and adding new ones. Ones shows that the solutions to

the common equations are the same, using algebraic reasoning.

2

Lemma 4.5. E′
R
has a unique solution.

Proof. Divergence-freedom for the syntactic solutions of E′
R
holds

because in the equations each name (bound or free) can appear

either only in inputs or only in outputs. As a consequence, since

the labelled transition system is ground (names are only replaced

by fresh ones), no g-transition can ever be performed, after any

number of visible actions. Further, E′
R
is guarded. Hence we can

apply Theorem 2.4. 2

Lemma 4.6 (Completeness for -). " - # implies I[["]] ≈

I[[# ]], for any ",# ∈ Λ.
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Proof. Consider an eager normal-form bisimulation R , and the cor-

responding systems of equations ER and E′
R
. Lemmas 4.5 and 4.4

allow us to apply Theorem 2.6 and deduce that ER has a unique

solution. By Lemma 4.3,Ic [[R1]] andI
c [[R2]] are solutions of ER .

Thus, from " R # , we deduce (~̃) I[["]] ≈ (~̃) I[[# ]], where

~̃ = fv(", # ). Hence also I[["]] ≈ I[[# ]].

2

Completeness for -[ . The proof for - is extended to -[ , main-

taining its structure. We highlight the main differences.

We enrich ER with the equations corresponding to the two addi-

tional clauses of -[ (Definition 1.6). When " ⇓ G and # ⇓ _I.# ′,

where # ′
-[ GI, we proceed as in case 4 of the definition of ER ,

given that # -[ _I. ((_F .�e [F])(G+ )); the equation is:

-",# = (~̃) I[[_I.
(
(_F .-F,�e [F ] ) (G -I,+ )

)
]] .

We proceed likewise for the symmetric case.

In the optimised equations that we use to derive unique solu-

tions, we add the following equation (relating values), as well as

its symmetric counterpart:

-V
G,_I.# ′ = (~0, ~̃)

!~0(I, @).G (I
′, @′). (-V

I,+
〈I ′, ~̃ ′〉 | @′(F).-F,�e [F ] 〈~̃

′′ , @〉) .

Finally, to prove that Ic [[R1]] and I
c [[R2]] are solutions of ER ,

we show that, whenever" ⇓ G and # ⇓ _I.# ′, with# ′ ⇓ �e[G+ ]:

I[["]] ≈ �",# [Ic [[R1]]]〈~̃〉

= I[[_I. ((_F .F)(GI))]]

and

I[[# ]] ≈ �",# [Ic [[R2]]]〈~̃〉

= I[[_I. ((_F .�e [F])(G+ ))]] .

To establish the former, we use algebraic reasoning to inferI[[G]] ≈

I[[_I. GI]]. For the latter, we use law (2) (given in the proof of

Lemma 4.3).

Lemma 4.7 (Completeness for -[). For any ", # in Λ, " -[ #

implies I[["]] ≈ I[[# ]].

Combining Lemmas 4.2 and 4.7, and Theorem 1.11 we derive

Full Abstraction for -[ with respect to barbed congruence.

Theorem 4.8 (Full Abstraction for -[ ). For any ", # in Λ, we

have " -[ # iff I[["]] ≃Ic I[[# ]]

Remark 4.9 (Unique solutions versus up-to techniques). For Mil-

ner’s encoding of call-by-name _-calculus, the completeness part of

the full abstraction result with respect to Lévy-Longo Trees [26] re-

lies on up-to techniques for bisimilarity. Precisely, given a relation

R on _-terms that represents a tree bisimulation, one shows that the

c-calculus encoding of R is a c-calculus bisimulation up-to context

and expansion. Expansion is a preorder that intuitively guarantees

that a term is ‘more efficient’ than another one. In the up-to technique,

expansion is used to manipulate the derivatives of two transitions so

to bring up a common context. Such up-to technique is not powerful

enough for the call-by-value encoding and the Eager Trees because

some of the required transformations would violate expansion (i.e.,

they would require to replace a term by a ‘less efficient’ one). An ex-

ample of this is law (2) (in the proof of Lemma 4.3), that would have to

be applied from right to left so to implement the branching in clause

(2) of Definition 1.3 (as a context with two holes).

The use of the technique of unique solution of equations allows us

to overcome the problem: law (2) and similar laws that introduce ’in-

efficiencies’ can be used (and they are indeed used, in various places),

as long as they do not produce new divergences.

5 Encoding into ALc

Full abstraction with respect to [-Eager-Tree equality also holds

for Milner’s simplest encoding, namely V (Section 3), provided

that the target language of the encoding is taken to be ALc . The

adoption of ALc implicitly allows us to control capabilities, avoid-

ing violations of laws such as (1) in the Introduction. In ALc , bound

output prefixes such as 0(G). G (~) are abbreviations for .G (0〈G〉 |

G (~)).

Theorem 5.1. " -[ # iff V[["]] ≃ALc V[[# ]], for any ", # ∈

Λ.

The main difference with respect to the proofs of Lemmas 4.6

and 4.7 is when proving absence of divergences for the (optimised)

system of equations. Indeed, in ALc the characterisation of barbed

congruence (≃ALc ) as bisimilarity makes use of a different labelled

transition system where visible transitions may create new pro-

cesses (the ‘static links’), that could thus produce new reductions.

Thus one has to show that the added processes do not introduce

new divergences.

6 Contextual equivalence and preorders

We have presented full abstraction for [-Eager-Tree equality tak-

ing a ‘branching’ behavioural equivalence, namely barbed congru-

ence, on the c-processes. We show here the same result for con-

textual equivalence, the most common ‘linear’ behavioural equiv-

alence. We also extend the results to preorders.

We only discuss the encoding I into Ic . Similar results however

hold for the encoding V into ALc .

6.1 Contextual relations and traces

Contextual equivalence is defined in the c-calculus analogously to

its definition in the _-calculus (Definition 1.2); thus, with respect to

barbed congruence, the bisimulation game on reduction is dropped.

Since we wish to handle preorders, we also introduce the contex-

tual preorder.

Definition 6.1. Two Ic agents �, � are in the contextual preorder,

written � .Ic
ct �, if � [�] ⇓0 implies � [�] ⇓0 , for all contexts � .

They are contextually equivalent, written � ≃Ic
ct �, if both � .

Ic
ct �

and � .Ic
ct � hold.

To manage contextual preorder and equivalence in proofs, we

exploit characterisations of them as trace inclusion and equiva-

lence. For B = `1, . . . , `= , where each `8 is a visible action, we set

%
B
=⇒ if %

`1
==⇒ %1

`2
==⇒ %2 . . . %=−1

`=
===⇒ %= , for some processes

%1, . . . , %= .

Definition 6.2. Two Ic processes %,& are in the trace inclusion,

written % �tr & , if %
B
=⇒ implies &

B
=⇒, for each trace B . They are

trace equivalent, written % ≈tr & , if both % �tr & and& �tr % hold.

As usual, these relations are extended to abstractions by requir-

ing instantiation of the parameters with fresh names.

Theorem 6.3. In Ic , relation .Ic
ct coincides with �tr, and relation

≃Ic
ct coincides with ≈tr.
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6.2 A proof technique for preorders

Wemodify the technique of unique solution of equations to reason

about preorders, precisely the trace inclusion preorder.

In the case of equivalence, the technique of unique solutions

exploits symmetry arguments, but symmetry does not hold for

preorders. We overcome the problem by referring to the syntac-

tic solution of the system in an asymmetric manner. This yields

the two lemmas below, intuitively stating that the syntactic solu-

tion of a system is its smallest pre-fixed point, as well as, under

the divergence-freeness hypothesis, its greatest post-fixed point.

We say that �̃ is a pre-fixed point for �tr of a system of equations

{-̃ = �̃} if �̃ [�̃ ] �tr �̃ ; similarly, �̃ is a post-fixed point for �tr if

�̃ �tr �̃ [�̃ ].

Lemma 6.4 (Pre-fixed points, �tr). Let E be a system of equations,

and K̃E its syntactic solution. If �̃ is a pre-fixed point for �tr of E,

then K̃E �tr �̃

Lemma 6.5 (Post-fixed points, �tr). Let E be a guarded system of

equations, and K̃E its syntactic solution. Suppose K̃E has no diver-

gences. If �̃ is a post-fixed point for �tr of E, then �̃ �tr K̃E .

Lemma 6.4 is immediate; the proof of Lemma 6.5 is similar to

the proof of Theorem 2.4 (for bisimilarity). We thus derive the fol-

lowing proof technique.

Theorem6.6. Suppose that E is a guarded system of equations with

a divergence-free syntactic solution. If �̃ is a pre-fixed point for �tr

of E, and �̃ a post-fixed point, then �̃ �tr �̃ .

We can also extend Theorem 2.6 to preorders. We say that a

system of equations E′ extends E with respect to a given preorder

if there exists a fixed set of indices � such that:

1. any pre-fixed point of E for the preorder can be obtained

from a pre-fixed point of E′ (for the same preorder) by re-

moving the components corresponding to indices in � ;

2. the same as (1) with post-fixed points in place of pre-fixed

points.

Theorem 6.7. Consider two systems of equations E′ and E where

E′ extends E with respect to �tr. Furthermore, suppose E′ is guarded

and has a divergence-free syntactic solution. If �̃ is a pre-fixed point

for �tr of E, and �̃ a post-fixed point, then �̃ �tr �̃ .

6.3 Full abstraction results

The preorder on _-terms induced by the contextual preorder is [-

eager normal-form similarity, ≤[ . It is obtained by imposing that

" ≤[ # for all # , whenever " is divergent. Thus, with respect to

the bisimilarity relation -[ , we only have to change clause (1) of

Definition 1.3, by requiring only" to be divergent. (The bisimilar-

ity -[ is then the intersection of ≤[ and its converse ≥[ .)

Theorem 6.8 (Full abstraction on preorders). For any ",# ∈ Λ,

we have " ≤[ # iff I[["]] .Ic
ct I[[# ]].

The structure of the proofs is similar to that for bisimilarity, us-

ing however Theorem 6.6. We discuss the main aspects of the com-

pleteness part.

Given an[-eager normal-form simulationR , we define a system

of equationsER as in Section 4.2. The only notable difference in the

definition of the equations is in the case where "R# ," diverges

and # has an eager normal form. In this case, we use the following

equation instead:

-",# = (~̃) I[[Ω]] . (3)

As in Section 4.2, we define a system of guarded equations E′
R

whose syntactic solutions do not diverge. Equation (3) is replaced

with -",# = (~̃, ?) 0.

Exploiting Theorem 6.7, we can use unique solution for pre-

orders (Theorem 6.6) with ER instead of E′
R
.

Defining Ic [[R1]] and I
c [[R2]] as previously, we need to prove

that Ic [[R1]] �tr �̃R [I
c [[R1]]] and �̃R [I

c [[R2]]] �tr Ic [[R2]].

The former result is established along the lines of the analogous

result in Section 4.2: indeed, Ic [[R1]] is a solution of ER for ≈,

and ≈tr is coarser than ≈.

For the latter, the only difference is due to equation (3), when

"R# , and " diverges but not # . In that case, we have to prove

that I[[Ω]] �tr I[[# ]], which follows easily because the only

trace of I[[Ω]] is the empty one, hence I[[Ω]]〈?〉 �tr % for any % .

Corollary 6.9 (Full abstraction for ≃Ic
ct ). For any", # in Λ," -[

# iff I[["]] ≃Ic
ct I[[# ]].

7 Conclusions and future work

In the paper we have studied the main question raised in Milner’s

landmark paper on functions as c-calculus processes, which is about

the equivalence induced on _-terms by their process encoding. We

have focused on call-by-value, where the problemwas still open; as

behavioural equivalence on c-calculus we have taken contextual

equivalence and barbed congruence (themost common ‘linear’ and

’branching’ equivalences).

First we have shown that some expected equalities for open

terms fail under Milner’s encoding. We have considered two ways

for overcoming this issue: rectifying the encodings (precisely, avoid-

ing free outputs); restricting the target language to ALc , so to con-

trol the capabilities of exported names. We have proved that, in

both cases, the equivalence induced is Eager-Tree equality, mod-

ulo [ (i.e., Lassen’s [-eager normal-form bisimulation). We have

then introduced a preorder on these trees, and derived similar full

abstraction results for themwith respect to the contextual preorder

onc-terms. The paper is also a test case for the technique of unique

solutionof equations (and inequations), which is essential in all our

completeness proofs.

Lassen had introduced Eager Trees as the call-by-value anal-

ogous of Lévy-Longo and Böhm Trees. The results in the paper

confirm the claim, on process encodings of _-terms: it was known

that for (weak and strong) call-by-name, the equalities induced are

those of Lévy-Longo Trees and Böhm Trees [29].

For controlling capabilities, we have used ALc . Another possi-

bility would have been to use a type system. In this case however,

the technique of unique solution of equations needs to be extended

to typed calculi. We leave this for future work.

We also leave for future work a thorough comparison between

the technique of unique solutionof equations and techniques based

on enhancements of the bisimulation proof method (the “up-to”

proof techniques), including if and how our completeness results

can be derived using the latter techniques. (We recall that the “up-

to” proof techniques are used in the completeness proofs with re-

spect to Lévy-Longo Trees and Böhm Trees for the call-by-name

encodings. We have discussed the problems with call-by-value in

Remark 4.9.) In any case, even if other solutions existed, for this

9
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specific problem the unique solution technique appears to provide

an elegant and natural framework to carry out the proofs.

For our encodings we have used the polyadic c-calculus; Mil-

ner’s original paper [17] used the monadic calculus (the polyadic

c-calculus makes the encoding easier to read; it had not been in-

troduced at the time of [17]). We believe that polyadicity does not

affect the results in the paper (the possibility of autoconcurrency

breaks full abstraction of the encoding of the polyadic c-calculus

into the monadic one, but autoconcurrency does not appear in the

encoding of _-terms).

In the call-by-value strategy we have followed, the function is

reduced before the argument in an application. Our results can be

adapted to the case in which the argument runs first, changing

the definition of evaluation contexts. The parallel call-by-value, in

which function and argument can run in parallel (considered in

[18]), appears more delicate, as we cannot rely on the usual notion

of evaluation context.

Interpretations of _-calculi into c-calculi appear related to game

semantics [5, 9, 10]. In particular, for untyped call-by-name they

both allow us to derive Böhm Trees and Lévy-Longo Trees [11, 20].

To our knowledge, game semantics exist based on typed call-by-

value, e.g., [2, 9], but not in the untyped case. In this respect, it

would be interesting to see whether the relationship between c-

calculus and Eager Trees studied in this paper could help to estab-

lish similar relationships in game semantics.
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