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Abstract 

 

Quantum chemical calculations have been employed to investigate the solvation of Lithium 

cations in ethylene carbonate / propylene carbonate and propylene carbonate / dimethyl 

carbonate mixed electrolytes. The impact of the presence of the counter anion on the 

solvation of Li+ in pure propylene carbonate and dimethyl carbonate was also studied. The 

calculations revealed small free energy changes for the transitions between different preferred 

structures in mixed solvents. This implies that transitions between distinct local arrangements 

can take place in the mixtures. The addition of dimethyl carbonate causes a significant 

increase of the dipole moment of solvation clusters, indicating important molecular-scale 

modifications when dimethyl carbonate is used as co-solvent. The presence of an anion in the 

solvation shell of Li+ modifies the intermolecular structure comprising four carbonate 

molecules in dilute solutions, allowing only two carbonate molecules to coordinate to Li+. 

The bidentate complexation of Li+ with the anion’s electron donor atoms, however, maintains 

the local tetrahedral structure on interatomic length scales. The neutralization of the solvation 

shell of Li+ due to contact ion-pair formation, and the consequent implications on the 

underlying mechanisms, provide a rational explanation for the ionic conductivity drop of 

electrolyte solutions at high salt concentrations.  
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1. Introduction 

Rechargeable Lithium Ion Batteries (LIBs) are efficient and robust devices employed in 

various electronic applications, such as cellular phones and notebook computers, due to their 

high energy density and good reversibility1-4. Since the raise of LIBs in 1991, a tremendous 

amount of experimental and theoretical work has focused on investigating the chemistry 

involved in the utilized materials, in order to provide an efficient and environment-friendly 

system. A typical LIB consists of an anode (usually graphite) and a cathode (normally a 

transition metal oxide as, for example, LiFeO2, LiNiO2, LiMn2O4, or LiCoO2)
5-10, separated 

by an electrolyte which acts as the ionic conducting medium and is typically composed by 

Lithium salts dissolved in non-aqueous organic carbonate solvents1,11. LIB performances are 

determined by the combination of the electrode materials, salts, and electrolyte solvents.  

The choice of the electrolyte is capital, since it is involved in the Lithium ion transport, 

ultimately determines the conductivity, and controls the features (and quality) of the solid 

electrolyte interphase (SEI),12-17 which forms on the electrode surface following the reductive 

decomposition of the electrolyte. This interphase strongly affects battery cyclability, lifetime, 

power and rate capabilities, and safety (flammability, for instance). Electrolytes employed in 

electrochemical devices must also be compatible with the electrodes, to ensure chemical 

stability, and exhibit a large electrochemical window between the lowest unoccupied and the 

highest occupied molecular orbitals (HOMO-LUMO), to provide thermochemical stability. 

Issues such as the temperature range for stability and the solvent efficiency in dissolving 

Lithium salts must also be optimized.  

Phase behaviour modifications upon mixing are an additional important aspect. For 

instance, ethylene carbonate (EC) is solid at room temperature; however, mixed with other 

solvents such as linear carbonates or propylene carbonate (PC), it becomes liquid in a wide 

temperature range, with significant impact on energy storage features. Indeed, present most 

widely used electrolytes are mixtures of cyclic carbonates, such as EC and PC, with linear 

carbonates, as dimethyl carbonate (DMC). A wide range of LIB electrolyte solvents has been 

scrutinized following this route, searching for innovative mixtures exhibiting optimal values 

of key features, including high chemical stability, low melting point, high ionic conductivity, 

wide temperature range performance, and low viscosity.18-23. A substantial amount of 

evidences interestingly points to a crucial observation: The mechanisms underlying Li+ ion 

transport are determined by a complex interplay among details of nanostructure and dynamics 
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of the solvation sphere around the ion, collective solvent properties like the viscosity and 

dielectric permittivity, and ion pairs formation. 

Although several experimental and theoretical works have focused on systems formed by 

pure EC, PC and DMC with the Li+ ion24-31, solvation structure and dynamics of the cation in 

these solvents is still a subject of debate. More in details, Density Functional Theory (DFT) 

studies have shown that a (four-coordinated) tetrahedral geometry Li+(EC)4, is the dominant 

species32-34. Ding et al.35 performed DFT and Polarizable Continuum Model (PCM) studies to 

account for the coordination number around Li+ ion, and suggested a transition between the 

most stable four-coordinated Li+(EC)4 and the three-coordinated trigonal Li+(EC)3 structures, 

due to a very low energy barrier separating the two geometries. On the other hand, Balbuena 

et al.36 have suggested that Li+(DMC)3 is the most stable conformation in the Li+-DMC 

system, while Li+(PC)3 is the leading component for the Li+-PC case according to DFT 

studies of Balbuena et al.32,37 , Bhatt et al.38 and Atetegeb et al.39. Gibbs Free Energies 

calculations in these latter studies also suggested that the tetra-coordinated Li+(PC)4 cluster is 

not favored in this case.  

Balbuena et al.36 performed DFT studies to investigate the solvation structure in various 

mixtures containing EC and linear carbonates (DMC, DEC). The reported results 

demonstrated that while the substitution of EC molecules by DMC or DEC in Li+(EC)2-3 

clusters is not favourable, the addition of those linear molecules is still thermodynamically 

stable. Similarly, Bhatt et al.40 investigated by DFT methods binary clusters consisting of EC 

and PC, with DMC and DEC as the second component, demonstrating that clusters with 

higher EC content are more stable. In the same work, it was also shown that the presence of 

linear carbonates breaks the symmetry of Li+/EC clusters. Other important information 

includes the DFT studies of Klassen et al.20 on Li+/EC/PC clusters, which showed that the 

EC/Li+ clusters have higher solvation energies than those formed by PC/Li+, and EC 

selectively solvates Li+.  Similar DFT studies by Li et al.33 also demonstrated that EC 

molecules can easily substitute PC in the first solvation shell of Li+ in EC/PC mixtures.  

The choice of the solvent is obviously not the only factor affecting Li+ ion transport.  

Indeed, the presence of the counter anions included in the Li-salts (typically LiClO4, LiBF4 

or LiPF6) also influences the composition of the coordination shell and, therefore, modifies 

the dynamics of the dressed Li+ ion. Raman spectroscopy studies41 have shown that both EC 

and PC are bound to Li+ in a 50:50 ratio in a 1M LiClO4 system, thus indicating no 
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preferential solvation of one species in the first solvation shell. Atomic Force Microscopy 

studies by Jeong et al.42, on the other hand, revealed that in LiClO4 solutions in mixed 

electrolytes, EC solvent molecules dominantly participate in the first solvation shell of Li+ 

over linear carbonates. Molecular dynamics (MD) simulation studies of LiBF4 in pure and 

mixed solvents43, in addition, reported that Li+ is preferentially solvated by the cyclic and 

more polar components in the mixtures, as the electrostatic interactions overcome possible 

steric hindrances. We observe, however, that in that work the estimated Li+ coordination 

number was found to range from 5 to 6, depending on the salt concentration, a conclusion in 

contrast with the vast majority of existing theoretical and experimental studies. 

In the case of LiPF6 salt in mixed carbonate solvents, Morita et al.44 performed Raman 

spectroscopic studies in EC/DMC mixtures, and suggested that EC coordination with Li+ is 

preferred over the DMC one. Another 17O NMR study45, however, estimated a larger number 

of DMC molecules bound to Li+ in the first solvation shell. In a combined DFT and MD 

study, Borodin et al.46 found that the DFT optimized Li+(EC)3DMC cluster is more stable 

than the Li+(EC)4, but classical and Born-Oppenheimer MD simulations46,47 revealed a 

solvation shell with higher content of DMC than EC at high salt concentrations. Other 

classical MD simulation studies48 suggested a preferential solvation of Li+ by EC rather than 

DMC at low salt concentration, but very similar EC and DMC coordination numbers around 

Li+ at high salt concentrations. In the case of LiPF6 in EC/PC mixtures, the ab-initio MD 

studies of Ganesh et al.49 concluded that EC solvates Li+ more effectively than PC.  

The above rapid (and partial) review clearly demonstrates both the complexity and the 

scope of the issues involved in a general description of the structure and preferential 

solvation properties of the Li+ cations. It also points to two fundamental needs: first to verify 

systematically and on the same systems the compatibility of results coming from different 

numerical procedures employed at different length scales. Second, to clarify the relevance of 

the numerical results compared to experimental observations. In previous works50,51 we 

moved on this line, with the goal of contributing general systematic information on these 

issues. We therefore focused on one side on a comparison of the outcomes of DFT 

calculations for small clusters and of classical MD simulations of larger ensembles of 

molecules50. On the other, we attempted at relating numerical data with novel experimental 

measurements able to provide a direct determination of the coordination structure of the Li+ 

cations51.  In the experimental-theoretical study of Ref. 51, in particular, based on 

femtosecond vibrational spectroscopy and DFT calculations we found that the EC 
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coordination number around Li+ cations strongly depends on salt concentration. For salt 

concentrations higher than 0.5 M, the coordination number of ethylene carbonate decreased 

to two, implying that both cation-anion interactions and ion-pair formation play a very 

important role on the structure and properties of the first solvation shell of Li+. Interestingly, 

another recently published combined experimental and theoretical study52 also pointed out 

that the coordination number of propylene carbonate and dimethyl carbonate in the first 

solvation shell of Li+ can decrease from 5 to 2 when increasing the salt concentration. This 

further validates our previous studies and emphasizes the importance of ion-pair formation on 

the determination of the structure around Li+ cations at high salt concentrations. 

Here, we make a significant step forward in this direction, providing additional insight on 

the quantum mechanical features of the solvated clusters and the role played by the counter-

ions. We first focus on the electronic structure, thermodynamic stability and vibrational 

properties of small clusters of the Li+ ion in mixed EC/PC and PC/DMC solvents. Next, we 

extend our investigation with an analysis of the counter anion effects on the properties of the 

investigated clusters, with an emphasis on the (cation-anion) contact ion pair formation. We 

complete our work by relating our findings with previous theoretical and experimental studies. 

2. Computational details 

Following our previous works50,51, quantum-chemical DFT calculations for several 

clusters of pure and binary electrolytes and counter anions around a lithium cation have been 

performed using the Amsterdam Density Functional (ADF) package53. In particular, the 

Perdew-Burke-Ernzerhof (PBE) GGA exchange correlation functional 54,55 was employed in 

our calculations, also using a TZP slater-type orbital (STO) basis set. Recent works52 on 

systems similar to those investigated here also pointed out the increased accuracy of the PBE 

functional in predicting binding energies of solvated Li+ complexes compared to possible 

alternatives like B3LYP or M05-2X. Our DFT calculations showed that the basis set 

superposition error (BSSE)56 corrections are negligibly small, confirming a conclusion also 

reached in previous studies34,57. Vibrational frequency analysis were carried out for the 

optimized clusters, ensuring the absence of unstable (imaginary) modes and, therefore, 

confirming each structure as a minimum on the potential energy surface. Zero-Point Energy 

(ZPE) corrections have also been included. Thermodynamic quantities such as the entropy, 

enthalpy and Gibbs free energy were estimated at T=298.15 K, for all clusters.  
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3. Results and Discussion 

3.1 Li+ solvation in mixed electrolytes 

In our previous studies50 we found that the most thermodynamically stable complexes of 

solvent molecules around the Li+ ion are tetra-coordinated. We also systematically studied 

the stability of the Li+(EC)n(DMC)m, clusters, revealing that the thermodynamically most 

stable cluster is Li+(EC)3(DMC). On this basis, we conducted structural optimizations for the 

remaining clusters types containing two types of solvent molecules, Li+(EC)n(PC)m and 

Li+(PC)n(DMC)m with n+m=4. For the entire database of structures, we have also performed 

a vibrational frequency analysis and investigated charge transfer effects, comparing all data. 

The Gibbs free energy changes have been estimated for the transitions of the form 

 𝐿𝑖+(𝑆1)𝑘(𝑆2)𝑙 +  (4 − 𝑙) 𝑆1 +  (4 − 𝑘) 𝑆2  

→  𝐿𝑖+(𝑆1)𝑛(𝑆2)𝑚 +  (4 − 𝑛) 𝑆1 +  (4 − 𝑚) 𝑆2 

 

(1) 

 

where k+l=n+m=4. All possible combinations of the indexes were considered, in order to 

identify the most favourable cluster among those involved in the Li+ coordination. The 

calculated binding energy (BE) values for the mixed composition EC/PC and PC/DMC 

clusters around Li+, and the free energy values for the paths of the form 𝐿𝑖+(𝑆1)𝑛(𝑆2)𝑚 +

 (4 − 𝑛) 𝑆1 +  (4 − 𝑚) 𝑆2  are compared in Tables 1 and 2, respectively. The relative free 

energy values presented in Table 2 are rescaled by subtracting the minimum free energy 

value between the investigated fragments, and correspond to the free energy differences for 

the transition towards the most stable structure. The absolute values of the enthalpy and 

entropy of each cluster, as calculated with the ADF software, are provided in the Supporting 

Information (Table S1). 

A few observations are in order. In general, the EC/PC/Li+ clusters exhibit higher BE than 

those involving PC/DMC/Li+. Among the EC/PC containing clusters, Li+(EC)(PC)3 exhibits 

the highest BE, but the total energy difference of these clusters are very small. It should also 

be noted that the BE values of Li+/EC/PC mixtures are higher than those corresponding to 

clusters containing pure solvent molecules, such as Li+(EC)4 and Li+(PC)4 (BE is reported in 

Ref.48), confirming a trend already observed by Li et al.33. Among the PC/DMC/Li+ clusters, 

Li+(PC)3(DMC) exhibits the highest BE value. The calculated Gibbs free energy values for  

EC/PC/Li+ clusters also revealed that the binary cluster  Li+(EC)(PC)3 is the most favourable, 
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followed by Li+(EC)2(PC)2 and, finally, by Li+(EC)3(PC). This finding is also in agreement 

with the experiments of Cresce et al.58 complemented by ab initio calculations. In general, the 

trends in the binding energies are also similar with those obtained in Ref.58, with the 

difference that the absolute value of the binding energy of Li+(PC)4 reported in our previous 

studies (-121.3 kcal/mol) is slightly lower than the one corresponding to Li+(EC)(PC)3. (This 

BE difference assumes, however, the relatively small value of 0.5 kcal/mol).   

We also note that the Li+(EC)(PC)3 cluster is the most thermodynamically stable in the 

case of mixed EC/PC composition, but is less stable than Li+(EC)4. It should be also observed 

that the calculated free energy changes associated to the transitions between different types of 

structures are in general small. This indicates that, despite the existence of locally preferred 

structures, these small free energy changes could allow transitions between different 

solvation structures in the liquid state of EC/PC containing mixtures. In the case of 

PC/DMC/Li+ clusters, Li+(PC)2(DMC)2 and Li+(PC)3(DMC) exhibit similar free energy 

values indicating, again, that they can both exist in the bulk liquid phase. Interestingly, the 

least favourable cluster is the one with the highest concentration of DMC molecules, 

Li+(PC)(DMC)3. Note however that, as in the case of mixed EC/PC clusters, Li+(PC)4 is more 

stable than the mixed structures. These findings are also in agreement with recent 

experimental studies by Seo et al.31. 

The structural properties of Li+(EC)n(PC)m and Li+(PC)n(DMC)m clusters (with m+n=4) 

were also investigated. The optimized geometry bond parameters are reported in Table 3, 

together with the results obtained for the Li+(EC)n(DMC)m clusters, and the structures are 

shown in Figure 1(a)-(f). As we can see from Table 3, the variation in the relative proportion 

of EC or PC in clusters of the form Li+(EC)n(PC)m does not modify significantly the 

calculated bond distances, angles or dipole moment values, due to similar dipole moments 

and structures shared by EC and PC. In contrast, mixtures including DMC exhibit different 

bond lengths and angles, due to the substantially different structure and low dipole moment 

of DMC. Similar trends have also been reported in the MD studies of Lee et al.59. In these 

studies, molar volume calculations were performed, concluding that the PC/DMC mixtures 

are efficiently packed, due to the existence of attractive interactions, whereas repulsive 

interactions are more pronounced in EC/PC mixtures. These findings clearly underline that 

the presence of low-polar acyclic carbonates like DMC molecule in the first solvation shell 

breaks the higher order symmetry of EC/Li+ and PC/Li+ clusters. Interestingly, we can see 

from Table 3 that in the case of DMC molecules, the Li+-OC distance is shorter than those 
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corresponding to EC and PC. Moreover, the Li+-OC distance for EC and PC is larger when 

DMC is present in the solvation shell. 

In addition to the above structural properties, the atomic point charge distributions of the 

investigated clusters were obtained by performing a Multipole Derived Charge (MDC) 

analysis60. The MDC analysis uses the atomic multipoles (obtained from the fitted density) 

and reconstructs these multipoles exactly by distributing charges over all atoms. We report 

here our results, also including in the discussion the optimized Li+(EC)n(DMC)m clusters of 

Ref.50. The MDC point charges of the Li cation and the carbonyl oxygen OC do not exhibit 

significant variations with the composition of the first solvation sphere in the case of EC/PC 

mixtures. In DMC-containing clusters (EC/DMC and PC/DMC), however, stronger variations 

are evident. In general, in the cases where DMC is present in the first coordination shell, the 

corresponding carbonyl oxygen has a higher negative charge compared to the EC and PC 

cases, implying that the charge transfer effects between the Li cation and DMC molecules are 

stronger. Interestingly these charge transfer effects, combined with the structural symmetry 

breaking upon the addition of DMC, induce a significant increase of the total dipole moment 

of the cluster when DMC is present, as it can be seen in Table 3. This is in agreement with 

the findings of our previous classical MD simulation studies of Li+ solvation in equimolar 

EC/DMC liquid mixtures50. All these results clearly emphasize the importance of the addition 

of DMC as a co-solvent in mixed cyclic-acyclic carbonate electrolytes for LIBs. We mention 

at this point that in our previous MD studies on dilute Li+ solvation in a mixed EC-DMC 

solvent50, where a flexible force field was used for DMC, we did not detect any 

conformational transition from the most stable cis-cis DMCcc conformer to other ones. As a 

consequence, in the present specific case of dilute Li+ solvation clusters in mixed solvents 

containing DMC, where counter anions which could affect the DMC conformation are absent, 

only the most stable DMCcc was considered. Other issues related to the existence of 

conformers in pure DMC are discussed in the next section. 

The effect of the mixed solvent composition on the vibrational properties was next 

addressed by calculating the vibrational spectra of the optimized clusters, shown in Figure 

2(a)-(c). The vibrational frequencies associated to the C=O and O-C-O stretching modes are 

strongly affected by the coordination with the Li+ ion in binary mixtures. In Figure 2(a), a 

sharp peak around 1800 cm-1 and another feature around 1170 cm-1 in EC/PC mixtures 

correspond to the C=O and O-C-O stretching vibrations, respectively. No significant changes 

of the C=O and O-C-O stretching frequencies at the indicated different ratios of EC/PC have 
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been observed, indicating that the addition of PC to EC in mixed solvents does not strongly 

affect the interactions within the solvation shell around the lithium ion.  

The addition of linear DMC solvent into the pure EC or PC electrolytes has, in contrast, a 

strong impact on vibrational frequencies. The corresponding IR spectra are shown in Figures 

2(b) and (c), respectively. In particular, the C=O stretching frequency of EC or PC in 

EC/DMC and PC/DMC mixtures is red-shifted (of about 8 cm-1) at higher DMC 

concentrations, while the O-C-O stretching frequency gradually increases. This finding is 

another clear manifestation of the changes taking place in the solvation shell of the Li cation 

upon the addition of DMC, another aspect motivating its importance as a co-solvent in mixed 

carbonate electrolytes. (Note that the calculated C=O stretching frequencies for PC and DMC 

molecules are in agreement with the experimental values reported by Seo et al31 for 

coordinated PC and DMC values (Table S2 in the Supporting Information).) 

3.2 Counter anion effects on Li+ solvation 

We now focus on the effects of the addition of a counter anion on the structural properties 

and the thermodynamic stability of clusters around the Li cation. (Note that counter anions 

are more likely to be present in the solvation shell of Li+ at high salt concentrations. This is at 

variance with the results discussed above where we have considered solvation clusters which 

most likely mimic solvation at dilute lithium salt concentrations.) We have considered the 

counter anions ClO4
-, BF4

- and PF6
-, since they are the most frequently used lithium salts in 

LIBs. The gas phase DFT optimizations were performed for several pure PC and DMC 

solvent clusters around Li+ , in the form Li+(S)1-3 with S = PC and DMC. A similar analysis 

for EC is included in our Ref.51. We note also that our previous studies have revealed that the 

trends observed for gas-phase calculations do not change upon the addition of a dielectric 

continuum approximately mimicking the presence of a solvent. 

The binding energies of Li+ ion clusters containing solvent (S) molecules and the anion (A-) 

were calculated as53 

 

 𝐵𝐸 = 𝐸[𝐿𝑖+(𝑆)𝑛=1−3(𝐴−)] −  𝐸[𝐿𝑖+] − 𝐸[𝐴−] −  𝑛 𝐸[𝑆] (2) 

 

Here, E[Li+(S)n=1-3 A
-] represents the total energy of the Li+ ion cluster solvated by n solvent 

molecules with the counter anion nearby, E[Li+] and E[A-] are the energy of the isolated Li 

cation and the anion respectively, and E[S] is the energy of the isolated solvent molecule S. 
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The BE of the anion-containing PC and DMC clusters around Li+ is presented in Table 4. 

From the obtained BE values (also calculated for the EC-containing clusters), we can 

conclude that the Li+(DMC)(A-) cluster exhibits higher binding energy than the 

corresponding EC and PC containing clusters. In particular, the values for the 

Li+(DMCcc)ClO4
-, Li+(EC)ClO4

- and Li+(PC)ClO4
- clusters are -163.2, -163.1 and -162.6 

kcal/mol, respectively. Similarly the corresponding values for A- = BF4
- clusters are -165.3, -

163.8 and -165.3 kcal/mol, respectively, while  those for A-= PF6
-
 are -158.7, -156.3 and 

156.6 kcal/mol, respectively. Similar findings were already observed by Borodin et al.46,47 in 

the case of PF6
- anion containing cluster, where the reported BE for Li+(DMC)PF6

- was the 

highest one.  

Following the gas-phase DFT energy optimizations for the Li+(S)n(A
-) clusters, based on 

the methodology employed in our previous studies50,51, we calculated the free energy changes 

for fragments of the form Li+(S)n(A
-) + m S (here, again,  S=PC and DMC, n + m = 3, and A- 

corresponds to the counter-anions ClO4
-, BF4

- or PF6
-). Subsequently we determined the free 

energy differences associated to the transitions 

 

𝐿𝑖+(𝑆)𝑘𝐴− + 𝑙 𝑆 →  𝐿𝑖+(𝑆)𝑛𝐴− + 𝑚 𝑆 ,   𝑘 + 𝑙 = 𝑛 + 𝑚 = 3,       𝑘, 𝑙, 𝑚, 𝑛 = 0 − 3  (3) 

In the cases where the above transitions exhibit negative free energy changes, this approach 

provides a clear indication that the formation of the Li+(S)n(A
-) cluster is favourable. The 

obtained relative free energy changes, shown in Table 5, reveal that the clusters including two 

solvent molecules and one counter-ion around the Li+ ion are thermodynamically the most 

stable. Absolute values of the calculated thermodynamic properties of the clusters are 

provided in the Supporting Information (Table S3). The optimized most stable structures are 

shown in Figures 3, for PC ((a)-(c)) and DMC ((d)-(f)), respectively. Note that also bulk 

solvent effects have been studied, by applying a dielectric continuum in terms of the COSMO 

(COnductor-like Screening MOdel) model61. The calculated free energies values obtained by 

these calculations still show that Li+(S)2(A
-) is the most stable solvation cluster.  

At this point we have to mention that in our recent combined experimental and DFT 

work51, by using femtosecond vibrational spectroscopy it was estimated that at high salt 

concentration Li+ is coordinated by about 2 ethylene carbonate solvent molecules in clusters 

containing the anion. Another very recent spectroscopic experimental study by Chapman et 

al52 the solvation number decreases to values close to 2. In the case of the DMC solvent, the 
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solvation number is even lower, due to the higher degree of association (see Figures 3b and 

4b of Ref. 52). 

The conformation of DMC was also considered by performing calculations involving 

DMC (cis-trans) conformers. Our DFT calculations of the isolated cis-cis (DMCcc) and cis-

trans (DMCct) conformers revealed that the DMCcc is relatively more stable than DMCct, 

with a free energy difference of about 3 kcal/mol. In addition, for consistency we extended 

our study for pure DMCct clusters in the presence of the anion Li+(DMCct)1-3(A-) in the 

first solvation shell. Thermodynamic properties of the DMCct containing clusters, along with 

the most stable optimized structures, are included in the Supporting Information (Tables S4, 

Figure S1). The results reveal the same trends for the solvation of DMC in the presence of a 

counter anion, where Li+(DMCct)2 (A
-) is the most stable structure, as it can be seen in Table 

5. Interestingly, the Li+ (DMCct)1-3(A
-) clusters exhibit higher BE than those of the form Li+ 

(DMCcc)1-3(A
-).   

Also, the free energy changes associated to the transition from Li+(DMCcc)2(A
-) to 

Li+(DMCcc)(DMCct)(A-) and, finally, to Li+(DMCct)2(A
-) ones (Table S5) are negative, 

implying that the relative stabilities of isolated DMC conformers are not crucial for the 

stabilization of solvation clusters. As a consequence, it is possible that different fractions of 

solvation structures containing different DMC conformers coexist in the condensed (bulk) 

phase. As pointed out in our previous study50 , however, only large scale Molecular Dynamics 

simulations of the liquid phase can provide more accurate information about these effects. 

Also, from a visual inspection of the configurations shown in Figure 3 it is clear that a 

bidentate coordination is obtained in the cases of the most thermodynamically stable clusters, 

Li+(PC)2(A
-) and Li+(DMC)2(A

-). Similar conclusions were reached in our previous DFT 

study on Li+(EC)n(Anion-) clusters51, which were also found to be in very good agreement 

with femtosecond vibrational spectroscopic measurements. These findings agree with 

previous studies62-64 that also showed that at high salt concentration bi-dentate complexation 

of Li+ with anions takes place.  

Our data therefore show that, although the total molecular coordination number of Li+ in 

the anion-containing first solvation reduces to three (including two solvent molecules and the 

anion), the Lithium cation is still closely interacting with four electron donor atoms. These 

features have two implications. First, the local molecular-scale tetrahedral structure 

comprising four carbonate solvent molecules around Li+, widely accepted in dilute 
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conditions, is strongly modified in concentrated salt solutions, leading to a first coordination 

shell of Li+ comprising only two carbonate solvent molecules and one anion. Second, even in 

the presence of these strongly modified molecular environments, the Li+ cation still keeps a 

tetrahedral coordination at the interatomic scale, interacting with the carbonyl oxygen atoms 

of the two carbonate solvents, and two electron donor atoms of the anions. Also, we note that, 

due to this specific structural arrangement inside the first solvation shell of Li+, the charge of 

solvated Li+ is neutralized by the anion and, as a consequence, we expect that its mobilty 

under an applied potential can be significantly reduced. The formation of such a 

cation/anion/solvent contact ion pair can therefore provide a rational explanation for the ionic 

conductivity drop of lithium salt /carbonate electrolyte solutions at high concentrations, as we 

will additionally discuss below. 

We should mention at this point that long-range interactions could affect the solvation 

effects in condensed bulk phases, as we demonstrated in our combined classical MD-DFT 

studies of Ref.50. Note however, that the trends observed for the contact ion pairs remain the 

same even when a dielectric continuum is considered in the calculations. In any case, it 

should be pointed out that the investigation of long-range condensed phase effects on the 

determination of the relative fractions of contact ion-pairs, solvent-separated ions pairs and 

free ions at high salt concentrations is still an open issue. And these effects depend on several 

parameters including the polarity of the electrolyte, the nature of the anion or the 

concentration. To address these issues, combined information obtained from multiscale 

approaches are necessary. This goes well beyond the present work, whose target is to study 

solvation effects in contact ion pairs. In this framework, we provide insight on the 

mechanisms active at short intermolecular distances, and treat quantum chemically intra- and 

intermolecular interactions at these specific length scales.   

The Gibbs free energy changes, ΔG, related to the solvation mechanism where two solvent 

molecules in the Li+ first solvation shell are replaced by an anion have also been calculated, 

and are reported in Table 6. The highly negative ΔG values we have found indicate that this 

process, which can take place in electrolyte solutions with a high salt concentration 

resembling the conditions met in LIB devices, is highly spontaneous. From the magnitudes of 

the calculated ΔG values, it can also be observed that it is much easier to replace the low-

dipolar DMCcc molecules (calculated dipole moment: 0.355 D) with an anion instead of PC 

or EC species. On the other hand, in the case of the DMCct conformer, which in the gas phase 

has a much higher calculated dipole moment (3.50 D), the corresponding ΔG values are 
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comparable (even slightly lower) to those pertaining to the polar EC and PC solvents. We 

note that previous studies65 reported that only a few percent of cis-trans DMCct conformers 

exist in the liquid state of the pure DMC solvent, and most of the molecules have the cis-cis 

DMCcc conformation, immediately justifying the low dielectric constant of the solvent. Our 

calculation also revealed that another DMC trans-trans conformer (with a calculated dipole 

moment of 5.03 D), DMCtt , has a free energy which is 15.6 and 12.6 kcal/mol higher than 

that of DMCcc and DMCct, respectively. Due to these high free energy differences, this 

conformer was not considered in the present calculations. The finding that the ion pair 

formation is more pronounced in the low-polar DMCcc than in the highly-polar PC and EC 

solvents is also consistent with the trends in their dielectric constants66,67, since ion pair 

formation is less pronounced in highly polar solvents. In addition, referring to the observed 

trends for the investigated anions, the substitution process is facilitated in the case of all 

solvents for BF4
-, followed by ClO4

- and finally by PF6
-. This finding hence additionally 

indicates that the contact ion pair formation is thermodynamically more favourable in the 

case of LiBF4, followed by LiClO4 , with LiPF6 being the least favourable case. 

We conclude this discussion with an important observation. Previous works on electrical 

conductivity measurements68,69 of LiPF6, LiClO4 and LiBF4 solutions in organic carbonate 

electrolytes have reported general trends in the conductivity drop at high salt concentration 

similar to those described above in the contact ion pair formation. Indeed, according to the 

experimental measurements, the conductivity drop at high salt concentration is more 

pronounced for LiBF4, followed by LiClO4 and finally LiPF6. In addition, the salt 

concentration corresponding to the maximum conductivity value is shown to increase 

following the trend LiBF4 < LiClO4 < LiPF6 (Figure 4 in Ref.68). This finding is also 

consistent with our calculations since, in the cases where the contact ion pair formation is 

thermodynamically more pronounced, these effects should start manifesting at lower salt 

concentrations, since the probability to observe these ion pairs is in general higher.  

Previous review works1,70 have highlighted the fact that the behaviour of the conductivity 

in electrolyte solutions is a synergistic effect, controlled by both the viscosity of the solvent 

and the ion pair formation. It was also pointed out that the latter is probably the most 

important mechanism in the high salt concentration range. In contrast, in the opposite limit of 

low salt concentration, and until the point where the maximum conductivity value is 

observed, solvent viscosity and dielectric constant mainly control the conductivity. Our 

theoretical predictions, and their agreement with the experimental data, can therefore be 
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considered as a further validation of the previously proposed mechanisms. From this point of 

view, they provide additional relevant insight that could be used as a springboard towards 

rational design of liquid electrolytes with optimal properties for battery applications.  

4. Conclusions 

Quantum chemical DFT calculations have been performed to clarify the solvation of 

lithium cations in mixed EC/PC and PC/DMC organic carbonate solvents, and investigate the 

counter anion effects on the solvation of these cations in pure PC and DMC solvents. These 

calculations have been integrated with those of our previous work50,51 and the entire dataset 

has been rationalized in a single general discussion. More in details, a joint analysis of the 

changes in the free energy, associated to the transitions between different types of clusters 

formed by the lithium cation and the solvent molecules/anions, has been employed in order to 

identify the thermodynamically most stable clusters configurations forming the first solvation 

shell of Li+. We summarize our main findings below. 

In the case of the mixed EC/PC solvent, our analysis revealed that the binary cluster 

Li+(EC)(PC)3 is the most favourable one, followed by Li+(EC)2(PC)2 and, finally, 

Li+(EC)3(PC). However, the free energy changes between these clusters are very small, 

suggesting that any of them can possibly exist in EC/PC-containing mixtures. In the case of 

the mixed PC/DMC solvent, the free energy changes for the transition between the 

Li+(PC)2(DMC)2 and Li+(PC)3(DMC) clusters is very small, indicating that they can also  

both exist in the bulk liquid phase. In addition, the least favourable cluster is the one with the 

highest concentration of DMC molecules Li+(PC)(DMC)3. 

The present study has also revealed that in the case of EC/PC mixtures, the charges of the 

Li cation and the carbonyl oxygen OC do not exhibit significant variations with the 

composition of the first solvation sphere. The only exception to this conclusion is the case of 

DMC containing clusters, which exhibit stronger modifications. We have found that in the 

cases where DMC is present in the first coordination shell, its corresponding carbonyl oxygen 

has a higher negative charge compared to the EC and PC cases, implying that charge transfers 

between the Li cation and DMC is stronger. These latter effects, combined with the structural 

symmetry breaking upon the addition of DMC, cause a significant increase of the dipole 

moment of the cluster. This is in agreement with the results of our previous classical MD 

simulation studies of Li+ solvation in equimolar EC/DMC liquid mixtures50, emphasizing the 

importance of the addition of DMC as a co-solvent in mixed cyclic-acyclic carbonate 
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electrolytes for LIBs.  

We also investigated the effect of the mixed solvent composition on vibrational properties, 

by calculating the vibrational spectra of the optimized clusters. The numerical data revealed 

that the vibrational frequencies associated to C=O stretching and O-C-O stretching of the 

carbonate molecules are strongly affected by the coordination with the Li+ ion. Also, at 

variance with an increase of PC concentration in EC/PC mixed solvents which does not affect 

strongly the interactions within the solvation shell around Li+, the addition of linear DMC 

solvent into the pure EC or PC electrolytes indeed strongly modifies their vibrational 

frequencies. 

Finally, our study also highlighted an important point. The presence of an anion in the first 

coordination shell of Li+ modifies the local tetrahedral structure, comprising four carbonate 

solvent molecules around Li+ in dilute solutions, allowing two carbonate solvent molecules 

only to coordinate to Li+ directly. However, a bidentate coordination is obtained in the cases 

of the most thermodynamically stable Li+(PC)2(A
-) and Li+(DMC)2(A

-) clusters, as also 

reported for Li+(EC)2(A
-) clusters51. This finding indicates that although the total molecular 

coordination number of Li+ in the anion-containing first solvation reduces to three, 

comprising two solvent molecules and one anion, the lithium cation is closely interacting 

with four electron donor atoms. As a consequence, due to this solvation structure the charge 

of solvated Li+ is neutralized by the anion, and its mobilty under applied potential can be 

significantly reduced. This directly provides a rational explanation for the ionic conductivity 

drop of lithium salt /carbonate electrolyte solutions at high concentrations. 

Supporting Information 

Tables S1, S3, S4, S5. Indicated thermodynamic properties of the indicated solvation clusters. 

Table S2. Vibrational C=O stretching frequencies for PC and PMC. Figure S1. Optimized 

structures of the most stable contact ion-pair solvation structures containing cis-trans DMC 

conformers. 
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Figure 1. Optimized geometries of (a) Li+(EC)3(PC), (b) Li+(EC)2(PC)2, (c) Li+(EC)(PC)3, (d) 

Li+(PC)3(DMC), (e) Li+(PC)2(DMC)2, and (f) Li+(PC)(DMC)3 clusters. 
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Figure 2. Comparison of the IR spectra for the investigated clusters of the form (a) 

Li+(EC)n(PC)m, (b) Li+(EC)n(DMC)m and (c) Li+(PC)n(DMC)m, with n+m =4. The relative 

compositions are indicated in all cases. 
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Figure 3. Most stable optimized geometries of (a) Li+(PC)2(ClO4
-), (b) Li+(PC)2(BF4

-), (c) 

Li+(PC)2(PF6
-), (d) Li+(DMC)2(ClO4

-), (e) Li+(DMC)2(BF4
-), and (f) Li+(DMC)2(PF6

-). 

 

 

 

 

 

 

 

 

 



24 
 

Table 1. Binding Energy (BE) of Li+(EC)n(PC)m and Li+(PC)n(DMC)m (n + m = 4) clusters  

 

Clusters BE (kcal/mol) 

Li+(EC)3(PC) -120.5 

Li+(EC)2(PC)2 -121.2 

Li+(EC)(PC)3 -121.8 

  

Li+(PC)3(DMCcc) -118.4 

Li+(PC)2(DMCcc)2 -114.5 

Li+(PC)( DMCcc)3 -110.2 
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Table 2. Relative Gibbs Free Energies ∆G (in kcal/mol) of Li+(EC)n(PC)m and 

Li+(PC)n(DMCcc)m (with n + m = 4) containing fragments. 

 

Fragments ∆G=G-Gmin * (kcal/mol) 

Li+(EC)3(PC) + EC + 3 PC 2.0 

Li+(EC)2(PC)2 + 2 EC + 2 PC 1.3 

Li+(EC)(PC)3 + 3 EC +  PC 0.8 

Li+(EC)4 + 4 PC 0.0 

Li+(PC)4 + 4 EC 1.6 

  

Li+(PC)3(DMCcc) + PC + 3 DMCcc 1.6 

Li+(PC)2(DMCcc)2 + 2 PC + 2 DMCcc 1.5 

Li+(PC)( DMCcc)3 + 3 PC +  DMCcc 8.1 

Li+(PC)4 + 4 DMCcc 0.0 

Li+( DMCcc)4 + 4 PC 13.2 

* Gmin corresponds to the minimum free energy value for each of the 2 separate set data presented in the 2 

different columns 
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Table 3. Structural Parameters of Optimized Binary Clusters (Bond Lengths in Angstrom, 

Bond Angles in degree), together with Dipole (Debye) and Multipole-Derived Charges (e) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mixtures 
r Li+-O r O=C Angle Li+-O=C 

Dipole 
Charges (Liδ+, OC) 

S1 S2 S1 S2 S1 S2 Liδ+ OC(S1) OC(S2) 

Li+: EC(S1) : PC(S2)           

1:3:1 1.953 1.948 1.216 1.218 135.9 134.2 0.44 0.842 -0.474 -0.455 

1:2:2 1.955 1.949 1.216 1.217 136.0 134.0 0.50 0.850 -0.481 -0.434 

1:1:3 1.957 1.951 1.215 1.217 136.5 136.2 0.40 0.856 -0.448 -0.434 

Li+: EC(S1): DMCcc(S2)           

1:3:1 1.943 1.921 1.216 1.231 138.9 160.8 7.26 0.810 -0.397 -0.462 

1:2:2 1.972 1.910 1.214 1.231 136.6 156.4 8.30 0.743 -0.318 -0.494 

1:1:3 1.943 1.921 1.216 1.231 138.9 160.8 6.51 0.688 -0.221 -0.481 

Li+: PC(S1):  DMCcc (S2)           

1:3:1 1.951 1.919 1.215 1.231 147.3 152.6 7.82 0.809 -0.345 -0.416 

1:2:2 1.970 1.912 1.217 1.231 140.4 164.6 5.55 0.778 -0.271 -0.479 

1:1:3 1.954 1.950 1.219 1.233 148.4 157.1 6.29 0.725 -0.341 -0.438 
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Table 4. Binding Energies (BE) of Li+(PC)1-3(A
-) and Li+(DMC)1-3(A

-) Clusters  

Fragments BE (kcal/mol) 

Li+(PC)ClO4
- -162.6 

Li+(PC)2ClO4
- -176.0 

Li+(PC)3ClO4
- -185.3 

Li+(PC)BF4
- -165.3 

Li+(PC)2BF4
- -179.4 

Li+(PC)3BF4
- -189.3 

Li+(PC)PF6
- -156.6 

Li+(PC)2PF6
- -173.5 

Li+(PC)3PF6
- -181.5 

  

Li+(DMCcc)ClO4
- -163.2 

Li+(DMCcc)2ClO4
- -176.3 

Li+(DMCcc)3ClO4
- -180.4 

Li+(DMCcc)BF4
- -165.3 

Li+(DMCcc)2BF4
- -179.4 

Li+(DMCcc)3BF4
- -183.4 

Li+(DMCcc)PF6
- -158.7 

Li+(DMCcc)2PF6
- -170.8 

Li+(DMCcc)3PF6
- -175.9 
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Table 5. Relative Gibbs Free Energies ΔG of the Li+(PC)0−3(A
-), Li+( DMCcc)0−3(A

-) and 

Li+(DMCct)0−3(A
-) clusters (where A− = ClO4

−, BF4
−, PF6

−) (kcal/mol). 

 

Fragments 
ΔG=G – Gmin *(kcal/mol) 

A- = ClO4
- A- = BF4

- A- = PF6
- 

Li+(A-) + 3 PC 14.9 17.1 21.2 

Li+(PC)A- + 2 PC 2.7 3.6 5.6 

Li+(PC)2A
- + PC 0.0 0.0 0.0 

Li+(PC)3A
- 2.3 0.8 6.0 

    

Li+(A-) + 3 DMCcc 13.3 17.2 12.9 

Li+( DMCcc)A
-+ 2 DMCcc 2.6 3.9 3.2 

Li+(DMCcc)2A
- + DMCcc 0.0 0.0 0.0 

Li+(DMCcc)3A
- 5.0 5.8 7.7 

 

 
   

Li+(A-) + 3 DMCct      16.7          20.1      19.4 

Li+(DMCct)A
-+ 2 DMCct       3.6           5.5        3.9 

Li+(DMCct)2A
- + DMCct      0.0           0.0        0.0 

Li+(DMCct)3A
-     3.8           3.5        3.8 

* Gmin corresponds to the minimum free energy value for each of the separate data set presented in the different 

columns.  
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Table 6. Computed ΔG reaction values (kcal/mol) for the substitution of two solvent 

molecules by an Anion (ClO4
-, BF4

- and PF6
-) towards the Li+ (S)2(A

-) solvation structure (S= 

EC, PC, DMCcc and DMCct). 

Solvation Mechanism 
(S)2  

S = EC S = PC S = DMCcc S = DMCct 

Li+(S)4 + BF4
- → Li+(S)2BF4

- + 2S -79.5 -80.1 -93.5 -70.6 

Li+(S)4 + ClO4
- → Li+(S)2ClO4

- + 2S -74.5 -78.9 -90.3 -68.1 

Li+(S)4 + PF6
- → Li+(S)2PF6

- + 2S    -69.8 -72.2 -83.2 -63.9 
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Table S1. Calculated Enthalpy and Entropy of Li+(EC)n(PC)m and Li+(PC)n(DMC)m (n + 

m = 4) Clusters (H in kcal/mol and S in cal mol-1 K-1) 

Clusters H S 

Mixtures EC/PC   

Li+(EC)3(PC) -5842.1 167.2 

Li+(EC)2(PC)2 -6209.6 173.9 

Li+(EC)(PC)3 -6576.9 180.3 

Mixtures PC/DMC   

Li+(PC)3(DMCcc) -6734.5 193.1 

Li+(PC)2(DMCcc)2 -6524.7 209.5 

Li+(PC)(DMCcc 3 -6314.5 204.7 

Pure Solvents   

EC -1369.3 72.8 

PC -1736.0 79.6 

DMCcc -1530.2 82.5 
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Table S2. Calculated and experimental (Ref. 27) C=O stretching frequencies (cm-1) for 

PC and DMC 

 
PC DMC Experiment (Ref. 27) 

Li+(PC)4 1776, 1769  uncoordinated PC (1805 and 

1790), coordinated PC (1772 

and 1752)  

 

uncoordinated DMC (1755), and  

coordinated DMC 1724 cm−1 ) 

Li+(PC)3(DMCcc) 1773, 1763 1708 

Li+(PC)2(DMCcc)2 1774, 1762 1697 

Li+PC(DMCcc)3 1773, 1762 1686 

Li+(DMCcc)4  1678 
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Table S3. Thermodynamical Parameters of Li+(PC)1-3(Anion-) and Li+(DMC)1-3(Anion-) 

Clusters (H in kcal/mol and S in cal mol-1 K-1) 

Fragments H S 

Li+(PC)ClO4
- -2299.1 128.2 

Li+(PC)2ClO4
- -4048.5 172.5 

Li+(PC)3ClO4
- -5793.8 212.9 

Li+(PC)BF4
- -2475.1 121.5 

Li+(PC)2BF4
- -4225.2 166.1 

Li+(PC)3BF4
- -5971.1 210.2 

Li+(PC)PF6
- -2611.4 126.1 

Li+(PC)2PF6
- -4364.3 167.9 

Li+(PC)3PF6
- -6108.3 200.7 

Li+(DMCcc)ClO4
- -2093.9 123.9 

Li+(DMCcc)2ClO4
- -3637.2 170.9 

Li+(DMCcc)3ClO4
- -5171.4 223.1 

Li+(DMCcc)BF4
- -2269.2 124.2 

Li+(DMCcc)2BF4
- -3813.5 172.3 

Li+(DMCcc)3BF4
- -5347.6 222.1 

Li+(DMCcc)PF6
- -2407.6 122.3 

Li+(DMC)2PF6
- -3949.9 175.0 

Li+(DMCcc)3PF6
- -5485.2 214.3 
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Table S4. Thermodynamical Parameters and Binding Energies of Li+(PC)1-3(A
-) and 

Li+(DMC)1-3(A
-) Clusters (H and BE are in kcal/mol and S in cal mol-1 K-1)a 

Fragments H BE S 

    

DMCct -1527.2  81.3 

Li+(DMCct)ClO4
- -2091.6 -163.7 128.7 

Li+(DMCct)2ClO4
- -3633.8 -178.7 171.5 

Li+(DMCct)3ClO4
- -5167.4 -185.1 218.7 

Li+(DMCct)BF4
- -2264.4 -163.3 133.2 

Li+(DMCct)2BF4
- -3809.6 -181.2 173.0 

Li+(DMCct)3BF4
- -5343.9 -188.3 218.7 

Li+(DMCct)PF6
- -2404.6 -158.5 140.8 

Li+(DMCct)2PF6
- -3946.6 -173.2 185.7 

Li+(DMCct)3PF6
- -5480.7 -180.1 231.4 

aH = Enthalpy, BE = Binding Energy, S = Entropy. 
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Table S5. Calculated free energy changes for the transitions between different solvation 

structures containing the cis-cis and cis-trans conformers of DMC. 

 

Reaction 

∆G (kcal/mol) 

A-=ClO4
- A-=BF4

- A-=PF6
- 

Li+(DMCcc)2(A-) +  DMCct → Li+(DMCcc)(DMCct)(A)- + DMCcc -2.2 -2.3 -4.1 

Li+(DMCcc)(DMCct)(A)- + DMCct → Li+(DMCct)2(A-) +  DMCcc -1.1 -0.6 -2.2 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

                  (a)                                                 (b)                                               (c) 

 

Figure S1: Most stable optimized geometries of (a) Li+(DMCct)2(ClO4
-), (b) 

Li+(DMCct)2(BF4
-), (c) Li+(DMCct)2(PF6

-) 

 

 


