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Abstract – Recently, in the field of building energy
efficiency, many works focused on model based energy
management services but developing models consistent with
a measured reality is still an issue. Fine physical models with
many parameters cannot be adjusted while non-physical
models cannot extrapolate to situations never met in the
training data. In this paper, pure data models will be
implemented with ARX models. In a second time, physical
knowledge is added in order to improve the accuracy
especially in the cross-validation process. These models are
applied to a mono-zone study case in order to forecast the
indoor CO2 concentration.

Keywords – building model ; parameter estimation ;
energy management ; simulation ; occupants / users

I. INTRODUCTION

Buildings represent 40% of the final energy consump-

tion in the world so it is one of the main levers for

energy savings. Several thermal regulations appeared to

stop the continuous increase of energy consumptions.

Until the 1990s, scientists focused on energy efficiency

by working on different equipments operating in build-

ings. It has led to different labels to classify buildings

performance. The next step has been to develop efficient

building energy management systems (BEMS). Buildings

became more and more automated with controlled rolling

shutters, lights and temperature set-points. To operate

these controls, researches focused on model based energy

management. Despite these new technologies and energy

management methods, there is still a big gap between

predicted consumptions and real ones. Dujin et al. [1]

explained that in these approaches, users are seen as

passive actors and have to learn how to do nothing and

finally undergo systems not adapted to their rhythms and

comfort criteria. In this kind of situation, it can lead

users to bypass the systems and those behaviours can be

strongly against energy savings purposes because even

very efficient appliances can have a significant consump-

tion if they are misused. To avoid these situations and

to better manage energy in buildings, many sociologists

suggest that users must be involved and empowered. In
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this paper, the modelling for model based energy services

for occupants is discussed.

The model requirements for energy end-users services

are different from those for building design or for en-

ergy performance analysis. Indeed, energy demand for

an entire year is not needed neither results pointing

out the influence of elementary design decisions. Energy

management services usually requires the ability to fore-

cast the energy demand with effects for 24 hours with

generally hourly time steps. Existing models for energy

management services rely on a different set of hypotheses.

The aim of this paper is to investigate the relevancy

of black-box models for generating user advice, the final

objective being to help them understand their impact on

their dwelling. Then, physical knowledge is introduced in

the definition of the model and the impact on the accuracy

and forecast capacity of the model is quantified. Data from

sensors on an occupied study case are used to estimate

the parameters of the models.

II. PROBLEM STATEMENT

The general objective and methodology investigated in

this paper consist in defining different black-box model

structures and then to quantify the gain due to the in-

troduction of physical knowledge. Indeed, if black-box

models have the advantage not to require any prior knowl-

edge of the building it induces to select an appropriate

structure and a representative data-set for learning. The

paper is organized as follows. First, a literature review is

led on ARX models in general and in building modelling

in particular in Section 3. The office settings are described

in Section 4. The principle of ARX models inspired by

physics is presented in section 5. Finally, the conclusions

are drawn in Section 6.

III. LITERATURE REVIEW

Universal models or black-box models are based on

general purpose structures and then do not require any

physics expertise. However, even if black-box models are

often criticized for lack of physical interpretation [2],

Richalet [3] demonstrated that for some kind of these

models it is possible to recover some physical informa-

tion. Universal models can be either linear or non linear

and take one or several inputs in consideration. Most



of the time universal models were used for modelling

systems or walls instead of the whole building [4], [5].

Extending these models for describing a model would

require to fully know the different systems operating

in the building but, most of the time, the description

of buildings systems are unknown. Then, this approach

cannot be applied with this objective.

More recently, several authors did the exercise to model

an entire building with different objectives: predicting the

indoor temperature [6], predicting the thermal load [7]

or recovering u and g values of buildings [8]. Even if

phenomena involved in building physics such as heating,

ventilation or occupancy are non linear, authors often

chose linear models to represent the building dynamics.

However, models taking only one input tend to disappear

due to the complexity increase of building integrated

systems. On the other hand MISO models (Multi Inputs

Single Output) or MIMO (Multi Inputs Multi Outputs) are

becoming more and more common. Those two categories

can be broken down in different formulations: ARX (Auto

Regressive with exogenous inputs), OE (Output Error),

ARMAX (Autoregressive moving average with exoge-

nous inputs), BJ (Box-Jenkins). OE was found to provide

the best prediction compared to ARX and BJ models

while looking for the response of internal temperature

in an office building [9]. Mustafaraj et al [10] conclude

that BJ models outperform ARX and ARMAX models.

Rabl [11] presented an overview of different methods,

focusing especially on their physical interpretation.This

study, applied to building models, revealed that even with

wrong parameters a model may give a good fit to the data

because of compensations in errors. It confirms thus that

estimated parameters should be interpreted carefully.

ARX models are the most common in thermal mod-

elling. Besides Jimnez and Madsen [8] and Mustafaraj

et al. [10] show they are sufficiently efficient to model

building thermal behaviour. ARX models were also used

by Amstrong [12] and Naveros [13] for building applica-

tions. Chen et al. [14] used a fractional version of ARX

models in order to describe the overall thermal dynamics

of a building. Thus, an ARX structure is implemented in

that paper.

IV. MONO-ZONE OFFICE

In order to validate model structure, a real case study

has been chosen: an office occupied by 1 to 4 persons. In

terms of instrumentation, the office is equipped with 26

sensors measuring temperatures, CO2 and COV concen-

trations, illuminance, humidity and power consumption,

door and windows contacts, motion and weather (cf. figure

1). Only indoor temperature, CO2 sensors, window and

door contacts and weather station for outdoor temperature

and nebulosity are used to estimate the parameters of

the models. Estimators for occupancy and heating dur-

ing winter season were defined. For occupancy, power-

consumption measurements are used to estimate the num-
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Figure 1: Map of the office with sensors

ber of computers used and thus the number of occupants.

Regarding the heating power, a temperature sensor has

been placed on the surface of the heater and the power

heating is computed using equation 1

Pheat = K(Theater − Toffice) (1)

where K is estimated.

V. MODEL FORMULATION

The general formulation of an ARX model with one

output is illustrated in equation 2 for the temporal de-

scription and in equation 3 for the z-form.

Ti,n = −
p∑

l=1

alTi,n−1 +
∑

k

q∑

j=0

bk,juk,n−j + en (2)

where bk are the coefficients for the respective inputs uk
and e represents the error which is assumed to be white

noise.

A(z−1)Ti =
∑

k

Bk(e
−1)uk + e (3)

Lowry and Lee [9] implemented different autoregressive

models such as ARX or OE models in order to predict

the response of internal temperature in a building under

passive conditions. They studied different orders for their

models and conclude that even if outdoor and indoor air

temperature are highly correlated, simple linear-regression

models have a variance of at least 44%. Thus, auto-

regressive models are interesting. They tested different

possibilities of higher-order with respect to any combi-

nation of the input and output variables and concluded

that no improvement was noticed beyond second-order.

The models were able to predict with a good accuracy

the indoor air temperature for more than one week.



A. Reference

In order to quantify the impact of the inclusion of phys-

ical knowledge on the forecast ability of the ARX model,

a reference structure needs to be defined. For that purpose,

an output is chosen: the CO2 concentration. Then, only

the data from variables linked to CO2 concentration is

used as variables of interest: corridor CO2 concentration,

ζD and ζW representing conversely the door and window

openings. Results of the reference model represented by

equation 4 for forecasting CO2 can be seen in figure 2.

Γin = b0Γcorridor + b1ζD + b2ζW (4)

Figure 2: CO2 concentration of the reference model

It can be observed that the values obtained in the val-

idation part are significantly different from the measures

and most of all non-physical. Indeed, the outdoor CO2

concentration is around 400 ppm and cannot be lower

inside a building. With this model, CO2 concentrations

go down until almost 200 ppm.

1) Training and cross-validation periods: Contrary to

the use of physical or semi-physical models, black-box

models require a rich dataset for training the model. It

means that the training dataset needs to include several

behaviours such as door or window openings and dif-

ferent range of temperatures or more generally it needs

to include behaviours occurring during the validation

dataset. Indeed, learning the model on a certain period

and applying it on a very different period leads to low

accuracy. In figure 3, it can be seen that the model has

been learned during a winter month Then, as windows

are not frequently opened before the months of June,

the training dataset chosen was made with the months

June and July and the cross-validation was performed

with the months of April and May since August is not

very interesting due to the lack of occupancy. Besides, it

allows to ensure that the model is then able to forecast

really different scenarios in terms of use of openings and

outside temperature.

Figure 3: CO2 concentration of the reference model

March / April

B. Liability of the estimated model along the seasons

Then, it was examined how a model estimated in

summer or in winter is able to forecast the thermal and

aeraulic behaviour of the study case during the whole

year. Results can be seen in figure 4. Regarding the

CO2 concentration, once again it can be observed that

the behaviour of the model during the month of June

is physically non-acceptable. But the difference between

the model estimated in winter and the one estimated in

summer cannot be seen graphically. As previously, the

absolute average error and the standard deviations are

computed for these new configurations.

Figure 4: CO2 concentration of the ARX model

estimated in summer

Obviously, it can be observed in table I that the errors

are higher. The significant increase in CO2 errors is

mainly due to the period of missing data in November.

But, even in that case errors remain in an acceptable range

since a difference of 150 ppm is unlikely to be felt by



end-users. Then, it is in agreement with the objective of

energy services implementation.

Training month Absolute Average Error Standard Deviation
Winter 68.66 138.17

Table I: Comparison of absolute average error and

standard deviation for the reference model and the ARX

inspired by physics

VI. THE CASE OF JUNE

ARX models have been proved to deliver good per-

formance for forecasting air temperature and CO2 con-

centration. However, several limits need to be raised.

The case of June regarding the CO2 requires to be

further investigated in order to understand the observed

behaviour. For that purpose, environmental inputs are plot

in order to identify if a specific phenomena happened that

month. Then, window openings, outdoor and indoor air

temperatures as well as CO2 concentrations in the corridor

are observed (cf. figure 5). It can be seen that there is a

gap between the window openings in May and the ones

in June which is consistent with the significant increase in

outdoor temperatures. It can explain why the ARX model

is not able to forecast the CO2 concentrations in June.

Then, another test is performed, estimating the model

parameters with the month of July which also presents

a great number of window openings and similar outdoor

conditions and validated on the month of June. Results in

figure 6 reveal that the prediction is still not as accurate

as it was for winter forecasts but there is a significant

improvement with an average absolute error of 34.54 ppm

against 72.62 ppm and a standard deviation of 64.52 ppm

against 96.60. This study highlights that ARX models

require rich datasets for learning the coefficient of the

variables of interests and cannot ensure a systematic

accuracy in the predictions.

VII. ARX INSPIRED FROM PHYSICS

In order to solve problems such as the case studied in

the previous section, a lead is explored: how integrating

physical knowledge in the ARX model structure can

improve the accuracy of the forecasts. Indeed, the low

performances observed for the month of June are due

to new physical phenomena (absent from the training

data) but these phenomena can be represented by physical

equations.

A. Principle
The main idea is to improve the prediction ability of

ARX models when they face new dynamics or behaviours

and develop an automatic method for determining the in-

puts and the order to consider. Indeed, if black-box mod-

els have the advantage not to require any prior knowledge

of the building it induces to select an appropriate structure

for the model structure. This step usually generates a great

(a) Window openings

(b) Indoor air temperature

(c) Outdoor temperature

Figure 5: Environmental inputs during the month of June

number of simulations [10]. For that purpose, physical

equations can be extracted either from grey-box models

such as electric analogy models (RC models) presented in

figure 7 for forecasting the temperature or from aeraulic

equations for forecasting the CO2 concentration (see.

figure 8 and equation 5).



Figure 6: CO2 concentrations of the ARX model

estimated during the month of July and cross-validated

in June

In the RC-model, Tn, Tin and Tout represent

respectively the temperatures of the neighbouring room,

the room considered and the outdoor

Rn and Rout represent the resistors of the wall between

the room and respectively the corridor and outdoor

RD and RW represent respectively the resistors of the

door and the window

ζD and ζW represent respectively the opening rate of the

door and the window

Ri and Ci represent respectively the resistor and the

capacitor of the fictive wall

φin represents the internal gains: solar gains, electric

gains ans occupancy gains

Wu and Sun [15] tackled the same questions but using

thermodynamics equations to enrich ARMAX models.

They predict indoor air temperature in the Science and

Engineering (SE) building of UC Merced. They succeeded

to precisely forecast the room temperature in both short

and long-terms from models trained with the data over a

relatively short time.

In this section, only the prediction of CO2 concentra-

tion is investigated since it is the one presenting the most

significant difficulty to predict with accuracy. For that

purpose, a simple aeraulic model presented schematically

in figure 8 and mathematically in equations 5-7.

V
dΓin

dt
=− (QW +QD)Γin +QWΓout +QDΓn

+ Sbody
CO2

n
(5)

Qout(t) = Q0
out + ζW (t)QW (6)

Qcorridor(t) = Q0
corridor + ζD(t)QD (7)

where Γin,Γout and Γn represent the CO2 concentrations

of the office, the outdoor and the neighbourhood,QW

�in

TinTinTout Tn

Rout Rn

RDRW

Ri

Ci

�

�W �D

Figure 7: RC model

Figure 8: Aeraulic model

and QD the air flows coming from the window and the

door, ζW and ζD the state of the window and the door,

V the volume of the mono-zone office, Sbody
CO2

the CO2

concentration expelled by one person and n the number

of occupants in the room.

B. Application

To apply that principle to the ARX model defined in

section V, firstly, from the aeraulic model the relevant

variables to consider in the ARX inspired by physics

were identified. Then, the training and validation periods

must be properly defined to ensure that the dataset is

sufficiently rich.

1) Determination of coefficients: From equation 5, the

different variables encountered were used in order to

configure the ARX model. As the structure of an ARX

model is linear, terms with Γin are not considered here.

Then, only the coefficients of Γcor are considered in this

work. This yields to the variables listed below:

• Γcorridor: the CO2 concentration of the corridor

• ζD: the rate of door openings

• ζW : the rate of window openings

• ΓcorridorζD: the product between the rate of door

openings and the CO2 concentration of the corridor

• ΓoutζW : the product between the rate of window

openings and the outdoor CO2 concentration

• n: the occupancy

Γoffice =α0 + α1Γcorridor + α2ζD + α3ζW+

α4ΓcorridorζD + α5ΓoutζW + α6n
(8)

2) Implementation: Once the model is defined, the

coefficients of the variables of interests of the ARX model

inspired by physics can be estimated and the resulting

model can be simulated. Results can be seen in figure

9 and values of the absolute average error and standard

deviation in table II. It can be seen that both the absolute



average error and the standard deviation are decreased

which allows to improve the forecast ability of the model

and to increase the trust that end-users can put in the

forecast. Especially, it can be seen that the values forecast

with the ARX model inspired by physics stay most of

the time in the physical fields which represents a great

advantage in terms of trust.

Figure 9: CO2 concentration of the ARX model inspired

by physics

Model | Average Error| Standard Deviation
ARX standard 57.2248 78.3289
ARX inspired by physics 48.9711 66.0473

Table II: Comparison of absolute average error and

standard deviation for the reference model and the ARX

model inspired by physics

VIII. LIMITS

It has been observed that under certain conditions, ARX

models can deliver good performance for forecasting

CO2 concentration. However some limits must be stated.

The most important one is that ARX models require

a sufficiently rich training dataset in order to forecast

CO2 concentrations otherwise performance of the model

cannot be ensured.

IX. CONCLUSION

In this paper, ARX models of CO2 concentration for

energy services have been explored. They have been

applied to a mono-zone study case located in Grenoble.

It has been shown that for most of the situations, they

have proved to be quite accurate with absolute average

errors under 100 ppm. However, in some cases, the ARX

model failed to predict precisely the CO2 concentration

as shown with the month of June. This can be explained

by the specificities of this month which is the first of

the year including a significant use of openings as well

as the heating system off. Then, as ARX models require

a rich data-set, they are not reliable in every situation.

Indeed, when new physical phenomena appear in the

cross-validation period, it can be seen that ARX model

does not properly forecast CO2 concentration. For fixing

this problem, a new structure has been proposed and

implemented using physical equations to determine the

variables of interest of the ARX structure. A simple

aeraulic model of the study case has been implemented

and parsed in order to identify which variable of interests

should be considered in the ARX structure. This ARX

model inspired by physics has been applied again with

the month of June. Results were concluding since it has

greatly improved the CO2 prediction and excluding the

most majority of the unrealistic values.
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