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I. INTRODUCTION

Buildings represent 40% of the final energy consumption in the world so it is one of the main levers for energy savings. Several thermal regulations appeared to stop the continuous increase of energy consumptions. Until the 1990s, scientists focused on energy efficiency by working on different equipments operating in buildings. It has led to different labels to classify buildings performance. The next step has been to develop efficient building energy management systems (BEMS). Buildings became more and more automated with controlled rolling shutters, lights and temperature set-points. To operate these controls, researches focused on model based energy management. Despite these new technologies and energy management methods, there is still a big gap between predicted consumptions and real ones. Dujin et al. [START_REF] Dujin | Les usages de l'énergie dans les entreprises du secteur tertiaire. des systèmes techniques aux pratiques[END_REF] explained that in these approaches, users are seen as passive actors and have to learn how to do nothing and finally undergo systems not adapted to their rhythms and comfort criteria. In this kind of situation, it can lead users to bypass the systems and those behaviours can be strongly against energy savings purposes because even very efficient appliances can have a significant consumption if they are misused. To avoid these situations and to better manage energy in buildings, many sociologists suggest that users must be involved and empowered. In This project has received support from the State Program Investment for the Future bearing the reference (ANR-10-ITE-0003) this paper, the modelling for model based energy services for occupants is discussed.

The model requirements for energy end-users services are different from those for building design or for energy performance analysis. Indeed, energy demand for an entire year is not needed neither results pointing out the influence of elementary design decisions. Energy management services usually requires the ability to forecast the energy demand with effects for 24 hours with generally hourly time steps. Existing models for energy management services rely on a different set of hypotheses.

The aim of this paper is to investigate the relevancy of black-box models for generating user advice, the final objective being to help them understand their impact on their dwelling. Then, physical knowledge is introduced in the definition of the model and the impact on the accuracy and forecast capacity of the model is quantified. Data from sensors on an occupied study case are used to estimate the parameters of the models.

II. PROBLEM STATEMENT

The general objective and methodology investigated in this paper consist in defining different black-box model structures and then to quantify the gain due to the introduction of physical knowledge. Indeed, if black-box models have the advantage not to require any prior knowledge of the building it induces to select an appropriate structure and a representative data-set for learning. The paper is organized as follows. First, a literature review is led on ARX models in general and in building modelling in particular in Section 3. The office settings are described in Section 4. The principle of ARX models inspired by physics is presented in section 5. Finally, the conclusions are drawn in Section 6.

III. LITERATURE REVIEW

Universal models or black-box models are based on general purpose structures and then do not require any physics expertise. However, even if black-box models are often criticized for lack of physical interpretation [START_REF] Ferkl | Ceiling radiant cooling: Comparison of armax and subspace identification modelling methods[END_REF], Richalet [START_REF] Richalet | Pratique de l'identification[END_REF] demonstrated that for some kind of these models it is possible to recover some physical information. Universal models can be either linear or non linear and take one or several inputs in consideration. Most of the time universal models were used for modelling systems or walls instead of the whole building [START_REF] Chen | Real-time predictive supervisory operation of building thermal systems with thermal mass[END_REF], [START_REF] Virk | Practical stochastic multivariable identification for buildings[END_REF]. Extending these models for describing a model would require to fully know the different systems operating in the building but, most of the time, the description of buildings systems are unknown. Then, this approach cannot be applied with this objective.

More recently, several authors did the exercise to model an entire building with different objectives: predicting the indoor temperature [START_REF] Mechaqrane | A comparison of linear and neural network arx models applied to a prediction of the indoor temperature of a building[END_REF], predicting the thermal load [START_REF] Yun | Building hourly thermal load prediction using an indexed arx model[END_REF] or recovering u and g values of buildings [START_REF] Jimenez | Models for describing the thermal characteristics of building components[END_REF]. Even if phenomena involved in building physics such as heating, ventilation or occupancy are non linear, authors often chose linear models to represent the building dynamics. However, models taking only one input tend to disappear due to the complexity increase of building integrated systems. On the other hand MISO models (Multi Inputs Single Output) or MIMO (Multi Inputs Multi Outputs) are becoming more and more common. Those two categories can be broken down in different formulations: ARX (Auto Regressive with exogenous inputs), OE (Output Error), ARMAX (Autoregressive moving average with exogenous inputs), BJ (Box-Jenkins). OE was found to provide the best prediction compared to ARX and BJ models while looking for the response of internal temperature in an office building [START_REF] Lowry | Modelling the passive thermal response of a building using sparse bms data[END_REF]. Mustafaraj et al [START_REF] Mustafaraj | Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office[END_REF] conclude that BJ models outperform ARX and ARMAX models. Rabl [START_REF] Rabl | Parameter estimation in buildings: methods for dynamic analysis of measured energy use[END_REF] presented an overview of different methods, focusing especially on their physical interpretation.This study, applied to building models, revealed that even with wrong parameters a model may give a good fit to the data because of compensations in errors. It confirms thus that estimated parameters should be interpreted carefully.

ARX models are the most common in thermal modelling. Besides Jimnez and Madsen [START_REF] Jimenez | Models for describing the thermal characteristics of building components[END_REF] and Mustafaraj et al. [START_REF] Mustafaraj | Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office[END_REF] show they are sufficiently efficient to model building thermal behaviour. ARX models were also used by Amstrong [START_REF] Armstrong | Model identification with application to building control and fault detection[END_REF] and Naveros [START_REF] Naveros | Physical parameters identification of walls using arx models obtained by deduction[END_REF] for building applications. Chen et al. [START_REF] Chen | Fractional order models for system identification of thermal dynamics of buildings[END_REF] used a fractional version of ARX models in order to describe the overall thermal dynamics of a building. Thus, an ARX structure is implemented in that paper.

IV. MONO-ZONE OFFICE

In order to validate model structure, a real case study has been chosen: an office occupied by 1 to 4 persons. In terms of instrumentation, the office is equipped with 26 sensors measuring temperatures, CO 2 and COV concentrations, illuminance, humidity and power consumption, door and windows contacts, motion and weather (cf. figure 1). Only indoor temperature, CO 2 sensors, window and door contacts and weather station for outdoor temperature and nebulosity are used to estimate the parameters of the models. Estimators for occupancy and heating during winter season were defined. For occupancy, powerconsumption measurements are used to estimate the num- Regarding the heating power, a temperature sensor has been placed on the surface of the heater and the power heating is computed using equation 1

P heat = K(T heater -T of f ice ) (1) 
where K is estimated.

V. MODEL FORMULATION The general formulation of an ARX model with one output is illustrated in equation 2 for the temporal description and in equation 3 for the z-form. [START_REF] Ferkl | Ceiling radiant cooling: Comparison of armax and subspace identification modelling methods[END_REF] where bk are the coefficients for the respective inputs uk and e represents the error which is assumed to be white noise.

T i,n = - p l=1 a l T i,n-1 + k q j=0 b k,j u k,n-j + e n
A(z -1 )T i = k B k (e -1 )u k + e (3)
Lowry and Lee [START_REF] Lowry | Modelling the passive thermal response of a building using sparse bms data[END_REF] implemented different autoregressive models such as ARX or OE models in order to predict the response of internal temperature in a building under passive conditions. They studied different orders for their models and conclude that even if outdoor and indoor air temperature are highly correlated, simple linear-regression models have a variance of at least 44%. Thus, autoregressive models are interesting. They tested different possibilities of higher-order with respect to any combination of the input and output variables and concluded that no improvement was noticed beyond second-order.

The models were able to predict with a good accuracy the indoor air temperature for more than one week.

A. Reference

In order to quantify the impact of the inclusion of physical knowledge on the forecast ability of the ARX model, a reference structure needs to be defined. For that purpose, an output is chosen: the CO 2 concentration. Then, only the data from variables linked to CO 2 concentration is used as variables of interest: corridor CO 2 concentration, ζ D and ζ W representing conversely the door and window openings. Results of the reference model represented by equation 4 for forecasting CO 2 can be seen in figure 2. Indeed, learning the model on a certain period and applying it on a very different period leads to low accuracy. In figure 3, it can be seen that the model has been learned during a winter month Then, as windows are not frequently opened before the months of June, the training dataset chosen was made with the months June and July and the cross-validation was performed with the months of April and May since August is not very interesting due to the lack of occupancy. Besides, it allows to ensure that the model is then able to forecast really different scenarios in terms of use of openings and outside temperature. 

Γ in = b 0 Γ corridor + b 1 ζ D + b 2 ζ W (4)

B. Liability of the estimated model along the seasons

Then, it was examined how a model estimated in summer or in winter is able to forecast the thermal and aeraulic behaviour of the study case during the whole year. Results can be seen in figure 4. Regarding the CO 2 concentration, once again it can be observed that the behaviour of the model during the month of June is physically non-acceptable. But the difference between the model estimated in winter and the one estimated in summer cannot be seen graphically. As previously, the absolute average error and the standard deviations are computed for these new configurations. Obviously, it can be observed in table I that the errors are higher. The significant increase in CO 2 errors is mainly due to the period of missing data in November. But, even in that case errors remain in an acceptable range since a difference of 150 ppm is unlikely to be felt by end-users. Then, it is in agreement with the objective of energy services implementation. ARX models have been proved to deliver good performance for forecasting air temperature and CO 2 concentration. However, several limits need to be raised. The case of June regarding the CO 2 requires to be further investigated in order to understand the observed behaviour. For that purpose, environmental inputs are plot in order to identify if a specific phenomena happened that month. Then, window openings, outdoor and indoor air temperatures as well as CO 2 concentrations in the corridor are observed (cf. figure 5). It can be seen that there is a gap between the window openings in May and the ones in June which is consistent with the significant increase in outdoor temperatures. It can explain why the ARX model is not able to forecast the CO 2 concentrations in June.

Then, another test is performed, estimating the model parameters with the month of July which also presents a great number of window openings and similar outdoor conditions and validated on the month of June. Results in figure 6 reveal that the prediction is still not as accurate as it was for winter forecasts but there is a significant improvement with an average absolute error of 34.54 ppm against 72.62 ppm and a standard deviation of 64.52 ppm against 96.60. This study highlights that ARX models require rich datasets for learning the coefficient of the variables of interests and cannot ensure a systematic accuracy in the predictions.

VII. ARX INSPIRED FROM PHYSICS

In order to solve problems such as the case studied in the previous section, a lead is explored: how integrating physical knowledge in the ARX model structure can improve the accuracy of the forecasts. Indeed, the low performances observed for the month of June are due to new physical phenomena (absent from the training data) but these phenomena can be represented by physical equations.

A. Principle

The main idea is to improve the prediction ability of ARX models when they face new dynamics or behaviours and develop an automatic method for determining the inputs and the order to consider. Indeed, if black-box models have the advantage not to require any prior knowledge of the building it induces to select an appropriate structure for the model structure. This step usually generates a great [START_REF] Mustafaraj | Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office[END_REF]. For that purpose, physical equations can be extracted either from grey-box models such as electric analogy models (RC models) presented in figure 7 for forecasting the temperature or from aeraulic equations for forecasting the CO 2 concentration (see. figure 8 and equation 5). In the RC-model, T n , T in and T out represent respectively the temperatures of the neighbouring room, the room considered and the outdoor R n and R out represent the resistors of the wall between the room and respectively the corridor and outdoor R D and R W represent respectively the resistors of the door and the window ζ D and ζ W represent respectively the opening rate of the door and the window R i and C i represent respectively the resistor and the capacitor of the fictive wall φ in represents the internal gains: solar gains, electric gains ans occupancy gains Wu and Sun [START_REF] Wu | A physics-based linear parametric model of room temperature in office buildings[END_REF] tackled the same questions but using thermodynamics equations to enrich ARMAX models. They predict indoor air temperature in the Science and Engineering (SE) building of UC Merced. They succeeded to precisely forecast the room temperature in both short and long-terms from models trained with the data over a relatively short time.

In this section, only the prediction of CO 2 concentration is investigated since it is the one presenting the most significant difficulty to predict with accuracy. For that purpose, a simple aeraulic model presented schematically in figure 8 and mathematically in equations 5-7.

V dΓ in dt = -(Q W + Q D )Γ in + Q W Γ out + Q D Γ n + S body CO 2 n (5) Q out (t) = Q 0 out + ζ W (t)Q W (6) Q corridor (t) = Q 0 corridor + ζ D (t)Q D ( 7 
)
where Γ in ,Γ out and Γ n represent the CO 2 concentrations of the office, the outdoor and the neighbourhood,Q W 

B. Application

To apply that principle to the ARX model defined in section V, firstly, from the aeraulic model the relevant variables to consider in the ARX inspired by physics were identified. Then, the training and validation periods must be properly defined to ensure that the dataset is sufficiently rich.

1) Determination of coefficients: From equation 5, the different variables encountered were used in order to configure the ARX model. As the structure of an ARX model is linear, terms with Γ in are not considered here. Then, only the coefficients of Γ cor are considered in this work. This yields to the variables listed below: 

Γ office =α 0 + α 1 Γ corridor + α 2 ζ D + α 3 ζ W + α 4 Γ corridor ζ D + α 5 Γ out ζ W + α 6 n (8)
2) Implementation: Once the model is defined, the coefficients of the variables of interests of the ARX model inspired by physics can be estimated and the resulting model can be simulated. Results can be seen in figure 9 and values of the absolute average error and standard deviation in table II. It can be seen that both the absolute average error and the standard deviation are decreased which allows to improve the forecast ability of the model and to increase the trust that end-users can put in the forecast. Especially, it can be seen that the values forecast with the ARX model inspired by physics stay most of the time in the physical fields which represents a great advantage in terms of trust. It has been observed that under certain conditions, ARX models can deliver good performance for forecasting CO2 concentration. However some limits must be stated. The most important one is that ARX models require a sufficiently rich training dataset in order to forecast CO2 concentrations otherwise performance of the model cannot be ensured.

IX. CONCLUSION

In this paper, ARX models of CO 2 concentration for energy services have been explored. They have been applied to a mono-zone study case located in Grenoble. It has been shown that for most of the situations, they have proved to be quite accurate with absolute average errors under 100 ppm. However, in some cases, the ARX model failed to predict precisely the CO 2 concentration as shown with the month of June. This can be explained by the specificities of this month which is the first of the year including a significant use of openings as well as the heating system off. Then, as ARX models require a rich data-set, they are not reliable in every situation. Indeed, when new physical phenomena appear in the cross-validation period, it can be seen that ARX model does not properly forecast CO 2 concentration. For fixing this problem, a new structure has been proposed and implemented using physical equations to determine the variables of interest of the ARX structure. A simple aeraulic model of the study case has been implemented and parsed in order to identify which variable of interests should be considered in the ARX structure. This ARX model inspired by physics has been applied again with the month of June. Results were concluding since it has greatly improved the CO 2 prediction and excluding the most majority of the unrealistic values.
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 I Comparison of absolute average error and standard deviation for the reference model and the ARX inspired by physics VI. THE CASE OF JUNE

	Training month	Absolute Average Error	Standard Deviation
	Winter	68.66	138.17

  corridor : the CO 2 concentration of the corridor • ζ D : the rate of door openings • ζ W : the rate of window openings • Γ corridor ζ D : the product between the rate of door openings and the CO 2 concentration of the corridor • Γ out ζ W : the product between the rate of window openings and the outdoor CO 2 concentration

• Γ • n: the occupancy

  9: CO 2 concentration of the ARX model inspired by physics

	Model	| Average Error|	Standard Deviation
	ARX standard	57.2248	78.3289
	ARX inspired by physics	48.9711	66.0473
	Table II: Comparison of absolute average error and
	standard deviation for the reference model and the ARX
	model inspired by physics	
	VIII. LIMITS