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Abstract. Parametric Interval Markov Chains (pIMCs) are a specifica-
tion formalism that extend Markov Chains (MCs) and Interval Markov
Chains (IMCs) by taking into account imprecision in the transition prob-
ability values: transitions in pIMCs are labeled with parametric intervals
of probabilities. In this work, we study the difference between pIMCs and
other Markov Chain abstractions models and investigate the two usual
semantics for IMCs: once-and-for-all and at-every-step. In particular, we
prove that both semantics agree on the maximal/minimal reachability
probabilities of a given IMC. We then investigate solutions to several
parameter synthesis problems in the context of pIMCs – consistency,
qualitative reachability and quantitative reachability – that rely on con-
straint encodings. Finally, we propose a prototype implementation of our
constraint encodings with promising results.

1 Introduction

Discrete time Markov chains (MCs for short) are a standard probabilistic mod-
eling formalism that has been extensively used in the litterature to reason about
software [18] and real-life systems [12]. However, when modeling real-life systems,
the exact value of transition probabilities may not be known precisely. Several
formalisms abstracting MCs have therefore been developed. Parametric Markov
chains [1] (pMCs for short) extend MCs by allowing parameters to appear in
transition probabilities. In this formalism, parameters are variables and transi-
tion probabilities may be expressed as polynomials over these variables. A given
pMC therefore represents a potentially infinite set of MCs, obtained by replacing
each parameter by a given value. pMCs are particularly useful to represent sys-
tems where dependencies between transition probabilities are required. Indeed, a
given parameter may appear in several dinstinct transition probabilities, there-
fore requiring that the same value is given to all its occurences. Interval Markov
chains [13] (IMC for short) extend MCs by allowing precise transition proba-
bilities to be replaced by intervals, but cannot represent dependencies between
distinct transitions. IMCs have mainly been studied with two distinct semantics
interpretation. Under the once-and-for-all semantics, a given IMC represents a
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potentially infinite number of MCs where transition probabilities are chosen in-
side the specified intervals while keeping the same underlying graph structure.
The at-every-step semantics, which was the original semantics given to IMCs
in [13], does not require MCs to preserve the underlying graph structure of the
original IMC but instead allows an “unfolding” of the original graph structure
where different probability values may be chosen (inside the specified interval)
at each occurence of the given transition.

Model-checking algorithms and tools have been developed in the context of
pMCs [7,11,14] and IMCs with the once-and-for-all semantics [10,4]. State of the
art tools [7] for pMC verification compute a rational function on the parameters
that characterizes the probability of satisfying a given property, and then use
external tools such as SMT solving [7] for computing the satisfying parameter
values. For these methods to be viable in practice, the number of parameters
used is quite limited. On the other hand, the model-checking procedure for IMCs
presented in [4] is adapted from machine learning and builds successive refine-
ments of the original IMCs that optimize the probability of satisfying the given
property. This algorithm converges, but not necessarilly to a global optimum. It
is worth noticing that existing model checking procedures for pMCs and IMCs
strongly rely on their underlying graph structure. As a consequence, to the best
of our knowledge, no solutions for model-checking IMCs with the at-every-step
semantics have been proposed yet.

In this paper, we focus on Parametric interval Markov chains [9] (pIMCs for
short), that generalize both IMCs and pMCs by allowing parameters to appear in
the endpoints of the intervals specifying transition probabilities, and we provide
four main contributions.

First, we formally compare abstraction formalisms for MCs in terms of suc-
cinctness: we show in particular that pIMCs are strictly more succinct than both
pMCs and pIMCs when equipped with the right semantics. In other words, ev-
erything that can be expressed using pMCs or IMCs can also be expressed using
pIMCs while the reverse does not hold. Second, we prove that the once-and-for-
all and the at-every-step semantics are equivalent w.r.t. rechability properties,
both in the IMC and in the pIMC settings. Notably, this result gives theoreti-
cal backing to the generalization of existing works on the verification of IMCs
to the at-every-step semantics. Third, we study the parametric verification of
fundamental properties at the pIMC level: consistency, qualitative reachability,
and quantitative reachability. Given the expressivity of the pIMC formalism, the
risk of producing a pIMC specification that is incoherent and therefore does not
model any concrete MC is high. We therefore propose constraint encodings for
deciding whether a given pIMC is consistent and, if so, synthesizing parameter
values ensuring consistency. We then extend these encodings to qualitative reach-
ability, i.e., ensuring that given state labels are reachable in all (resp. none) of
the MCs modeled by a given pIMC. Finally, we focus on the quantitative reach-
ability problem, i.e., synthesizing parameter values such that the probability of
reaching given state labels satisfies fixed bounds in at least one (resp. all) MCs
modeled by a given pIMC. While consistency and qualitative reachability for
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pIMCs have already been studied in [9], the constraint encodings we propose in
this paper are significantly smaller (linear instead of exponential). To the best of
our knowledge, our results provide the first solution to the quantitative reacha-
bility problem for pIMCs. Our last contribution is the implementation of all our
verification algorithms in a prototype tool that generates the required constraint
encodings and can be plugged to any SMT solver for their resolution. Due to
space limitation, the proofs of our results are given in Appendix.

2 Background

In this section we introduce notions and notations that will be used throughout
the paper. Given a finite set of variables X = {x1, . . . , xk}, we write Dx for the
domain of the variable x ∈ X and DX for the set of domains associated to the
variables in X . A valuation v over X is a set v = {(x, d)|x ∈ X, d ∈ Dx} of
elementary valuations (x, d) where for each x ∈ X there exists a unique pair of
the form (x, d) in v. When clear from the context, we write v(x) = d for the
value given to variable x according to valuation v. A rational function f over X
is a division of two (multivariate) polynomials g1 and g2 over X with rational
coefficients, i.e., f = g1/g2. We write Q the set of rational numbers and QX the
set of rational functions over X . The evaluation v(g) of a polynomial g under
the valuation v replaces each variable x ∈ X by its value v(x).

An atomic constraint over X is a Boolean expression of the form f(X) ⊲⊳
g(X), with ⊲⊳ ∈ {≤,≥, <,>,=} and f and g two functions over variables in
X and constants. A constraint is linear if the functions f and g are linear. A
constraint over X is a Boolean combination of atomic constraints over X .

Given a finite set of states S, we write Dist(S) for the set of probability distri-
butions over S, i.e., the set of functions µ : S → [0, 1] such that

∑
s∈S µ(s) = 1.

We write I for the set containing all the interval subsets of [0, 1]. In the follow-
ing, we consider a universal set of symbols A that we use for labelling the states
of our structures. We call these symbols atomic propositions. We will use Latin
alphabet in state context and Greek alphabet in atomic proposition context.

Constraints. Constraints are first order logic predicates used to model and
solve combinatorial problems [17]. A problem is described with a list of variables,
each in a given domain of possible values, together with a list of constraints over
these variables. Such problems are then sent to solvers which decide whether the
problem is satisfiable, i.e., if there exists a valuation of the variables satisfying all
the constraints, and in this case computes a solution. Checking satisfiability of
constraint problems is difficult in general, as the space of all possible valuations
has a size exponential in the number of variables.

Formally, a Constraint Satisfaction Problem (CSP) is a tuple Ω = (X,D,C)
where X is a finite set of variables, D = DX is the set of all the domains
associated to the variables from X , and C is a set of constraints over X . We say
that a valuation over X satisfies Ω if and only if it satisfies all the constraints in
C. We write v(C) for the satisfaction result of the valuation of the constraints C
according to v (i.e., true or false). In the following we call CSP encoding a scheme
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for formulating a given problem into a CSP. The size of a CSP corresponds to
the number of variables and atomic constraints appearing in the problem. Note
that, in constraint programming, having less variables or less constraints during
the encoding does not necessarily imply faster solving time of the problems.

Discrete Time Markov Chains. A Discrete Time Markov Chain (DTMC or
MC for short) is a tuple M = (S, s0, p, V ), where S is a finite set of states
containing the initial state s0, V : S → 2A is a labelling function, and p : S →
Dist(S) is a probabilistic transition function. We write MC for the set containing
all the discrete time Markov chains.

A Markov Chain can be seen as a directed graph where the nodes correspond
to the states of the MC and the edges are labelled with the probabilities given
by the transition function of the MC. In this representation, a missing transition
between two states represents a transition probability of zero. As usual, given a
MC M, we call a path of M a sequence of states obtained from executing M,
i.e., a sequence ω = s1, s2, . . . s.t. the probability of taking the transition from
si to si+1 is strictly positive, p(si)(si + 1) > 0, for all i. A path ω is finite iff it
belongs to S∗, i.e., it represents a finite sequence of transitions from M.

Example 1. Figure 1 illustrates the Markov chain M1 = (S, s0, p, V ) ∈ MC where
the set of states S is given by {s0, s1, s2, s3, s4}, the atomic proposition are
restricted to {α, β}, the initial state is s0, and the labelling function V corre-
sponds to {(s0, ∅), (s1, α), (s2, β), (s3, {α, β}), (s4, α)}. The sequences of states
(s0, s1, s2), (s0, s2), and (s0, s2, s2, s2), are three (finite) paths from the initial
state s0 to the state s2.

Reachability. A Markov chain M defines a unique probability measure PM

over the paths from M. According to this measure, the probability of a finite
path ω = s0, s1, . . . , sn in M is the product of the probabilities of the transitions
executed along this path, i.e., PM(ω) = p(s0)(s1) · p(s1)(s2) · . . . · p(sn−1)(sn).
This distribution naturally extends to infinite paths (see [2]) and to sequences
of states over S that are not paths of M by giving them a zero probability.

Given a MC M, the overall probability of reaching a given state s from
the initial state s0 is called the reachability probability and written PM

s0
(♦s) or

PM(♦s) when clear from the context. This probability is computed as the sum
of the probabilities of all finite paths starting in the initial state and reach-
ing this state for the first time. Formally, let reachs0(s) = {ω ∈ S∗ | ω =
s0, . . . sn with sn = s and si 6= s ∀0 ≤ i < n} be the set of such paths. We then
define PM(♦s) =

∑
ω∈reachs0(s)

PM(ω) if s 6= s0 and 1 otherwise. This notation

naturally extends to the reachability probability of a state s from a state t that
is not s0, written PM

t (♦s) and to the probability of reaching a label α ⊆ A
written PM

s0
(♦α). In the following, we say that a state s (resp. a label α ⊆ A)

is reachable in M iff the reachability probability of this state (resp. label) from
the initial state is strictly positive.

Example 2 (Example 1 continued). In Figure 1 the probability of the path (s0,
s2, s1, s1, s3) is 0.3 · 0.5 · 0.5 · 0.5 = 0.0375 and the probability of reaching
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Fig. 2: pMC I ′
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Fig. 3: IMC I

the state s1 is PM1(♦s1) = p(s0)(s1) + Σ+∞
i=0 p(s0)(s2)·p(s2)(s2)

i·p(s2)(s1) =
p(s0)(s1) + p(s0)(s2)·p(s2)(s1)·(1/(1− p(s2)(s2))) = 1. Furthermore, the proba-
bility of reaching β corresponds to the probability of reaching the state s2.

3 Markov Chains Abstractions

Modelling an application as a Markov Chain requires knowing the exact prob-
ability for each possible transition of the system. However, this can be difficult
to compute or to measure in the case of a real-life application (e.g., precision
errors, limited knowledge). In this section, we start with a generic definition
of Markov chain abstraction models. Then we recall three abstraction models
from the literature, respectively pMC, IMC, and pIMC, and finally we present
a comparison of these existing models in terms of succinctness.

Definition 1 (Markov chain Abstraction Model). A Markov chain ab-
straction model (an abstraction model for short) is a pair (L, |=) where L is a
nonempty set and |= is a relation between MC and L. Let P be in L and M be in
MC we say that M implements P iff (M,P) belongs to |= (i.e., M |= P). When
the context is clear, we do not mention the satisfaction relation |= and only use
L to refer to the abstraction model (L, |=).

A Markov chain Abstraction Model is a specification theory for MCs. It con-
sists in a set of abstract objects, called specifications, each of which representing
a (potentially infinite) set of MCs – implementations – together with a satisfac-
tion relation defining the link between implementations and specifications. As
an example, consider the powerset of MC (i.e., the set containing all the possible
sets of Markov chains). Clearly, (2MC,∈) is a Markov chain abstraction model,
which we call the canonical abstraction model. This abstraction model has the
advantage of representing all the possible sets of Markov chains but it also has
the disadvantage that some Markov chain abstractions are only representable
by an infinite extension representation. Indeed, recall that there exists subsets
of [0, 1] ⊆ R which cannot be represented in a finite space (e.g., the Cantor set
[5]). We now present existing MC abstraction models from the literature.
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3.1 Existing MC Abstraction Models

Parametric Markov Chain is a MC abstraction model from [1] where a tran-
sition can be annotated by a rational function over parameters. We write pMC

for the set containing all the parametric Markov chains.

Definition 2 (Parametric Markov Chain). A Parametric Markov Chain
(pMC for short) is a tuple I = (S, s0, P, V, Y ) where S, s0, and V are defined as
for MCs, Y is a set of variables (parameters), and P : S × S → QY associates
with each potential transition a parameterized probability.

Let M = (S, s0, p, V ) be a MC and I = (S, s0, P, V, Y ) be a pMC. The
satisfaction relation |=p between MC and pMC is defined by M |=p I iff there
exists a valuation v of Y s.t. p(s)(s′) equals v(P (s, s′)) for all s, s′ in S.

Example 3. Figure 2 shows a pMC I ′ = (S, s0, P, V, Y ) where S, s0, and V are
similar to the same entities in the MC M from Figure 1, the set of variable Y
contains only one variable p, and the parametric transitions in P are given by
the edge labelling (e.g., P (s0, s1) = 0.7, P (s1, s3) = p, and P (s2, s2) = 1 − p).
Note that the pMC I ′ is a specification containing the MC M from Figure 1.

Interval Markov Chains extend MCs by allowing to label transitions with
intervals of possible probabilities instead of precise probabilities. We write IMC

for the set containing all the interval Markov chains.

Definition 3 (Interval Markov Chain [13]). An Interval Markov Chain
( IMC for short) is a tuple I = (S, s0, P, V ), where S, s0, and V are defined
as for MCs, and P : S × S → I associates with each potential transition an
interval of probabilities.

Example 4. Figure 3 illustrates IMC I = (S, s0, P, V ) where S, s0, and V are
similar to the MC given in Figure 1. By observing the edge labelling we see
that P (s0, s1) = [0, 1], P (s1, s1) = [0.5, 1], and P (s3, s3) = [1, 1]. On the other
hand, the intervals of probability for missing transitions are reduced to [0, 0],
e.g., P (s0, s0) = [0, 0], P (s0, s3) = [0, 0], P (s1, s4) = [0, 0].

In the literature, IMCs have been mainly used with two distinct semantics:
at-every-step and once-and-for-all. Both semantics are associated with distinct
satisfaction relations which we now introduce.

The once-and-for-all IMC semantics ([7,19,16]) is alike to the semantics for
pMC, as introduced above. The associated satisfaction relation |=o

I is defined
as follows: A MC M = (T, t0, p, V

M ) satisfies an IMC I = (S, s0, P, V
I) iff

(T, t0, V
M ) = (S, s0, V

I) and for all reachable state s and all state s′ ∈ S,
p(s)(s′) ∈ P (s, s′). In this sense, we say that MC implementations using the once-
and-for-all semantics need to have the same structure as the IMC specification.

On the other hand, the at-every-step IMC semantics, first introduced in [13],
operates as a simulation relation based on the transition probabilities and state
labels, and therefore allows MC implementations to have a different structure
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than the IMC specification. The associated satisfaction relation |=a
I is defined

as follows: A MC M = (T, t0, p, V
M ) satisfies an IMC I = (S, s0, P, V

I) iff
there exists a relation R ⊆ T × S such that (t0, s) ∈ R and whenever (t, s) ∈ R,
we have 1. the labels of s and t correspond: V M (t) = V I(s), 2. there exists a
correspondence function δ : T → (S → [0, 1]) s.t. (a) ∀t′ ∈ T if p(t)(t′) > 0
then δ(t′) is a distribution on S (b) ∀s′ ∈ S : (Σt′∈T p(t)(t

′) · δ(t′)(s′)) ∈ P (s, s′),
and (c) ∀(t′, s′) ∈ T × S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R. By construction,
it is clear that |=a

I is more general than |=o
I, i.e., that whenever M |=o

I I, we
also have M |=a

I I. The reverse is obviously not true in general, even when the
underlying graphs of M and I are isomorphic (see Appendix A.1 for details).

Example 5 (Example 4 continued). Consider the MC M1 with state space S
from Figure 1 and the MC M2 with state space T from Figure 4. They both
satisfy the IMC I with state space S given in Figure 3. Furthermore,M1 satisfies
I with the same structure. On the other hand, for the MC M2 given in Figure
4, the state s3 from I has been “split” into two states t3 and t3′ in M2 and the
state t1 from M2 “aggregates” states s1 and s4 in I. The relation R ⊆ T × S
containing the pairs (t0, s0), (t1, s1), (t1, s4), (t2, s2), (t3, s3), and (t3′ , s3) is a
satisfaction relation between M2 and I.

Parametric Interval Markov Chains, as introduced in [9], abstract IMCs by
allowing (combinations of) parameters to be used as interval endpoints in IMCs.
Under a given parameter valuation the pIMC yields an IMC as introduced above.
pIMCs therefore allow the representation, in a compact way and with a finite
structure, of a potentially infinite number of IMCs. Note that one parameter
can appear in several transitions at once, requiring the associated transition
probabilities to depend on one another. Let Y be a finite set of parameters and
v be a valuation over Y . By combining notations used for IMCs and pMCs the
set I(QY ) contains all parametrized intervals over [0, 1], and for all I = [f1, f2] ∈
I(QY ), v(I) denotes the interval [v(f1), v(f2)] if 0 ≤ v(f1) ≤ v(f2) ≤ 1 and the
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empty set otherwise4. We write pIMC for the set containing all the parametric
interval Markov chains.

Definition 4 (Parametric Interval Markov Chain [9]). A Parametric In-
terval Markov Chain (pIMC for short) is a tuple P = (S, s0, P, V, Y ), where S,
s0, V and Y are defined as for pMCs, and P : S × S → I(QY ) associates with
each potential transition a (parametric) interval.

In [9] the authors introduced pIMCs where parametric interval endpoints are
limited to linear combination of parameters. In this paper we extend the pIMC
model by allowing rational functions over parameters as endpoints of parametric
intervals. Given a pIMC P = (S, s0, P, V, Y ) and a valuation v, we write v(P)
for the IMC (S, s0, Pv, V ) obtained by replacing the transition function P from
P with the function Pv : S × S → I defined by Pv(s, s

′) = v(P (s, s′)) for all
s, s′ ∈ S. The IMC v(P) is called an instance of pIMC P . Finally, depending on
the semantics chosen for IMCs, two satisfaction relations can be defined between
MCs and pIMCs. They are written |=a

pI and |=o
pI and defined as follows:M |=a

pI P
(resp. |=o

pI) iff there exists an IMC I instance of P s.t. M |=a
I I (resp. |=o

I).

Example 6. Consider the pIMC P = (S,0, P, V, Y ) given in Figure 5. The set
of states S and the labelling function are the same as in the MC and the IMC
presented in Figures 1 and 3 respectively. The set of parameters Y has two
elements p and q. Finally, the parametric intervals from the transition function
P are given by the edge labelling (e.g., P (s1, s3) = [0.3, q], P (s2, s4) = [0, 0.5],
and P (s3, s3) = [1, 1]). Note that the IMC I from Figure 3 is an instance of
P (by assigning the value 0.6 to the parameter p and 0.5 to q). Furthermore,
as said in Example 5, the Markov Chains M1 and M2 (from Figures 1 and 4
respectively) satisfy I, therefore M1 and M2 satisfy P .

In the following, we consider that the size of a pMC, IMC, or pIMC corre-
sponds to its number of states plus its number of transitions not reduced to 0,
[0, 0] or ∅. We will also often need to consider the predecessors (Pred), and the
successors (Succ) of some given states. Given a pIMC with a set of states S, a
state s in S, and a subset S′ of S, we write:

– Pred(s) = {s′ ∈ S | P (s′, s) /∈ {∅, [0, 0]}}
– Succ(s) = {s′ ∈ S | P (s, s′) /∈ {∅, [0, 0]}}

– Pred(S′) =
⋃

s′∈S′ Pred(s′)
– Succ(S′) =

⋃
s′∈S′ Succ(s′)

3.2 Abstraction Model Comparisons

IMC, pMC, and pIMC are three Markov chain Abstraction Models. In order
to compare their expressiveness and compactness, we introduce the comparison
operators ⊑ and ≡. Let (L1, |=1) and (L2, |=2) be two Markov chain abstraction
models containing respectively L1 and L2. We say that L1 is entailed by L2,
written L1 ⊑ L2, iff all the MCs satisfying L1 satisfy L2 modulo bisimilarity.

4 Indeed, when 0 ≤ v(f1) ≤ v(f2) ≤ 1 is not respected, the interval is inconsistent and
therefore empty.
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(i.e., ∀M |=1 L1, ∃M′ |=2 L2 s.t. M is bisimilar to M′). We say that L1 is
(semantically) equivalent to L2, written L1 ≡ L2, iff L1 ⊑ L2 and L2 ⊑ L1.
Definition 5 introduces succinctness based on the sizes of the abstractions.

Definition 5 (Succinctness). Let (L1, |=1) and (L2, |=2) be two Markov chain
abstraction models. L1 is at least as succinct as L2, written L1 ≤ L2, iff there
exists a polynomial p such that for every L2 ∈ L2, there exists L1 ∈ L1 s.t.
L1 ≡ L2 and |L1| ≤ p(|L2|).5 Thus, L1 is strictly more succinct than L2, written
L1 < L2, iff L1 ≤ L2 and L2 6≤ L1.

We start with a comparison of the succinctness of the pMC and IMC abstrac-
tions. Since pMCs allow the expression of dependencies between the probabilities
assigned to distinct transitions while IMCs allow all transitions to be indepen-
dant, it is clear that there are pMCs without any equivalent IMCs (regardless of
the IMC semantics used), therefore (IMC, |=o

I) 6≤ pMC and (IMC, |=a
I) 6≤ pMC. On

the other hand, IMCs imply that transition probabilities need to satisfy linear
inequalities in order to fit given intervals. However, these types of constraints
are not allowed in pMCs. It is therefore easy to exhibit IMCs that, regardless of
the semantics considered, do not have any equivalent pMC specification. As a
consequence, pMC 6≤ (IMC, |=o

I) and pMC 6≤ (IMC, |=a
I).

We now compare pMCs and IMCs to pIMCs. Recall that the pIMC model
is a Markov chain abstraction model allowing to declare parametric interval
transitions, while the pMC model allows only parametric transitions (without
intervals), and the IMC model allows interval transitions without parameters.
Clearly, any pMC and any IMC can be translated into a pIMC with the right
semantics (once-and-for-all for pMCs and the chosen IMC semantics for IMCs).
This means that (pIMC, |=o

pI) is more succinct than pMC and pIMC is more succinct
than IMC for both semantics. Furthermore, since pMC and IMC are not comparable
due to the above results, we have that the pIMC abstraction model is strictly more
succinct than the pMC abstraction model and than the IMC abstraction model
with the right semantics. Our comparison results are presented in Proposition 1.
Further explanations and examples are given in Appendix A.2.

Proposition 1. The Markov chain abstraction models can be ordered as fol-
lows w.r.t. succinctness: (pIMC, |=o

pI) < (pMC, |=p), (pIMC, |=o
pI) < (IMC, |=o

I) and
(pIMC, |=a

pI) < (IMC, |=a
I).

Note that (pMC, |=p) ≤ (IMC, |=o
I) could be achieved by adding unary con-

straints on the parameters of a pMC, which is not allowed here. However, this
would not have any impact on our other results.

4 Qualitative Properties

As seen above, pIMCs are a succinct abstraction formalism for MCs. The aim
of this section is to investigate qualitative properties for pIMCs, i.e., properties

5 |L1| and |L2| are the sizes of L1 and L2, respectively.
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that can be evaluated at the specification (pIMC) level, but that entail prop-
erties on its MC implementations. pIMC specifications are very expressive as
they allow the abstraction of transition probabilities using both intervals and
parameters. Unfortunately, as it is the case for IMCs, this allows the expression
of incorrect specifications. In the IMC setting, this is the case either when some
intervals are ill-formed or when there is no probability distribution matching the
interval constraints of the outgoing transitions of some reachable state. In this
case, no MC implementation exists that satisfies the IMC specification. Decid-
ing whether an implementation that satisfies a given specification exists is called
the consistency problem. In the pIMC setting, the consistency problem is made
more complex because of the parameters which can also induce inconsistencies
in some cases. One could also be interested in verifying whether there exists
an implementation that reaches some target states/labels, and if so, propose a
parameter valuation ensuring this property. Both the consistency and the consis-
tent reachability problems have already been investigated in the IMC and pIMC
setting [8,9]. In this section, we briefly recall these problems and propose new
solutions based on CSP encodings. Our encodings are linear in the size of the
original pIMCs whereas the algorithms from [8,9] are exponential.

4.1 Existential Consistency

A pIMC P is existential consistent iff there exists a MC M satisfying P (i.e.,
there exists a MC M satisfying an IMC I instance of P). As seen in Section 2,
pIMCs are equipped with two semantics: once-and-for-all (|=o

pI) and at-every-
step (|=a

pI). Recall that |=
o
pI imposes that the underlying graph structure of im-

plementations needs to be isomorphic to the graph structure of the corresponding
specification. In contrast, |=a

pI allows implementations to have a different graph
structure. It therefore seems that some pIMCs could be inconsistent w.r.t |=o

pI

while being consistent w.r.t |=a
pI. On the other hand, checking the consistency

w.r.t |=o
pI seems easier because of the fixed graph structure.

In [8], the author firstly proved that both semantics are equivalent w.r.t. ex-
istential consistency, and proposed a CSP encoding for verifying this property
which is exponential in the size of the pIMC. Based on this result of semantics
equivalence w.r.t. existential consistency from [8] we propose a new CSP encod-
ing, written C∃c, for verifying the existential consistency property for pIMCs.

Let P = (S,s0,P,V,Y ) be a pIMC, we write C∃c(P) for the CSP produced by
C∃c according to P . Any solution of C∃c(P) will correspond to a MC satisfying
P . InC∃c(P), we use one variable πp with domain [0, 1] per parameter p in Y ; one

variable θs
′

s with domain [0, 1] per transition (s, s′) in {{s}×Succ(s) | s ∈ S}; and
one Boolean variable ρs per state s in S. These Boolean variables will indicate
for each state whether it appears in the MC solution of the CSP (i.e., in the MC
satisfying the pIMC P). For each state s ∈ S, Constraints are as follows:
(1) ρs, if s = s0
(3) ¬ρs ⇔ Σs′∈Pred(s)\{s}θ

s
s′ = 0, if s 6= s0

(5) ρs ⇒ θs
′

s ∈ P (s, s′), for all s′ ∈ Succ(s)

(2) ρs ⇔ Σs′∈Succ(s)θ
s′

s = 1

(4) ¬ρs ⇔ Σs′∈Succ(s)θ
s′

s = 0

10
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Fig. 6: Variables in the CSP produced
by C∃c for the pIMC P from Fig. 5

⊤

⊤

⊤

⊤
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πq = 0.5

0.7

0.3

0.5

0.5

0.5

0.5

0

1

0

0

Fig. 7: A solution to the CSP C∃c(P)
for the pIMC P from Fig. 5

Recall that given a pIMC P the objective of the CSP C∃c(P) is to construct
a MC M satisfying P . Constraint (1) states that the initial state s0 appears
in M. Constraint (3) ensures that for each non-initial state s, variable ρs is
set to false iff s is not reachable from its predecessors. Constraint (2) ensures
that if a state s appears in M, then its outgoing transitions form a probability
distribution. On the contrary, Constraint (4) propagates non-appearing states
(i.e., if a state s does not appear in M then all its outgoing transitions are set to
zero). Finally, Constraint (5) states that, for all appearing states, the outgoing
transition probabilities must be selected inside the specified intervals.

Example 7. Consider the pIMC P given in Figure 5. Figure 6 describes the
variables in C∃c(P): one variable per transition (e.g., θ10, θ

2
0, θ

1
1), one Boolean

variable per state (e.g., ρ0, ρ1), and one variable per parameter (πp and πq).
The following constraints correspond to the Constraints (2), (3), (4), and (5)
generated by our encoding C∃c for the state 2 of P :

¬ρ2 ⇔ θ20 = 0
¬ρ2 ⇔ θ12 + θ22 + θ42 = 0

ρ2 ⇔ θ12 + θ22 + θ42 = 1
ρ2 ⇒ 0 ≤ θ12 ≤ πp

ρ2 ⇒ 0.2 ≤ θ22 ≤ πp

ρ2 ⇒ 0 ≤ θ42 ≤ 0.5

Finally, Figure 7 describes a solution for the CSP C∃c(P). Note that given
a solution of a pIMC encoded by C∃c, one can construct a MC satisfying the
given pIMC by keeping all the states s s.t. ρs is equal to true and considering
the transition function given by the probabilities in the θs

′

s variables. We now
show that our encoding works as expected.

Proposition 2. A pIMC P is existential consistent iff C∃c(P) is satisfiable.

Our existential consistency encoding is linear in the size of the pIMC instead
of exponential for the encoding from [9] which enumerates the powerset of the
states in the pIMC resulting in deep nesting of conjunctions and disjunctions.

4.2 Qualitative Reachability

Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label. We say
that α is existential reachable in P iff there exists an implementation M of
P where α is reachable (i.e., PM(♦α) > 0). In a dual way, we say that α
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is universal reachable in P iff α is reachable in any implementation M of P .
As for existential consistency, we use a result from [8] that states that both
pIMC semantics are equivalent w.r.t. existential (and universal) reachability.
We therefore propose a new CSP encoding, written C∃r, that extends C∃c,
for verifying these properties. Formally, CSP C∃r(P) = (X ∪ X ′, D ∪ D′, C ∪
C′) is such that (X,D,C) = C∃c(P), X ′ contains one integer variable ωs

with domain [0, |S|] per state s in S, D′ contains the domains of these vari-
ables, and C′ is composed of the following constraints for each state s ∈ S:
(6) ωs = 1, if s = s0 (7) ωs 6= 1, if s 6= s0 (8) ρs ⇔ (ωs 6= 0)
(9) ωs > 1 ⇒

∨
s′∈Pred(s)\{s}(ωs = ωs′ + 1) ∧ (θs

′

s > 0), if s 6= s0

(10) ωs = 0 ⇔
∧

s′∈Pred(s)\{s}(ωs′ = 0) ∨ (θs
′

s = 0), if s 6= s0

Recall first that CSP C∃c(P ) constructs a Markov chain M satisfying P .
Informally, for each state s in M the Constraints (6), (7), (9) and (10) in C∃r

ensure that ωs = k iff there exists in M a path from the initial state to s of
length k − 1 with non zero probability; and state s is not reachable in M from
the initial state s0 iff ωs equals to 0. Finally, Constraint (8) enforces the Boolean
reachability indicator variable ρs to bet set to true iff there exists a path with
non zero probability in M from the initial state s0 to s (i.e., ωs 6= 0).

Let Sα be the set of states from P labeled with α. C∃r(P) therefore produces
a Markov chain satisfying P where reachable states s are such that ρs = true. As
a consequence, α is existential reachable in P iff C∃r(P) admits a solution such
that

∨
s∈Sα

ρs; and α is universal reachable in P iff C∃r(P) admits no solution
such that

∧
s∈Sα

¬ρs. This is formalised in the following proposition.

Proposition 3. Let P = (S, s0, P, V, Y ) be a pIMC, α ⊆ A be a state label,
Sα = {s | V (s) = α}, and (X,D,C) be the CSP C∃r(P).

– CSP (X,D,C ∪
∨

s∈Sα
ρs) is satisfiable iff α is existential reachable in P

– CSP (X,D,C ∪
∧

s∈Sα
¬ρs) is unsatisfiable iff α is universal reachable in P

As for the existential consistency problem, we have an exponential gain in
terms of size of the encoding compared to [9]: the number of constraints and
variables in C∃r is linear in terms of the size of the encoded pIMC.

Remark. In C∃r Constraints (3) inherited from C∃c are entailed by Con-
straints (8) and (10) added to C∃r. Thus, in a practical approach one may
ignore Constraints (3) from C∃c if they do not improve the solver performances.

5 Quantitative Properties

We now move to the verification of quantitative reachability properties in
pIMCs. Quantitative reachability has already been investigated in the context
of pMCs and IMCs with the once-and-for-all semantics. Due to the complexity
of allowing implementation structures to differ from the structure of the specifi-
cations, quantitative reachability in IMCs with the at-every-step semantics has,
to the best of our knowledge, never been studied. In this section, we propose our
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main theoretical contribution: a theorem showing that both IMC semantics are
equivalent with respect to quantitative reachability, which allows the extension
of all results from [19,4] to the at-every-step semantics. Based on this result,
we also extend the CSP encodings introduced in Section 4 in order to solve
quantitative reachability properties on pIMCs regardless of their semantics.

5.1 Equivalence of |=o

I
and |=a

I
w.r.t quantitative reachability

Given an IMC I = (S, s0, P, V ) and a state label α ⊆ A, a quantitative reacha-
bility property on I is a property of the type PI(♦α)∼p, where 0 < p < 1 and
∼ ∈ {≤, <,>,≥}. Such a property is verified iff there exists an MC M satisfying
I (with the chosen semantics) such that PM(♦α)∼p.

As explained above, all existing techniques and tools for verifying quantita-
tive reachability properties on IMCs only focus on the once-and-for-all semantics.
Indeed, in this setting, quantitative reachability properties are easier to compute
because the underlying graph structure of all implementations is known. How-
ever, to the best of our knowledge, there are no works addressing the same prob-
lem with the at-every-step semantics or showing that addressing the problem in
the once-and-for-all setting is sufficiently general. The following theorem fills this
theoretical gap by proving that both semantics are equivalent w.r.t quantitative
reachability. In other words, for all MC M such that M |=a

I I and all state
label α, there exist MCs M≤ and M≥ such that M≤ |=o

I I, M≥ |=o
I I and

PM≤(♦α) ≤ PM(♦α) ≤ PM≥(♦α). This is formalized in the following theorem.

Theorem 1. Let I = (S, s0, P, V ) be an IMC, α ⊆ A be a state label, ∼ ∈ {≤, <
,>,≥} and 0 < p < 1. I satisfies PI(♦α)∼p with the once-and-for-all semantics
iff I satisfies PI(♦α)∼p with the at-every-step semantics.

The proof is constructive (see Appendix C.1): we use the structure of the
relation R from the definition of |=a

I in order to build the MCs M≤ and M≥.

5.2 Constraint Encodings

Note that the result from Theorem 1 naturally extends to pIMCs. We there-
fore exploit this result to construct a CSP encoding for verifying quantitative
reachability properties in pIMCs. As in Section 4, we extend the CSP C∃c, that
produces a correct MC implementation for the given pIMC, by imposing that
this MC implementation satisfies the given quantitative reachability property.
In order to compute the probability of reaching state label α at the MC level,
we use standard techniques from [2] that require the partitioning of the state
space into three sets S⊤, S⊥, and S? that correspond to states reaching α with
probability 1, states from which α cannot be reached, and the remaining states,
respectively. Once this partition is chosen, the reachability probabilities of all
states in S? are computed as the unique solution of a linear equation system
(see [2], Theorem 10.19, p.766). We now explain how we identify states from
S⊥, S⊤ and S? and how we encode the linear equation system, which leads to
the resolution of quantitative reachability.
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Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label. We start by
setting S⊤ = {s | V (s) = α}. We then extend C∃r(P) in order to identify the set
S⊥. Let C

′
∃r(P , α) = (X ∪X ′, D∪D′, C ∪C′) be such that (X,D,C) = C∃r(P),

X ′ contains one Boolean variable λs and one integer variable αs with domain
[0, |S|] per state s in S, D′ contains the domains of these variables, and C′ is
composed of the following constraints for each state s ∈ S:
(11) αs = 1, if α = V (s) (12) αs 6= 1, if α 6= V (s) (13) λs ⇔ (ρs ∧ (αs 6= 0))
(14) αs > 1 ⇒

∨
s′∈Succ(s)\{s}(αs = αs′ + 1) ∧ (θs

′

s > 0), if α 6= V (s)

(15) αs = 0 ⇔
∧

s′∈Succ(s)\{s}(αs′ = 0) ∨ (θs
′

s = 0), if α 6= V (s)

Note that variables αs play a symmetric role to variables ωs fromC∃r: instead
of indicating the existence of a path from s0 to s, they characterize the existence
of a path from s to a state labeled with α. In addition, due to Constraint (13),
variables λs are set to true iff there exists a path with non zero probability from
the initial state s0 to a state labeled with α passing by s. Thus, α cannot be
reached from states s.t. λs = false. Therefore, S⊥ = {s | λs = false}.

Finally, we encode the equation system from [2] in a last CSP encoding
that extends C′

∃r. Let C∃r̄(P , α) = (X ∪ X ′, D ∪ D′, C ∪ C′) be such that
(X,D,C) = C′

∃r(P , α), X ′ contains one variable πs per state s in S with domain
[0, 1], D′ contains the domains of these variables, and C′ is composed of the
following constraints for each state s ∈ S:
(16) ¬λs ⇒ πs = 0 (17) λs ⇒ πs = 1, if α = V (s)
(18) λs ⇒ πs = Σs′∈Succ(s)πs′θ

s
s′ , if α 6= V (s)

As a consequence, variables πs encode the probability with which state s
eventually reaches α when s is reachable from the initial state and 0 otherwise.

Let p ∈ [0, 1] ⊆ R be a probability bound. Adding the constraint πs0 ≤ p
(resp. πs0 ≥ p) to the previous C∃r̄ encoding allows to determine if there exists a
MC M |=a

pI P such that PM(♦α) ≤ p (resp ≥ p). Formally, let ∼ ∈ {≤, <,≥, >}
be a comparison operator, we write 6∼ for its negation (e.g., 6≤ is >). This leads
to the following theorem.

Theorem 2. Let P = (S, s0, P, V, Y ) be a pIMC, α ⊆ A be a label, p ∈ [0, 1],
∼ ∈ {≤, <,≥, >} be a comparison operator, and (X,D,C) be C∃r̄(P , α):

– CSP (X,D,C ∪ (πs0 ∼ p)) is satisfiable iff ∃M |=a
pI P s.t. PM(♦α) ∼ p

– CSP (X,D,C ∪ (πs0 6∼ p)) is unsatisfiable iff ∀M |=a
pI P: PM(♦α) ∼ p

6 Prototype Implementation

Our results have been implemented in a prototype tool6 which generates the
above CSP encodings, and CSP encodings from [9] as well. Given a pIMC in
a text format inspired from [19], our tool produces the desired CSP as a SMT

6 All resources, benchmarks, and source code are available online as a Python library
at https://github.com/anicet-bart/pimc_pylib

14

https://github.com/anicet-bart/pimc_pylib


pIMC C∃c C∃r C∃r̄

Benchmark #states #trans. #par. #var. #cstr. time #var. #cstr. time #var. #cstr. time

nand K=1; N=2 104 147 4 255 1,526 0.17s 170 1,497 0.19s 296 2,457 69.57s
nand K=1; N=3 252 364 5 621 3,727 0.24s 406 3,557 0.30s 703 5,828 31.69s
nand K=1; N=5 930 1,371 7 2,308 13,859 0.57s 1,378 12,305 0.51s 2,404 20,165 T.O.
nand K=1; N=10 7,392 11,207 12 18,611 111,366 9.46s 9,978 89,705 13.44s 17,454 147,015 T.O.

Table 1: Benchmarks

instance with the QF NRA logic (Quantifier Free Non linear Real-number Arith-
metic). This instance can then be fed to any solver accepting the SMT-LIB for-
mat with QF NRA logic [3]. For our benchmarks, we chose Z3 [6] (latest version:
4.5.0).

QF NRA does not deal with integer variables. In practice, logics mixing in-
tegers and reals are harder than those over reals only. Thus we obtained better
results by encoding integer variables into real ones. In our implementations each
integer variable x is declared as a real variable whose real domain bounds are its
original integer domain bounds; we also add the constraint x < 1 ⇒ x = 0. Since
we only perform incrementation of x this preserves the same set of solutions.

In order to evaluate our prototype, we extend the nand model from [15]7.
The original MC nand model has already been extended as a pMC in [7], where
the authors consider a single parameter p for the probability that each of the
N nand gates fails during the multiplexing. We extend this model to pIMC by
considering intervals for the probability that the initial inputs are stimulated
and we have one parameter per nand gate to represent the probability that it
fails. pIMCs in text format are automatically generated from the PRISM model.

Table 1 summarizes the size of the considered instances of the model (in terms
of states, transitions, and parameters) and of the corresponding CSP problems
(in terms of number of variables and constraints). In addition, we also present
the resolution time of the given CSPs using the Z3 solver. Our experiments were
performed on a 2.4 GHz Intel Core i5 processor with time out set to 10 minutes
and memory out set to 2Gb.

7 Conclusion and future work

In this paper, we have compared several Markov Chain abstractions in terms
of succinctness and we have shown that Parametric Interval Markov Chain is a
strictly more succinct abstraction formalism than other existing formalisms such
as Parametric Markov Chains and Interval Markov Chains. In addition, we have
proposed constraint encodings for checking several properties over pIMC. In the
context of qualitative properties such as existencial consistency or consistent
reachability, the size of our encodings is significantly smaller than other existing
solutions. In the quantitative setting, we have compared the two usual semantics
for IMCs and pIMCs and showed that both semantics are equivalent with respect
to quantitative reachability properties. As a side effect, this result ensures that
all existing tools and algorithms solving reachability problems in IMCs under the

7 Available online at http://www.prismmodelchecker.com
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once-and-for-all semantics can safely be extended to the at-every-step semantics
with no changes. Based on this result, we have then proposed CSP encodings
addressing quantitative reachability in the context of pIMCs regardless of the
chosen semantics. Finally, we have developed a prototype tool that automatically
generates our CSP encodings and that can be plugged to any constraint solver
accepting the SMT-LIB format as input.

We plan to develop our tool for pIMC verification in order to manage other,
more complex, properties (e.g., supporting the LTL-language in the spirit of what
Tulip [19] does). We also plan on investigating a practical way of computing and
representing the set of all solutions to the parameter synthesis problem.
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Fig. 8: IMC I, MCs M1 and M2 s.t.
M1 |=a

I I and M1 |=o
I I; M2 |=a

I I and M2 6|=o
I I

the graph representation of I, M1, and M2 are isomorphic;

A Complements to Section 3

A.1 |=a

I
is More General than |=o

I

The at-every-step satisfaction relation is more general than the once-and-for-all
satisfaction relation. Let I = (S, s0, P, V ) be an IMC and M = (T, t0, p, V

′) be a
MC. We show that 1. M |=o

I I ⇒ M |=a
I I; 2. in general M |=a

I I 6⇒ M |=o
I I.

The following examples also illustrates that even if a Markov chain satisfies an
IMC with the same graph representation w.r.t. the |=a

I relation it may not verify
the |=o

I relation.

1. If M |=o
I I then by definition of |=o

I we have that T = S, t0 = s0, and
p(s)(s′) ∈ P (s, s′). The relation R = {(s, s) | s ∈ S} is a satisfaction relation
between M and I (consider for each state in S the correspondence function
δ : S → (S → [0, 1]) s.t. δ(s)(s′) = 1 if s = s′ and δ(s)(s′) = 0 otherwise).
Thus M |=a

I I.
2. Consider IMC I, MCs M1, M2, and M3 from Figure 8.

(a) By definition of |=o
I we have that M1 |=o

I I. Thus by the previous remark
we have that M1 |=a

I I (t0 = s0, t1 = s1 and t2 = s2).
(b) By definition of |=o

I we have that M2 6|=o
I I. However the relation R con-

taining (t0, s0), (t1, s1), (t1, s2), (t2, s1) and (t2, s2) is a satisfaction rela-
tion between I and M2. Consider the functions: δ from T to (S → [0, 1])
s.t. δ(t1)(s1) = 4/5, δ(t1)(s2) = 1/5, δ(t2)(s2) = 1, and δ(t)(s) = 0 other-
wise; δ′ with the same signature than δ s.t. δ′(t1)(s1) = 1, δ′(t2)(s2) = 1,
and δ′(t)(s) = 0 otherwise. We have that δ is a correspondence func-
tion for the pair (t0, s0) and δ′ is a correspondence function for all the
remaining pairs in R. Thus there exists a MCs M s.t. M |=a

I I and
M 6|=o

I I.

A.2 Model Comparison

According to the given succinctness definition, Lemma 1 states that IMC and pMC

are not comparable w.r.t. both satisfaction relation |=o
I and |=a

I and that both
satisfaction relations for IMCs are not comparable.
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Fig. 9: IMC I with three pMCs P1, P2, and Pn entailed by I

Lemma 1. pMC and IMC abstraction models are not comparable: 1. pMC 6≤ (IMC, |=a
I); 2. pMC 6≤ (IMC, |=o

I); 3. (IMC
pMC; 4. (IMC, |=a

I) 6≤ (IMC, |=o
I); 5. (IMC, |=

o
I) 6≤ pMC; 6. (IMC, |=o

I) 6≤ (IMC, |=a
I);

We give a sketch of proof for each statement. Let (L1, |=1) and (L2, |=2) be
two Markov chain abstraction models. Recall that according to the succinctness
definition (cf. Definition 5) L1 6≤ L2 if there exists L2 ∈ L2 s.t. L1 6≡ L2 for all
L1 ∈ L1.

1. Consider IMC I and pMCs P1, P2, and Pn (with n ∈ N) from Figure 9.
presents an IMC I verifying case (1) P1, P2, and Pn (with n ∈ N) are
entailed by I w.r.t. |=a

I but none of them is equivalent to I. Indeed one
needs an infinite countable number of states for creating a pMC equivalent
to I w.r.t. |=a

I . However states space must be finite.
2. Consider IMC I ′ similar to I from Figure 9 excepted that the transition

from s1 to s0 is replaced by the interval [0.5, 1]. Since the pIMC definition
does not allow to bound values for parameters there is no equivalent I ′ w.r.t.
|=a

I .
3. Note that parameters in pMCs enforce transitions in the concrete MCs to

receive the same value. Since parameters may range over continuous intervals
there is no hope of modeling such set of Markov chains using a single IMC.
Figure 9 illustrates this statement.

4. Recall that (IMC, |=a
I) is more general than (IMC, |=o

I). One cannot restrict
the set of Markov chains satisfying an IMC w.r.t. |=a

I to be bisimilar to the
set of Markov chain satisfying an IMC w.r.t. |=o

I.
5. Same remark than item (3)
6. Counter-example similar to which in statement (2) (i.e., in order to simulate

the at-every-step satisfaction relation with the once-and-for-all satisfaction
relation one needs an infinite uncountable number of states).

Proposition 1. The Markov chain abstraction models can be ordered as fol-
lows w.r.t. succinctness: (pIMC, |=o

pI) < (pMC, |=p), (pIMC, |=o
pI) < (IMC, |=o

I) and
(pIMC, |=a

pI) < (IMC, |=a
I).

Proof. Recall that the pIMC model is a Markov chain abstraction model allow-
ing to declare parametric interval transitions, while the pMC model allows only
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Fig. 10: pMC P , IMC I, MC M1, and MC M2 s.t.
M1 |=p P and M1 |=a

I I but M2 6|=p P and M2 |=a
I I while P is entailed by I

parametric transitions (without intervals), and the IMC model allows interval
transitions without parameters. Clearly, any pMC and any IMC can be trans-
lated into a pIMC with the right semantics (once-and-for-all for pMCs and the
chosen IMC semantics for IMCs). This means that (pIMC, |=o

pI) is more succinct
than pMC and pIMC is more succinct than IMC for both semantics. Furthermore
since pMC and IMC are not comparable (cf Lemma 1), we have that the pIMC

abstraction model is strictly more succinct than the pMC abstraction model and
than the IMC abstraction model with the right semantics.

B Complements to Section 4

B.1 CSP Encoding for Qualitative Reachability

Proof (Proposition 2). Let P = (S, s0, P, V, Y ) be a pIMC.
[⇒] The CSP C∃c(P) = (X,D,C) is satisfiable implies that there exists a

valuation v of the variables in X satisfying all the constraints in C. Consider the
MC M = (S, s0, p, V ) such that p(s, s′) = v(θs

′

s ), for all θs
′

s ∈ Θ and p(s, s′) = 0
otherwise.

Firstly, we show by induction that for any state s in S: “if s is reachable in
M then v(ρs) equals to true”. This is correct for the initial state s0 thanks to the
Constraint (1). Let s be a state in S and assume that the property is correct for
all its predecessors. By the Constraints (2), v(ρs) equals to true if there exists
at least one predecessor s′′ 6= s reaching s with a non-zero probability (i.e.,
v(θss′′ ) 6= 0). This is only possible by the Constraint (3) if v(ρs′′) equals to true.
Thus v(ρs) equals to true if there exists one reachable state s′′ s.t. v(θss′′ ) 6= 0.

Secondly, we show that M satisfies the pIMC P . We use Theorem 4 from
[9] stating that |=a

pI and |=o
pI are equivalent w.r.t. qualitative reachability. We

proved above that for all reachable states s in M, we have v(ρs) equals to true.
By the Constraints (5) it implies that that for all reachable states s in M:
p(s, s′) ∈ P (s, s′) for all s and s′.8

8 As illustrated in Example 7, M is not a well formed MC since some unreachable
states do not respect the probability distribution property. However, one can correct
it by simply setting one of its outgoing transition to 1 for each unreachable state.
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[⇐] The pIMC P is consistent implies by the Theorem 4 from [9] stating that
|=a

pI and |=o
pI are equivalent w.r.t. qualitative reachability, that there exists an

implementation of the form M = (S, s0, p, V ) where, for all reachable states s in
M, it holds that p(s, s′) ∈ P (s, s′) for all s′ in S. Consider M′ = (S, s0, p

′, V )
s.t. for each non reachable state s in S: p′(s, s′) = 0, for all s′ ∈ S. The valu-
ation v is s.t. v(ρs) equals true iff s is reachable in M, v(θs

′

s ) = p′(s, s′), and
for each parameter y ∈ Y a valid value can be selected according to p and P
when considering reachable states. Finally, by construction, v satisfies the CSP
C∃c(P). ⊓⊔

C Complements to Section 5

C.1 Equivalence of |=o

I
and |=a

I
w.r.t quantitative reachability

We first introduce some notations. Let I = (S, s0, P, V
I) be an IMC and M =

(T, t0, p, V
M ) be an MC s.t. M |=a

I I. Let R ⊆ T × S be a satisfaction relation
between M and I. For all t ∈ T we write R(t) for the set {s ∈ S | t R s},
and for all s ∈ S we write R−1(t) for the set {t ∈ T | s R t}. Furthermore we

say that M satisfies I with degree n (written M
n
|=a

I I) if M satisfies I with
a satisfaction relation R s.t. each state t ∈ T is associated by R to at most n
states from S (i.e., |R(t)| ≤ n); M satisfies I with the same structure than I
if M satisfies I with a satisfaction relation R s.t. each state t ∈ T is associated
to at most one state from S and each state s ∈ S is associated to at most one
state from T (i.e., |R(t)| ≤ 1 for all t ∈ T and |R−1(s)| ≤ 1 for all s ∈ S).

Proposition 4. Let I be an IMC. If a MC M satisfies I with degree n ∈ N

then there exists a MC M′ satisfying I with degree 1 such that M and M′ are
bisimilar.

The main idea for proving Proposition 4 is that if an MC M with states space
T satisfies an IMC I with a states space S according to a satisfaction relation
R then, each state t related by R to many states s1, . . . , sn (with n > 1) can
be split in n states t1, . . . , tn. The derived MC will satisfy I with a satisfaction
relation R′ where each ti is only associated by R′ to the state si (i ≤ n). This
M′ will be bisimilar to M and it will satisfy I with degree 1. Note that by
construction the size of the resulting MC is in O(|M| × |I|).

Proof (Proposition 4). Let I = (S, s0, P, V
I) be an IMC and M = (T, t0, p, V )

be a MC. If M satisfies I (with degree n) then there exists a satisfaction relation
R verifying the |=a

I satisfaction relation. For each association t R s, we write
δst the correspondence function chosen for this pair of states. M satisfies I with
degree n means that each state in M is associated by R to at most n states
in I. To construct a MC M′ satisfying I with degree 1 we create one state in
M′ per association (t, s) in R. Formally, let M′ be equal to (U, u0, p

′, V ′) such
that U = {us

t | t R s}, u0 = us0
t0
, V ′ = {(us

t , v) | v = V (t)}, and p′(us
t )(u

s′

t′ ) =
p(t)(t′)×δst (t

′)(s′). Following computation shows that the outgoing probabilities
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given by p′ form a probability distribution for each state in M′ and thus that
M′ is a MC.

∑

t′Rs′

p′(us
t )(u

s′

t′ ) =
∑

t′Rs′

p(t)(t′)× δst (t
′)(s′)

=
∑

t′∈T

p(t)(t′)×
∑

s′∈S

δst (t
′)(s′) =

∑

t′∈T

p(t)(t′)× 1 = 1

Finally, by construction of M′ based on M which satisfies I, we get that
R′ = {(us

t , s) | t ∈ T, s ∈ S} is a satisfaction relation between M′ and I.
Furthermore |{s | u R′ s}| equals at most one. Thus, we get that M′ satisfies I
with degree 1.

Consider the relation B′ = {(us
t , t) ⊆ U × T | t R s}. We note B the closure

of B′ by transitivity, reflexivity and symetry (i.e., B is the minimal equivalence
relation based on B′). We prove that B is a bisimulation relation between M
and M′. By construction each equivalence class from B contains exactly one
state t from T and all the states us

t such that t R s. Let (us
t , t) be in B, t′ be a

state in T , and B be the equivalence class from B containing t′ (i.e., B is the set
{t′}∪{us′

t′ ∈ U | s′ ∈ S and t′ R s′}). Firstly note that by construction the labels
agree on us

t and t: V ′(us
t ) = V (t). Secondly the following computation shows that

p′(us
t )(B ∩ U) equals to p(t)(B ∩ T ) and thus that us

t and t are bisimilar:

p′(us
t )(B ∩ U) =

∑

us′

t′
∈B∩U

p′(us
t )(u

s′

t′ ) =
∑

us′

t′
∈B∩U

p(t)(t′)× δst (t
′)(s′)

=
∑

{s′∈S|s′Rt′}

p(t)(t′)× δst (t
′)(s′) = p(t)(t′)×

∑

{s′∈S|s′Rt′}

δst (t
′)(s′)

= p(t)(t′)× 1 = p(t)({t′}) = p(t)(B ∩ T )

⊓⊔

Corollary 1. Let I be an IMC, M be a MC satisfying I, and γ be a PCTL∗

formulae. There exists a MC M′ satisfying I with degree 1 such that the prob-
ability PM′

(γ) equals the probability PM(γ).

Corollary 1 is derived from Proposition 4 joined with the probability preserva-
tion of the PCTL* formulae on bisimilar Markov chains (see [2], Theorem 10.67,
p.813). Corollary 1 allows to reduce to one the number of states in the pIMC I
satisfied by each state in the MC M while preserving probabilities.

Lemma 2. Let I = (S, s0, P, V ) be an IMC, M = (T, t0, p, V ) be a MC satis-
fying I with degree 1, and α ⊆ A be a proposition. If M does not have the same
structure than I then there exists an MC M1 (resp. M2) satisfying I with a set
of states S1 (resp. S2) s.t. S1 ⊂ S and PM1(♦α) ≤ PM(♦α) (resp. S2 ⊂ S and
PM2(♦α) ≥ PM(♦α)).

Lemma 2 reduces the number of states in M while preserving the maximal
or minimal reachability probability. This lemma has a constructive proof. Here
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is the main idea of the proof. We first select one state s from the IMC I which
is satisfied by many states t1, . . . , tn in M. The MC M′ keeping the state tk
minimizing the probability of reaching α in M and removing all the other states
ti (i.e., remove the states ti s.t. i 6= k and move the transitions arriving to a
state ti s.t. i 6= k to arrive to the state tk) will have less states than M and
verifies PM1(♦α) ≤ PM(♦α).

Proof (Lemma 2). Let I = (S, s0, P, V
I) be an IMC and M = (T, t0, p, V ) be a

MC satisfying I with degree 1. We write R the satisfaction relation between M
and I with degree 1. The following proves in 3 steps the PM1(♦α) ≤ PM(♦α)
case.

1. We would like to construct a MC M′ satisfying I with less states than M′

such that PM′

(♦α) ≤ PM(♦α). Since the degree of R equals to 1 each state
t in T is associated to at most one state s in S. Furthermore, since M
does not have the same structure than I then there exists at most one state
from S which is associated by R to many states from T . Let s̄ be a state
from S such that |R−1(s)| ≥ 2, T̄ = {t1, . . . , tn} be the set R−1(s) where
the ti are ordered by decreasing probability of reaching α (i.e., PM

ti
(♦α) ≥

PM
ti+1

(♦α) for all 1 ≤ i < n). In the following we refer t̄ as tn. We produce
M′ from M by replacing all the transitions going to a state t1, . . . , tn−1 by
a transition going to tn, and by removing the corresponding states. Formally
M′ = (T ′, t0, p

′, V ′) s.t. T ′ = (T \ T̄ ) ∪ {t̄}, V ′ is the restriction of V on T ′,
and for all t, t′ ∈ T ′: p′(t)(t′) = p(t)(t′) if t′ 6= t̄ and p′(t)(t′) =

∑
t′∈T̄

p(t)(t′)

otherwise.
∑

t′∈T ′

p′(t)(t′) =
∑

t′∈T ′\{t̄}

p′(t)(t′) + p′(t)(t̄)

(1)
=

∑

t′∈T ′\{t̄}

p(t)(t′) +
∑

t′∈T̄

p(t)(t′)

=
∑

t′∈T ′\{t̄}∪T̄

p(t)(t′)
(2)
=

∑

t′∈T

p(t)(t′) = 1

Previous computation holds for each state t inM′. It shows that the outgoing
probabilities given by p′ form a probability distribution for each state in M′

and thus that M′ is a MC. Note that step (1) comes from the definition of p′

with respect to p and that step (2) comes from the definition of T ′ according
to T̄ and t̄.

2. We now prove that M′ implements I. M satisfies I implies that there a
exists a satisfaction relation R between M and I. Let R′ ⊆ T × S be s.t.
tR′ s if t R s and t̄R′ s̄ if there exists a state t′ ∈ T̄ s.t. t′ R s̄. We prove that
R′ is a satisfaction relation between M′ and I. For each pair (t, s) ∈ R we
note δ(s,t) the correspondance function given by the satisfaction relation R.
Let (t, s) be in R′ and δ′ : T ′ → (S → [0, 1]) be s.t. δ′(t′)(s′) = δ(t,s)(t

′)(s′) if
t′ 6= t̄ and δ′(t′)(s′) = maxt′∈T̄ (δ(t,s)(t

′)(s′)) otherwise. δ′ is a correspondence
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function for the pair (t, s) in R′ such as required by the |=a
I satisfaction

relation:

(a) Let t′ be in T . If t′ 6= t̄ then δ′(t′) is equivalent to δ(t,s)(t
′)(s′) which

is by definition a distribution on S. Otherwise t′ = t̄ and the following
computation proves that δ′(t̄) is a distribution on S. For the step (1)
remind that R is a satisfaction relation with degree 1 and that t̄ R s̄.
This implies that δ(t,s)(t̄)(s

′) equals to zero for all s′ 6= s̄. For the step
(2), R is a satisfaction relation with degree 1 implies that δ(t,s)(t

′)(s′)
equals to 0 or 1 for all t′ ∈ T and s′ ∈ S. Finally the recursive definition
of the satisfaction relation R implies that there exists at least one state
t′′ ∈ T̄ s.t. δ(t,s)(t

′′)(s̄) does not equal to zero (i.e., equals to one).

∑

s′∈S

δ′(t̄)(s′) =
∑

s′∈S\{s̄}

δ′(t̄)(s′) + δ′(t̄)(s̄)

=
∑

s′∈S\{s̄}

δ(t,s)(t̄)(s
′) + maxt′′∈T̄ (δ(t,s)(t

′′)(s̄))

(1)
= maxt′′∈T̄ (δ(t,s)(t

′′)(s′))

(2)
= 1

(b) Let s′ be in S. Step (1) uses the definition of p′ according to p. Step (2)
uses the definition of δ′ according to δ(t,s). Step (3) comes from the fact
that for all t, t′ ∈ T × T̄ , we have by the definition of the satisfaction
relation R with degree 1 and by construction of T̄ that if p(t, t′) 6= 0
then δ(t)(s)(t

′, s̄) = 1 and δ(t,s)(t
′)(s′) = 0 for all s′ 6= s̄. Finally, step (4)

comes from the definition of the correspondence function δ(t,s) for the
pair (t, s) in R.

∑

t′∈T ′

p′(t)(t′)× δ′(t′)(s′)

=
∑

t′∈T ′\{t̄}

p′(t)(t′)× δ′(t′)(s′) + p′(t, t̄)× δ′(t̄)(s′)

(1)
=

∑

t′∈T ′\{t̄}

p(t)(t′)× δ′(t′)(s′) +
∑

t′∈T̄

p(t)(t′)× δ′(t̄)(s′)

(2)
=

∑

t′∈T ′\{t̄}

p(t)(t′)× δ(t,s)(t
′)(s′) +

∑

t′∈T̄

p(t)(t′)×maxt′′∈T̄ (δ(t,s)(t
′′)(s′))

(3)
=

∑

t′∈T ′\{t̄}

p(t)(t′)× δ(t,s)(t
′)(s′) +

∑

t′∈T̄

p(t)(t′)× δ(t,s)(t
′)(s′)

=
∑

t′∈T ′\{t̄}∪T̄

p(t)(t′)× δ(t,s)(t
′)(s′) =

∑

t′∈T

p(t)(t′)× δ(t,s)(t
′)(s′)

(4)
∈ P (s, s′)
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(c) Let t′ be in T ′ and s′ be in S. We have by construction of R′ from R
that if δ′(t′)(s′) > 0 then (t′, s′) ∈ R.

3. Ne now prove that the probability of reaching α from t̄ is lower in M′ than
in M. We consider the MC M′′ from M where the states containing the
label α are replaced by absorbing states. Formally M′′ = (T, t0, p

′′, V ) such
that for all t, t′ ∈ T : p′′(t, t′) = p(t, t′) if α 6⊆ V (t) else p′′(t, t′) = 1 if
t = t′ and p′′(t, t′) = 0 otherwise. By definition of the reachability property
we get that PM′′

t (♦α) equals to PM
t (♦α) for all state t in T ′. Following

computation concludes the proof. Step (1) comes from Lemma 3. Step (2)
comes by construction of M′ from M. Step (3) comes by construction of
M′′ from M where states labeled with α are absorbing states. Step (4)
comes from the fact that PM′′

tn
(♦α) is equal to PM′′

tn
(¬(t1 ∨ . . . ∨ tn) U α) +

Σ1≤i≤nP
M′′

tn
(¬(t1 ∨ . . . ∨ tn) U ti) × PM′′

ti
(♦α). Step (5) uses the fact that

PM
ti
(♦α) ≥ PM

tn
(♦α) for all 1 ≤ i ≤ n and by construction this is also correct

in M′′. Last steps are straightforward.

PM′

t̄ (♦α)

(1)
=

PM′

t̄
(¬t̄ U α)

1− PM′

t̄
(¬α U t̄)

(2)
=

PM
tn
(¬(t1 ∨ . . . ∨ tn) U α)

1− PM
tn
(¬α U (t1 ∨ . . . ∨ tn))

(3)
=

PM′′

tn
(¬(t1 ∨ . . . ∨ tn) U α)

1− PM′′

tn
(♦(t1 ∨ . . . ∨ tn))

(4)
=

PM′′

tn
(♦α) −

∑
1≤i≤n

PM′′

tn
(¬(t1 ∨ . . . ∨ tn) U ti)× PM′′

ti
(♦α)

1− PM′′

tn
(♦(t1 ∨ . . . ∨ tn))

(5)

≤

PM′′

tn
(♦α) −

∑
1≤i≤n

PM′′

tn
(¬(t1 ∨ . . . ∨ tn) U ti)× PM′′

tn
(♦α)

1− PM′′

tn
(♦(t1 ∨ . . . ∨ tn))

(6)
=

PM′′

tn
(♦α) × (1−

∑
1≤i≤n

PM′′

tn
(¬(t1 ∨ . . . ∨ tn) U ti))

1− PM′′

tn
(♦(t1 ∨ . . . ∨ tn))

(7)
=

PM′′

tn
(♦α) × (1− PM′′

tn
(♦(t1 ∨ . . . ∨ tn)))

1− PM′′

tn
(♦(t1 ∨ . . . ∨ tn))

= PM′′

tn
(♦α)

= PM
t̄ (♦α)

The same method can be used for proving the PM2(♦α) ≥ PM(♦α) case by
defining T̄ = {t1, . . . , tn} be the set R−1(s) s.t. the ti are ordered by increasing
probability of reaching α. Thereby the ≤ symbol at step (5) for the computation
of PM′

t̄
(♦α) is replaced by the ≥ symbol. ⊓⊔
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Lemma 3. Let M = (S, s0, p, V ) be a MC, α ⊆ A be a proposition, and s be a
state from S. Then

PM
s (♦α) =

PM
s (¬s U α)

1− PM
s (¬α U s)

Lemma 3 is called in the proof of Lemma 2.

Proof (Lemma 3). Let S′ be the subset of S containing all the states labeled with
α in M. We write Ωn with n ∈ N∗ the set containing all the paths ω starting
from s s.t. state s appears exactly n times in ω and no state in ω is labeled with
α. Formally Ωn contains all the ω = s1, . . . , sk ∈ Sk s.t. k ∈ N, s1 is equal to s,
|{i ∈ [1, k] | si = s}| = n, and α 6⊆ V (si) for all i ∈ [1, k]. We get by (a) that
(PM

s (Ωn × S′))n≥1 is a geometric series. In (b) we partition the paths reaching
α according to the Ωn sets and we use the geometric series of the probabilities
to retrieve the required result.

(a) PM
s (Ωn × S′) = PM

s (Ω1 ×Ωn−1 × S′)

= PM
s (Ω1 × {s})× PM

s (Ωn−1 × S′)

= PM
s (¬α U s)× PM

s (Ωn−1 × S′)

(b) PM
s (♦α) = Σ+∞

n=1P
M
s (Ωn × S′)

=
PM
s (Ω1 × S′)

1− PM
s (¬α U s)

=
PM
s (¬s U α)

1− PM
s (¬α U s)

⊓⊔

Lemma 4. Let I = (S, s0, P, V ) be an IMC, M be an MC satisfying I, and
α ⊆ A be a proposition. There exist MCs M1 and M2 satisfying I with the
same structure than I such that PM1(♦α) ≤ PM(♦α) ≤ PM2(♦α).

Lemma 4 is a consequence of Corollary 1 and Lemma 2 and states that the
maximal and the minimal probability of reaching a given proposition is realized
by Markov chains with the same structure than the IMC.

Proof (Lemma 4). Let I be an IMC and M be a MC satisfying I. Consider the
sequence of MCs (Mn)n∈N s.t.M0 is the MC satisfying I with degree 1 obtained
by Corollary 1 and for all n ∈ N, Mn+1 is the MC satisfying I with strictly less
states than Mn and verifying PMn+1(♦α) ≤ PMn(♦α) given by Lemma 2 if
Mn does not have the same structure than I and equal to Mn otherwise. By
construction (Mn)n∈N is finite and its last element is a Markov chain M′ with
the same structure than I s.t. PM′

(♦α) ≤ PM(♦α). ⊓⊔

26



Theorem 1 Let I = (S, s0, P, V ) be an IMC, α ⊆ A be a state label, ∼ ∈ {≤, <
,>,≥} and 0 < p < 1. I satisfies PI(♦α)∼p with the once-and-for-all semantics
iff I satisfies PI(♦α)∼p with the at-every-step semantics.

Proof. Let I = (S, s0, P, V ) be an IMC, α ⊆ A be a state label, ∼ ∈ {≤, <,>
,≥} and 0 < p < 1. Recall that according to an IMC satisfaction relation the
property PI(♦α)∼p holds iff there exists an MC M satisfying I (with the chosen
semantics) such that PM(♦α)∼p. Recall also that |=a

I is more general than |=o
I:

for all MC M if M |=o
I I then M |=o

I I

[⇒] Direct from the fact that |=o
I is more general than |=o

I (cf. Appendix A.1)
[⇐] PI(♦α)∼p with the at-every-step semantics implies that there exists a MC

M s.t. M |=a
I I and M∼p. Thus by Lemma 4 there exists a MC M′ s.t.

M′ |=a
I I, M′∼p, M′ has the same structure than I. However if M′ has the

same structure than I thenM′ satisfies I with the one-and-for-all semantics.
⊓⊔

C.2 CSP Encodings for Quantitative Reachability

Proposition 5. Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label.
There exists a MC M |=a

pI P iff there exists a valuation v solution of the CSP

C′
∃r(P , α) s.t. for each state s ∈ S: v(λs) is equals to true iff PM

s (♦α) 6= 0.

Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label. For each
state s ∈ S, the variable αs plays a symmetric role to the variable ωs from
C∃r: instead of indicating the existence of a path from s0 to s, it characterizes
the existence of a path from s to a state labeled with α. As for the C∃r CSP
encoding, each solution of the CSP C∃r(P, α) corresponds to a MC M satisfying
P w.r.t. |=o

pI. Furthermore the constraints added in C′
∃r ensures that αs is equal

to k iff there exists a path of length k − 1 with non zero probability from s to a
state label with α in M. Thus by Constraint (13), variables λs is equal to true

iff there exists a path with non zero probability from the initial state s0 to a
state labeled with α passing by s.

Proposition 6. Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a proposition.
There exists a MC M |=a

pI P iff there exists a valuation v solution of the CSP

C∃r̄(P , α) s.t. v(πs) is equal to PM
s (♦α) if s is reachable from the initial state

s0 in M and is equal to 0 otherwise.

Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label. C∃r̄ extends
the CSP C′

∃r that produces a MC M satisfying P (cf. Proposition 5) by com-
puting the probability of reaching α in M. In order to compute this probability,
we use standard techniques from [2] that require the partitioning of the state
space into three sets S⊤, S⊥, and S? that correspond to states reaching α with
probability 1, states from which α cannot be reached, and the remaining states,
respectively. Once this partition is chosen, the reachability probabilities of all
states in S? are computed as the unique solution of an equation system (see [2],
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Theorem 10.19, p.766). Recall that for each state s ∈ S variable αs is equal to
true iff s is reachable in M and s can reach α with a non zero probability. Thus
we consider S⊥ = {s | αs = false}, S⊤ = {s | V (s) = α}, and S? = S \ (S⊥∪S⊤).
Finally constraints in C∃r̄ encodes the equation system from [2] according to
chosen S⊥, S⊤, and S?. Thus πs0 is equal to the probability in M to reach α.

Theorem 2. Let P = (S, s0, P, V, Y ) be a pIMC, α ⊆ A be a label, p ∈ [0, 1],
∼ ∈ {≤, <,≥, >} be a comparison operator, and (X,D,C) be C∃r̄(P , α):

– CSP (X,D,C ∪ (πs0 ∼ p)) is satisfiable iff ∃M |=a
pI P s.t. PM(♦α) ∼ p

– CSP (X,D,C ∪ (πs0 6∼ p)) is unsatisfiable iff ∀M |=a
pI P : PM(♦α) ∼ p

Let P = (S, s0, P, V, Y ) be a pIMC, α ⊆ A be a state label, p ∈ [0, 1], and
∼ ∈ {≤, <,≥, >} be a comparison operator. Recall that C∃r̄(P , α) is a CSP
s.t. each solution corresponds to a MC M satisfying P where πs0 is equal to
PM(♦α). Thus adding the constraint πs0 ∼ p allows to find a MC M satisfying
P s.t. PM(♦α) ∼ p. This concludes the first item presented in the theorem. For
the second item, we use Theorem 1 with the Proposition 6 which ensure that if
the CSP C∃r̄(P , α) plus the constraint πs0 6∼ p is not satisfiable then there is
no MC satisfying P w.r.t. |=a

pI s.t. PM(♦α) 6∼ p; thus PM(♦α) ∼ p for all MC
satisfying P w.r.t. |=a

pI.
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