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Abstract: Multi-view data, which represent distinct but related group-
ings of variables, can be useful for identifying relevant and robust clustering
structures among observations. A large number of multi-view classification
algorithms have been proposed in the fields of computer science and ge-
nomics; in this work, we instead focus on the task of merging or splitting an
existing hard or fuzzy cluster partition based on multi-view data. This work
is specifically motivated by an application involving multi-omic breast can-
cer data from The Cancer Genome Atlas, where multiple molecular profiles
(gene expression, miRNA expression, methylation, and copy number alter-
ations) are used to further subdivide the five currently accepted intrinsic
tumor subtypes into clinically distinct sub-groups of patients. In addition,
we investigate the performance of the proposed multi-view splitting and
aggregation algorithms, as compared to single- and concatenated-view al-
ternatives, in a set of simulations. The multi-view splitting and aggregation
algorithms developed in this work are implemented in the maskmeans R
package.

MSC 2010 subject classifications: Primary 62H30, 62P10; secondary
92D10.

Keywords and phrases: Clustering, multi-view, cluster merging and
splitting, multi-omics data, TCGA.

1. Introduction

Multi-view clustering refers to the problem of identifying distinct groupings of
observations from data that consist of multiple related sets of features, or views;
in biology, these clustering approaches have been particularly motivated by the
emergence of multi-view datasets in genomics (e.g., where gene expression, copy
number alterations, and methylation are measured on the same individuals,
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Chao et al., 2017) and neuroinformatics (e.g., functional magnetic resonance
imaging, Fratello et al., 2017). One of the underlying assumptions of such ap-
proaches is that multi-faceted and heterogeneous views of the same problem can
be useful in identifying or refining relevant and robust clustering structures, as
they may reflect different aspects of complex clustering structures. Multi-view
learning thus falls under the broader umbrella of so-called intermediate integra-
tive analyses (Hamid et al., 2009), in which rather than being simply concate-
nated together or analyzed in isolation, each view is permitted to “speak for
itself” using weights, transformations, or model-based approaches to combine
results across views.

Multi-view classification algorithms have been the focus of an extensive amount
of research in the field of computer science in recent years; see Xu et al. (2013)
and Chao et al. (2017) for reviews and discussion of the current state-of-the-
art. Dimensionality reduction is a common feature of such algorithms due to
the high dimensionality of data, and potentially different dimensionality among
views. Existing methods make use of a variety of approaches, including spectral
clustering (Kumar et al., 2011, Kumar and Daumé, 2011), bi-clustering (Kout-
sonikola and Vakali, 2009, Pensa et al., 2005), and density-based clustering of
multi-view data (Kailing et al., 2004, Taskesen et al., 2016). Cai et al. (2013)
proposed the multi-view K-means algorithm as a robust and computationally
efficient method to cluster large-scale heterogeneous multi-view datasets; Chen
et al. (2013) extended this idea to incorporate weights on both views and vari-
ables. Multi-view clustering techniques have also been specifically developed in
the context of multiple high-throughput molecular assays; see Rappoport and
Shamir (2018) for a detailed review. For example, Serra et al. (2015) proposed
the MVDA approach in which membership matrices from individual omics are
integrated into a single robust patient subtype, and Yang and Michailidis (2016)
used non-negative matrix factorization to jointly decompose multi-view omics
data. The iCluster+ approach (Shen et al., 2009, Mo et al., 2013, Shen et al.,
2012) uses a joint latent-variable model to cluster multi-omics data, while SNF
(Wang et al., 2014) combines omic information using a network-based approach
to identify patient subtypes.

To our knowledge, these multi-view classification techniques focus on either
de novo unsupervised clustering or supervised clustering of a multi-view dataset;
here, we instead focus on the task of merging or splitting an existing hard or
fuzzy cluster partition based on multi-view data. Merging/splitting can address
the question of selecting the ideal number of clusters, or can be of interest
when an initial overly simplistic or complex clustering is available. For instance,
to address the overestimation of the number of clusters in a Gaussian mixture
model as determined by the Bayesian information criterion, Baudry et al. (2010)
proposed a method to hierarchically aggregate components using an entropy
criterion to obtain a soft clustering for each number of clusters less than or
equal to the initial number. The recently proposed clustree R package (Zappia
and Oshlack, 2018) takes a different approach by providing a graphical approach
to visualize different clustering resolutions.

In this work, we address the specific problem of aggregating or splitting an
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existing initial data partition in the multi-view framework; the initial parti-
tion of data may represent a clustering of a single data view, or alternatively
can represent a pre-existing grouping of individuals. This work is specifically
motivated by an application involving multi-omic breast cancer data, where
multiple omics profiles are used to further subdivide intrinsic tumor subtypes
into clinically distinct sub-groups of patients. In particular, rather than focus-
ing on a de novo clustering of patients, we instead seek to further subdivide a
pre-established grouping of individuals. The remainder of this work has been
organized as follows: the multi-omic breast cancer data that are the focus of our
study are described in Section 2. The multi-view K-means algorithm, as well
as the multi-view splitting and aggregation approaches, are described in detail
in Section 3. In Sections 4 and 5, the proposed methods are benchmarked on
simulated data, and results on the multi-omic breast cancer data are described
in detail. Finally, a discussion and some conclusions are provided in Section 6.

2. Multi-omic breast cancer data

In women, breast cancer is the most commonly diagnosed cancer and is the
leading cause of cancer death worldwide; according to the GLOBOCAN 2018
estimates of cancer incidence and mortality, there will be about 2.1 million
newly diagnosed cases worldwide in 2018 alone (Bray et al., 2018). Multiple
distinct forms, or subtypes, of the disease, corresponding to both morphological
and clinical heterogeneity, as well as significantly different reactions to treat-
ment and prognosis, have been identified. In particular, molecular profiling,
typically based on gene expression data, may be used to characterize breast
tumors beyond classifiers such as clinical prognosis, grade, histology, and im-
munohistochemical analysis of estrogen and progesterone receptors (ER/PR)
and human epidermal growth factor receptor-2 (HER2) over-expression (Perou
et al., 2000). A robust and stable classification of intrinsic breast cancer subtypes
can be inferred from gene expression profiles using the AIMS approach (Paquet
and Hallett, 2000), leading to the five commonly accepted intrinsic subtypes of
Luminal A and B, Basal-like, HER2-enriched, and Normal-like tumors. How-
ever, significant phenotypic heterogeneity has been observed even within these
subtypes; for example, The Cancer Genome Atlas Network (2012) found that
ER+ tumors (Luminal A and B) were the most heterogenous in terms of gene
expression, mutation spectrum, copy number changes, and patient outcome.
The Cancer Genome Atlas (TCGA) represents a vast and valuable resource
for pan-cancer genomic studies, including multi-omic molecular profiles of tumor
samples, and in some cases matched normal samples, for over 30 different cancer
types and over 11,000 individuals (The Cancer Genome Atlas Network et al.,
2013). The public availability of the open-access tier of TCGA data has led to
an explosion of research in cancer informatics and methodological developments
for multi-omic data. In this paper, we focus on the multi-omic profiles (gene
expression, microRNA expression, promoter methylation, and copy number al-
terations [CNA]) measured for 20,179 genes in 506 breast cancer patients in
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the TCGA database. Details about TCGA data acquistion and pre-processing
may be found in Rau et al. (2018). Briefly, gene and miRNA expression were
measured in tumor samples using RNA-seq and miRNA-seq, and normalized
abundance estimates were log-transformed after adding a constant of 1. Pro-
moter methylation in tumor samples for each gene was measured using an Illu-
mina Infinium Human Methylation450 BeadChip array, and probe values were
logit-transformed. Somatic copy number gains and losses were quantified by
comparing Affymetrix 6.0 probe intensities in matched normal and cancer tis-
sue and aggregating measures to gene-level. Intrinsic breast cancer subtypes
were inferred from the RNA-seq data using the AIMS Bioconductor package
(Paquet and Hallett, 2000).

The ultimate goal in this work is to determine whether the use of multi-
view cluster splitting of the inferred intrinsic breast cancer subtypes, based on
RNA-seq, miRNA-seq, promoter methylation, and copy number alterations, can
lead to robust and clinically meaningful sub-clusterings of patients. To this end,
we focus on a subset of 226 genes that play an important role in breast car-
cinogenesis, corresponding to the TP53% and MKI67 genes (respectively a tumor
suppressor and a cellular marker for proliferation), those in the estrogen signal-
ing and ErbB signaling pathways from the KEGG database (Kanehisa et al.,
2016), and those in the SAM40 DNA methylation signature (Fleischer et al.,
2017). Of these, 226, 199 and 222 respectively had gene expression, methylation
and CNA measurements available. In addition, we retained only the 149 miR-
NAs for which the average normalized expression across all 506 patients was
greater than 50.

3. Multi-view clustering algorithms

To build up to our proposed multi-view aggregation and splitting procedure, the
latter of which we will ultimately seek to apply to the TCGA breast cancer data,
we first introduce the framework with some notation. Because the algorithm can
be defined for both fuzzy and hard initial clusterings, we restrict our description
in the manuscript to the former as it represents a generalization of the latter.

3.1. Framework and data scaling

In the clustering setting, we consider a data matrix Z € R™*? with n individuals
described by d quantitative measures, decomposed into V' views:

7=(20,...20,. . 2"),

where Z(") € R™*% and d = ZUV:1 dy. As in Cai et al. (2013), the data here
are assumed to have been scaled to unit-variance. Moreover, in order to avoid
problems due to the potentially different dimensionality for each view, each
scaled variable is also divided by the size of its corresponding view:

7(v)

x () —

v
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We assume that an initial clustering of the n individuals, obtained with an
arbitrary clustering algorithm on external data or one of the V views, is avail-
able. This initial clustering may be either a hard partition or a fuzzy clustering.
In the latter case, we have an initial matrix % = Mg, ., = (7r( ,3 ) where 7T(0k) is
the “probability” (weight) that the i-th individual belongs to the k-th cluster

and ZK( ) O) =1 for each individual 4. In the hard clustering case, Ilk,
al0—1 matrlx with a single 1 in each row.

The aggregation and splitting procedures presented hereafter are respectively
based on the minimization of a criterion that is inspired by the one used in the
multi-view fuzzy K-means algorithm (Wang and Chen, 2017):

n K V 2
SO (e ) X -

is

init

, (3.1

i=1 k=1v=1
where v > 1, 6 > 1, and p = (u1,..., 1K) is the vector of cluster centers
such that py = (u,(cl), e 7/1,](CV)). The vector a = (aq,...,ay), with 21‘;/:1 ay =

1, contains the weight of each view that allows more or less importance to
be attributed to each view in the clustering process. The § parameter tunes
the weights on the fuzzy classifications Ilx, with larger values yielding larger
weights for large probabilities of cluster membership; similarly, the v parameter
tunes the per-view weights, with larger values flattening out the view-specific
contributions to the criterion value.

3.2. Multi-view splitting

In this section, the aim is, starting from an initial fuzzy clustering matrix Tl
to successively split clusters in order to minimize the following criterion :

Split (T1x, a, ) anzz (k) (i k) HX(U) (v

i=1 k=1v=1

: (3.2)

under the constraints Vi, Zk 1 mir = 1 and Vk, Z 1y = 1. We re-
mark that minimizing this criterion, given Ilx, leads to u = (p1, ..., ux) with
e =Y (mi )’ Xi/ S0 (mix)°. Note that Criterion (3.2) is identical to Cri-
terion (3.1), where the per-view weights «, have been replaced here with per-
cluster and per-view weights ay ,; this allows views to be up- or down-weighted
for a specific cluster when they contain only partially relevant information about
the underlying cluster structure. By default, in this work we set both v and
to be equal to 2.

In order to minimize Criterion (3.2), we propose an iterative algorithm de-
scribed in Algorithm 1. At each step, we must identify the cluster C; such that

n V

~ 2
— X(U) (v)
b= o s 32 3w (i) 107~
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Subsequently, this cluster must be split into two clusters, ékl and ékz, which
minimize
¢ Ty _ ]
v ~(v
S 3 (o) e [0 -

t=ky,ks v=1i=1

under the constraint m; i, +m; 5, = T g for each ¢ = 1,...,n. This step provides

a new fuzzy clustering matrix ITx 1, and the associated vector of cluster centers
ii. It is detailed in Appendix E. Then, one can obtain the weight matrix &

associated with this split defined forallk =1,... K+1and forallv=1,...,V;

1
’2> T—v
_1 -
‘2> 1—v

Proposition 3.1. Let K be a positive integer, and let i be a fuzzy clustering
matriz with K clusters. Let k € {1,..., K} and Uy be the fuzzy clustering
matriz obtained by splitting the cluster C;.. Then, for any weight matriz o,

(Z Ge? [0 - 7

dk,v =

n ~ o v ~(v
21:1,.‘.,1@1 (Ei—l (i) HXZ( )~ Nl( )

Split (¢, o, ) = Split (Tl 1,8, 72)

The proof is given in Appendix C.

e Step t = 0: Let Ik,

init = (”50;@)1 . be the initial fuzzy clustering matrix.

— Initialization of the centers: for all k = 1,..., Kinit,

oo = 30 (79) X0/ 30 (20
i=1

=1

— Initialization of the weight matrix g[ol = (agflﬂ):
forallv=1,...,Vand k=1,..., Kinit,

1
n 1) || x ™ _ & |27
<E¢=1 (”zk) ||X1 _“k,[o]H >
—.
v 1Y || (0 _ ) |12} T7
'u/:1< i=1 (”i,k) ”X'i _“k,[o]‘>

— Update the fuzzy clustering matriz H[t], centers and the weight matriz g[t]:
split cluster C}, into two clusters, where

e Stept>1:

n

k= arg max XV: Z (QL‘,;”)W (ﬂgkfl])é ||Xi(v> - H(;:Etfl]Hz .

v=1i=1

Algorithm 1: Description of the fuzzy multi-view splitting algorithm.
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Remark 3.1. Note that a version of this algorithm with common weights per
cluster (o, = ay for all k) as well as a version for hard clustering matriz can
immediately be derived from that described here.

3.3. Multi-view aggregation

Starting from an initial clustering matrix TI°) = T, . , we now wish to construct
a hierarchical aggregation while accounting for the information available in the
different data views. At each step, the aim is to aggregate the pair of clusters
that corresponds to a minimal increase of the following criterion:

n V

K
2
Agg (T, 0, ) = D2 30" () mie X = ]|, (3.3)
k=1i=1v=1
with pp = >0 mkXi/ > ey Tk Given a fuzzy clustering matrix IIx =

(Tik)i=1,...m.k=1,.... i, We aggregate two clusters C;, and Cis (k # k') into a new
cluster Crup by constructing a new clustering matrix (IZIK_L;CU;W) with K — 1
clusters, such that 7, = m, when ¢ # k, k' and Tpup = 7 + 7. The algorithm
is detailed in Algorithm 2. By setting § = 1, the following proposition enables
us to ensure and quantify the decrease of Criterion (3.3) when two clusters are
aggregated.

Proposition 3.2. Let K be a positive integer, g = (Tik)._y  , wey g €
a fuzzy clustering matriz, and set 6 = 1. Let k, k' € {1,,K}, such that
k # K. If two clusters C, and Cyp: are aggregated, then for all weight vectors
a=(ag,...,ay),

“<0

)

%

- _ Mg @ @
) (o) =~ 3 ) —
gg (Mg, a, p)—Agg (g —1 k> @, f ——— ;( o)V [y —

(3.4)
where ng = Y i ik, and p = (/flv oo i) and i = (i1, ..., flxk—1) are Te-
spectively associated with Mg and Mg _q.

The proof is given in Appendix D. Then, the multi-view aggregation algo-
rithm consists of aggregating at each step the two clusters for which the minimal
increase is obtained.

Compared to the usual aggregation algorithm using the Ward distance, the
primary novelty here is that we directly account for the quality of the initial
clustering in each view via the weight vector a. For example, in the case where
~v = 2, the weights correspond to the ratio of the inverse sum of squared errors
in one view to that summed across all views; as such, if the clustering pattern
of one view is in complete disagreement with the others, it will tend to have a
messy clustering and will thus be down-weighted with respect to the other views.
Similarly, using an initial clustering constructed on one specific view typically
yields larger weights for that view (and smaller weights for highly dissimilar
views) in early stages of the aggregation algorithm.
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[0]
ik

e Step t = 0: Let Ik, ;, = (71' ) - be the initial fuzzy clustering matrix.
T,

— Initialization of the centers: for all k = 1,..., Kinit,

n n
Hi,[0] = Z”E?in/zﬂg?}«
i=1

i=1
— Initialization of the weight vector: g[o] = (a[lo], RN a[‘e]) where for allv=1,...,V,

1
Kinis wom (0] || < W 12\ T=7
(Ek:”l”t Tk HXiU) - M1:,)[0]” )

= —.
% Kinit x~n (0] (v") @) [|2) T
DOME (Ek:”f” i=1 "4k HXz - “k,[o]” )

o] _

v

e Step t > 1:

— Update the clustering matriz 1M and the centers ,u[t]:
Determine the two clusters Ck, and Cy, such that

v
_ L METgs =1\ || (v) (v) 2
(k. ha) = arg iy R 52 (o) ey =

and update 1 and e -

. t t
— Update the weight vector g[t] = (0‘[1]7 ey Ozg/]):
forallv=1,...,V,

1
Kinit—t x~n 1] () () |2} 1=~
(Ek:ﬁ 2Tk HXL - “k,[t]H )

-
‘2> T—v

1 _

Kinjt—t t v’ v’
1‘1//:1 <Zk:1t >y 7"1[]k HXZ( ) - /“1(@,[2]

Algorithm 2: Description of the fuzzy multi-view aggregation algorithm.

Remark 3.2. The hard clustering version of this algorithm consists of taking an
ingtial hard clustering matriz (0—1 values with a single 1 for each observation);
the remainder of the procedure is similar to the fuzzy version here.

3.4. maskmeans R package

The multi-view hard and fuzzy aggregation and splitting algorithms described
above have been implemented in an open-source R software package called
maskmeans, freely available at https://github.com/andreamrau/maskmeans.
A package vignette provides a full worked example and description; the primary
functions of this package are as follows:

e maskmeans, which itself calls either mv_aggregation or mv_splitting.
Note that this algorithm allows either fixed multi-view weights across
clusters (aggregation and splitting) or cluster-weighted multi-view weights
(splitting) via perCluster mv_weights = FALSE or TRUE, respectively;

e mv_simulate to simulate data as described in the following section.
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e Two main plotting functions: mv_plot, which provides an overview visual-
ization of multi-view data (see Figure 6 for an example), and maskmeans_plot,
which provides several visualization of the results of the maskmeans func-
tion. The plotting functions notably make use of the ggplot2 (Wickham,
2016) and clustree (Zappia and Oshlack, 2018) visualization packages. Sev-
eral examples of output from the maskmeans_plot function may be seen
in Figures 1-4.

4. Simulation study

In our simulation study, we wish to evaluate our proposed multi-view aggrega-
tion and splitting algorithm to the alternative naive approaches of either con-
catenating all views into a united view, thus effectively ignoring the multi-view
structure of the data, or using only a single view, thus ignoring the additional
data views. To this end, we define the following general framework to generate
data arising from six views, Z = (Z(1), ..., Z()) where Z(*) € M,, 4, (R). Specif-
ically, to start the set of observations {1, ..., Kn} is partitioned into K = 2K +1
equally sized clusters (Ci)r of n observations. The first and second views are
then simulated as follows:

7

Vi e Cy, Z2Y NN(B (cos(ek),sin(ek))’11,%{17“,72,2},12) and

~ ~ !/
Vi € Cy, Zi(z) ~N (ﬁ (cos(@@,sin(@;ﬂ) lke{l,...,ﬂ?}»gz‘&) ,

where o2 represents the per-cluster variance, 8 = 7k/K, 0 = (f2p+0ap_1)/2 if k =
2pork=2p—1,pe{l,..., f(}7 and S is a multiplicative factor that controls
the spread of clusters around the origin. The first view is thus simulated to
have 2K equally spaced clusters in a circular pattern, with an additional clus-
ter centered at the origin; in the second view, pairs of adjacent clusters from
the first view have been merged, yielding K clusters similarly evenly spaced in
a circle in addition to the central cluster at the origin. For the third view, a
random permutation 7 of {1,...,Kn} is used to permute the clustering; this
intentionally creates a noisy view with no clustering coherence with respect to
the other views. The fourth and fifth views are unidimensional (d,, = 1), where

Zi(4) ~N (sign(Zi(ll)) /1,,0'2> and Zz@ ~N (sign(Zg)) u,ag) .

Finally, the clustering structure in the sixth view aggregates the clusters of the
first view into four:

79 ~ N (1.5 B (cos(6y), sin(6y)) Tges, o2Ls)

where 7 corresponds to a random selection of three elements among {1, ..., 2K }.
Note that by construction, there are 2K + 1 clusters in view 1, K + 1 clusters in
view 2, 3 clusters in views 4 and 5, and 4 clusters in view 6, and the spread of
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clusters around the center is increased in this view by 50% with respect to views
1 and 2. As such, the simulation depends on a set of parameters including the
number of observations n, the number of clusters K = 2K + 1, /3 (the spread
of values around the origin for the first, second, and sixth views), and o2 (the
variance of the noise added to views 2, 4, 5, and 6). In the following, we set
n =100, 8 = 4, K = 7, and ¢ = 1.5, and simulated data were generated
using the mv_simulate function in maskmeans; a graphical representation of
a representative simulated data set is included in Figure 6. Simulations were
repeated 100 independent times.

Initial hard and fuzzy cluster partitions were respectively obtained using the
K-means or the fuzzy K-means algorithms (Bezdek, 1981), where the latter
was performed using the fclust R package (Ferraro and Giordani, 2015) with
default parameters. For the splitting algorithms, the initial clustering was ob-
tained using data from view 2, with K;,;;+ = 4; for the aggregation algorithms,
the initial clustering was obtained using data from view 1, with K;,;; = 20.
Subsequently, all aggregation and fuzzy algorithms were iterated until a total of
K = 7 final clusters were obtained. In all multi-view splitting and aggregation
algorithms, v was set to 2. The “true” data partition used for benchmarking
was that corresponding to the first data view, as partitions in all other views
(with the exception of the third) were based on aggregations of the first view.
All approaches were evaluated using the misclassification error rate and the ad-
justed Rand index (Hubert and Arabie, 1985), a corrected-for-chance measure
of similarity between two data clusterings, where values close to 1 indicate close
agreement.

Algorithm g}:ster Strategy ARI Misclassification
Multi-view 0.770 (0.038)  0.107 (0.020)
Hard Concatenated 0.754 (0.049) 0.118 (0.031)
Agaregation Single-view 0.763 (0.043) 0.111 (0.023)
Multi-view 0.804 (0.028)  0.089 (0.014)
Fuzzy Concatenated 0.798 (0.034) 0.092 (0.017)
Single-view 0.801 (0.030)  0.091 (0.015)
Cluster-weighted multi-view  0.628 (0.066) 0.206 (0.061)
Hard  Multi-view 0.668 (0.057)  0.179 (0.057)
Concatenated 0.630 (0.047) 0.198 (0.045)
Splitting Single-view 0.638 (0.039) 0.235 (0.046)
Cluster-weighted multi-view  0.553 (0.043) 0.221 (0.035)
Furs Multi-view 0.579 (0.034)  0.199 (0.028)
Y Concatenated 0.551 (0.047) 0.220 (0.035)
Single-view 0.667 (0.038)  0.185 (0.057)
TABLE 1

Benchmarking on simulated data for the aggregation and splitting algorithms using different
strategies (cluster-weighted multi-view, multi-view, concatenating all views into one, and
using only the first view) and different clustering types (hard and fuzzy). Average values

(standard deviation) for the ARI and misclassification rate across 100 independent
stmulations are indicated. Bold-face font is used to indicate the best performer in each
category.
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The multi-view aggregation and splitting algorithms were compared to (1)
concatenated view aggregation and splitting algorithms, where data from all
views were combined into a single data view; and (2) a single view aggregation
and splitting algorithms, where only data from the first view was used. Results
are presented in Table 1. We first note that for both hard and fuzzy aggregation
algorithms, the proposed multi-view approach has the best average ARI and mis-
classification values, closely followed by the single-view and concatenated-view
strategies (note, however, that all approaches are within a standard deviation of
one another). This is perhaps unsurprising, as the concatenated-view strategy is
somewhat perturbed by the inclusion of the noisy view; the single-view strategy,
on the other hand, benefits from the targeted use of view 1 alone, which is the
view used to evaluate the clustering partition. By making use of all available
views, however, the multi-view approach is able to balance the contributions of
each view, successfully down-weighting views 3, 4, and 5 to accord more impor-
tance to the more informative views (Figure 1C). The dendrogram of successive
cluster aggregations, as well as the evolution of Criterion (3.3), may also be
visualized for a simulated dataset using the plotting capabilities of maskmeans
(Figure 1A-B).
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Fic 1. Visualization of results from the multi-view aggregation algorithm (with hard clus-
tering) applied to a single simulated data set. (A) Dendogram indicating successive cluster
aggregations. (B) Plot of the value of Criterion (3.3) with respect to the total number of clus-
ters. (C) Per-view weights at each successive step of the aggregation algorithm. Plots were
produced using the maskmeans package.

Regarding the splitting algorithms, we first remark a worse overall perfor-
mance compared to the aggregation algorithms, particularly for fuzzy clustering;
this reflects the fact that in this simulation scenario, splitting clusters appears
to be more difficult than aggregating them. However, it is not of particular in-
terest to compare the aggregation and splitting algorithms to one another, as
generally in practice one strategy or the other would be more natural. For hard
splitting, the multi-view strategies are more variable than the concatenated or
single-view approaches (and as above, all methods are within a standard de-
viation of each other), but the multi-view approach has a slight advantage in
uncovering the true clustering structure of view 1. However, for fuzzy splitting,
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there is a very clear advantage is using only the data from view 1; this reflects
the pronounced fuzziness (i.e., the overall relatively small values of maximum
membership degree values) of the initial clustering used as a point of departure,
and suggests that multi-view splitting approaches for fuzzy clustering are not
particularly useful for very fuzzy initial clusterings.

Although the cluster-weighted multi-view approach has a lower average ARI
and higher average misclassification rate than the standard multi-view approach,
it does have the advantage of contributing additional information for the inter-
pretation of cluster splits. A visualization of the cluster-weighted multi-view
splitting algorithm (with hard clusters) is shown in Figure 2. The per-cluster
per-view weights (Figure 2, right) represent a useful tool for identifying the views
that play a determinant role in splitting clusters. We first note that views 3, 4,
and 5 are attributed relatively small weights for each iteration of the algorithm;
in addition, the weights of the remaining views change according to the choice
of cluster that is split. To further illustrate this point, in Figure 6A a selection
of the views from a simulated data set are plotted, with observations colored
according to cluster membership in the initial partition (where Kj;,;; = 4; top
panel) and following the initial split (where cluster 1 is split into clusters 1 and
5; bottom panel) indicated in the splitting tree in Figure 2. We note that prior
to the split, the second view had the largest weight for the original cluster 1
(Figure 6B); subsequently, views 1 and 6 are up-weighted for the newly created
clusters 1 and 5. As can be seen in examining the scatterplots in Figure 6A, this
up-weighting of views 1 and 6 is quite logical, as the newly split clusters 1 and
5 are very clearly separated in these views; however, view 2, where the newly
formed clusters largely overlap, is now down-weighted.

Based on these results, we can conclude that the multi-view aggregation and
splitting procedures are able to successfully up- or down-weight views according
to their informative value for clustering observations, which leads to improve
clustering partitions when compared to naive single-view or concatenated-view
strategies (with the exception of splitting for fuzzy clusterings). In particular,
these per-view weights provide valuable information about which views con-
tribute the most to splits or aggregations at different stages in the algorithm; al-
though the cluster-weighted multi-view algorithm for hard clustering can slightly
penalize the final cluster quality, it provides a more detailed interpretation of
how each view contributes to each cluster individually.

5. Results on multi-omic breast cancer data

In this section, we apply the multi-view hard splitting algorithm with per-cluster
and per-view weights described in Section 3.2 to further subdivide the five in-
trinisic subtypes inferred from 506 patients with breast cancer on the basis of
gene expression, miRNA expression, promoter methylation, and copy number
alterations in the TCGA breast cancer data.

In Figure 4, the splitting tree and corresponding per-cluster per-view weights
at each split (up to K = 10) are provided. Strikingly, cluster splits preferentially
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order of cluster splits identified by the algorithm. The initial clustering partition contained
4 clusters; in the first iteration, the first cluster was split into clusters 1 and 5, and so on.
(right) Corresponding heatmap of per-cluster per-view weights at each step of the algorithm.
Only clusters involved in splits are shown. Plots were produced using the maskmeans package.
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Fia 3. Visualization of results from the cluster-weighted multi-view splitting algorithm (with
hard clustering) applied to a single simulated data set. Panel A: (top) Scatterplots of simulated
data for views 1 (left), 2 (middle), and 6 (right), with points colored by the initial partition
into Kinit=4 clusters. (bottom) Scatterplots of the same data views, with points colored by
the partition after splitting cluster 1 (grey from the top panel) into two clusters (blue and
yellow). Cluster colors are comparable across all graphs, and plots were produced using the
maskmeans package. Panel B: Per-cluster per-view weights for cluster 1 from the original
panel (grey), and for the clusters 1 and 5 (blue and yellow) after splitting.
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Fi1c 4. Visualization of results from the cluster-weighted multi-view splitting algorithm (with
hard clustering) applied to the TCGA multi-omics breast cancer data, up to K = 10 clusters.
(left) Splitting tree illustrating the order of cluster splits identified by the algorithm. The
initial clustering partition contained the five intrinsic subtypes: Basal, HER2+, Luminal A,
Luminal B, and Normal-like. (right) Corresponding heatmap of per-cluster per-view weights
at each step of the algorithm. Only clusters involved in splits are shown. Plots were produced
using the maskmeans package.

occur within the Luminal A and B subtypes, while Basal, HER2+, and Normal-
like subtypes are left intact, suggesting that on a molecular level (based on the
selected genes of interest), each of these groups are more homogenous than
the Luminal subtypes. Basal-like breast cancer (also called triple-negative) is
hormone-receptor (PR/ER) and HER2 negative and tends to be aggressive, dif-
ficult to treat, and more common among younger women and women of African
descent, while HER2+ breast cancer is hormone-receptor negative but HER2
positive, grows faster than Luminal tumors, but typically responds well to treat-
ment. Normal-like tumors, similarly to Luminal A tumors, are hormone-receptor
positive and HER2 negative but typically resemble normal breast profiling and
have poor outcomes. On the other hand, hormone receptor positive (Luminal A
and B) tumors are the most prevalent and diverse form of breast cancer, and
have been previously observed to be characterized by the most variability in
survival and highest risk of late mortality (Ciriello et al., 2013); this appears
to be in agreement with the fact that cluster splits occur uniquely within the
Luminal tumors.

The per-cluster per-view weights in Figure 4 (right) highlight the variable
contributions of each omic source to the cluster splits. For example, the first
split dividing the Luminal A group in two is largely driven by gene expression
and copy number alterations, while the first split of the Luminal B group is
primarily due to gene expression. miRNA expression does not appear to play a
major role in cluster splits, while promoter methylation only intervenes at the
secondary split of the Luminal B group. By examining the multi-omic data for
each of these newly identified sub-groupings (Figure 5), we can also visualize
how each molecular source contributes to the cluster splits. For example (with
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F1G 5. Heatmaps of significantly differential variables (linear model: Bonferroni-adjusted P <
0.01) between pairs of subgroups identified for the Luminal A and B subtypes. (A) Z-scores for
differential variables for each omic data source in the Luminal A sub-clusters 6 and 3. (B) Z-
scores for differential variables for each omic data source in the Luminal B sub-clusters 4 and
7. Rows and columns are clustered with hierarchical clustering (Euclidean distance, complete
linkage). For reference, genes belonging to the estrogen signaling pathway, ErbB pathway, or
SAM40 list are highlighted as black annotations. Figure produced using the ComplexHeatmap
package (Gu et al., 2016).

K=7), in the first split dividing the Luminal A group in two, we note that
a fairly large number of genes have striking differences in expression between
clusters 3 and 6; in addition, cluster 6, which had a relatively large weight for
CNAs, tends to include individuals with large copy losses in a handful of genes
(Figure 5A). On the other hand, the sub-clusters of the Luminal B subtype,
which were characterized by large weights on the RNA-seq view, appear to
feature marked over expression of SAM40 genes in cluster 4 compared to cluster
6.

It is also of interest to identify whether the newly identified sub-clusters are
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clinically meaningful; for this purpose, we consider the sub-groupings obtained
for K = 7 clusters and analyze differences between clusters 3 and 6 (the ini-
tial split of the Luminal A subtype) and between clusters 4 and 7 (the initial
split of the Luminal B subtype). We focus in particular on differences between
progression-free interval survival, age at initial pathologic diagnosis, menopause
status, number of lymph nodes, and pathologic tumor stage. Due to the rela-
tively small number of deaths, no significant differences in progression-free inter-
val (Liu et al., 2018) are detected between these two pairs of clusters (log-rank
test: P = 0.855 for the Luminal A splits and P = 0.165 for the Luminal B splits,
with a total of 24 out of 228 and 24 out of 136 total progression-free interval
events, respectively). However, a significant difference in age at diagnosis (linear
model Wald statistic: P = 1.32x107° for Luminal A; P = 0.14 for Luminal B)
and in menopause status (x? test statistic: P = 3.65 x10~* in Luminal A; P
= 0.7936 in Luminal B) was observed between Luminal A sub-clusters 3 and 6.
In addition, a significant difference in number of lymph nodes was observed for
Luminal B sub-clusters 4 and 7 (Poisson GLM Wald statistic: P-value = 0.571
in Luminal A; P-value = 5.41 x10~!? in Luminal B). No significant differences
among pairs of sub-clusters were observed for pathologic tumor stage (x? test
statistic: P = 0.5831 in Luminal A; P = 0.07632 in Luminal B).

Taken together, these results suggest that the sub-clusters of the Luminal
A subtype represent distinct groups, where cluster 6 skews towards older post-
menopausal patients, while sub-clusters of the Luminal B subtype represent
groups with varying severity of the disease, where individuals in cluster 7 had
significantly fewer lymph nodes affected by the disease.

6. Discussion

In this work, we have presented a novel pair of algorithms to aggregate or split
an existing hard or fuzzy cluster partition based on a set of multi-view data. A
set of simulations demonstrated the satisfactory performance of the multi-view
splitting and aggregation algorithms (with the exception of fuzzy splitting),
as compared to the single- and concatenated-view strategies; in addition, we
illustrated how graphical outputs from the maskmeans package can provide use-
ful interpretation for the contribution provided by each view globally, or by
each view per cluster, at each successive iteration. Using a set of multi-omic
data (gene expression, miRNA expression, methylation, and copy number al-
terations) from breast cancer patients from the TCGA project, we illustrated
how the cluster-weighted multi-view splitting algorithm can subdivide intrinsic
cancer subtypes into more homogeneous, clinically relevant subgroups. In par-
ticular, the algorithm split the two ER+ subtypes (Luminal A and Luminal B)
into groups with significant differences in age of initial diagnosis and number of
affected lymph nodes, respectively.

For the cluster-weighted multi-view splitting algorithm, we observed that in
cases where the initial cluster partition was in near perfect agreement with
one of the data views, initial weights tend to be very large (> 0.5) for one or
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more clusters in that view; this phenomenon then tends to become increasingly
amplified for subsequent iterations, leading to a series of splits that are driven
uniquely by that view. In such cases, if this behavior is not desired, the
parameter can be used to moderate the multi-view influence on cluster splits at
early stages of the algorithm, as larger values tend to impose a greater balance
in view contributions.

In practice, the choice of the initial clustering partition to be used largely
depends on the context; for example, in some cases, it may be natural to obtain
the initial partition from one of the data views (this was the case for the TCGA
breast cancer data presented here, as the AIMS intrinisic subtypes were inferred
from the RNA-seq data), while in other cases an external dataset may be used
for this purpose. Another key issue is the choice of the final number of clusters
to be used following cluster aggregations or splits; currently, the multi-view
aggregation and splitting algorithms allow users the flexibility to choose the
ultimate number of desired clusters. One possibility to determine the “optimal”
number of clusters is to examine the plot of the evolution of the criterion value
(e.g., Figure 1B) and identify the so-called elbow of the curve. It is also possible
that model selection approaches such as the slope heuristics (Baudry et al., 2012)
could be useful for identifying the optimal number of clusters, but additional
research is needed on this point.
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Appendix A: Supplementary Figures

In this section, we present some supplementary figures to complement those
found in the main manuscript. Figure 6 can be reproduced by running the
following code from the maskmeans R package:

library (maskmeans)

set.seed(12345)

sim <- mv_simulate(beta=4, n=100, K=7, sigma=1.5)
mv_plot(sim$data, labels = sim$labels[,1])

Appendix B: A useful lemma

Lemma B.1. The solution of the following optimization problem
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Appendix C: Proof of Proposition 3.1

Proof. Let k € {1,..., K} and let C,, C, be the clusters obtained by splitting
C;. First, note that for any weight matrix o = (ag,), we have
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F1c 6. Visualization of a representative set of simulated multi-view data, following the frame-

work described in Section 4 of the main manuscript. Here K

=70 =4 0=15 andn

= 100. Views 1, 2, 3, and 6 are bivariate, while views 4 and 5 are both univariate. Data
are colored according to the true cluster labels of the first data view. The true labels of view
1 are used for performance evaluation (misclassification rate, ARI) in the simulation study.
K-means and fuzzy K-means algorithms are used to create initial hard and fuzzy cluster par-
titions. For splitting algorithms, Kinit = 4 and data from view 2 are used; for aggregation
algorithms, Kinit = 20 and data from view 1 are used.
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and by definition of &y, and &, and thanks to Lemma B.1, this last term is
non-negative, which leads to
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Appendix D: Proof of Proposition 3.2

Proof. In Proposition 3.2, we consider the following criterion
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= D) () Ak
v=1

=11i=1
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with
_ (v) (v) 12 (v) (v) )12 ~ (v) _ ~ 2
Aipar = (irll X = i 12 + w1 X = 0 12) = Figow 1X =

and llkuk’ = Qi + Qg g with ap = nk/(nk + nk/) and agr = nk//(nk + nk/).
Thus,

Nigr = mial X = w1+ mi | X = ul))?

— (i + mikr)

(X~ ) o (X )

= [mix— (mik+ m,k/)aﬂ ||XZ-(U) — (U)HQ + [mip — (T + i k/)ak,} ||X(U — U)HQ
—2(m4  + Tk )apaR < X(U) uév)7Xz(v) /L,(:)

= [miw = (ron + moa)ado ] g — w12+ 0 X = |
+2< Xi(v) - ,ng)a ,U;(cv) uﬁﬁ) [Wi,k' — (mik + Wi,k/)ak/ — (mik + Wi,k/)akakf] .

Since

Z 2 < X,L( LL;CU)7LL§€U) ,U,(I/]) > ['/Ti,k/ — (Wi,k + Wi’k/)ai/ — (ﬂ'z'yk + m—’k/)akakl]

= 20 (1 —a} — apap) |y — ul |,
and
" ®  (v) © |
Z ik — (i g + Ti k) HH —m | = (w *("kJrle’)ak/ HH — My
=1
= Nk (1 — aRQp — ak/ H#(U) - Mgfj) )
it leads to
Z Aiprr = —np(l—ai — akak')HM;(C Mk/ |12
Mg ” (v) (1’)”2
Nk + Nk’
Finally,
nen v
~ - k k/
Age(lx, a, p) — Agg(Tx_1,0, ) = ———— ()|t — | < 0.

Ng + N
v=1

Appendix E: How to split a cluster

In this section, the aim is, starting from an initial fuzzy clustering matrix IIx
and given a weight matrix o and k > 1, to split cluster C} into two clusters
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Cp, , Ck, which minimize

§
S 3> () G’ | X0 - A

l=k1,ke v=1i=1

2
)

under the constraints
Ty + Tiky = T; s Vi=1,...,n.

In what follows, for the sake of simplicity, we will take k1 = 1 and ko = 2, which
leads to the following constrained weighted fuzzy K-means algorithm:

e Step t =0:

— Initialization of the centers: choose randomly two index i1,io, 1 <
11,12 < m such that i; # i, and

fr,j0] = Xiy fiz,j0) = Xi,

— Initialization of the fuzzy clustering matriz M0 = (ﬁz[ol]) for all
i=1,...,nand [ = 1,2,

¥ o =
(Zvvzl (az;,v) HXZ-( ' m,mH)
¥ o - =
Zl’:1,2 (ZX:l (aic,v) HXz( )~ Ml’,[O]H)

70—

4,0 i,k

e Step t > 1:
— Updating the centers: for all | = 1,2,

_ 1 LRI
Hi,[t] = W; (Wl[fl 1]) X;.

— Updating the fuzzy clustering matriz I = (ﬁﬂ) sforalli=1,....,n
and [ = 1,2,

1
¥ o) =
(ZL (%) HXf )—mmH)
—.
¥ o) - fers
Zz/:l,Q (Zz‘z/:l (O‘l%,v) Xi( )~ Ulﬁ[ﬂH)

ﬁ[t] =T, ;
il = Tk
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