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In this article, a new "odd generalized gamma-G" family of distributions, called the GG-G family of distributions, is introduced. We propose a complete mathematical and statistical studies of this family, with a special focus on the Frêchet distribution as baseline distribution. In particular, we provide infinite mixture representations of its probability density function and its cumulative distribution function, the expressions for the Rényi entropy, the reliability parameter and the probability density function of ith order statistic. Then the statistical properties of the family are explored. Model parameters are estimated by the maximum likelihood method. A regression model is also investigated. A simulation study is performed to check the validity of the obtained estimators. Applications on real data sets are also included, with favorable comparisons to existing distributions in terms of goodness-of-fit.

Introduction

The deep analysis of data from sophisticated phenomenons can be limited by the use of classical (probability) distributions. This motivates the statisticians to develop new distributions/models having the ability to capture special features of the phenomenons from the data. One of the most common approach is the use of the so called "generators of distributions" which consists in injecting more flexibility into an existing distribution. The construction of such generators often uses existing distributions with one or several parameters and with well-known structural properties. Among the most popular generators, there are the beta generator (see [START_REF] Eugene | Beta-normal distribution and its applications[END_REF] and [START_REF] Jones | Families of distributions arising from distributions of order statistics[END_REF]), the Transmuted generator (see [START_REF] Buckley | The alchemy of probability distributions: beyond Gram-Charlier expansions and a skewkurtotic-normal distribution from a rank transmutation map[END_REF]), the Kumaraswamy generator (see [START_REF] Cordeiro | A new family of generalized distributions[END_REF]), the McDonald generator (see [START_REF] Alexander | Generalized beta generated distributions[END_REF]), the 1 Kummer beta generator (see Peskim et al. (2012)), the gamma generator (see [START_REF] Zografos | On families of beta-and generalized gamma-generated distributions and associated inference[END_REF], [START_REF] Ristíc | The gamma-exponentiated exponential distribution[END_REF] and Tobari and Montazari (2012)), the log-gamma generator (see [START_REF] Amini | Log-gamma-generated families of distributions[END_REF]), the logistic generator (see [START_REF] Torabi | The logistic-uniform distribution and its applications[END_REF]), the beta extended Weibull generator (see Cordeiro al. (2012)), the Transformed-Transformer (T-X) generator (see [START_REF] Alzaatreh | A new method for generating families of continuous distributions[END_REF]), the exponentiated TX generator (see [START_REF] Alzaghal | Exponentiated T-X family of distributions with some applications[END_REF]), the Weibull generator (see [START_REF] Alzaatreh | A new method for generating families of continuous distributions[END_REF] and [START_REF] Bourguignon | The Weibull-G family of probability distributions[END_REF]), the exponentiated halflogistic generator (see Cordeiro al. (2014)), the sine generator (see [START_REF] Kumar | A New Distribution Using Sine Function-Its Application to Bladder Cancer Patients Data[END_REF]), the odd Burr III generator (see [START_REF] Jamal | The odd Burr-III family of distributions[END_REF]), the cosine-sine generator (see [START_REF] Chesneau | A new class of probability distributions via cosine and sine functions with applications[END_REF]) and the generalized odd gamma generator (see [START_REF] Hosseini | The Generalized Odd Gamma-G Family of Distributions: Properties and Applications[END_REF]).

In particular, [START_REF] Hosseini | The Generalized Odd Gamma-G Family of Distributions: Properties and Applications[END_REF] demonstrate that the combination of gamma generator with the generalized odd transformation generates very flexible distributions, with great advantages in data analysis (more flexible kurtosis in comparison to the baseline distribution, produce a skewness for symmetrical distributions, generate distributions with symmetric, left-skewed, right-skewed and reversed-J shaped . . . ). The aim of this paper is to propose an alternative to the generator introduced by [START_REF] Hosseini | The Generalized Odd Gamma-G Family of Distributions: Properties and Applications[END_REF]. It is constructed from the generalized gamma distribution and the (standard) odd transformation. It allows us to define a new family of distributions described below. Let us recall that the probability density function (pdf) of generalized gamma distribution is given by

f (x; α, β, δ) = α δ α β Γ(β) x α β-1 exp[-(δ x) α ],
x > 0, where α > 0 and β > 0 are the shape parameters and δ > 0 is the scale parameter. If we take δ = 1, then f (x; α, β, δ) is reduced to the pdf r(x; α, β) given by r(x; α, β) = α Γ(β)

x α β-1 exp (-x α ), where Γ(β) = +∞ 0 w β-1 exp (-w)dw is the gamma function. Let us now consider a cumulative distribution function (cdf) of a baseline distribution denoted by G(x; ξ), where ξ denotes the related parameter vector. We then propose to use a generalized gamma generator with the standard odd transformation defined by W [G(x; ξ)] = G(x; ξ)/[1 -G(x; ξ)]. This yields the following cdf:

F (x; α, β, ξ) = W [G(x;ξ)] -∞ r(t; α, β)dt = γ β, G(x;ξ) 1-G(x;ξ) α Γ(β) , (1.1) 
where γ(β, x) =

x 0 w β-1 exp (-w)dw is the incomplete gamma function. By differentiation, the corresponding pdf is given by

f (x; α, β, ξ) = α Γ(β) g(x; ξ) G α β-1 (x; ξ) (1 -G(x; ξ)) α β+1 exp - G(x; ξ) 1 -G(x; ξ) α .
(1.

2)

The corresponding hazard rate function (hrf) is given by

h(x; α, β, ξ) = f (x; α, β, ξ) 1 -F (x; α, β, ξ) = α g(x; ξ) G α β-1 (x; ξ) (1 -G(x; ξ)) α β+1 Γ(β) -γ β, G(x;ξ) 1-G(x;ξ) α exp - G(x; ξ) 1 -G(x; ξ) α . (1.3)
For the purpose of the paper, the generator characterized by the cdf (1.1) is called the odd generalized gamma generator and the corresponding family of distributions is called odd generalized gamma G (GG-G) family of distributions. To the best of our knowledge, it is new in the literature, even if connections exist with the Generalized Odd Gamma-G family introduced by [START_REF] Hosseini | The Generalized Odd Gamma-G Family of Distributions: Properties and Applications[END_REF] (the families coincide by taking α = 1 and, in the definition of the Generalized Odd Gamma-G family, β = 1). We show in this study how our family is complementary on several aspects, and can be superior in term of goodness-of-fit to the Generalized Odd Gamma-G family.

The rest of this paper is organized as follows. In Section 2, three special models are given, with plots of their pdfs and hrfs to illustrate their flexibility. The one using the Frêchet distribution as baseline will be at the heart of our applied study. The main mathematical properties of the GG-G family are studied in Section 3, including shapes and asymptotes of the pdf and the hrf, mixture representations of the pdf and cdf in terms of baseline distribution, explicit expressions for the rth moment, rth incomplete moment, moment generating function, mean deviations, Rényi entropy, reliability parameter and the pdf of the ith order statistic. The estimations of the related parameters by the maximum likelihood method are discussed in Section 4. In Section 5, a regression model is given, with a simulation study. Section 6 is devoted to the residual analysis. Applications to real life data sets are performed in Section 7.

Special sub models

In this section, we study three special sub models, namely odd generalized gamma Frêchet (GGFr), odd generalized gamma Weibull (GGW) and odd generalized gamma Lomax (GGLx) distributions. 

Odd generalized gamma Frêchet distribution

F (x; α, β, a, b) = γ β, exp (a/x) b -1 -α Γ(β)
.

The pdf is given by

f (x; α, β, a, b) = α a b b exp -α β (a/x) b Γ(β) x b+1 1 -exp -(a/x) b α β+1 exp -exp a x b -1 -α . (2.1)
The hrf is fiven by

h(x; α, β, a, b) = α a b b exp -α β (a/x) b x b+1 1 -exp -(a/x) b α β+1 Γ(β) -γ β, exp (a/x) b -1 -α × exp -exp a x b -1 -α
.

Odd generalized gamma Weibull distribution

Let us consider the gamma Weibull distribution as baseline distribution, i.e. with pdf g(

x; a, b) = a b x b-1 exp -a x b and cdf G(x; a, b) = 1 -exp -a x b
, where a, b, x > 0. Then the cdf of the GGW distribution is given by

F (x; α, β, a, b) = γ β, exp a x b -1 α Γ(β) .
The pdf is given by

f (x; α, β, a, b) = α Γ(β) a b x b-1 1 -exp -a x b α β-1 exp a α β x b -exp a x b -1 α .
The hrf is fiven by

h(x; α, β, a, b) = α a b x b-1 1 -exp -a x b α β-1 Γ(β) -γ β, [exp (a x b ) -1] α exp a α β x b -exp a x b -1 α .

Odd generalized gamma Lomax distribution

Let us consider the Lomax distribution as baseline distribution, i.e. with pdf g(

x; a, b) = (a/b) (1 + x/b) -a-1 and cdf G(x; a, b) = 1 -(1 + x/b) -a
, where a, b, x > 0. Then the cdf of the GGLx distribution is given by

F (x; α, β, a, b) = γ (β, [(1 + x/b) a -1] α ) Γ(β) .
The pdf is given by

f (x; α, β, a, b) = α Γ(β) a b 1 + x b a α β-1 1 -1 + x b -a α β-1 exp -1 + x b a -1 α .
The hrf is fiven by

h(x; α, β, a, b) = α a (1 + x/b) a α β-1 1 -(1 + x/b) -a α β-1 b [Γ(β) -γ (β, [(1 + x/b) a -1] α )] exp -1 + x b a -1 α .
Figure 1 illustrates the pdfs of the GGFr, GGW and GGLx distributions for selected values of the parameters. Figure 2 illustrates the hrfs of the GGFr, GGW and GGLx distributions for selected values of the parameters. Various forms of shapes are observed, showing the great flexibility of these special sub models, and a fortiori, the GG-G family. 
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Mathematical properties

This section is devoted to the mathematical properties of the GG-G family of distributions.

Characterization

Let G -1 (x, ξ) be the inverse function of G(x, ξ) and V a random variable having the gamma distribution with parameters 1 and β. Then the random variable

X = G -1 V 1/α /(1 + V 1/α ); ξ follows the GG-G family.

Quantile function

Let γ -1 (β, x) be the inverse function of γ(β, x). The quantile function of the GG-G family is given by

Q(y, ξ) = G -1 [γ -1 (β, yΓ(β))] 1/α 1 + [γ -1 (β, yΓ(β))] 1/α , ξ , y ∈ (0, 1).
The median of the GG-G family is given by M ed = Q(0.5, ξ).

Shape of the crucial functions

The shapes of the pdf and the hrf of the GG-G family can be described analytically. The critical points of the pdf f (x; ξ) given by (1.2) are the roots of the following equation:

g x (x; ξ) g(x; ξ) + (αβ -1) g(x; ξ) G(x; ξ) + (αβ + 1) g(x; ξ) 1 -G(x; ξ) -α G(x; ξ) 1 -G(x; ξ) α-1 g(x; ξ) {1 -G(x; ξ)} 2 = 0, (3.1)
where g x (x; ξ) = ∂g(x; ξ)/∂x. The critical points of h(x) given by (1.3) are obtained from the following equation:

g x (x; ξ) g(x; ξ) + (αβ -1) g(x; ξ) G(x; ξ) + (αβ + 1) g(x; ξ) 1 -G(x; ξ) -α G(x; ξ) 1 -G(x; ξ) α-1 g(x; ξ) {1 -G(x; ξ)} 2 + α g(x; ξ) G α β-1 (x; ξ) (1 -G(x; ξ)) α β+1 Γ(β) -γ β, G(x;ξ) 1-G(x;ξ) α exp - G(x; ξ) 1 -G(x; ξ) α = 0.
(3.2) By using most of the symbolic computation software platforms, we can examine the equations (3.1) and (3.2) to determine the local maximums and minimums and inflexion points.

Mixture representation

In this subsection, we will give the mixture representations of the GG-G pdf and GG-G cdf in terms of exp-G distribution of the baseline distribution, which will be useful for the derivation of further properties.

First of all, let us recall that the exponential series expansion is given by, for any

x ∈ R, exp (-a x) = +∞ i=0 (-1) i a i i! x i . (3.3)
On the other side, the generalized binomial series expansion is given by, for any x such that |x| < 1,

(1 -x) b = +∞ j=0 b j (-1) j x j , (3.4) where b j = b(b -1) . . . (b -j + 1) j!
. These two formulas will be useful in our mathematical developments. Using the series (3.3) and (3.4), the pdf f (x; α, β, ξ) given by (1.2) becomes

f (x; α, β, ξ) = +∞ i,j=0 u i,j g(x; ξ) G α(β+i)+j-1 (x; ξ), with u i,j = α Γ(β) -α(β+i)-1 j (-1) i+j i! . Now, by writing G α(β+i)+j-1 (x; ξ) = [1-(1-G(x; ξ))] α(β+i)+j-1 , we get f (x; α, β, ξ) = +∞ i,j,m=0 +∞ =m w i,j, ,m g(x; ξ) G m (x; ξ),
where w i,j, ,m = u i,j α(β+i)+j-1 m (-1) +m . Rewriting the above equation we have

f (x; α, β, ξ) = +∞ m=0 a m h m+1 (x; ξ), (3.5) 
where

a m = α Γ(β) (-1) m m + 1 +∞ i,j=0 +∞ =m -α(β + i) -1 j α(β + i) + j -1 m (-1) i+j+ i! and h m+1 (x; ξ) = (m + 1) g(x; ξ) G m (x; ξ).
Moreover, by integrating this equation with respect to x, the cdf of GG-G family is given by

F (x) = +∞ m=0 a m H m+1 (x; ξ), (3.6) 
where H m+1 (x; ξ) = G m+1 (x; ξ). The expression in (3.5) and (3.6) are the infinite mixtures representation of the GG-G pdf in terms of functions (pdf and cdf) of the exp-G distribution.

In the context of the GGFr distribution: We can express f (x; α, β, ξ) as (3.5) with

h m+1 (x; ξ) = (m + 1) (a b b/x b+1 ) exp -(m + 1) (a/x) b , ξ = (a, b), x, a, b > 0.

Moments and moment generating function

In this subsection, we give the explicit expression for the rth moment, rth incomplete moment, moment generating function and the mean deviation about the mean. The rth moment of GG-G family can be obtained by using following formula

µ r = +∞ -∞ x r f (x; α, β, ξ) dx,
where f (x; α, β, ξ) is given by (1.2). It follows from the infinite mixture representation given by (3.5) that

µ r = +∞ m=0 a m τ r m ,
where

τ r m = +∞ -∞ x r h m+1 (x; ξ) dx (3.7) and h m+1 (x; ξ) = (m + 1) g(x; ξ) G m (x; ξ).
In the context of the GGFr distribution: One can show that, for r < b, we have τ r m = (m + 1) r/b a r Γ (1 -r/b).

Similarly, the rth incomplete moment of GG-G family is given by

T r (x; α, β, ξ) = +∞ m=0 a m ∆ r m (x; ξ), where ∆ r m (x; ξ) = x -∞ t r h m+1 (t; ξ) dt. (3.8)
In the context of the GGFr distribution: One can show that, for r < b,

we have ∆ r m (x; ξ) = (m + 1) r/b a r Γ 1 -r/b, (m + 1)a b x -b , ξ = (a, b), a, b > 0, where Γ(s, x) denotes the upper incomplete gamma function defined by Γ(s, x) = +∞ x t s-1 e -t dt, s, x > 0.
The mean deviation about the mean of the GG-G family is given by

D 1 = 2 µ 1 F (µ 1 ; α, β, ξ) -2 T 1 (µ 1 ; α, β, ξ)
and the mean deviation about the median of the GG-G family is given by

D82 = µ 1 F (µ 1 ; α, β, ξ) -2 T 1 (M ed ; α, β, ξ).
The moment generating function of GG-G family is given by

M 0 (t; α, β, ξ) = +∞ m=0 a m M x (t; ξ), where M x (t; ξ) = +∞ -∞ exp(t x) h m+1 (x; ξ) dx.
(3.9)

Note that the integrals in (3.7), (3.8) and (3.9) only depends for any choice of base line distribution.

Reliability parameter

In the context of reliability, the stress-strength model defines the life of a element which has a random strength X 1 that is subjected to an accidental stress X 2 . The component fails at the instant that the stress applied to it exceeds the strength, and the component will function suitably whenever X 1 > X 2 . Hence, by modeling X 1 and X 2 as random variables, the probability R = P (X 2 < X 1 ) is a measure of components reliability. It has many applications especially in the area of reliability and engineering. In what follows, we derive the reliability R when X 1 and X 2 are independent and identically distributed and belongs to the GG-G family with same parameters, with pdf f 1 (x; α, β, ξ) for X 1 and with cdf F 2 (x; α, β, ξ) for X 2 . From (1.2) and (1.1), we can write

R = +∞ -∞ f 1 (x; α, β, ξ) F 2 (x; α, β, ξ) dx.
Using the mixture representations of the pdf and the cdf given by (3.5) and (3.6), we have

R = +∞ m=0 +∞ k=0 a m a k +∞ -∞ h m+1 (x; ξ) H k+1 (x; ξ) dx. Since h m+1 (x; ξ) H k+1 (x; ξ) = (m + 1) g(x; ξ) G m+k+1 (x; ξ), we have R = +∞ m=0 +∞ k=0 a m a k (m + 1) +∞ -∞ g(x; ξ) G m+k+1 (x; ξ) dx.
Let us observe that the above integral depends only on the choice of baseline distribution.

In the context of the GGFr distribution: One can show that

+∞ -∞ g(x; ξ) G m+k+1 (x; ξ) dx = 1/(m + k + 2).

Entropies

Let δ > 0 with δ = 1. The Réyni entropy of the GG-G family is given by

I δ = 1 1 -δ log +∞ -∞ f δ (x; α, β, ξ) dx .
(3.10) Using (3.3) and (3.4), we have

f δ (x; α, β, ξ) = α Γ(β) δ +∞ i,j=0
u i,j,δ g δ (x; ξ) G j+δ(αβ-1)+αi (x; ξ), where u i,j,δ = -α i-δ(αβ+1) j (-1) i+1 δ i i!

. Now equation (3.10) becomes

I δ = 1 1 -δ δ log α -δ log Γ(β) + log +∞ i,j=0 u i,j,δ +∞ -∞ g δ (x; ξ) G j+δ(αβ-1)+αi (x; ξ) dx .
We observe that I δ depends only for any choice of base line distribution. The δ-entropy is defined by

H δ = 1 δ -1 log 1 - +∞ -∞ [f (x; α, β, ξ)] δ dx .
So we have

H δ = 1 δ -1 log   1 - α Γ(β) δ +∞ i,j=0 u i,j,δ +∞ -∞ g δ (x; ξ) G j+δ(αβ-1)+αi (x; ξ) dx   .
Finally, the Shannon entropy of GG-G family is defined by

S = - +∞ -∞ log[f (x; α, β, ξ)]f (x; α, β, ξ)dx.
It is in fact a particular case of the Rényi entropy when δ tends to 1 + .

Order statistics

Let X 1 , . . . , X n be the random sample population with pdf given by (1.2), then the pdf of the ith order statistic is given by

f i:n (x; α, β, ξ) = n! (i -1)!(n -i)! f (x; α, β, ξ) F i-1 (x; α, β, ξ) [1 -F (x; α, β, ξ)] n-i .
Using series expansion in equation (3.4) we have

f i:n (x; α, β, ξ) = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j f (x; α, β, ξ) F j+i-1 (x; α, β, ξ). (3.11)
By the infinite mixture representation in (3.5) and (3.6), we obtain

f i:n (x; α, β, ξ) = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j +∞ m=0 a m h m+1 (x; ξ) +∞ k=0 a k H k+1 (x; ξ) j+i-1
.

(3.12) Using power series raised to a positive power (see [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF]), we get

+∞ k=0 c k x k n = +∞ k=0 d k x k , where d 0 = c n 0 and d m = 1 m c 0 m k=1 (k (n + 1) -m) c k d m-k for m ≥ 1. Therefore +∞ k=0 a k H k+1 (x; ξ) j+i-1 = G j+i-1 (x; ξ) +∞ k=0 d k G k (x; ξ), with d 0 = a j+i-1 0 and d m = 1 m a 0 m k=1 (k (j + i) -m) a k d m-k for m ≥ 1. Now equation (3.12) becomes f i:n (x; α, β, ξ) = n! (i -1)!(n -i)! n-i j=0 n -i j (-1) j +∞ m=0 +∞ k=0 d k a m (m + 1) g(x; ξ) G m+j+i+k-1 (x; ξ).
From this expression, several mathematical properties can be obtained, as moments, moment generating function. . . . In the context of the GGFr distribution: One can observe that g(

x; ξ) G m+j+i+k-1 (x; ξ) = (a b b/x b+1 ) exp -(m + j + i + k) a x b = (1/(m + j + i + k))u m+j+i+k (x)
, where u m+j+i+k (x) denotes the pdf of the Frêchet distribution with parameters (m + j + i + k) 1/b a and b. So the pdf of ith order statistics of the GGFr distribution can be expressed as a linear combination of Frêchet pdfs.

Estimation of GG-G family parameter

Let x 1 , . . . , x 2 be a random sample of size n from a population with pdf given by (1.2) with vector of parameters Θ = [α, β, ξ] T . The log-likelihood function for the vector of parameters is given by

(Θ) = n log α -n log Γ(β) + n i=1 log g(x i , ξ) + (αβ -1) n i=1 log G(x i , ξ) -(αβ + 1) n i=1 log(1 -G(x i ; ξ)) - n i=1 G(x i , ξ) 1 -G(x i ; ξ) α .
The components of score vector Θ = [α, β, ξ] T are given by

U α = n α + β n i=1 log G(x i , ξ) -β n i=1 log(1 -G(x i ; ξ)) - n i=1 G(x i , ξ) 1 -G(x i ; ξ) α log G(x i , ξ) 1 -G(x i ; ξ) , U β = -n d d β log Γ(β) + α n i=1 log G(x i , ξ) -α n i=1 log(1 -G(x i ; ξ)), U ξ = n i=1 g ξ (x i , ξ) g(x i , ξ) + (αβ -1) n i=1 G ξ (x i , ξ) G(x i , ξ) + (αβ + 1) n i=1 G ξ (x i , ξ) 1 -G(x i , ξ) -α n i=1 G(x i , ξ) 1 -G(x i , ξ) α-1 G ξ (x i , ξ) {1 -G(x i , ξ)} 2 ,
where G ξ (x i , ξ) = ∂G(x i , ξ)/∂ξ and g ξ (x i , ξ) = ∂g(x i , ξ)/∂ξ. Since these equations are nonlinear equations according to the parameters, they can not be solved analytically but can be solved numerically by any software like R-language or mathematica.

Log-generalized gamma Fréchet

In many applied area, the lifetimes are affected by explanatory variables such as the cholesterol level, blood sugar, gender and many other explanatory variables. Parametric survival models to estimate the survival functions for censored data are widely used. For example, recently Lanjoniet al. (2016) defined the extended Burr XII regression model and [START_REF] Prataviera | A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems[END_REF] proposed the heteroscedastic odd log-logistic generalized gamma regression model for censored data. Thus, using the some approach adopted in these papers, a distribution obtained from the Log-generalized gamma Frêchet (LGGFr) distribution will be expressed in the form of the class of location-scale models with two additional parameters to the shape. In this way, we propose a model of regression location, scale and shape.

Let X be a random variable having the pdf (2.1). A class of regression models for location and scale is characterized by the fact that the random variable Y = log(X). The cdf and pdf of Y can be expressed in terms of the basic function as

G(y; µ, σ) = exp -exp - y -µ σ , g(y; µ, σ) = 1 σ exp - y -µ σ -exp - y -µ σ .
Then the pdf (2.1) becomes:

f (y; α, β, µ, σ) = α g(y) G(y) (βα-1) (1 -G(y)) -(βα+1) exp{-[G(y)/(1 -G(y))] α } Γ(β) , (5.1)
where y, µ ∈ R and σ > 0, µ is the location parameter, σ is the scale parameter and α and β are shape parameters. Thus, if X ∼ GGFr(a, b, α, β) then Y = log(X) ∼ LGGFr(µ, σ, α, β). However, if Y = log(X) ∼ LGGFr(µ, σ, α, β), the cdf and pdf of the standardized random variable Z = (Y -µ)/σ are given by

G(z) = exp {-exp {-z}} , g(z) = exp {-z -exp {-z}} .
Then the pdf (2.1) becomes :

f (z; α, β) = α g(z) G(z) (βα-1) (1 -G(z)) -(βα+1) exp{-[G(z)/(1 -G(z))] α } Γ(β) . (5.2)
We write Z ∼ LGGFr(0, 1, α, β).

In order to introduce a regression structure in the class of models (5.2), we assume that both parameters µ i , σ i , α i and β i vary across observations through regression structures

y i = µ i + σ i z i , i = 1, . . . , n, (5.3) 
where the random error z i has pdf (5.2), µ i and σ i are parameterized as

µ i = µ i (θ 1 ), σ i = σ i (θ 2 ), α i = α i (θ 3 ), β i = β i (θ 4 ),
where θ 1 = (θ 11 , . . . , θ 1p 1 ) T , θ 2 = (θ 21 , . . . , θ 2p 2 ) T , θ 3 = (θ 31 , . . . , θ 3p 3 ) T and θ 4 = (θ 41 , . . . , θ 4p 4 ) T . The usual systematic component for the location parameter is µ i = x T i θ 1 , where x T i = (x i1 , . . . , x ip 1 ) is a vector of known explanatory variables, i.e. µ = Xθ 1 , and µ = (µ 1 , . . . , µ n ) T , X = (x 1 , . . . , x n ) T is a specified n × p 1 matrix of full rank with p 1 < n. Analogously, we consider the systematic component g(σ i ) = η i = v T i θ 2 for the dispersion parameter, where g(•) is the dispersion link function, and v T i = (v i1 , . . . , v ip 2 ) is a vector of known explanatory variables. We have g(σ) = η = Vθ 2 , where σ = (σ 1 , . . . , σ n ) T , η = (η 1 , . . . , η n ) T and V = (v 1 , . . . , v n ) T is a specified n × p 2 matrix of full rank with p 2 < n. For α i and β i , we consider the systematic component analogous. We have g(α) = δ = Wθ 3 , where α = (α 1 , . . . , α n ) T , δ = (δ 1 , . . . , δ n ) T and W = (w 1 , . . . , w n ) T is a specified n × p 3 matrix of full rank with p 3 < n and g(β) = λ = Sθ 2 , where β = (β 1 , . . . , β n ) T , λ = (λ 1 , . . . , λ n ) T and S = (s 1 , . . . , s n ) T is a specified n × p 4 matrix of full rank with p 4 < n. It is assumed that θ 1 , θ 2 , θ 3 and θ 4 are functionally independent and that g(•) is a known one-to-one continuously twice differentiable function.

Maximum Likelihood Estimation

Consider a sample (y 1 , x 1 , v 1 , w 1 , s 1 ), • • • , (y n , x n , v n , w n , s n ) of n independent observations, where each random response is defined by y i = min{log(x i ), log(c i )}. Here, the x i 's are the failure times and the c i 's are the censored times. We assume non-informative censoring such that the observed lifetimes and censoring times are independent. Let F and C be the sets of individuals for which y i is the log-lifetime or log-censoring, respectively. We can apply conventional likelihood estimation techniques to estimate the model parameters. The log-likelihood function for the vector of parameters. The log-likelihood function for the vector of parameters φ

= (β T 1 , β T 2 , β T 3 , β T 4 ) T from model (5.3) has the form l(φ) = i∈F l i (φ)+ i∈C l (c) i (φ), where l i (φ) = log[f (y i )], l (c) i (φ) = log[S(y i )],
f (y i ) is the pdf (5.1) and S(y i ) is the survival function of Y i , respectively. The maximum likelihood estimate (MLE) φ of the vector of model parameters can be computed by maximizing the log-likelihood l(φ).

The asymptotic distribution of ( φφ) is multivariate normal N p 1 +p 2 +p 3 +p 4 (0, K(φ) -1 ) under standard regularity conditions, where K(φ) is the total expected information matrix. The asymptotic covariance matrix K(φ) -1 of φ can be approximated by the inverse of the (p 1 + p 2 + p 3 + p 4 ) × (p 1 + p 2 + p 3 + p 4 ) observed information matrix -L(φ). The elements of -L(φ) can be evaluated numerically. The approximate multivariate normal distribution N p 1 +p 2 +p 3 +p 4 (0, -L(φ) -1 ) for φ can be used in the classical way to construct approximate confidence intervals for the components of φ.

Simulation study

We now perform a Monte Carlo simulation study to assess the finite sample behavior of the MLEs. The results are obtained from 1, 000 Monte Carlo simulations performed using the R software. In each replication, a random sample of size n is drawn from the LGGFr(θ 1 , θ 2 , θ 3 , θ 4 ) model and the parameters are estimated by maximum likelihood. The log-lifetimes denoted by log(x 1 ), • • • , log(x n ) are generated from the LGGFr regression model (5.3), where µ i = θ 10 +θ 11 x i , σ i = exp(θ 20 +θ 21 x i ), α i = exp(θ 30 + θ 31 x i ) and β i = exp(θ 40 + θ 41 x i ) and x i is generated from a normal distribution N (0, 0.65). Thus, we consider for the simulations with sample sizes n =100, n=350 and n=850, and censoring percentages approximately equal to 0%, 10% and 20%. The values considered for the parameters are, θ 10 = 5.6350, θ 11 = 0.4948, θ 20 = 0.1688, θ 21 = 0.5219, θ 30 = -0.5805, θ 31 = 0.0313, θ 40 = -2.6156 and θ 41 = 3.2250. The survival times are generated considering the random censoring mechanism as follows:

• Generate x i ∼ normal(1,0.65).

• Generate c ∼ uniform (0,τ ), where τ denotes the proportion of censored observations.

• Generate z ∼ LGGFr(0, 1, α i , α i ), the values from the pdf (5.2).

• Write y * = µ i x i + σ i z.

• Set y = min(y * , c).

• Create a vector κ of dimension n which receives 1's if (y * <= c) and zero otherwise.

We fit the LGGFr regression model (5.3) to each generated data set, where µ i = θ 10 + θ 11 x i , σ i = exp(θ 20 + θ 21 x i ), α i = exp(θ 30 + θ 31 x i ) and β i = exp(θ 40 + θ 41 x i ). From the simulations reported in Table 1, we can verify that the mean squared errors (MSEs)and bias of the MLEs of θ 10 , θ 11 , θ 20 , θ 21 , θ 30 , θ 31 , θ 40 and θ 41 decay toward zero when the sample size increases, as usually expected under first-order asymptotic theory. The mean estimates of the parameters tend to be closer to the true parameter values when the sample size n increases. This fact supports that the asymptotic normal distribution provides an adequate approximation to the finite sample distribution of the estimates. 

Residual analysis

The objective of the analysis of the residuals is to verify the adequacy of the model for a given data set, which includes the investigation of intrinsic characteristics in the data. In order to check some of these characteristics, for example, outliers, several approaches have been proposed by [START_REF] Cox | A general definition of residuals[END_REF], [START_REF] Cook | Residuals and Influence in Regression[END_REF]Weisberg (1982), Ortegaet al. (2008) and [START_REF] Silva | Residuals for log-Burr XII regression models in survival analysis[END_REF]. In the context of survival analysis, the deviance residuals have been more widely used because they take into account the information of censored times [START_REF] Silva | Residuals for log-Burr XII regression models in survival analysis[END_REF]). Thus, the plot of the deviance residuals versus the observed times provides a way to test the adequacy of the fitted model and to detect atypical observations. If the model is appropriate, the martingale and modified deviance residuals must present a random behavior around zero. The plots of the residuals, martingale or modified deviance residuals versus the adjusted values provide a simple way to verify the adequacy of the model and to detect outliers. [START_REF] Atkinson | Plots, Transformations, and Regression[END_REF] suggested the construction of envelopes to enable better interpretation of the normal probability plot of the residuals. These envelopes are simulated confidence bands that contain the residuals, such that if the model is well-fitted, the majority of points will be within these bands and randomly distributed.

We perform a simulation study to assess the accuracy of the MLEs of the parameters in the LGGFr regression model with censored data, and also to investigate the behavior of the empirical distribution of the martingale and deviance residuals. For the simulation study, we generate the variables z 1 , • • • , z n from the LGGFr distribution given by (5.2).

So, 1000 samples are generated for each scenario presented in Subsection 5.2 as well as the algorithm for generating the survival times considering censored.

In Figure 3 we display the plots of the residuals versus the expected values of the order statistics of the standard normal distribution. These plots are known as the normal probability plots and serve to assess the departure from the normality assumption of the residuals [START_REF] Weisberg | Applied linear regression[END_REF]. Therefore, the following interpretation is obtained from these plots: the empirical distribution of the deviance residuals agrees with the standard normal distribution when the sample size increases.

Data Analysis

Analysis of three data sets

Here, we present three applications to real data to illustrate the potentiality of the GG-G family. To compare its performance, we consider its sub model Generalize Gamma Frêchet (GGFr) to other competitive models given in Table 2. [START_REF] Nadarajah | The exponentiated Frêchet distribution, Statisticson the Internet[END_REF] We consider the -(where denotes the maximized log-likelihood), AIC (Akaike information criterion), BIC (Bayesian information criterion), CVM (Cramér-Von Mises), AD (Anderson-Darling) and KS (Kolmogorov Smirnov with its p-value (PV)) statistics to compare the fitted distributions. The results in this section are obtained using the R PROGRAM.

The first data set (Data Set 1) is from [START_REF] Xu | Application of Neural Networks in forecasting Engine Systems Reliability[END_REF] and it represents the time to failure (103 h) of turbocharger of one type of engine. Recently used by [START_REF] Alzaatreh | Family of generalized gamma distributions: Properties and applications[END_REF]. The time to failure of turbocharger data (n = 40) 1.6 3.5 4.8 5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4 2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4 2.6 4.5 5.1 5.8 6.3 6.7 7.3 7.7 7.9 8.3 8.5 3.0 4.6 5.3 6.0 8.7 8.8 9.0. The second data set (Data Set 2) was obtained in [START_REF] Proschan | Theoretical explanation of observed decreasing failure rate[END_REF] and corresponds to the time of successive failures of the air conditioning system of jet airplanes. These data were also studied by [START_REF] Dahiya | Goodness of fit tests for the gamma and exponential distributions[END_REF], [START_REF] Gupta | Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions[END_REF], [START_REF] Kus | A New Lifetime Distribution[END_REF] : 194, 413, 90, 74, 55, 23, 97, 50, 359,50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9 , 254, 493, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 100, 14,29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 57, 33, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12, 239,14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15, 2, 91, 59, 447, 56, 29, 176, 225,77, 197, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 5, 61, 31, 118, 326, 12, 54, 36,34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 26, 71, 39, 30, 7, 44, 11, 63,23, 22, 23, 14, 18, 13, 34, 62, 11, 191, 14, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95. The third data set (Data Set 3) represents the annual maximum temperatures at Oxford and Worthing in England for the period of 1901-1980[START_REF] Chandler | Inference for clustered data using the independence loglikelihood[END_REF] used the generalized extreme value distribution to model the annual maximum temperatures. Recently study this data by [START_REF] Alzaatreh | Family of generalized gamma distributions: Properties and applications[END_REF]. The annual maximum temperatures data (n = 80) 75, 92, 87, 86, 85, 95, 84, 87,86 ,82, 77, 89, 79, 83, 79, 85, 89, 84, 84, 82, 86, 81, 84, 84, 87, 89, 80, 86, 85, 84, 89, 80, 87, 84, 85, 82, 86, 87, 86, 89, 90, 90, 91, 81, 85 ,79, 83, 93, 87, 83, 88, 90, 83, 82, 80, 81 ,95 ,89, 86, 89, 87, 92, 89, 87, 87, 83, 89 ,88, 84, 84, 77, 85, 77, 91, 94, 80, 80, 85, 83, 88. Tables 3, 5 and 7 provide the values of goodness-of-fit measures for the GGFr model and other fitted models, whereas the MLEs and their corresponding standard errors (SEs) (in parentheses) are listed in Tables 4, 6 and 8 respectively. Some plots of the fitted GGFr pdf and cdf and other fitted pdfs and cdfs are displayed in Figure 4. From Tables 3, 5 and 7 we can see that GGFr perform best performance than other competitive models and plots in Figure 4 also reveal that the GGFr distribution yields the best fit and it can be considered a very competitive model to other fitted distributions. 
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  Let us consider the Frêchet distribution as baseline distribution, i.e. with pdf cdf, g(x; a, b) = (a b b/x b+1 ) exp -(a/x) b and cdf G(x; a, b) = exp -(a/x) b , where a, b, x > 0. Then the cdf of the GGFr distribution is given by

Figure 1 :

 1 Figure 1: Plots of pdfs of the GGFr (a), GGW (b) and GGLx (c) distributions.

Figure 2 :

 2 Figure 2: Plots of hrfs of the GGFr (a), GGW (b) and GGLx (c) distributions.

Figure 3 :

 3 Figure 3: Normal probability plots for the deviance residuals. (a) Sample size n = 100 for censored percentages of (0%, 10% and 20%). (b) Sample size n = 350 for censored percentages of (0%, 10% and 20%). (c) Sample size n = 850 for censored percentages of (0%, 10% and 20%).

Figure 4 :

 4 Figure 4: Plots of estimated pdfs and cdfs for Data Sets 1, 2 and 3 respectively.

Figure 5 :

 5 Figure 5: Estimated survival considering the LGGFr regression model for the three considered configurations in Table9 and Table 10.

Figure 6 :

 6 Figure 6: (a) Fitted hazard functions, (b) index plot and (c) normal probability pliot for the LGGFr regression model.

Table 1 :

 1 Simulations for the LGGFr regression model for the parameters values θ 10 = 5.6350, θ 11 = 0.4948, θ 20 = 0.1688, θ 21 = 0.5219, θ 30 = -0.5805, θ 31 = 0.0313, θ 40 = -2.6156 and

	θ 41 = 3.2250.									
				0% censored		10% censored		20% censored	
	n	θ	AE	Bias	MSE	AE	Bias	MSE	AE	Bias	MSE
		θ 10 5.6488 0.0138 0.1191	5.6612 0.0262 0.1423	5.7045 0.0695 0.1265
		θ 11 0.4844 -0.0104 0.0648	0.4682 -0.0266 0.0680	0.4439 -0.0509 0.0665
		θ 20 0.1212 -0.0476 0.0150	0.1203 -0.0485 0.0166	0.1252 -0.0436 0.0150
	100 θ 21 0.5294 0.0075 0.0079	0.5360 0.0141 0.0086	0.5382 0.0163 0.0098
		θ 30 -0.6982 -0.1177 0.1017	-0.6816 -0.1011 0.1039	-0.6601 -0.0796 0.1110
		θ 31 0.1097 0.0784 0.1426	0.0862 0.0549 0.1780	0.0297 -0.0016 0.1873
		θ 40 -2.6302 -0.0146 0.0908	-2.6663 -0.0507 0.1153	-2.7000 -0.0844 0.1554
		θ 41 3.2491 0.0241 0.1119	3.2953 0.0703 0.1487	3.3558 -0.0844 0.1817
		θ 10 5.6583 0.0233 0.0155	5.6628 0.0278 0.0171	5.6746 0.0396 0.0222
		θ 11 0.4792 -0.0156 0.0091	0.4776 -0.0172 0.0106	0.4700 -0.0248 0.0129
		θ 20 0.1558 -0.0130 0.0023	0.1551 -0.0137 0.0024	0.1550 -0.0138 0.0026
	350 θ 21 0.5286 0.0067 0.0007	0.5284 0.0065 0.0009	0.5302 0.0083 0.0011
		θ 30 -0.6318 -0.0513 0.0190	-0.6122 -0.0317 0.0189	-0.6078 -0.0273 0.0209
		θ 31 0.0724 0.0411 0.0241	0.0493 0.0180 0.0238	0.0365 0.0052 0.0271
		θ 40 -2.6105 0.0051 0.0170	-2.6323 -0.0167 0.0203	-2.6478 -0.0322 0.0255
		θ 41 3.2236 -0.0014 0.0169	3.2433 0.0183 0.0199	3.2648 0.0398 0.0267
		θ 10 5.6479 0.0129 0.0038	5.6522 0.0172 0.0043	5.6574 0.0224 0.0057
		θ 11 0.4861 -0.0087 0.0022	0.4843 -0.0105 0.0025	0.4814 -0.0134 0.0033
		θ 20 0.1620 -0.0068 0.0006	0.1605 -0.0083 0.0008	0.1599 -0.0089 0.0010
	850 θ 21 0.5260 0.0041 0.0001	0.5266 0.0047 0.0002	0.5272 0.0053 0.0002
		θ 30 -0.6118 -0.0313 0.0056	-0.6018 -0.0213 0.0050	-0.5963 -0.0158 0.0058
		θ 31 0.0591 0.0278 0.0067	0.0479 0.0166 0.0063	0.0377 0.0064 0.0080
		θ 40 -2.6081 0.0075 0.0046	-2.6258 -0.0102 0.0056	-2.6344 -0.0188 0.0085
		θ 41 3.2163 -0.0087 0.0048	3.2310 0.0060 0.0054	3.2421 0.0171 0.0080

Table 2 :

 2 The competitive models of the GGFr distributions.

	Distribution	Author(s)
	Generalized Odd Gamma-Frêchet (GOFr) Hosseini et al. (2018)
	Log-gamma generated Frêchet (LGFr)	Amini al. (2014)
	Kumaraswamy Frêchet (KwFr)	Mead and Abd-Eltawab (2014)
	Beta Frêchet (BFr)	Nadarajah and Gupta (2004)
	Exponentiated Frêchet (EFr)	

  and De Andrade al. (2017)), among others. The data are

Table 3 :

 3 Goodness-of-fit measures for Data Set 1.

	Model	-	AIC	BIC	CVM	AD	KS	PV
	GGFr	77.6861 163.3722 170.1278 0.0147 0.1128 0.0627 0.9975
	GOFr	87.8787 183.7575 190.5130 0.2201 1.4468 0.1353 0.4562
	LGFr	85.8029 179.6059 186.3614 0.1659 1.1365 0.1434 0.3831
	KwFr	86.1506 180.3014 187.0569 0.1710 1.1615 0.1218 0.5928
	BFr	91.2658 190.5317 197.2872 0.3161 1.9815 0.1523 0.3109
	EFr	101.5918 209.1836 214.2502 0.6067 3.4798 0.2438 0.0172

Table 4 :

 4 MLEs and SEs (in parentheses) for Data Set 1.

	Model		Estimates	
	GGFr	39.9826	0.0554	5.4318	0.7286
	(α, β, a, b) (35.4823)	(0.0508)	(1.8028)	(0.4728)
	GOFr	13.0778	4.6917	0.1739	1.1748
	(α, β, a, b) (14.14513)	(3.4168)	(0.8502)	(0.3630)
	LGFr	0.2839	135.0816	41.7514	1.0413
	(α, β, a, b)	(0.1061)	(78.3133)	(0.0755)	(0.0919)
	KwFr	5.2239	554.6118	9.8825	0.5019
	(a, b, λ, α) (36.8518) (222.0773) (138.8463) (0.0927)
	BFr	71.1502	259.1749	74.9748	0.1685
	(a, b, λ, α)	(2.1131)	(111.2123) (38.1707) (0.0323)
	EFr	1.6108	1.9440	7.9296	
	(a, b, λ)	(0.1674)	(0.2033)	(3.3140)	

Table 5 :

 5 Goodness-of-fit measures for Data Set 2.

	Model	-	AIC	BIC	CVM	AD	KS	PV

Table 6 :

 6 MLEs and SEs (in parentheses) for Data Set 2.

	Model		Estimates	
	GGFr	1.9151	0.6879	50.9094	0.3914
	(α, β, a, b)	(0.4837)	(0.5710)	(46.1448) (0.1184)
	GOFr	10.2114	2.8055	0.0193	0.4308
	(α, β, a, b)	(0.4837)	(0.5710)	(46.1448) (0.1184)
	LGFr	74.8549	165.0835	57.9521	0.0724
	(α, β, a, b) (86.4516) (162.3931) (29.0281) (0.0352)
	KwFr	7.9721	152.5672	5.8233	0.1756
	(a, b, λ, α)	(2.5710)	(170.4326) (9.5828) (0.0365)
	BFr	123.6822	219.1236	69.6975	0.0565
	(a, b, λ, α) (127.1976) (204.1889) (11.2324) (0.0312)
	EFr	3.9932	0.7360	3.9688	
	(a, b, λ)	(21.5108)	(0.0345)	(4.4654)	

Table 7 :

 7 Goodness-of-fit measures for Data Set 3.

	Model	-	AIC	BIC	CVM	AD	KS	PV
	GGFr 229.1030 465.2059 474.7340 0.0489 0.3041 0.0628 0.8993
	GOFr 229.0553 466.1105 475.6386 0.0507 0.3053 0.0640 0.8978
	LGFr	229.4772 466.9545 476.4826 0.0662 0.3923 0.0799 0.6855
	KwFr 229.0371 466.0743 475.6024 0.0499 0.3057 0.0688 0.8198
	BFr	229.3539 466.7079 476.2360 0.0623 0.3694 0.0772 0.7269
	EFr	236.7190 479.4380 486.5841 0.2524 1.5095 0.1342 0.1120

Table 8 :

 8 MLEs and SEs (in parentheses) for Data Set 3.

	Model		Estimates	
	GGFr	18.2831	14.3326	9.7718	0.2178
	(α, β, a, b) (11.7818) (13.2666)	(5.1681) (0.03312)
	GOFr	40.2115	34.2970	10.1598	3.3992
	(α, β, a, b) (16.4392) (20.8552) (11.5038) (0.1216)
	LGFr	85.6583	111.0738	69.3561	2.3037
	(α, β, a, b) (3.1215) (119.7371) (12.2132) (2.2619)
	KwFr	0.6140	35.5674	117.4816	5.8279
	(a, b, λ, α) (6.9305)	(16.5385) (28.7539) (2.7076)
	BFr	123.4322	239.6551	90.1387	1.3572
	(a, b, λ, α) (1.2342) (146.6493) (21.3231) (1.6669)
	EFr	69.0908	19.8504	38.9689	
	(a, b, λ)	(38.8814)	(1.5900)	(8.5356)	

Table 9 :

 9 MLEs, SEs and p-values for the LGGFr regression model fitted to the turbine data.

	Homoscedastic LGGFr regression model	Heteroscedastic LGGFr regression model
	Parameter Estimate	SE	p-Value Parameter Estimate	SE	p-Value
	log(σ)	-0.4432 0.0780	-	log(α)	-0.297	0.119	-
	log(α)	0.2504	0.1033	-	log(β)	-0.0314 0.1149	-
	log(β)	0.0027	0.0919	-	θ 10	2.3104	0.1665 < 0.0001
	θ 10	2.0162	0.1068 < 0.0001	θ 11	-0.4664 0.2065	0.0289
	θ 11	-0.4858 0.1757	0.0082	θ 12	-0.1732 0.2101	0.4140
	θ 12	-0.1621 0.1910	0.4004	θ 13	0.0422	0.2088	0.8408
	θ 13	0.0126	0.1532	0.9344	θ 14	0.3663	0.1998	0.0734
	θ 14	0.3804	0.2167	0.0860	θ 20	-0.3842 0.1983	0.0590
					θ 21	-0.3091 0.3122	0.3270
					θ 22	-0.2708 0.2913	0.3570
					θ 23	-0.2141 0.2654	0.4240
					θ 24	-0.3968 0.2740	0.1550
	(a)			(b)			(c)	

Table 10 :

 10 MLEs, SEs and p-values for the LGGFr regression model fitted to the turbine data. Location, scale and shape LGGFr regression model

	Parameter Estimated	SE	p-Value Parameter Estimated	SE	p-Value
	θ 10	2.2989	0.0883 < 0.0001	θ 30	-3.0051	0.3193 < 0.0001
	θ 11	-0.2361	0.1228	0.0609	θ 31	2.10526	0.4235 < 0.0001
	θ 12	-0.0443	0.1264	0.7272	θ 32	0.9625	0.4655	0.0444
	θ 13	0.3523	0.1141	0.0034	θ 33	1.6414	0.4568	0.0008
	θ 14	0.4168	0.1224	0.0014	θ 34	1.4204	0.4564	0.0032
	θ 20	0.4083	0.1874	0.0347	θ 40	3.5051	0.2891 < 0.0001
	θ 21	-1.6849	0.2164 < 0.0001	θ 41	-4.4531	0.4086 < 0.0001
	θ 22	-0.4542	0.331	0.1769	θ 42	-1.3238	0.4216	0.0029
	θ 23	-1.9999	0.2119 < 0.0001	θ 43	-5.2839	0.4363 < 0.0001
	θ 24	-0.4597	0.3349	0.1766	θ 44	-1.5485	0.4164	0.0005
	(a)			(b)			(c)	

Regression model for turbine data

In this application, we use a real data set available in the book of (Lawless, 2003, page 262, Table 5.9) to study the LGGFr regression model. The model parameters are estimated by package GAMLSS in R. This data set presents an experiment designed to compare the performances of high-speed turbine engine bearings made out of five different compounds [START_REF] Mccool | Distribution of Cysticercus bovis in lightly infected young cattle[END_REF]). The experiment tested 10 bearings of each type; the times to fatigue failure are given in units of millions of cycles. The analysis considering the LGGFr regression model is performed with the definition of dammy variables as follows: levels type I (d i1 = 0, d i2 = 0, d i3 = 0 and d i4 = 0), levels type II (d i1 = 1, d i2 = 0, d i3 = 0 andd i4 = 0), levels type III (d i1 = 0, d i2 = 1, d i3 = 0 andd i4 = 0), type IV (d i1 = 0, d i2 = 0, d i3 = 1 andd i4 = 0) andlevels type V (d i1 = 0, d i2 = 0, d i3 = 0 andd i4 = 1).

The LGGFr regression model for the turbine data can be expressed as follows

where z 1 , • • • , z 50 are independent random variables with pdf (5.2). We consider the three following configurations. The first configuration corresponds to the homoscedastic case: we consider the model parameters α, β, µ i , σ, where µ i = µ i = θ 10 + θ 11 d i1 + θ 12 d i2 + θ 13 d i3 + θ 14 d i4 and σ is a common variance : σ = σ 1 = . . . = σ 50 . The second configuration corresponds to the heteroscedastic case: we consider the parameters α, β, µ i , σ i , where

. The third configuration is the more general ; we consider the parameters :

The MLEs for the LGGFr model are presented in Tables 9 and10. Thus, when establishing a signifcance level of 5%, we note that the compounds type level is significant and should be used to model the location, scale and shape.

In order to see if the considered regression model is appropriate, the plot comparing the empirical survival function and estimated survival function for the LGGFr regression model is displayed in Figure 5 under the three presented configurations. We observe that LGGFr regression model shows a suitable fit. Figure 6 (a) presents the fitted hazard functions, (b) the index plot of the deviance residual for the the turbine data and (c) the normal probability plot for the deviance component residual with envelopes from the fitted of LGGFr regression model to the turbine data. All these figures shows that the considered LGGFr regression model is appropriate.