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Abstract

In this article, a new “odd generalized gamma-G” family of distributions, called the GG-

G family of distributions, is introduced. We propose a complete mathematical and statistical

studies of this family, with a special focus on the Frêchet distribution as baseline distribution. In

particular, we provide infinite mixture representations of its probability density function and its

cumulative distribution function, the expressions for the Rényi entropy, the reliability parameter

and the probability density function of ith order statistic. Then the statistical properties of the

family are explored. Model parameters are estimated by the maximum likelihood method. A

regression model is also investigated. A simulation study is performed to check the validity

of the obtained estimators. Applications on real data sets are also included, with favorable

comparisons to existing distributions in terms of goodness-of-fit.

Keywords— Gamma distribution; Moments; Order statistics; Rényi entropy; Maximum likelihood

method; Regression model; Data analysis.

2000 Mathematics Subject Classification:— 60E05, 62E15, 62F10.

1 Introduction

The deep analysis of data from sophisticated phenomenons can be limited by the use of classical

(probability) distributions. This motivates the statisticians to develop new distributions/models

having the ability to capture special features of the phenomenons from the data. One of the most

common approach is the use of the so called “generators of distributions” which consists in injecting

more flexibility into an existing distribution. The construction of such generators often uses existing

distributions with one or several parameters and with well-known structural properties. Among

the most popular generators, there are the beta generator (see Eugene et al. (2002) and Jones

(2004)), the Transmuted generator (see Shaw and Buckley (2007)), the Kumaraswamy generator

(see Cordeiro and de-Castro (2011)), the McDonald generator (see Alexander et al. (2012)), the
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Kummer beta generator (see Peskim et al. (2012)), the gamma generator (see Zografos and Balakr-

ishnan (2009), Rist́ıc and Balakrishnan (2012) and Tobari and Montazari (2012)), the log-gamma

generator (see Amini al. (2014)), the logistic generator (see Torabi and Montazeri (2014)), the beta

extended Weibull generator (see Cordeiro al. (2012)), the Transformed-Transformer (T-X) genera-

tor (see Alzaatreh et al. (2013)), the exponentiated TX generator (see Alzaghal et al. (2013)), the

Weibull generator (see Alzaatreh et al. (2013) and Bourguignon et al. (2014)), the exponentiated

halflogistic generator (see Cordeiro al. (2014)), the sine generator (see Kumar et al. (2015)), the

odd Burr III generator (see Jamal et al. (2017)), the cosine-sine generator (see Chesneau et al.

(2018)) and the generalized odd gamma generator (see Hosseini et al. (2018)).

In particular, Hosseini et al. (2018) demonstrate that the combination of gamma generator with

the generalized odd transformation generates very flexible distributions, with great advantages in

data analysis (more flexible kurtosis in comparison to the baseline distribution, produce a skewness

for symmetrical distributions, generate distributions with symmetric, left-skewed, right-skewed and

reversed-J shaped . . . ). The aim of this paper is to propose an alternative to the generator intro-

duced by Hosseini et al. (2018). It is constructed from the generalized gamma distribution and

the (standard) odd transformation. It allows us to define a new family of distributions described

below. Let us recall that the probability density function (pdf) of generalized gamma distribution

is given by

f(x;α, β, δ) =
α δαβ

Γ(β)
xαβ−1 exp[−(δ x)α], x > 0,

where α > 0 and β > 0 are the shape parameters and δ > 0 is the scale parameter. If we take

δ = 1, then f(x;α, β, δ) is reduced to the pdf r(x;α, β) given by

r(x;α, β) =
α

Γ(β)
xαβ−1 exp (−xα),

where Γ(β) =
∫ +∞

0 wβ−1 exp (−w)dw is the gamma function. Let us now consider a cumulative

distribution function (cdf) of a baseline distribution denoted by G(x; ξ), where ξ denotes the related

parameter vector. We then propose to use a generalized gamma generator with the standard odd

transformation defined by W [G(x; ξ)] = G(x; ξ)/[1−G(x; ξ)]. This yields the following cdf:

F (x;α, β, ξ) =

∫ W [G(x;ξ)]

−∞
r(t;α, β)dt =

γ
[
β,
(

G(x;ξ)
1−G(x;ξ)

)α]
Γ(β)

, (1.1)

where γ(β, x) =
∫ x

0 w
β−1 exp (−w)dw is the incomplete gamma function. By differentiation, the

corresponding pdf is given by

f(x;α, β, ξ) =
α

Γ(β)

g(x; ξ)Gαβ−1(x; ξ)

(1−G(x; ξ))αβ+1
exp

{
−
[

G(x; ξ)

1−G(x; ξ)

]α}
. (1.2)

The corresponding hazard rate function (hrf) is given by

h(x;α, β, ξ) =
f(x;α, β, ξ)

1− F (x;α, β, ξ)

=
α g(x; ξ)Gαβ−1(x; ξ)

(1−G(x; ξ))αβ+1
{

Γ(β)− γ
[
β,
(

G(x;ξ)
1−G(x;ξ)

)α]} exp

{
−
[

G(x; ξ)

1−G(x; ξ)

]α}
. (1.3)
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For the purpose of the paper, the generator characterized by the cdf (1.1) is called the odd gen-

eralized gamma generator and the corresponding family of distributions is called odd generalized

gamma G (GG-G) family of distributions. To the best of our knowledge, it is new in the literature,

even if connections exist with the Generalized Odd Gamma-G family introduced by Hosseini et

al. (2018) (the families coincide by taking α = 1 and, in the definition of the Generalized Odd

Gamma-G family, β = 1). We show in this study how our family is complementary on several

aspects, and can be superior in term of goodness-of-fit to the Generalized Odd Gamma-G family.

The rest of this paper is organized as follows. In Section 2, three special models are given, with

plots of their pdfs and hrfs to illustrate their flexibility. The one using the Frêchet distribution

as baseline will be at the heart of our applied study. The main mathematical properties of the

GG-G family are studied in Section 3, including shapes and asymptotes of the pdf and the hrf,

mixture representations of the pdf and cdf in terms of baseline distribution, explicit expressions

for the rth moment, rth incomplete moment, moment generating function, mean deviations, Rényi

entropy, reliability parameter and the pdf of the ith order statistic. The estimations of the related

parameters by the maximum likelihood method are discussed in Section 4. In Section 5, a regression

model is given, with a simulation study. Section 6 is devoted to the residual analysis. Applications

to real life data sets are performed in Section 7.

2 Special sub models

In this section, we study three special sub models, namely odd generalized gamma Frêchet (GGFr),

odd generalized gamma Weibull (GGW) and odd generalized gamma Lomax (GGLx) distributions.

2.1 Odd generalized gamma Frêchet distribution

Let us consider the Frêchet distribution as baseline distribution, i.e. with pdf cdf, g(x; a, b) =

(ab b/xb+1) exp
[
−(a/x)b

]
and cdf G(x; a, b) = exp

[
−(a/x)b

]
, where a, b, x > 0. Then the cdf of

the GGFr distribution is given by

F (x;α, β, a, b) =

γ

(
β,
[
exp

[
(a/x)b

]
− 1
]−α)

Γ(β)
.

The pdf is given by

f(x;α, β, a, b) =
αab b exp

[
−αβ (a/x)b

]
Γ(β)xb+1

{
1− exp

[
− (a/x)b

]}αβ+1
exp

{
−
[
exp

[(a
x

)b]
− 1

]−α}
. (2.1)
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The hrf is fiven by

h(x;α, β, a, b) =
αab b exp

[
−αβ (a/x)b

]
xb+1

{
1− exp

[
− (a/x)b

]}αβ+1
[
Γ(β)− γ

(
β,
[
exp

[
(a/x)b

]
− 1
]−α)] ×

exp

{
−
[
exp

[(a
x

)b]
− 1

]−α}
.

2.2 Odd generalized gamma Weibull distribution

Let us consider the gamma Weibull distribution as baseline distribution, i.e. with pdf g(x; a, b) =

a b xb−1 exp
(
−a xb

)
and cdf G(x; a, b) = 1 − exp

(
−a xb

)
, where a, b, x > 0. Then the cdf of the

GGW distribution is given by

F (x;α, β, a, b) =
γ
(
β,
[
exp

(
a xb

)
− 1
]α)

Γ(β)
.

The pdf is given by

f(x;α, β, a, b) =
α

Γ(β)
a b xb−1

[
1− exp

(
−a xb

)]αβ−1
exp

{
aαβ xb −

[
exp

(
a xb

)
− 1
]α}

.

The hrf is fiven by

h(x;α, β, a, b) =
αa b xb−1

[
1− exp

(
−a xb

)]αβ−1

Γ(β)− γ
(
β, [exp (a xb)− 1]

α) exp
{
aαβ xb −

[
exp

(
a xb

)
− 1
]α}

.

2.3 Odd generalized gamma Lomax distribution

Let us consider the Lomax distribution as baseline distribution, i.e. with pdf g(x; a, b) = (a/b) (1 + x/b)−a−1

and cdf G(x; a, b) = 1 − (1 + x/b)−a, where a, b, x > 0. Then the cdf of the GGLx distribution is

given by

F (x;α, β, a, b) =
γ (β, [(1 + x/b)a − 1]α)

Γ(β)
.

The pdf is given by

f(x;α, β, a, b) =
α

Γ(β)

a

b

(
1 +

x

b

)aαβ−1
[
1−

(
1 +

x

b

)−a]αβ−1

exp
{
−
[(

1 +
x

b

)a
− 1
]α}

.

The hrf is fiven by

h(x;α, β, a, b) =
αa (1 + x/b)aαβ−1 [1− (1 + x/b)−a

]αβ−1

b [Γ(β)− γ (β, [(1 + x/b)a − 1]α)]
exp

{
−
[(

1 +
x

b

)a
− 1
]α}

.

Figure 1 illustrates the pdfs of the GGFr, GGW and GGLx distributions for selected values

of the parameters. Figure 2 illustrates the hrfs of the GGFr, GGW and GGLx distributions for

selected values of the parameters. Various forms of shapes are observed, showing the great flexibility

of these special sub models, and a fortiori, the GG-G family.

4



(a) (b) (c)

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

x

p
d
f

α = 0.3  β = 0.5  a = 5  b = 2
α = 3  β = 0.2  a = 0.5  b = 2
α = 2  β = 0.3  a = 0.5  b = 0.1
α = 8  β = 0.3  a = 0.5  b = 1
α = 12  β = 0.1  a = 0.2  b = 0.4

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

p
d
f

α = 1.5  β = 3  a = 0.8  b = 1.2
α = 1  β = 1.5  a = 1.5  b = 1
α = 0.8  β = 0.5  a = 1.5  b = 0.8
α = 3  β = 0.1  a = 0.8  b = 2.2
α = 3  β = 2  a = 0.8  b = 0.6

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
1
0

x

p
d
f

α = 3  β = 2  a = 0.2  b = 1
α = 1  β = 0.5  a = 0.5  b = 1.5
α = 8  β = 0.7  a = 0.3  b = 0.8
α = 2  β = 0.8  a = 0.5  b = 2
α = 1  β = 1  a = 1.5  b = 1.5

Figure 1: Plots of pdfs of the GGFr (a), GGW (b) and GGLx (c) distributions.
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Figure 2: Plots of hrfs of the GGFr (a), GGW (b) and GGLx (c) distributions.

3 Mathematical properties

This section is devoted to the mathematical properties of the GG-G family of distributions.
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3.1 Characterization

Let G−1(x, ξ) be the inverse function of G(x, ξ) and V a random variable having the gamma

distribution with parameters 1 and β. Then the random variable X = G−1
{
V 1/α/(1 + V 1/α); ξ

}
follows the GG-G family.

3.2 Quantile function

Let γ−1(β, x) be the inverse function of γ(β, x). The quantile function of the GG-G family is given

by

Q(y, ξ) = G−1

(
[γ−1(β, yΓ(β))]1/α

1 + [γ−1(β, yΓ(β))]1/α
, ξ

)
, y ∈ (0, 1).

The median of the GG-G family is given by Med = Q(0.5, ξ).

3.3 Shape of the crucial functions

The shapes of the pdf and the hrf of the GG-G family can be described analytically. The critical

points of the pdf f(x; ξ) given by (1.2) are the roots of the following equation:

gx(x; ξ)

g(x; ξ)
+(αβ−1)

g(x; ξ)

G(x; ξ)
+(αβ+1)

g(x; ξ)

1−G(x; ξ)
−α

{
G(x; ξ)

1−G(x; ξ)

}α−1 g(x; ξ)

{1−G(x; ξ)}2
= 0, (3.1)

where gx(x; ξ) = ∂g(x; ξ)/∂x. The critical points of h(x) given by (1.3) are obtained from the

following equation:

gx(x; ξ)

g(x; ξ)
+ (αβ − 1)

g(x; ξ)

G(x; ξ)
+ (αβ + 1)

g(x; ξ)

1−G(x; ξ)
− α

{
G(x; ξ)

1−G(x; ξ)

}α−1 g(x; ξ)

{1−G(x; ξ)}2

+
α g(x; ξ)Gαβ−1(x; ξ)

(1−G(x; ξ))αβ+1
{

Γ(β)− γ
[
β,
(

G(x;ξ)
1−G(x;ξ)

)α]} exp

{
−
[

G(x; ξ)

1−G(x; ξ)

]α}
= 0. (3.2)

By using most of the symbolic computation software platforms, we can examine the equations (3.1)

and (3.2) to determine the local maximums and minimums and inflexion points.

3.4 Mixture representation

In this subsection, we will give the mixture representations of the GG-G pdf and GG-G cdf in terms

of exp-G distribution of the baseline distribution, which will be useful for the derivation of further

properties.

First of all, let us recall that the exponential series expansion is given by, for any x ∈ R,

exp (−a x) =
+∞∑
i=0

(−1)i ai

i!
xi. (3.3)

On the other side, the generalized binomial series expansion is given by, for any x such that |x| < 1,

(1− x)b =

+∞∑
j=0

(
b

j

)
(−1)j xj , (3.4)
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where

(
b

j

)
=

b(b− 1) . . . (b− j + 1)

j!
. These two formulas will be useful in our mathematical

developments. Using the series (3.3) and (3.4), the pdf f(x;α, β, ξ) given by (1.2) becomes

f(x;α, β, ξ) =
+∞∑
i,j=0

ui,j g(x; ξ)Gα(β+i)+j−1(x; ξ),

with ui,j = α
Γ(β)

(−α(β+i)−1
j

) (−1)i+j

i! . Now, by writingGα(β+i)+j−1(x; ξ) = [1−(1−G(x; ξ))]α(β+i)+j−1,

we get

f(x;α, β, ξ) =
+∞∑

i,j,m=0

+∞∑
`=m

wi,j,`,m g(x; ξ)Gm(x; ξ),

where wi,j,`,m = ui,j
(α(β+i)+j−1

`

) (
`
m

)
(−1)`+m. Rewriting the above equation we have

f(x;α, β, ξ) =
+∞∑
m=0

am hm+1(x; ξ), (3.5)

where

am =
α

Γ(β)

(−1)m

m+ 1

+∞∑
i,j=0

+∞∑
`=m

(
−α(β + i)− 1

j

)(
α(β + i) + j − 1

`

)(
`

m

)
(−1)i+j+`

i!

and hm+1(x; ξ) = (m+ 1) g(x; ξ)Gm(x; ξ).

Moreover, by integrating this equation with respect to x, the cdf of GG-G family is given by

F (x) =

+∞∑
m=0

amHm+1(x; ξ), (3.6)

where Hm+1(x; ξ) = Gm+1(x; ξ). The expression in (3.5) and (3.6) are the infinite mixtures repre-

sentation of the GG-G pdf in terms of functions (pdf and cdf) of the exp-G distribution.

In the context of the GGFr distribution: We can express f(x;α, β, ξ) as (3.5) with hm+1(x; ξ) =

(m+ 1) (ab b/xb+1) exp
[
−(m+ 1) (a/x)b

]
, ξ = (a, b), x, a, b > 0.

3.5 Moments and moment generating function

In this subsection, we give the explicit expression for the rth moment, rth incomplete moment,

moment generating function and the mean deviation about the mean.

The rth moment of GG-G family can be obtained by using following formula

µ′r =

∫ +∞

−∞
xr f(x;α, β, ξ) dx,

where f(x;α, β, ξ) is given by (1.2). It follows from the infinite mixture representation given by

(3.5) that

µ′r =
+∞∑
m=0

am τ
r
m,
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where

τ rm =

∫ +∞

−∞
xr hm+1(x; ξ) dx (3.7)

and hm+1(x; ξ) = (m+ 1) g(x; ξ)Gm(x; ξ).

In the context of the GGFr distribution: One can show that, for r < b, we have τ rm = (m +

1)r/barΓ (1− r/b).
Similarly, the rth incomplete moment of GG-G family is given by

T r(x;α, β, ξ) =

+∞∑
m=0

am ∆r
m(x; ξ),

where

∆r
m(x; ξ) =

∫ x

−∞
tr hm+1(t; ξ) dt. (3.8)

In the context of the GGFr distribution: One can show that, for r < b, we have ∆r
m(x; ξ) =

(m + 1)r/barΓ
(
1− r/b, (m+ 1)abx−b

)
, ξ = (a, b), a, b > 0, where Γ(s, x) denotes the upper

incomplete gamma function defined by Γ(s, x) =
∫ +∞
x ts−1e−tdt, s, x > 0.

The mean deviation about the mean of the GG-G family is given by

D1 = 2µ′1 F (µ′1;α, β, ξ)− 2T 1(µ′1;α, β, ξ)

and the mean deviation about the median of the GG-G family is given by

D82 = µ′1 F (µ′1;α, β, ξ)− 2T 1(Med;α, β, ξ).

The moment generating function of GG-G family is given by

M0(t;α, β, ξ) =

+∞∑
m=0

amMx(t; ξ),

where

Mx(t; ξ) =

∫ +∞

−∞
exp(t x)hm+1(x; ξ) dx. (3.9)

Note that the integrals in (3.7), (3.8) and (3.9) only depends for any choice of base line distri-

bution.

3.6 Reliability parameter

In the context of reliability, the stress-strength model defines the life of a element which has a

random strength X1 that is subjected to an accidental stress X2. The component fails at the instant

that the stress applied to it exceeds the strength, and the component will function suitably whenever

X1 > X2. Hence, by modeling X1 and X2 as random variables, the probability R = P (X2 < X1)

is a measure of components reliability. It has many applications especially in the area of reliability

and engineering. In what follows, we derive the reliability R when X1 and X2 are independent and
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identically distributed and belongs to the GG-G family with same parameters, with pdf f1(x;α, β, ξ)

for X1 and with cdf F2(x;α, β, ξ) for X2. From (1.2) and (1.1), we can write

R =

∫ +∞

−∞
f1(x;α, β, ξ)F2(x;α, β, ξ) dx.

Using the mixture representations of the pdf and the cdf given by (3.5) and (3.6), we have

R =

+∞∑
m=0

+∞∑
k=0

am ak

∫ +∞

−∞
hm+1(x; ξ)Hk+1(x; ξ) dx.

Since hm+1(x; ξ)Hk+1(x; ξ) = (m+ 1) g(x; ξ)Gm+k+1(x; ξ), we have

R =
+∞∑
m=0

+∞∑
k=0

am ak (m+ 1)

∫ +∞

−∞
g(x; ξ)Gm+k+1(x; ξ) dx.

Let us observe that the above integral depends only on the choice of baseline distribution.

In the context of the GGFr distribution: One can show that
∫ +∞
−∞ g(x; ξ)Gm+k+1(x; ξ) dx =

1/(m+ k + 2).

3.7 Entropies

Let δ > 0 with δ 6= 1. The Réyni entropy of the GG-G family is given by

Iδ =
1

1− δ
log

[∫ +∞

−∞
f δ(x;α, β, ξ) dx

]
. (3.10)

Using (3.3) and (3.4), we have

f δ(x;α, β, ξ) =

(
α

Γ(β)

)δ +∞∑
i,j=0

ui,j,δ g
δ(x; ξ)Gj+δ(αβ−1)+αi(x; ξ),

where ui,j,δ =
(−α i−δ(αβ+1)

j

) (−1)i+1 δi

i! . Now equation (3.10) becomes

Iδ =
1

1− δ

[
δ logα− δ log Γ(β) + log

[ +∞∑
i,j=0

ui,j,δ

∫ +∞

−∞
gδ(x; ξ)Gj+δ(αβ−1)+αi(x; ξ) dx

]]
.

We observe that Iδ depends only for any choice of base line distribution.

The δ-entropy is defined by

Hδ =
1

δ − 1
log

[
1−

∫ +∞

−∞
[f(x;α, β, ξ)]δ dx

]
.

So we have

Hδ =
1

δ − 1
log

1−
(

α

Γ(β)

)δ +∞∑
i,j=0

ui,j,δ

∫ +∞

−∞
gδ(x; ξ)Gj+δ(αβ−1)+αi(x; ξ) dx

 .
Finally, the Shannon entropy of GG-G family is defined by

S = −
∫ +∞
−∞ log[f(x;α, β, ξ)]f(x;α, β, ξ)dx. It is in fact a particular case of the Rényi entropy

when δ tends to 1+.
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3.8 Order statistics

Let X1, . . . , Xn be the random sample population with pdf given by (1.2), then the pdf of the ith

order statistic is given by

fi:n(x;α, β, ξ) =
n!

(i− 1)!(n− i)!
f(x;α, β, ξ)F i−1(x;α, β, ξ) [1− F (x;α, β, ξ)]n−i .

Using series expansion in equation (3.4) we have

fi:n(x;α, β, ξ) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j f(x;α, β, ξ)F j+i−1(x;α, β, ξ). (3.11)

By the infinite mixture representation in (3.5) and (3.6), we obtain

fi:n(x;α, β, ξ) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

am hm+1(x; ξ)

[
+∞∑
k=0

akHk+1(x; ξ)

]j+i−1

.

(3.12)

Using power series raised to a positive power (see Gradshteyn and Ryzhik (2000)), we get(
+∞∑
k=0

ck x
k

)n
=

+∞∑
k=0

dk x
k,

where d0 = cn0 and dm = 1
mc0

m∑
k=1

(k (n+ 1)−m) ck dm−k for m ≥ 1. Therefore

[
+∞∑
k=0

akHk+1(x; ξ)

]j+i−1

= Gj+i−1(x; ξ)
+∞∑
k=0

dkG
k(x; ξ),

with d0 = aj+i−1
0 and dm = 1

ma0

m∑
k=1

(k (j+ i)−m) ak dm−k for m ≥ 1. Now equation (3.12) becomes

fi:n(x;α, β, ξ) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

+∞∑
k=0

dk am (m+ 1) g(x; ξ)Gm+j+i+k−1(x; ξ).

From this expression, several mathematical properties can be obtained, as moments, moment gen-

erating function. . . .

In the context of the GGFr distribution: One can observe that g(x; ξ)Gm+j+i+k−1(x; ξ) =

(ab b/xb+1) exp
[
−(m+ j + i+ k)

(
a
x

)b]
= (1/(m+ j + i+ k))um+j+i+k(x), where um+j+i+k(x) de-

notes the pdf of the Frêchet distribution with parameters (m+ j + i+ k)1/ba and b. So the pdf of

ith order statistics of the GGFr distribution can be expressed as a linear combination of Frêchet

pdfs.
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4 Estimation of GG-G family parameter

Let x1, . . . , x2 be a random sample of size n from a population with pdf given by (1.2) with vector

of parameters Θ = [α, β, ξ]T . The log-likelihood function for the vector of parameters is given by

`(Θ) = n logα− n log Γ(β) +

n∑
i=1

log g(xi, ξ) + (αβ − 1)

n∑
i=1

logG(xi, ξ)

− (αβ + 1)

n∑
i=1

log(1−G(xi; ξ))−
n∑
i=1

(
G(xi, ξ)

1−G(xi; ξ)

)α
.

The components of score vector Θ = [α, β, ξ]T are given by

Uα =
n

α
+ β

n∑
i=1

logG(xi, ξ)− β
n∑
i=1

log(1−G(xi; ξ))−
n∑
i=1

(
G(xi, ξ)

1−G(xi; ξ)

)α
log

(
G(xi, ξ)

1−G(xi; ξ)

)
,

Uβ = −n d

d β
log Γ(β) + α

n∑
i=1

logG(xi, ξ)− α
n∑
i=1

log(1−G(xi; ξ)),

Uξ =

n∑
i=1

gξ(xi, ξ)

g(xi, ξ)
+ (αβ − 1)

n∑
i=1

Gξ(xi, ξ)

G(xi, ξ)
+ (αβ + 1)

n∑
i=1

Gξ(xi, ξ)

1−G(xi, ξ)

− α
n∑
i=1

[
G(xi, ξ)

1−G(xi, ξ)

]α−1 Gξ(xi, ξ)

{1−G(xi, ξ)}2
,

where Gξ(xi, ξ) = ∂G(xi, ξ)/∂ξ and gξ(xi, ξ) = ∂g(xi, ξ)/∂ξ. Since these equations are nonlinear

equations according to the parameters, they can not be solved analytically but can be solved

numerically by any software like R-language or mathematica.

5 Log-generalized gamma Fréchet

In many applied area, the lifetimes are affected by explanatory variables such as the cholesterol

level, blood sugar, gender and many other explanatory variables. Parametric survival models to

estimate the survival functions for censored data are widely used. For example, recently Lanjoniet

al. (2016) defined the extended Burr XII regression model and Prataviera et al. (2018) proposed

the heteroscedastic odd log-logistic generalized gamma regression model for censored data. Thus,

using the some approach adopted in these papers, a distribution obtained from the Log-generalized

gamma Frêchet (LGGFr) distribution will be expressed in the form of the class of location-scale

models with two additional parameters to the shape. In this way, we propose a model of regression

location, scale and shape.

Let X be a random variable having the pdf (2.1). A class of regression models for location and

scale is characterized by the fact that the random variable Y = log(X). The cdf and pdf of Y can

be expressed in terms of the basic function as

G(y;µ, σ) = exp

{
− exp

{
−
(
y − µ
σ

)}}
, g(y;µ, σ) =

1

σ
exp

{
−
(
y − µ
σ

)
− exp

{
−
(
y − µ
σ

)}}
.
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Then the pdf (2.1) becomes:

f(y;α, β, µ, σ) =
α g(y)G(y)(βα−1)(1−G(y))−(βα+1) exp{−[G(y)/(1−G(y))]α}

Γ(β)
, (5.1)

where y, µ ∈ R and σ > 0, µ is the location parameter, σ is the scale parameter and α and

β are shape parameters. Thus, if X ∼ GGFr(a, b, α, β) then Y = log(X) ∼ LGGFr(µ, σ, α, β).

However, if Y = log(X) ∼ LGGFr(µ, σ, α, β), the cdf and pdf of the standardized random variable

Z = (Y − µ)/σ are given by

G(z) = exp {− exp {−z}} , g(z) = exp {−z − exp {−z}} .

Then the pdf (2.1) becomes :

f(z;α, β) =
α g(z)G(z)(βα−1)(1−G(z))−(βα+1) exp{−[G(z)/(1−G(z))]α}

Γ(β)
. (5.2)

We write Z ∼ LGGFr(0, 1, α, β).

In order to introduce a regression structure in the class of models (5.2), we assume that both

parameters µi, σi, αi and βi vary across observations through regression structures

yi = µi + σi zi, i = 1, . . . , n, (5.3)

where the random error zi has pdf (5.2), µi and σi are parameterized as

µi = µi(θ1), σi = σi(θ2), αi = αi(θ3), βi = βi(θ4),

where θ1 = (θ11, . . . , θ1p1)T , θ2 = (θ21, . . . , θ2p2)T , θ3 = (θ31, . . . , θ3p3)T and θ4 = (θ41, . . . , θ4p4)T .

The usual systematic component for the location parameter is µi = xTi θ1, where xTi = (xi1, . . . , xip1)

is a vector of known explanatory variables, i.e. µ = Xθ1, and µ = (µ1, . . . , µn)T , X = (x1, . . . ,xn)T

is a specified n × p1 matrix of full rank with p1 < n. Analogously, we consider the systematic

component g(σi) = ηi = vTi θ2 for the dispersion parameter, where g(·) is the dispersion link

function, and vTi = (vi1, . . . , vip2) is a vector of known explanatory variables. We have g(σ) =

η = Vθ2, where σ = (σ1, . . . , σn)T , η = (η1, . . . , ηn)T and V = (v1, . . . ,vn)T is a specified n× p2

matrix of full rank with p2 < n. For αi and βi, we consider the systematic component analogous.

We have g(α) = δ = Wθ3, where α = (α1, . . . , αn)T , δ = (δ1, . . . , δn)T and W = (w1, . . . ,wn)T is

a specified n × p3 matrix of full rank with p3 < n and g(β) = λ = Sθ2, where β = (β1, . . . , βn)T ,

λ = (λ1, . . . , λn)T and S = (s1, . . . , sn)T is a specified n× p4 matrix of full rank with p4 < n. It is

assumed that θ1, θ2, θ3 and θ4 are functionally independent and that g(·) is a known one-to-one

continuously twice differentiable function.

5.1 Maximum Likelihood Estimation

Consider a sample (y1,x1,v1,w1, s1), · · · , (yn,xn,vn,wn, sn) of n independent observations, where

each random response is defined by yi = min{log(xi), log(ci)}. Here, the xi’s are the failure times

and the ci’s are the censored times. We assume non-informative censoring such that the observed

lifetimes and censoring times are independent. Let F and C be the sets of individuals for which
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yi is the log-lifetime or log-censoring, respectively. We can apply conventional likelihood estima-

tion techniques to estimate the model parameters. The log-likelihood function for the vector of

parameters. The log-likelihood function for the vector of parameters φ = (βT1 ,β
T
2 ,β

T
3 ,β

T
4 )T from

model (5.3) has the form l(φ) =
∑
i∈F

li(φ)+
∑
i∈C

l
(c)
i (φ), where li(φ) = log[f(yi)], l

(c)
i (φ) = log[S(yi)],

f(yi) is the pdf (5.1) and S(yi) is the survival function of Yi, respectively. The maximum likeli-

hood estimate (MLE) φ̂ of the vector of model parameters can be computed by maximizing the

log-likelihood l(φ).

The asymptotic distribution of (φ̂− φ) is multivariate normal Np1+p2+p3+p4(0,K(φ)−1) under

standard regularity conditions, where K(φ) is the total expected information matrix. The asymp-

totic covariance matrix K(φ)−1 of φ̂ can be approximated by the inverse of the (p1 +p2 +p3 +p4)×
(p1 + p2 + p3 + p4) observed information matrix −L̈(φ). The elements of −L̈(φ) can be evaluated

numerically. The approximate multivariate normal distribution Np1+p2+p3+p4(0,−L̈(φ)−1) for φ̂

can be used in the classical way to construct approximate confidence intervals for the components

of φ.

5.2 Simulation study

We now perform a Monte Carlo simulation study to assess the finite sample behavior of the MLEs.

The results are obtained from 1, 000 Monte Carlo simulations performed using the R software. In

each replication, a random sample of size n is drawn from the LGGFr(θ1,θ2,θ3,θ4) model and the

parameters are estimated by maximum likelihood. The log-lifetimes denoted by log(x1), · · · , log(xn)

are generated from the LGGFr regression model (5.3), where µi = θ10+θ11 xi, σi = exp(θ20+θ21 xi),

αi = exp(θ30 + θ31 xi) and βi = exp(θ40 + θ41 xi) and xi is generated from a normal distribution

N(0, 0.65). Thus, we consider for the simulations with sample sizes n =100, n=350 and n=850,

and censoring percentages approximately equal to 0%, 10% and 20%. The values considered for

the parameters are, θ10 = 5.6350, θ11 = 0.4948, θ20 = 0.1688, θ21 = 0.5219, θ30 = −0.5805,

θ31 = 0.0313, θ40 = −2.6156 and θ41 = 3.2250. The survival times are generated considering the

random censoring mechanism as follows:

• Generate xi ∼ normal(1,0.65).

• Generate c ∼ uniform (0,τ), where τ denotes the proportion of censored observations.

• Generate z ∼ LGGFr(0, 1, αi, αi), the values from the pdf (5.2).

• Write y∗ = µi xi + σiz.

• Set y = min(y∗, c).

• Create a vector κ of dimension n which receives 1’s if (y∗ <= c) and zero otherwise.

We fit the LGGFr regression model (5.3) to each generated data set, where µi = θ10 + θ11 xi,

σi = exp(θ20 + θ21 xi), αi = exp(θ30 + θ31 xi) and βi = exp(θ40 + θ41 xi). From the simulations

reported in Table 1, we can verify that the mean squared errors (MSEs)and bias of the MLEs

of θ10, θ11, θ20, θ21, θ30, θ31, θ40 and θ41 decay toward zero when the sample size increases, as

usually expected under first-order asymptotic theory. The mean estimates of the parameters tend
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to be closer to the true parameter values when the sample size n increases. This fact supports

that the asymptotic normal distribution provides an adequate approximation to the finite sample

distribution of the estimates.

Table 1: Simulations for the LGGFr regression model for the parameters values θ10 = 5.6350,

θ11 = 0.4948, θ20 = 0.1688, θ21 = 0.5219, θ30 = −0.5805, θ31 = 0.0313, θ40 = −2.6156 and

θ41 = 3.2250.
0% censored 10% censored 20% censored

n θ AE Bias MSE AE Bias MSE AE Bias MSE

θ10 5.6488 0.0138 0.1191 5.6612 0.0262 0.1423 5.7045 0.0695 0.1265

θ11 0.4844 -0.0104 0.0648 0.4682 -0.0266 0.0680 0.4439 -0.0509 0.0665

θ20 0.1212 -0.0476 0.0150 0.1203 -0.0485 0.0166 0.1252 -0.0436 0.0150

100 θ21 0.5294 0.0075 0.0079 0.5360 0.0141 0.0086 0.5382 0.0163 0.0098

θ30 -0.6982 -0.1177 0.1017 -0.6816 -0.1011 0.1039 -0.6601 -0.0796 0.1110

θ31 0.1097 0.0784 0.1426 0.0862 0.0549 0.1780 0.0297 -0.0016 0.1873

θ40 -2.6302 -0.0146 0.0908 -2.6663 -0.0507 0.1153 -2.7000 -0.0844 0.1554

θ41 3.2491 0.0241 0.1119 3.2953 0.0703 0.1487 3.3558 -0.0844 0.1817

θ10 5.6583 0.0233 0.0155 5.6628 0.0278 0.0171 5.6746 0.0396 0.0222

θ11 0.4792 -0.0156 0.0091 0.4776 -0.0172 0.0106 0.4700 -0.0248 0.0129

θ20 0.1558 -0.0130 0.0023 0.1551 -0.0137 0.0024 0.1550 -0.0138 0.0026

350 θ21 0.5286 0.0067 0.0007 0.5284 0.0065 0.0009 0.5302 0.0083 0.0011

θ30 -0.6318 -0.0513 0.0190 -0.6122 -0.0317 0.0189 -0.6078 -0.0273 0.0209

θ31 0.0724 0.0411 0.0241 0.0493 0.0180 0.0238 0.0365 0.0052 0.0271

θ40 -2.6105 0.0051 0.0170 -2.6323 -0.0167 0.0203 -2.6478 -0.0322 0.0255

θ41 3.2236 -0.0014 0.0169 3.2433 0.0183 0.0199 3.2648 0.0398 0.0267

θ10 5.6479 0.0129 0.0038 5.6522 0.0172 0.0043 5.6574 0.0224 0.0057

θ11 0.4861 -0.0087 0.0022 0.4843 -0.0105 0.0025 0.4814 -0.0134 0.0033

θ20 0.1620 -0.0068 0.0006 0.1605 -0.0083 0.0008 0.1599 -0.0089 0.0010

850 θ21 0.5260 0.0041 0.0001 0.5266 0.0047 0.0002 0.5272 0.0053 0.0002

θ30 -0.6118 -0.0313 0.0056 -0.6018 -0.0213 0.0050 -0.5963 -0.0158 0.0058

θ31 0.0591 0.0278 0.0067 0.0479 0.0166 0.0063 0.0377 0.0064 0.0080

θ40 -2.6081 0.0075 0.0046 -2.6258 -0.0102 0.0056 -2.6344 -0.0188 0.0085

θ41 3.2163 -0.0087 0.0048 3.2310 0.0060 0.0054 3.2421 0.0171 0.0080

6 Residual analysis

The objective of the analysis of the residuals is to verify the adequacy of the model for a given

data set, which includes the investigation of intrinsic characteristics in the data. In order to check

some of these characteristics, for example, outliers, several approaches have been proposed by Cox

and Snell (1968), Cook and Weisberg (1982), Ortegaet al. (2008) and Silva et al. (2011). In the

context of survival analysis, the deviance residuals have been more widely used because they take

into account the information of censored times (Silva et al. (2011)). Thus, the plot of the deviance
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residuals versus the observed times provides a way to test the adequacy of the fitted model and to

detect atypical observations.

If the model is appropriate, the martingale and modified deviance residuals must present a

random behavior around zero. The plots of the residuals, martingale or modified deviance residuals

versus the adjusted values provide a simple way to verify the adequacy of the model and to detect

outliers. Atkinson (1985) suggested the construction of envelopes to enable better interpretation of

the normal probability plot of the residuals. These envelopes are simulated confidence bands that

contain the residuals, such that if the model is well-fitted, the majority of points will be within

these bands and randomly distributed.

We perform a simulation study to assess the accuracy of the MLEs of the parameters in the

LGGFr regression model with censored data, and also to investigate the behavior of the empirical

distribution of the martingale and deviance residuals. For the simulation study, we generate the

variables z1, · · · , zn from the LGGFr distribution given by (5.2).

So, 1000 samples are generated for each scenario presented in Subsection 5.2 as well as the

algorithm for generating the survival times considering censored.

In Figure 3 we display the plots of the residuals versus the expected values of the order statistics

of the standard normal distribution. These plots are known as the normal probability plots and

serve to assess the departure from the normality assumption of the residuals Weisberg (2005).

Therefore, the following interpretation is obtained from these plots: the empirical distribution of

the deviance residuals agrees with the standard normal distribution when the sample size increases.

7 Data Analysis

7.1 Analysis of three data sets

Here, we present three applications to real data to illustrate the potentiality of the GG-G

family. To compare its performance, we consider its sub model Generalize Gamma Frêchet (GGFr)

to other competitive models given in Table 2.

Table 2: The competitive models of the GGFr distributions.

Distribution Author(s)

Generalized Odd Gamma-Frêchet (GOFr) Hosseini et al. (2018)

Log-gamma generated Frêchet (LGFr) Amini al. (2014)

Kumaraswamy Frêchet (KwFr) Mead and Abd-Eltawab (2014)

Beta Frêchet (BFr) Nadarajah and Gupta (2004)

Exponentiated Frêchet (EFr) Nadarajah and Kotz (2003)

We consider the −̂̀ (where ̂̀ denotes the maximized log-likelihood), AIC (Akaike informa-

tion criterion), BIC (Bayesian information criterion), CVM (Cramér-Von Mises), AD (Anderson-

Darling) and KS (Kolmogorov Smirnov with its p-value (PV)) statistics to compare the fitted

distributions. The results in this section are obtained using the R PROGRAM.

The first data set (Data Set 1) is from Xu at al. (2003) and it represents the time to failure

(103 h) of turbocharger of one type of engine. Recently used by Alzaatreh et al. (2015).
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Figure 3: Normal probability plots for the deviance residuals. (a) Sample size n = 100 for censored

percentages of (0%, 10% and 20%). (b) Sample size n = 350 for censored percentages of (0%, 10%

and 20%). (c) Sample size n = 850 for censored percentages of (0%, 10% and 20%).
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The time to failure of turbocharger data (n = 40)

1.6 3.5 4.8 5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4 2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4 2.6 4.5 5.1 5.8 6.3

6.7 7.3 7.7 7.9 8.3 8.5 3.0 4.6 5.3 6.0 8.7 8.8 9.0.

The second data set (Data Set 2) was obtained in Proschan (2000) and corresponds to the time of

successive failures of the air conditioning system of jet airplanes. These data were also studied by

(Dahiya and Gurland (1972), Gupta and Kundu (2001),Kus (2007) and De Andrade al. (2017)),

among others. The data are: 194, 413, 90, 74, 55, 23, 97, 50, 359,50, 130, 487, 102, 15, 14, 10, 57,

320, 261, 51, 44, 9 , 254, 493, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 100, 14,29, 37, 186, 29,

104, 7, 4, 72, 270, 283, 7, 57, 33, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12,

239,14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15, 2, 91,

59, 447, 56, 29, 176, 225,77, 197, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 36, 79, 59,

33, 246, 1, 79, 3, 27, 201, 84, 27, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 59, 153, 104, 20,

206, 5, 66, 34, 29, 26, 35, 5, 82, 5, 61, 31, 118, 326, 12, 54, 36,34, 18, 25, 120, 31, 22, 18, 156, 11,

216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62, 26, 71, 39, 30, 7, 44, 11, 63,23, 22, 23, 14, 18,

13, 34, 62, 11, 191, 14, 16, 18, 130, 90, 163, 208, 1, 24, 70, 16, 101, 52, 208, 95.

The third data set (Data Set 3) represents the annual maximum temperatures at Oxford and

Worthing in England for the period of 1901-1980. Chandler and Bate (2007) used the generalized

extreme value distribution to model the annual maximum temperatures. Recently study this data

by Alzaatreh et al. (2015).

The annual maximum temperatures data (n = 80)

75, 92, 87, 86, 85, 95, 84, 87,86 ,82, 77, 89, 79, 83, 79, 85, 89, 84, 84, 82, 86, 81, 84, 84, 87, 89,

80, 86, 85, 84, 89, 80, 87, 84, 85, 82, 86, 87, 86, 89, 90, 90, 91, 81, 85 ,79, 83, 93, 87, 83, 88, 90,

83, 82, 80, 81 ,95 ,89, 86, 89, 87, 92, 89, 87, 87, 83, 89 ,88, 84, 84, 77, 85, 77, 91, 94, 80, 80, 85, 83, 88.

Tables 3, 5 and 7 provide the values of goodness-of-fit measures for the GGFr model and other

fitted models, whereas the MLEs and their corresponding standard errors (SEs) (in parentheses)

are listed in Tables 4, 6 and 8 respectively. Some plots of the fitted GGFr pdf and cdf and other

fitted pdfs and cdfs are displayed in Figure 4. From Tables 3, 5 and 7 we can see that GGFr perform

best performance than other competitive models and plots in Figure 4 also reveal that the GGFr

distribution yields the best fit and it can be considered a very competitive model to other fitted

distributions.

Table 3: Goodness-of-fit measures for Data Set 1.

Model −̂̀ AIC BIC CVM AD KS PV

GGFr 77.6861 163.3722 170.1278 0.0147 0.1128 0.0627 0.9975

GOFr 87.8787 183.7575 190.5130 0.2201 1.4468 0.1353 0.4562

LGFr 85.8029 179.6059 186.3614 0.1659 1.1365 0.1434 0.3831

KwFr 86.1506 180.3014 187.0569 0.1710 1.1615 0.1218 0.5928

BFr 91.2658 190.5317 197.2872 0.3161 1.9815 0.1523 0.3109

EFr 101.5918 209.1836 214.2502 0.6067 3.4798 0.2438 0.0172
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Table 4: MLEs and SEs (in parentheses) for Data Set 1.

Model Estimates

GGFr 39.9826 0.0554 5.4318 0.7286

(α, β, a, b) (35.4823) (0.0508) (1.8028) (0.4728)

GOFr 13.0778 4.6917 0.1739 1.1748

(α, β, a, b) (14.14513) (3.4168) (0.8502) (0.3630)

LGFr 0.2839 135.0816 41.7514 1.0413

(α, β, a, b) (0.1061) (78.3133) (0.0755) (0.0919)

KwFr 5.2239 554.6118 9.8825 0.5019

(a, b, λ, α) (36.8518) (222.0773) (138.8463) (0.0927)

BFr 71.1502 259.1749 74.9748 0.1685

(a, b, λ, α) (2.1131) (111.2123) (38.1707) (0.0323)

EFr 1.6108 1.9440 7.9296

(a, b, λ) (0.1674) (0.2033) (3.3140)

Table 5: Goodness-of-fit measures for Data Set 2.

Model −̂̀ AIC BIC CVM AD KS PV

GGFr 1174.049 2352.098 2339.543 0.0299 0.2265 0.0348 0.9579

GOFr 1175.01 2358.021 2371.466 0.0330 0.2710 0.0359 0.9460

LGFr 1180.145 2368.289 2381.735 0.1203 0.8585 0.0583 0.4623

KwFr 1174.79 2357.581 2371.026 0.0306 0.2466 0.0380 0.9176

BFr 1179.905 2367.809 2381.254 0.1158 0.8285 0.0572 0.4875

EFr 1210.316 2426.632 2436.716 0.7114 4.5756 0.1024 0.0228
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Figure 4: Plots of estimated pdfs and cdfs for Data Sets 1, 2 and 3 respectively.
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Table 6: MLEs and SEs (in parentheses) for Data Set 2.

Model Estimates

GGFr 1.9151 0.6879 50.9094 0.3914

(α, β, a, b) (0.4837) (0.5710) (46.1448) (0.1184)

GOFr 10.2114 2.8055 0.0193 0.4308

(α, β, a, b) (0.4837) (0.5710) (46.1448) (0.1184)

LGFr 74.8549 165.0835 57.9521 0.0724

(α, β, a, b) (86.4516) (162.3931) (29.0281) (0.0352)

KwFr 7.9721 152.5672 5.8233 0.1756

(a, b, λ, α) (2.5710) (170.4326) (9.5828) (0.0365)

BFr 123.6822 219.1236 69.6975 0.0565

(a, b, λ, α) (127.1976) (204.1889) (11.2324) (0.0312)

EFr 3.9932 0.7360 3.9688

(a, b, λ) (21.5108) (0.0345) (4.4654)

Table 7: Goodness-of-fit measures for Data Set 3.

Model −̂̀ AIC BIC CVM AD KS PV

GGFr 229.1030 465.2059 474.7340 0.0489 0.3041 0.0628 0.8993

GOFr 229.0553 466.1105 475.6386 0.0507 0.3053 0.0640 0.8978

LGFr 229.4772 466.9545 476.4826 0.0662 0.3923 0.0799 0.6855

KwFr 229.0371 466.0743 475.6024 0.0499 0.3057 0.0688 0.8198

BFr 229.3539 466.7079 476.2360 0.0623 0.3694 0.0772 0.7269

EFr 236.7190 479.4380 486.5841 0.2524 1.5095 0.1342 0.1120

Table 8: MLEs and SEs (in parentheses) for Data Set 3.

Model Estimates

GGFr 18.2831 14.3326 9.7718 0.2178

(α, β, a, b) (11.7818) (13.2666) (5.1681) (0.03312)

GOFr 40.2115 34.2970 10.1598 3.3992

(α, β, a, b) (16.4392) (20.8552) (11.5038) (0.1216)

LGFr 85.6583 111.0738 69.3561 2.3037

(α, β, a, b) (3.1215) (119.7371) (12.2132) (2.2619)

KwFr 0.6140 35.5674 117.4816 5.8279

(a, b, λ, α) (6.9305) (16.5385) (28.7539) (2.7076)

BFr 123.4322 239.6551 90.1387 1.3572

(a, b, λ, α) (1.2342) (146.6493) (21.3231) (1.6669)

EFr 69.0908 19.8504 38.9689

(a, b, λ) (38.8814) (1.5900) (8.5356)
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7.2 Regression model for turbine data

In this application, we use a real data set available in the book of (Lawless, 2003, page 262, Table 5.9)

to study the LGGFr regression model. The model parameters are estimated by package GAMLSS

in R. This data set presents an experiment designed to compare the performances of high-speed

turbine engine bearings made out of five different compounds (McCool (1979)). The experiment

tested 10 bearings of each type; the times to fatigue failure are given in units of millions of cycles.

The analysis considering the LGGFr regression model is performed with the definition of dammy

variables as follows: levels type I (di1 = 0, di2 = 0, di3 = 0 and di4 = 0), levels type II (di1 = 1,

di2 = 0, di3 = 0 and di4 = 0), levels type III (di1 = 0, di2 = 1, di3 = 0 and di4 = 0), type IV

(di1 = 0, di2 = 0, di3 = 1 and di4 = 0) and levels type V (di1 = 0, di2 = 0, di3 = 0 and di4 = 1).

The LGGFr regression model for the turbine data can be expressed as follows

yi = µi + σizi,

where z1, · · · , z50 are independent random variables with pdf (5.2). We consider the three following

configurations. The first configuration corresponds to the homoscedastic case: we consider the

model parameters α, β, µi, σ, where µi = µi = θ10 + θ11 di1 + θ12 di2 + θ13di3 + θ14 di4 and σ is a

common variance : σ = σ1 = . . . = σ50. The second configuration corresponds to the heteroscedastic

case: we consider the parameters α, β, µi, σi, where µi = θ10 + θ11 di1 + θ12 di2 + θ13di3 + θ14 di4
and σi = exp(θ20 + θ21 di1 + θ22 di2 + θ23di3 + θ24 di4). The third configuration is the more general

; we consider the parameters :

µi = θ10 + θ11 di1 + θ12 di2 + θ13di3 + θ14 di4, σi = exp(θ20 + θ21 di1 + θ22 di2 + θ23di3 + θ24 di4),

αi = exp(θ30 + θ31 di1 + θ32 di2 + θ33di3 + θ34 di4), βi = exp(θ40 + θ41 di1 + θ42 di2 + θ43di3 + θ44 di4).

The MLEs for the LGGFr model are presented in Tables 9 and 10. Thus, when establishing a

signifcance level of 5%, we note that the compounds type level is significant and should be used to

model the location, scale and shape.

In order to see if the considered regression model is appropriate, the plot comparing the empirical

survival function and estimated survival function for the LGGFr regression model is displayed in

Figure 5 under the three presented configurations. We observe that LGGFr regression model shows

a suitable fit. Figure 6 (a) presents the fitted hazard functions, (b) the index plot of the deviance

residual for the the turbine data and (c) the normal probability plot for the deviance component

residual with envelopes from the fitted of LGGFr regression model to the turbine data. All these

figures shows that the considered LGGFr regression model is appropriate.
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Table 9: MLEs, SEs and p-values for the LGGFr regression model fitted to the turbine data.

Homoscedastic LGGFr regression model Heteroscedastic LGGFr regression model

Parameter Estimate SE p-Value Parameter Estimate SE p-Value

log(σ) -0.4432 0.0780 - log(α) -0.297 0.119 -

log(α) 0.2504 0.1033 - log(β) -0.0314 0.1149 -

log(β) 0.0027 0.0919 - θ10 2.3104 0.1665 < 0.0001

θ10 2.0162 0.1068 < 0.0001 θ11 -0.4664 0.2065 0.0289

θ11 -0.4858 0.1757 0.0082 θ12 -0.1732 0.2101 0.4140

θ12 -0.1621 0.1910 0.4004 θ13 0.0422 0.2088 0.8408

θ13 0.0126 0.1532 0.9344 θ14 0.3663 0.1998 0.0734

θ14 0.3804 0.2167 0.0860 θ20 -0.3842 0.1983 0.0590

θ21 -0.3091 0.3122 0.3270

θ22 -0.2708 0.2913 0.3570

θ23 -0.2141 0.2654 0.4240

θ24 -0.3968 0.2740 0.1550

(a) (b) (c)

1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

S
(y

)

Empirical
LGGFr−Turbine I
LGGFr−Turbine II
LGGFr−Turbine III
LGGFr−Turbine IV
LGGFr−Turbine V

1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

S
(y

)

Empirical
LGGFr−Turbine I
LGGFr−Turbine II
LGGFr−Turbine III
LGGFr−Turbine IV
LGGFr−Turbine V

1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

S
(y

)

Empirical
LGGFr−Turbine I
LGGFr−Turbine II
LGGFr−Turbine III
LGGFr−Turbine IV
LGGFr−Turbine V

Figure 5: Estimated survival considering the LGGFr regression model for the three considered

configurations in Table 9 and Table 10.
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Table 10: MLEs, SEs and p-values for the LGGFr regression model fitted to the turbine data.

Location, scale and shape LGGFr regression model

Parameter Estimated SE p-Value Parameter Estimated SE p-Value

θ10 2.2989 0.0883 < 0.0001 θ30 -3.0051 0.3193 < 0.0001

θ11 -0.2361 0.1228 0.0609 θ31 2.10526 0.4235 < 0.0001

θ12 -0.0443 0.1264 0.7272 θ32 0.9625 0.4655 0.0444

θ13 0.3523 0.1141 0.0034 θ33 1.6414 0.4568 0.0008

θ14 0.4168 0.1224 0.0014 θ34 1.4204 0.4564 0.0032

θ20 0.4083 0.1874 0.0347 θ40 3.5051 0.2891 < 0.0001

θ21 -1.6849 0.2164 < 0.0001 θ41 -4.4531 0.4086 < 0.0001

θ22 -0.4542 0.331 0.1769 θ42 -1.3238 0.4216 0.0029

θ23 -1.9999 0.2119 < 0.0001 θ43 -5.2839 0.4363 < 0.0001

θ24 -0.4597 0.3349 0.1766 θ44 -1.5485 0.4164 0.0005
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Figure 6: (a) Fitted hazard functions, (b) index plot and (c) normal probability pliot for the LGGFr

regression model.
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