Jacques Chabin

DAINF, UTFPR Luiz Gomes-Jr

Urban Graph Analysis on a Context-driven Querying System

Urban computing intends to provide guidance to solve problems in big cities such as pollution, energy consumption, and human mobility. These are, however, difficult problems with several variables interacting in complex patterns. Such complex systems are often represented as graphs, taking advantage of the flexibility of the model and the availability of network science tools for analysis. In this context, expressive query languages capable of tackling graph analysis problems on a customized context are essential.

This paper presents a context-driven query system for urban computing where users are responsible for defining their own restrictions over which datalog-like queries are built. Instead of imposing constraints on databases, our goal is to filter consistent data during the query process. Our query language is able to express aggregates in recursive rules, allowing to it capture network properties typical of graph analysis. This paper presents our query system and analyzes its capabilities using use cases in Urban Computing.

INTRODUCTION

Urban computing deals with integrated data acquired from a variety of traditional data sources as well as from sensors and other devices [START_REF] Laurent | Graph Constraints in Urban Computing:Dealing with conditions in processing urban data[END_REF]. A graph-based data model is usually adopted for representing datasets involved in urban computing, from traffic and points of interest, to more conventional data, such as population statistics. Therefore, planning and solving problems in cities' context rely on analysing and extracting knowledge from graphs which require the ability to compute graph queries such as reachability or shortest paths, or, more generally, queries imposing a repeated computation over the graph until reaching a threshold or fixpoint.

Defining a declarative, powerful query language capable of expressing useful queries in this context is still a challenge. Datalog (a recursive and declarative query language) has been proposed as an option for data scientists to succinctly describe iterative graph analytics (see, for instance [START_REF] Christopher | Empty-Headed: A Relational Engine for Graph Processing[END_REF][START_REF] Seo | SociaLite: An Efficient Graph Query Language Based on Datalog[END_REF]). Possible datalog extensions allow group-by and aggregate queries which are the basis for building more sophisticate computations such as Page Rank [START_REF] Brin | The anatomy of a large-scale hypertextual Web search engine[END_REF].

Disastrous results can be obtained from decisions made on the basis of insights built over invalid data. In other words, if the data being analysed is not accurate, the resulting analysis is misleading. Indeed as the "GIGO (Garbage In, Garbage Out) principle is not sustainable" [START_REF] Simon | Agile data management challenges in enterprise big data landscapes[END_REF], ensuring graph analysis accuracy becomes a major issue; stressing the importance of data quality, initially neglected in the big data context in the name of velocity and volume.

Indeed, answering a user's query means offering him appropriate and accurate results, taking into account his needs and his context. Constraints have always been a tool for specifying the requirements of data consistency (based on semantic, shape or context restrictions). They can naturally be used as the instrument of query personalization and user's quality exigences.

This paper merges the validity-checking-while-querying process proposed in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF][START_REF] Chabin | Querying Semantic Graph Databases in View of Constraints and Provenance[END_REF] with operators introduced in [START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF] and built to allow graph analysis. In this way, the paper presents a declarative query language capable of expressing graph analytic queries, i.e., iterative or recursive queries whose semantics involves constraint checking together with recurrent computation. Thus, it generalizes the previous approaches in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF][START_REF] Chabin | Querying Semantic Graph Databases in View of Constraints and Provenance[END_REF][START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF] focusing on the semantics of this query language extension which ensures validity w.r.t. a given set of constraints. Figure1 illustrates a general system architecture where our validator appears as a top (blue) layer over a query-evaluator. The validator filters valid answers w.r.t. a given context in two ways discussed in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF]: (1) by rewriting queries w.r.t. this context or [START_REF] Christopher | Empty-Headed: A Relational Engine for Graph Processing[END_REF] when the evaluator has insufficient capabilities to evaluate the rewritten query, by establishing a dialogue between validator and evaluator via subsequent sub-queries. Either way, the validator ensures that only valid answers are sent to the user. This architecture can be associated to the cloud data management software stack sketched in [START_REF] Bondiombouy | Query processing in multistore systems: an overview[END_REF], where distributed storage is envisaged. Indeed, as a top layer, our validator can work with different query evaluators, connected to different mediators to which it adds its filter capabilities.

Database

The current paper focuses on proposing a query language allowing graph analytic queries whose semantics rely on validity w.r.t. personalised contexts. Thus, to highlight our goal, we ignore, here, all the considerations concerning query evaluation on a (distributed or centralized) database. We assume that query answers are generated by a query evaluator which, for this paper, is simulated by an in-memory program.

Our work enables a query environment where users specify the context on which queries should be processed. A user sets his customised context by specifying the (integrity) constraints he imposes on data. In this way, data quality requisites are placed closer to the data consumers, and become "everyone's business" [START_REF] Simon | Agile data management challenges in enterprise big data landscapes[END_REF].

Our main contribution is the integration of two important concepts dealt separately in other proposals: (i) constraint checking (which enables context-aware queries) and (ii) query expressiveness for graph analysis (which enables recursive computations over networks). In this paper, we show the interplay between these two concepts through practical use cases.

To reach our goal, the aforementioned proposals have been extended, here, in the following aspects: (i) the non-recursive datalog-like query language proposed in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF][START_REF] Chabin | Querying Semantic Graph Databases in View of Constraints and Provenance[END_REF] is enhanced to allow recursive datalog programs as queries which may, now, contain group-by or aggregate sub-queries; (ii) operators proposed in [START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF] are expressed through a datalog program, offering a declarative and well-defined mechanism to explain their semantics and (iii) the query process proposed in [START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF] includes now a mechanism for filtering answers according to the user's context. Even if data sources are not consistent w.r.t. the given constraints, our system can render the consistent answers (i.e., those which are computed with data that do not violate any constraint).

Paper Organization: Section 2 illustrates how a querying environment which integrates constraint checking with a declarative query language can be useful on an urban computing environment. Section 3 offers preliminaries for the formalization of our approach while Section 4 introduces the constraints considered in our work. The semantics of our recursive datalog-like query language allowing constraint checking is presented in Section 5. Section 6 presents an use case. Section 7 discusses some related work while Section 8 concludes our paper.

URBAN COMPUTING: QUERIES AND CONTEXTS

As an interdisciplinary field, urban computing deals with many different questions, trying to improve the quality of densely populated areas, including decision aid to government leaders. In this context, queries involving transport and strategic placement decisions are usual.

As an example, let us consider the means of transportation in a city like Paris. Figure 2 presents an extract of the transportation network while Table 1 shows some queries that we will be discussing in this paper. The transportation network is a graph where each node has the name of a specific place where a user can find a means of transport (a Metro station, a bus stop, a Batobus stop, a Velib station, etc). Relation Transp stores these networks. Besides attributes indicating an edge (X t o , X f r om) of the transportation graph, the relation stores information about the means of transport (X means -bus, underground, boat, bike, etc), the estimated travel time (X t ime) and carbon footprint (X c f p) for the graph's edge. The network is thus a multi-graph; also seen as a superposition of different graphs (one for each means of transport). Relation Environment stores the facilities (gardens, hospitals, clinics, car parks, station, restaurants, hotels, . . .) around a place X pl ace N ame . Other relations contribute with details of data stored in Transp and Environment.

Queries on such a graph can vary from a simple 'Is it possible to go from Alesia to Montparnasse by tram?' to graph analysis such as the minimal path to go from Gare d'Austerlitz to Saint-Lazare or the best place for a new public crèche, according to governmental constraints.

The challenge in proposing a new querying process for graphs is not only on the expression power of a declarative system, but also in ensuring data quality. Systems adapting query languages to interact with constraint checkers represent an important step towards monitoring data quality at scale. Our work fits in this perspective and proposes a querying environment where answers are filtered according to a given context. The context personalises the query environment, establishing a set of constraints to be respected. Validity of data is therefore defined w.r.t. a context. Inconsistency on source databases is possible but answers are filtered and only valid information is returned to the user.

Connexion(X f r om , X t o , X t ime , X c f p) ← Transp(X f r om , X to , X means , X t ime , X cf p). Connexion(X f r om , X t o , X t ime , X c f p) ← Transp(X f r om , Z , Z means , Z t ime , Z cf p), Connexion(Z , X to , Y t ime , Y cf p), X t ime = Z t ime + Y t ime , X cf p = Z cf p + Y cf p . Q 0 (Alesia, X t o , X c f p) ← Connexion(Alesia, X to , X t ime , X cf p), (X t ime <= 20) Q 1 (X f r om , X t o , a t ot al AvT ime , a Avc f p) ← aдд(Connexion(X f r om , X to , X t ime , X cf p), X f r om , X to , a tot al AvT ime = AV G(X t ime), a Avcf p = AV G(X cf p)). Q β (X f r om , X t o , c c f p) ← aдд(q Set Res (X f r om , X to , X cf p , i), X f r om , X to , c cf p = MI N (X cf p)).
Table 1. Example of queries on a transportation database.

The set of constraints In Table 2, constraints C 1 = {c 1 , c 2 } establish the context Ctx1. Our user is only interested in means of transport using railways (c 1). Moreover, he wants paths composed only by edges associated to a carbon footprint of less then 500cд of CO 2 (Table 2, denial constraint c 2 , values based on [START_REF]Eco Comparateur[END_REF]).

C 1 of context Ctx1 c 1 Transp(X f r om , X t o , X means , X t ime , X cf p) → Type(X means , Rail). c 2 Transp(X f r om , X t o , X means , X t ime , X cf p), (X cf p > 500) → ⊥.
In this context, consider the conjunctive query Q 0 (Table 1): starting from Alesia, where can we go in less than 20 minutes and what is the carbon print of this path? Q 0 involves three rules. The first two rules compute Connexion, the transitive closure of the graph (i.e., all the paths of a graph). Rule Q 0 just states the maximal time and the starting point of the paths. However, when evaluated on context Ctx1, Connexion is restricted to be the transitive closure of only the rail transport graph whose edges respect the indicated carbon footprint limit. Query re-writing techniques can be used to incorporate user-defined constraints into the body of the query. For instance, our first rule can be re-written as Connexion(X f r om , X t o , X t ime , X c f p) ← Transp(X f r om , X t o , X means , X t ime , X c f p), Type(X means , Rail), (X c f p <= 500). Thus, if the first two rules are re-written to incorporate constraints in C 1 , then only answers respecting c 1 and c 2 are generated for Q 0 . Rewriting algorithms for our conjunctive queries are presented in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF].

All queries evaluated on Ctx1 are restricted in the same way. Let us consider the group-by (or aggregation) query Q 1 which computes the average travel time and average carbon foot print of every two nodes. The body of Q 1 is composed by a conjunctive sub-query involving Connexion whose answers are filtered: only valid tuples w.r.t. Ctx1 are taken as input for the aggregate/group-by operators.

As we will see in Section 5.3, the situation is similar for Q β whose evaluation is based on sub-queries including q f ollows (X f r om , X t o , X c f p) ← Transp(X f r om , X to , X means , X t ime , X cf p) and q set (Alesia, Alesia, 0, 0) whose answers are filtered according to Ctx1 and only then sent as input to other sub-queries taking part in the computation of Q β 's results. In this way, considering X f r om = Alesia, Q β computes the c f p-minimal rail path between Alesia and any other node in the railway graph.

BACKGROUND

This section summarizes some basic notions used in this paper. We refer to [START_REF] Abiteboul | Foundations of databases[END_REF] for more details on datalog as a query language.

Alphabet. Let A be an alphabet consisting of the following pairwise disjoint sets: const, a countably infinite set of constant; var an infinite set of variables ranging over const (we use X as an abbreviation to denote the set {X 1 , . . . , X k } where k > 0); pred, a finite set of predicates, each associated with its arity. Atoms. A term is a constant or a variable. An atomic formula (or atom) has one of the forms: (i) P(t 1 , ..., t n), where P is an n-ary predicate and t 1 , ..., t n are terms; (ii) ⊤ (meaning true) or ⊥ (meaning false); (iii) (t 1 op t 2), where t 1 and t 2 are terms and op is a comparison operator (=, <, >, ≤, ≥). A literal is an atom of the form P(t 1 , ..., t n). An instantiated or ground literal (also denoted as a fact) is an atom of form P(u) where u ∈(const) n . Substitution. A substitution from the set of symbols E 1 to the set of symbols E 2 is a function h :

E 1 → E 2 .
A homomorphism from the set of atoms A 1 to the set of atoms A 2 , both over the same predicate P, is a substitution h from the terms of A 1 to the terms of A 2 such that: (i) if t ∈ const, then h(t) = t, and (ii

) if P(t 1 , ..., t n) ∈ A 1 , then P(h(t 1), ..., h(t n)) ∈ A 2 . If h is a homomorphism, P(h(t 1), ..., h(t n)) is simply denoted by h(P(t 1 , ..., t n)).
The notion of homomorphism naturally extends to conjunctions of atoms. Database Schema and Database Instance. A database schema G is a set of predicates in pred. A database instance D is a set of facts over G.

Datalog. A (datalog) rule r is an expression of the form R 0 (u 0) ← R 1 (u 1) . . . R n (u n)
where n ≥ 0, R i (0 ≤ i ≤ n) are predicate names and u i are free tuple (i.e., may use either variable or constants) of appropriate arity. The head of r (denoted by head(r)) is the expression R 0 (u 0) and R 1 (u 1) . . . R n (u n) forms the body (denoted by body(r)). Rules are safe range, i.e., only variables appearing in the rule body can appear in the head. A datalog program P is a finite set of datalog rules. Each predicate occurring only in the body of a rule is an extensional predicate. Each predicate occurring in the head of some rule in P is an intentional predicate. The extensional database schema, denoted edb(P), consists of the set of all extensional predicates, whereas the intentional schema idb(P) consists of all intentional ones. The schema of P is the union of edb(P) and idb(P).

Queries. A (conjuctive) query q of arity n over a given schema is a rule whose head defines the output of a datalog program. A boolean conjunctive query is a conjunctive query of arity zero. Query Evaluation. To define the answers of a query, we adopt the semantics of a positive datalog program in the fixpoint perspective, using a bottom-up evaluation strategy. Thus, for a given program P, the evaluation starts with the facts in edb(P) and continues until a fixpoint is reached, i.e., no new facts may be derived for predicates in idb(P). The generation of each new fact is obtained by using the immediate consequence operator whose definition is recalled below.

Definition 3.1 (Immediate consequence operator). Let P be a datalog program and I be a set of facts. Let T be an operator over P. We denote by ν a homomorphism ν : var ⇒ const. We define

T P (I) = I ∪ {ν (head(r)) | r ∈ P and ν (body(r)) ⊆ I }. □
The semantics of a datalog program P on an instance I over edb(P) is defined as the fixpoint of T P , denoted by T * P (I). The answer to a query q of arity n over I , denoted as q(I), is the set of all n-tuples t ∈const n for which there exists a homomorphism h t : var (body(q)) ⇒ const such that:

(1) each literal L ∈ h t (body(q)) is in T * P∪{q } (I), (2) q(t) = h t (head(q)) and (3) h t (head(q)) ∈ T * P∪{q } (I).

Technically, the answer false (i.e., a negative answer) for a boolean conjunctive query corresponds to the empty result set and the answer true (i.e., a positive answer) corresponds to the result set containing the empty tuple. A positive answer over I is denoted by I |= q. A union of conjunctive queries (UCQ) Q of arity n is a set of CQ, where each q ∈ Q has the same arity n and uses the same predicate symbol in the head. The answer to Q over an instance I , denoted as Q(I), is defined as the set of tuples {t | there exists q ∈ Q such that t ∈ q(I)}.

A datalog program P is typically viewed as defining a mapping from instances over the edb to instances over the idb. Our edb concerns a (distributed) database, but, as stated in Section 1, details concerning the interaction between the validator and the evaluator are out of the scope of this paper. Therefore, we assume that the global schema on which queries and constraints are built coincides with the database schema being consulted. Moreover, our database instance D summarizes all available information coming from data sources (no matter how it is obtained).

CONTEXTS AND CONSTRAINTS

Let G be a global schema, and let C be a set of constraints on G. A context Ctx is defined by the pair (C, G). Queries are defined on G and evaluated on a database instance D. Valid answers are those respecting context Ctx. Constraints and constraint satisfaction are defined below. Notice that we allow two different constraint formats.

(1) Positive constraints (C P): Each positive constraint has the form

∀X, Y L 1 (X, Y) → ∃Z L 2 (X, Z)
where L 1 and L 2 are predicate symbols.

(2) Negative constraints (C N): A negative constraint is either of the form

(∀X)((comp(X ′) ∧ L(X)) ⇒ ⊥) or (∀X)((comp(X ′) ∧ L 1 (X 1) ∧ L 2 (X 2)) ⇒ ⊥)
, where X 1 ∩ X 2 ∅ and comp(X ′) is a (possibly empty) comparison formula with variables X ′ that all occur in X, and where L(X), L 1 (X 1) and L 2 (X 2) are atoms.

The left and right hand-sides of a constraint c are respectively denoted by body(c) and head(c). When no confusion is possible, quantifiers are omitted.

A set I of facts satisfies a constraint c, denoted by I |= c, if for every homomorphism h from the variables in body(c) into constants in I , the following holds: Positive constraints are linear LAV (local-as-a-view) TGD (Tuple Generating Dependency) -i.e., each body and head has a unique atom ([4]). Negative constraints are denial dependencies with one or two atoms in their bodies.

-If c is positive: if h(body(c)) is in I then there is an extension h ′ of h such that h ′ (head(c)) is in I . -If c is negative: if h(comp(X ′)) is true in I then depending on c, either h(L(X)) is not in I or one of the two atoms h(L 1 (X 1)) or h(L 2 (X 2)) is not in I .
The computation of the answers of a query q on an instance D, involves the instantiation of body(q). In our approach, we verify whether the instantiated atoms in body(q) satisfies constraints in C in order to avoid answers built from facts which violate C. To perform this task, starting with atoms in body(q), we are inspired by the well-known chase procedure (see [START_REF] Abiteboul | Foundations of databases[END_REF] for explanations) to generate new atoms (which are incorporated in the query's body). The chase on a weakly acyclic [START_REF] Onet | The Chase Procedure and its Applications in Data Exchange[END_REF] set of positive constraints is the basis of the query rewriting approach used here and presented in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF]. The following example illustrates this re-writing method. This paper extends previous work in [START_REF] Chabin | Validating Data from Semantic Web Providers[END_REF][START_REF] Chabin | Querying Semantic Graph Databases in View of Constraints and Provenance[END_REF][START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF] towards our goal of providing adequate querying capabilities in order to support graph analysis tasks and to ensure data quality. Firstly, the notion of valid conjunctive query introduced in [9, 10] is extended to (recursive) datalog programs (Section 5.1)

and group-by queries (Section 5.2). Then, in Section 5.3, we adapt the Beta-algebra of [START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF], which offers an operator capable of representing diverse measurements typical of graph analysis, to our approach. Our resulting querying environment allows graph analytic queries whose results are valid w.r.t. a given context.

Validity

The semantics of a query involving a datalog program is computed by using the immediate consequence operator and thus, at each iteration, only valid data computed on the previous step should be taken into account. In other words, data is filtered at each step of the computation.

Example 5.1. Let us consider the first two rules of Table 1 and query Q b (X f r om , Alesia, X t ime) ←

Connexion(X f r om , Alesia, X t ime , X c f p) on context Ctx G. Let f be an instantiated literal such that f = L 0 (u) where L 0 is a predicate in G. The validity of f on D, for context Ctx, is recursively defined as follows (we then say that f is valid on D for context Ctx):

Basis step: If predicate L 0 is an extensive predicate in D and if there exists h 1 such that for all L ∈ h 1 (T * C P (f)) then the following conditions hold: (1) there is a positive answer for q 0 () ← L on D;

(2) for each c ∈ C N of the form (∀X)((comp(X ′) ∧ L 1 (X)) → ⊥), there is no homomorphism ν such that ν (L 1) = L and ν (comp(X ′) is true and

(3) for each c ∈ C N of the form (∀X)((comp(X ′) ∧ L 1 (X 1) ∧ L 2 (X 2)) ⇒ ⊥), if there is a homomorphism ν such that 1 ν(L i (X i)) = L,
then there is no homomorphism ν ′ that extends ν and for which:

(i) ν ′ (comp(X ′)) is true and (ii) there is a positive answer for q ′ () ← ν ′ (L i (X i).

Recursive step: If predicate L 0 is an intensive predicate in P then there exists a rule r ∈ P and a homomorphism ν such that ν (head(r)) = L 0 (u) and all atoms in ν (body(r)) are valid. □

Let Valid(f , Ctx, D) be a function which renders true when f is valid according to Definition 5.2 Otherwise, Valid(f , Ctx, D) returns f alse. Definition 5.3 (Valid answers). Let q be a query which may refer to a query program P. The set of q' s valid answers for context Ctx over a database instance D is defined as follows:

valAns (q, Ctx, D) = {t | q(t) ∈ T * Step. Thus,

Valid(Q c Ctx 1 , D c) = {MutonDuvernet, Den f ert }. Note that, in Example 5.1, Valid(Q b , Ctx 1 , D b) = ∅. □

Group-by Query

Group-by queries are very important when dealing with data analysis. We adapt the group by query q aд , presented in [START_REF] Chabin | Querying Semantic Graph Databases in View of Constraints and Provenance[END_REF], to our purpose. It has the following format:

q aд (Y, a 1 , . . . , a m) ← aддr (ϕ(X), Y, a 1 = f 1 (Z 1), . . . , a m = f m (Z m))
where aggr is a second order predicate, ϕ(X) is a conjunction of atoms over a schema, Y is the set of grouping attributes, each Z i is a set of aggregate attributes, a 1 . . . a m are new variables not existing in X and each f i is an aggregate function. Moreover, Y ⊆ X and for all 1 ≤ i ≤ m we have Z i ⊆ X and Y ∩ Z i = ∅.

Example 5.5. In Table 1, query Q 1 groups Connexion lines that coincide in their origin and destination (group-by function on attributes X t o and X f r om) and for each group computes the average (AV G) over their attributes X t ime and X c f p . □

We can now formally present the semantics of a group-by query for a given context Ctx.

Definition 5.6 (Group-by query). The set of answers of q aд for context Ctx over D , denoted by ans(q aд , Ctx, D), is the set of tuples t such that each t is the concatenation of a tuple u and m real values a, i.e., t = u.a 1 .a 2a m (for m ≥ 0) defined as follows:

• u ∈ valAns(q 1 , Ctx, D) where q 1 is the conjunctive query q 1 (X i 1 , . . . ,

X i k) ← ϕ(X 1 , . . . , X n).
• For each real value a, we have a = f unc(valAns(q 2 , Ctx, D)) where q 2 is the conjunctive query q 2 (X j 1 , . . . , X j k l) ← h u (ϕ(X 1 , . . . , X n)) and h u is the homomorphism such that h u (X i 1 , . . . ,

X i k) = u.
The answer of q 2 is a set of k l -tuples. Each a value is obtained by the application of a function f unc on this set of tuples. □

Beta-Query

In [START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF] the relational algebra is extended by adding the beta operator. By focusing on data aggregation along the traversal of the relations this new operator allows the definition of different measurements, necessary in graph-based analysis. This paper proposes the β-query, which ensures validity w.r.t. a context, and is a datalog version which extends the operator in [START_REF] Gomes | Beta-Algebra: Towards a Relational Algebra for Graph Analysis[END_REF]. The following example motivates the use of β-queries.

Example 5.7. We are interested in computing minimal carbon footprint to travel from Alesia station to any other reachable station in our transportation graph, restrained by Ctx 1 . This is a classical problem in graph theory, having a more efficient solution when we avoid computing all paths to later select the minimal ones. In other words, on the basis of Dijkstra's algorithm, the idea is to compute the minimal carbon footprint at each iteration and to abandon paths which are already known as non minimal ones. Let us consider now query Q β on Ctx 1 . A β-query needs some input parameters. First, we define the query that is initially evaluated on our transportation graph as q f ollows (X f r om , X t o , X c f p) ← Transp(X f r om , X to , X means X t ime , X cf p). Answers to this query are filtered according to Ctx 1 , i.e., it is evaluated in its rewritten format, namely, q f ollows (X f r om , X to , X cf p) ← Transp(X f r om , X t o , X means , X t ime , X c f p), Type(X means , Rail), X cf p <= 500. The result of q f ollows is thus the railway version of our transportation graph where every edge respects the carbon limit of 500. Secondly, we define the fact q set (Alesia, Alesia, 0, 0) which designates our start station (a 0-path connexion). From this input information the β-query associated datalog program is defined. Results obtained during the evaluation of this datalog program are those which will be used to compute the minimal carbon footprint. Following Dijkstra's algorithm the idea is to build, at each iteration of the program, a set of nodes that have minimum (carbon footprint) distance from the source. At each step of the computation, new edges are introduced in paths being constructed, either trying to reach further stations or to optimize carbon footprint for already known stations. Only minimal paths between Alesia and a station N are considered in the computation of the next step. □

Roughly speaking, a β-query represents iterative computations on a graph. Specific parts of the computation are represented in the β-query as sub-operations set, map and reduce. These operations allow users to control how the metrics are calculated as the graph is traversed. The first sub-operation is set, which defines the facts with initial values set at the beginning of the computation. Map defines a function that controls how the calculated values are spread to neighbors in the graph. Reduce aggregates incoming values from the map phase into a new metric value for each node. Finally, a fourth sub-operation consists in the revision of the set sub-operation. This new set defines how new computed values will replace old values from the previous iteration of the β-query. Now, more precisely, let us show how we build the datalog program associated to a β-query i.e., a group-by query having the format

q β (X, c) ← aддr (q set Res (X, c ′ , i), X, c = f β (c ′))
where f β is an aggregation function and query q set Res is defined by one of the two rules below, according to the value of the boolean constant PartialRes. Intuitively, PartialRes indicates whether the final result should be computed from all intermediary results or just from the result obtained in the last iteration step.

q set Res (X, c, i) ← q set (X, c, i), q max (X, i), (PartialRes = f alse) q set Res (X, c, i) ← q set (X, c, i), (PartialRes = true)

Clearly, q set Res is based on two other queries. The first one is the group-by query q max which groups the resulting values of q set on the set of attributes X and, for each group, computes the maximum value of i. q max (X, i) ← aддr (q set (X, c, i ′), X, i = max(i ′)) Answers for query q set result from the evaluation of a recursive Datalog program. We start with i = 0 and the evaluation of initial queries q set and q f ollows for context Ctx on the database instance.

Then, each step i of the program evaluation computes two different queries. The first one is q map which, by joining q set and q f ollows on specific attributes, allows progression on the data graph navigation. This query has the following format:

q map (X, Y, c, i) ← q set (X, c 1 , i 0), q f ollows (Z, Y, c 2), OK(i), c = f map (c 1 , c 2), i = i 0 + 1
where Z is a subset of X, OK(i) ← i ≤ N ; and f map is a function (usually an arithmetic function) applied on counters c 1 , and c 2 (e.g. multiplication, division, etc). The constant N imposes a limit on the number of iterations. It might be replaced by other converging test mechanism. Then, query q r educe groups intermediate results computed by q map : q r educe (Z, c, i) ← aддr (q map (X, Y, c

1 , i), Z ∪ {i}, c = f r ed (c 1))
where Z is a subset of X ∪ Y such that | Z |=| X | and f r ed is an aggregation function.

Finally, the join of q set values (those computed in a previous step i ′) with values computed by q r educe (at the current step i) allows us to obtain the new values for q set (q set values at step i).

q set (X, c, i) ← q r educe (X, c, i), q set (X, c ′ , i ′), cond(c, c ′) q set (X, c, i) ← q r educe (X, c, i), ¬q set (X, c ′ , i ′)
It is interesting to note that the answer set for the first q set query above is composed by tuples in the intersection of q set and q r educe and respecting a given condition (cond) involving counters c and c', while for the second query, it is composed by tuples appearing exclusively in the latter computation of q r educe .

We continue the discussion started in Example 5.7 and present the datalog program associated to Q β (Table 1).

Example 5.8. In the case of Example 5.7, PartialRes is true because the minimal carbon footprint between Alesia and a station N can be obtained at any step (not necessarily at the last one). Now, the map operation is expressed by the following rule.

q map (X f r om , X by , X t o , X cf p , i) ← q set (X f r om , X by , X 1 cf p , i 1), q f ollows (X by , X to , X 2 cf p),

X cf p = X 1 cf p + X 2 cf p , i = i 1 + 1
Notice that i represents the number of links (edges on the graph) used to go from X f r om = Alesia to X t o . Moreover, the join between q set and q f ollows relations is done on the second attribute of q set and the first of q f ollows . This ensures the construction of paths on the railway version of our transportation graph. Here, the f map computes the carbon footprint of a new path by adding the intermediary carbon footprints. Notice also that Ok(i) is always T rue, since the computation continues until reaching a fixpoint.

To illustrate the computation, in this example, we consider part of the transport graph, concerning connexions from Alesia to Cite-U niversitaire (Figure 2). To avoid overcharging our figures, we take connexions in only one direction. In this context, Figure 3 shows three steps of our computation. As already explained in Example 5.7, at step 0, query q set indicates the start station and q f ollows returns all graph edges respecting constraints in Ctx 1 (railway edges respecting c f p limit). The idea of q map is to increase paths' lengths, going further, adding one more station to previous paths. Here, at After updating q set the computation continues until the fixpoint. In the example of Figure 3, we notice that after step 3 no other changes are possible. Notice that, in all steps illustrated in that figure, only the second rule (* *) is used to update q set . Indeed, in the transport graph extract used in our example, there are no paths from Alesia to another station N having different number of intermediate stations (refer to q f ollows on step 0). Thus, at each step of the computation, only new paths are added to q set . Notice however that there are two ways to go from Alesia to CiteU niv passing by two intermediate stations: indeed, we have q map (Alesia, Montsouris, CiteU niv, 425, 3) and q map (Alesia, Den f ert, CiteU niv, 739, 3) on step 3 of Figure 3. But, on this same step, q r educe (Figure 3) selects only the path with minimal c f p between these two stations.

All the above rules are part of the datalog program whose fixpoint gives connections from Alesia to a node N reachable by rail and its associated carbon footprint. Each carbon footprint is a minimal value found in a step i of the computation. However, as the final result, we have to find the minimal ones, independently of the iteration number i. The following query computes this final result.

q set Res (X f r om , X t o , X c f p) ← aддr (q set (X f r om , X to , X 1 cf p , i), X f r om , X to , X cf p = MI N (X 1 cf p). □
Our querying system intends to be an important tool for platforms focusing on the analysis of networks. Such a platform may then propose graphical user interfaces to help an end user to choose or build his context and to execute pre-defined queries. For example, consider a pre-defined query for computing minimal paths. In this case, Q β (Table 1) can be used: the user just have to specify starting node (X f r om) or the end node (X t o) and the parameter on which minimality is required (X c f p or X t ime).

A more flexible viewpoint is reserved to expert users, capable of customizing a β-query. In such case we can propose the automatic generation of the datalog program associated to a β-query on the basis of some input parameters.

In the next section we present a use case to illustrate graph analysis, via a β-query, on the urban context.

GRAPH ANALYSIS IN CITIES: AN USE CASE

This section presents a simplified use case where Paris-city government aims to analyse the best place to install a new crèche. Simplifications (w.r.t. the number of available predicates and constraints) allow us to focus on how the β-query is used. Therefore, we consider the constraints presented in Table 3. Context Ctx 2 establishes that we are only interested in railways (c 1), that we consider places (X f r om) near a garden (c 3) and a station (c 4), which should not be near an existing crèche (c 5).

2: Set of constraints C 2 of context Ctx 2 c 1 Transp(X f r om , X t o , X means , X t ime , X km , X cf p) → Type(X means , Rail). c 3 Transp(X f r om , X t o , X means , X t ime , X km , X cf p) → Environment(X f r om , Garden). c 4 Transp(X f r om , X t o , X means , X t ime , X km , X cf p) → Environment(X f r om , Station). c 5 Environment(X f r om , Station), Environment(X f r om , Creche) → ⊥. Table 3. Context Ctx 2 = (C 2 , G) on a transportation database. N eiдhbourCount(X f r om , c) ← aдд(Transp(X f r om , X to , X means , X t ime , X km , X cf p), X f r om , c = COU NT (X to))) q f ollows (X f r om , X t o , c) ← Transp(X f r om , X to , X means , X t ime , X km , X cf p), N eiдhbourCount(X f r om , c). q set (X f r om , r , i) ←
Transp(X f r om , X to , X means , X t ime , X km , X cf p), r = 100, i = 0. q map (X f r om , X t o , r , i) ← q set (X f r om , r 0 , i), q f ollows (X f r om , X to , c), r = r 0 /c, i = i 0 + 1, i < 10. q r educe (X t o , r , i) ← aдд(q map (X f r om , X to , r 0 , i), X to , i, r = SU M(r 0)). q set (X f r om , r , i) ← q r educe (X f r om , r , i). q max (X f r om , i) ← aддr (q set (X f r om , r , i ′), X f r om , i = MAX (i ′)) q Set Res (X f r om , r) ← q set (X f r om , r , i), q max (X f r om , i) Table 4. Datalog program associated to the β-query computing the rank of transportation graph nodes. To find the best place for a crèche one should also take into account transport possibilities. The goal here is to choose a place easily reachable via the available transport network. We use the following β-query: Q β 1 (X f r om , X r ank) ← q Set Res (X f r om , X r ank) to compute the rank (X r ank) of a place (X f r om) w.r.t. Ctx 2 . Indeed, the above query is associated to the datalog program presented in Table 4 which implements a PageRank-like algorithm. We recall that PageRank is a link analysis algorithm which assigns a numerical weighting to nodes in a graph, with the purpose of "measuring" its relative importance within the graph. That is, in our example, the algorithm can measure the attractiveness of a station w.r.t. possible connexions with other stations on the transportation graph. However, this attractiveness is bounded by restrictions imposed in Ctx 2 . In fact, the new crèche should be placed not very far from a railway station (c 1 and c 4) and a garden (c 3), the latter allowing occasional walks with children. Moreover, constraint c 4 ensures the non existence of a crèche as a facility in the selected station environment -a way to avoid placing the new crèche in a environment already having another crèche.

To run our use case as a small example, we have assumed only the graph of Figure 2 where we arbitrarily placed existing crèches and gardens.

Table 5 shows the rank computation, w.r.t. Ctx 2 , for each station depicted in Figure 2. Although in this example the rank presents a 1-step oscillation (e.g. Alesia has rank 75 on step 6, rank 125 on step 7 and comes back to rank 75 on step 8), we can draw some conclusions concerning the best place for a new crèche. Notice that convergence is reached when we consider just even (or odd) steps. For instance, the rank of Alesia stabilizes on 125 when only odd steps are considered. When we increase the number of connexions, stability can be reached. Anyway, from the computed values, it is possible to conclude that Porte d'Orléans is the most attractive station near which a new crèche should be placed in accordance to Ctx 2 . user's hand. Data in sources may be inconsistent w.r.t. context restrictions, but only consistent subsets are returned to the user. Indeed, our contribution is the result of the integration of constraint checking (which enables contextaware queries) and query expressiveness for graph analysis (which enables recursive computations over networks). To the best of our knowledge, this is the first querying environment covering these two capabilities. To better exploit our system's possibilities, we are currently working on its construction on the top of a think-like-a-vertex parallel graph processing platform: the one proposed in [START_REF] Raqueline | Exploring Controlled RDF Distribution[END_REF] and Giraph (similar to what is done in [START_REF] Walaa Eldin Moustafa | Datalography: Scaling datalog graph analytics on graph processing systems[END_REF]).

Fig. 1 .

 1 Fig. 1. General System Architecture.

Fig. 2 .

 2 Fig. 2. Example of an urban graph.

Example 4 . 1 .

 41 Given a set of constraints C, I satisfies C, denoted by I |= C, if for every c in C, I |= c holds. Consider the set C a with:

c

 a : freeTransp(X sit e , Z) → Ecolabel(Z). c b : Ecolabel(Z) → pCheck(Z , X o)which restricts zero-fare public transport to those which have an ecolabel (c a) and establishes that an ecolabel should have been attested by a pollution checking performed by an official organism (c b). The database instance D 1 = {freeTransp(Paris, V elib)} violates c a while D 2 = {freeTransp(Paris, V elib), Ecolabel(V elib), pCheck(V elib, EuropeanCommission)} satisfies C a . □

Example 4 . 2 .

 42 Consider again the set C a of Example 4.1. Let Q a (Y) ← freeTransport(Paris, Y) be a query on Ctx a = (C a , G a). Starting with atoms in Q a 's body, in a chase-based procedure, atoms Ecolabel(Y) and pCheck(Y , X o) are produced and added to Q a 's body. The new, rewritten query to be evaluated is Q a (Y) ← freeTransport(Paris, Y), Ecolabel(Y), pCheck(Y , X o) which ensures that answers are filtered according to Ctx a . □ 5 QUERYING WITHIN A CONTEXT

1 .Definition 5 . 2 (

 152 Assume a database instance D b containing only the facts: Transp(Montsouris, P .Orleans, tram, 1.5, 159), Transp(P . Orleans, JeanMoulin, tram, 1, 106), Transp(JeanMoulin, Didot, tram, 1, 106), Transp(Didot, Alesia, bus, 5, 4528). This instance corresponds to an extract of the graph illustrated in Figure 2. During the computation of Connexion we obtain Connexion(Montsouris, Didot, 3.5, 371). Although transport from Didot to Alesia exist in D b , as C 1 does not allow the use of buses, the connection from Montsouris to Alesia cannot be computed. □ The following definitions formalize the notion of validity used in this paper. Valid instantiated literal). Let Ctx = (C, G) be a context and D a database instance on

(Example 5 . 4 .

 54 P∪{q }) (D) and Valid(q(t), Ctx, D) }. □ Suppose the instance D c = { Transp(Alesia, MoutonDuvernet, metro, 1, 106), Transp(Mouton-Duvernet, Den f ert, metro, 1.5, 133), Transp(Alesia, MoutonDuvernet, bus, 4, 2012), Transp(MoutonDuvernet, Daдuerre, bus, 2, 1006), Transp(Daдuerre, Den f ert, bus, 2, 1006), Type(metro, Rail), Type(bus, Diesel) }. Notice that, in this instance, the Transp relation is an extract of the graph illustrated in Figure 2. Let Q c (X) ← Connexion(Alesia, X , Y , Z). The fact f = Connexion(Alesia, MoutonDuvernet, 1, 106) is valid since constraints c 1 and c 2 are verified: D c contains Type(metro, Rail) (Definition 5.2, (1)) and the carbon footprint between these two stations is inferior to 500 (Definition 5.2, (2)). Moreover Connexion(Alesia, Den f ert, 2.5, 239) is in the fixpoint T * C 1 (f) and satisfy conditions in Definition 5.2-Recursive

Context

 88 113 81 119 78 122 77 123 75 125 75 125 75 125 75 125 DenfertRochereau 100 100 100 88 113 81 119 78 122 77 125 75 125 75 125 75 125 75 JeanMoulin 100 25 75 31 69 34 66 36 64 37 62 37 63 37 63 37 63 37 MairieMontRouge 100 25 75 31 69 34 66 36 64 37 62 37 63 37 63 37 63 37 MontSouris 100 75 125 75 125 75 125 75 125 75 125 75 125 75 125 75 125 75 MoutonDuvernet 100 100 88 113 81 119 78 122 77 123 75 125 75 125 75 125 75 125 PortedOrleans 100 300 125 275 138 263 144 256 147 253 150 250 150 250 150 250 150 250

Table 2 .

 2 User's context Ctx1 = (C 1 , G 1) on a transportation database.

							Denfert-Rochereau
	Station	Garden	..	Creche	
	Tramway						.. Daguerre
	Metro					
	RER Bus		G e n r l -L a e	s a i e l A	Mouton-Duvernet
					e	
					c	
					l	
					e	
					r c	
			P o			
			r t		
			e		
				d		
		' O r l e a	
					n s	
							Cite-Universitaire
	P o r t e V a n v e s	D i d o t	J e a n -M o u l i n	M a i r i e	M o n t -S o u r i s	..
						-
						M o n t	Gentilly
							-R o
							u g e

Table 5 .

 5 Rank computation: the table shows for each station respecting Ctx 2 its rank on step i.

In our notation, if i = 1 then i =

and vice-versa.

http://www.w3.org/TR/sparql11-query

Acknowledgements: This work was partially supported by APR-IA Girafon and PEPS-Multipoint.

step 0 step 1 q set (Alesia, Alesia, 0, 0) q map (Alesia, Alesia, P .Orleans, 160, 1) q f ollows (Alesia, P .Orleans, 160) q map (Alesia, Alesia, MoutonDuvernet, 106, 1) q f ollows (Alesia, MoutonDuvernet, 106) q r educe (Alesia, P .Orleans, 160, 1) q f ollows (MoutonDuvernet, Den f ert, 133) q r educe (Alesia, MoutonDuvernet, 106, 1) q f ollows (Den f ert, CiteU niv, 500) q set (Alesia, Alesia, 0, 0) q f ollows (P .Orleans, Montsouris, 159) q set (Alesia, P .Orleans, 160, 1) q f ollows (Montsouris, CiteU niv, 106) q set (Alesia, MoutonDuvernet, 106, 1) step 2 step 3 q map (Alesia, Alesia, P .Orleans, 160, 1) q map (Alesia, Alesia, P .Orleans, 160, 1) q map (Alesia, Alesia, MoutonDuvernet, 106, 1) q map (Alesia, Alesia, MoutonDuvernet, 106, 1) q map (Alesia, P .Orleans, Montsouris, 319, 2) q map (Alesia, P .Orleans, Montsouris, 319, 2) q map (Alesia, MoutonDuvernet, Den f ert, 239, 2) q map (Alesia, MoutonDuvernet, Den f ert, 239, 2) q r educe (Alesia, P .Orleans, 160, 1) q map (Alesia, Montsouris, CiteU niv, 425, 3) q r educe (Alesia, MoutonDuvernet, 106, 1) q map (Alesia, Den f ert, CiteU niv, 739, 3) q r educe (Alesia, Montsouris, 319, 2) q r educe (Alesia, P .Orleans, 160, 1) q r educe (Alesia, Den f ert, 239, 2) q r educe (Alesia, MoutonDuvernet, 106, 1) q set (Alesia, Alesia, 0, 0) q r educe (Alesia, Montsouris, 319, 2) q set (Alesia, P .Orleans, 160, 1) q r educe (Alesia, Den f ert, 239, 2) q set (Alesia, MoutonDuvernet, 106, 1) q r educe (Alesia, CiteU niv, 425, 3) q set (Alesia, Montsouris, 319, 2) q set (Alesia, Alesia, 0, 0) q set (Alesia, Den f ert, 239, 2) q set (Alesia, P .Orleans, 160, 1) q set (Alesia, MoutonDuvernet, 106, 1) q set (Alesia, Montsouris, 319, 2) q set (Alesia, Den f ert, 239, 2) q set (Alesia, CiteU niv, 425, 3) Fig. 3. Computation of minimal c f p -starting at Alesia step 1 of Figure 3, q map returns all paths which are 1-station away from Alesia, namely, P .Orleans and MountonDuvernet.

Next, for q r educe , we have:

where results are grouped on attributes X f r om , X t o , i and the aggregation function MI N is used on carbon footprint values. Therefore, relation q r educe has the minimal carbon footprint for each path (from Alesia to a reachable node by rail) on each iteration i.

In Figure 3, we notice that on step 1, q r educe returns similar results to those obtained by q map since there are no different ways to go from Alesia to P .Orleans or MountonDuvernet.

Finally, q set is redefined by the following two rules:

The first one updates the carbon footprint for two-node connexions already computed (in previous steps). Updates are performed only when the new computed value corresponds to a path proposing less energy consumption. The second rule deals with new nodes we can reach from X f r om =Alesia.

The above results have been obtained by our in-memory prototype, being implemented in Java.

RELATED WORK

Different graph databases and languages are currently available [START_REF] Angles | Survey of graph database models[END_REF][START_REF]Introduction to Cypher[END_REF][START_REF] Peter | Query languages for graph databases[END_REF]. Although the options being offered have advantages in terms of data storage and management, they lack query capabilities to capture network properties typical of graph analysis and means to define the user's context through constraints.

Graph query languages are often based on conjunctive regular path queries (CRPQs). CRPQs are the basis for several graph languages, such as GraphLog [START_REF] Consens | GraphLog: a Visual Formalism for Real Life Recursion[END_REF] and SPARQL 2 . Recent developments have extended CRPQs in order to allow constraints over path properties. These types of queries have been described as extended conjunctive regular path queries (ECRPQs) [START_REF] Barceló | Expressive Languages for Path Queries over Graph-Structured Data[END_REF]. ECRPQs also allow paths to be returned as query results. These queries are all focused on data selection and support only simple cases of analysis.

Lately there has been renewed interest in expressive query languages to tackle modern analysis problems. To overcome the limits of traditional query languages, Datalog has been proposed as the basis of the new languages [START_REF] Green | LogicBlox, Platform and Language: A Tutorial[END_REF], and extensions to support aggregates in recursive logic rules have been presented as in [START_REF] Mazuran | Extending the power of datalog recursion[END_REF]. Prominent projects in this area exist. SociaLite [START_REF] Seo | SociaLite: An Efficient Graph Query Language Based on Datalog[END_REF] offers integration between Datalog and procedural languages, allowing embedded Datalog formulas inside loops and conditionals. EmptyHeaded [START_REF] Christopher | Empty-Headed: A Relational Engine for Graph Processing[END_REF] is a relational engine for graph processing that offers a Datalog-like language with native support for fixpoint queries. BigDatalog [START_REF] Shkapsky | Big Data Analytics with Datalog Queries on Spark[END_REF] extends Spark with recursion. Datalography [START_REF] Walaa Eldin Moustafa | Datalography: Scaling datalog graph analytics on graph processing systems[END_REF] proposes an evaluation engine for executing graph analysis over BSP-style graph processing engine. These projects focus on optimization of the parallel execution of queries through the use of data structures that yield better execution plans of multi-way joins.

The work presented in this paper, in contrast, revisits query expressiveness and usability, offering higher-level constructs for users to specify the query context (constraints) and parameters of the graph analysis (β-queries). Although we do not focus on query optimization, the mentioned approaches are compatible with our querying strategies and are currently being considered in our implementations.

Constraints are taken into account in the context of RDF technologies such as ShEx [START_REF] Solbrig | Shape Expressions 1.0 Definition. W3C Member Submission[END_REF], SPIN [START_REF] Knublauch | SPIN -Overview and Motivation[END_REF], and SHACL [START_REF] Knublauch | Shapes Constraint Language (SHACL). W3C First Public Working Draft, W3C[END_REF]. However, their focus is on schema and ours is on integrity constraints. Stardog [START_REF]Enterprise Knowledge Graph[END_REF] deals with constraints which are closer to ours. The mentioned works, however, do not emphasize query expressiveness in the context of graph analysis.

CONCLUDING REMARKS

Smart cities face several challenges that require processing of a large volume of data provided by different sources, available for different goals. In such environment, the ability of performing contextdriven analysis on graphs is essential to the decision process. This paper contributes in this direction, proposing: (i) a declarative query language offering tools for graph analysis in a context-driven environment which allows reasoning with confidence over multistore systems [START_REF] Bondiombouy | Query processing in multistore systems: an overview[END_REF] and (ii) a querying system which filters answers obtained from a database (distributed or not) according to a given context. It adopts the philosophy that data quality is "everyone's business" [START_REF] Simon | Agile data management challenges in enterprise big data landscapes[END_REF] placing quality requirements at