
HAL Id: hal-01916686
https://hal.science/hal-01916686

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delay-based distribution and optimization of a
simulation model

Clément Michel, Pierre Siron

To cite this version:
Clément Michel, Pierre Siron. Delay-based distribution and optimization of a simulation model. 2018
IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-
RT), Oct 2018, Madrid, Spain. pp.21-28. �hal-01916686�

https://hal.science/hal-01916686
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/21037

Michel, Clément and Siron, Pierre Delay-based distribution and optimization of a simulation model. (2018) In: 2018

IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT), 15 October 2018

- 17 October 2018 (Madrid, Spain).



Delay-based distribution and optimization of a
simulation model

Clément Michel
Pierre Siron

ISAE-SUPAERO, University of Toulouse
10 avenue Édouard Belin

BP 54032 - 31055 Toulouse CEDEX 4, France
Email: {firstname.lastname}@isae-supaero.fr

Abstract—The conception of Cyber-Physical Systems is a
complex task: the multiple components making up those
systems might not be fully known by the system architect, and
putting those components together generates a new source
of complexity. Study and validation of those systems is often
done through simulation. Moreover, the CPS simulation is
often studied through distributed simulation, as the CPS
might itself be distributed or too complex.
We present a methodology to distribute a simulation model in
order to take full advantage of multiple processing units. We
ensure that said distribution does not impact the simulation
of our modeled system.

Index Terms—Embedded Simulation, Distributed simula-
tion, Cyber-Physical Systems, HLA

I. INTRODUCTION

CPSes models are “architecture models of a system
that consist of software, hardware, and physical system
components, their interactions, and the properties of these
elements” [1].

The analysis of cyber-physical systems (CPS) is a
complex task due to the heterogeneity of the parts in-
volved, as they integrate physical components as well as
computing resources. As such, CPSes integrate multiple
models of computation; for instance a rotating motor could
be represented in the continuous domain while the control
chip regulating it might be represented in the discrete
event domain. Analyzing such systems requires to handle
the heterogeneity of their components and representations.
Thus, they require specific tools for modeling and analysis.

In Section II, we discuss tools for modelization and
simulation of cyber-physical systems before discussing
distributed simulation using the High Level Architecture
standard. Our distribution methodology is detailed in Sec-
tion III, and examples are provided on Section IV.

II. OVERVIEW OF CPS AND DISTRIBUTED SIMULATION

A. Modeling tools for cyber-physical systems

Synchronous languages fits these requirements, such
as SCADE and its more specific subsets LUSTRE [2]
and PRÉLUDE [3]. Those two languages specialize onto
different types of systems: LUSTRE focuses onto the mod-
elling of synchronous systems, while PRÉLUDE focuses
onto validating the timing considerations of the modelled
system.

Model-based engineering can also be used, with its
focus on architecture definition: components are individu-
ally defined, and relations between said components are
then specified. Some of the languages used in model-
based engineering are SysML, UML or AADL [4], [5].
Simulink [6] is a graphical tool allowing conception
and simulation using the principles of model-based en-
gineering. PTIDES, a modeling tool implemented in the
Ptolemy simulator, accounts for the differences in clock
synchronization that can be encountered for actual systems
with multiple computing resources requiring precise tim-
ing. This representation of time, close to how embedded
systems interacts with time, also ensures more precisely
that deadlines are enforced through both static analysis
and simulation [7].

Thanks to this model-based approach, the complexity
of the constitutive components is self-contained and the
internals of a components can be as complex as needed
without requiring the designer to be aware of it.

In this paper, we chose to focus on model-based tech-
niques: the systems we want to study are composed of
asynchronous parts that would require modification or
encapsulation in order to be expressed in a synchronous
language. Moreover, the component approach used in
model-based engineering favors interoperability and reuse,
a theme also present in HLA and discussed in Section II-C.

B. Simulation

CPSes are difficult to assess from a formal point of
view [8]. The use of simulation allows to gain knowledge
about CPSes without the need for formal analysis. How-
ever, the simulation needs to be representative of the actual
system as well as being reproducible. In other words,
fidelity is required both in modeling and simulating the
modeled system.

Simulation of CPSes distinguishes itself from simula-
tion of multiple computing devices because of the for-
mer’s tight interaction with physical processes. In Cyber-
Physical Systems and contrary to multicore/distributed
computation, the passage of time is a central feature, and
time coordination between the different system compo-
nents need to represent the modeled system to a desired
degree of faithfulness. The Ptolemy simulator [9] han-
dles this complexity by using heterogeneous multimod-
eling [10], where the different Models of Computation



(MoC) can be nested within each other, and combined
hierarchically.

C. Distributed simulation using HLA
Distributed simulation brings forth its own set of sim-

ulation problems, such as the loss of a total event or-
dering [11], proof of correctness (or lack thereof) and
deadlock prevention [12].

Propositions such as the High Level Architecture (HLA)
standard [13] allows developers to add a distributed layer
on top of an existing simulator. HLA is suitable for hard
real time constraints [14], thus appropriate for modeling
our time-centric models. That distributed layer separates
the distributed simulation into federates (simulations tak-
ing part in a distributed HLA simulation, called feder-
ation), that exchange data exclusively through the RTI,
a middleware that implements the HLA rules and man-
ages the communication between the different federates.
This loose coupling of this distributed layer allows for
interoperability and federate reuse. HLA is then used
to couple simulators together. Some of those coupling
implementations are PTII-HLA [15], or FMI-HLA [16]. A
notable open-source HLA implementation is CERTI [17].

As outlined by previous works, the distribution of a
simulation comes at a cost [18]: the conservative time
management services allow for the coordinated and safe
time advance of each federate through conservative simu-
lation.

To ensure the conservative property of these time ad-
vances, a federate is forbidden to send messages to others
federates before t+ lah, with t being the current time for
the federate and lah being a property of the federate called
the lookahead. It might thus be necessary to introduce
a delay equal or greater than lah in order to make the
simulator compliant with the HLA requirement. HLA
allows for lah = 0, however this zero lookahead will not
be considered in this paper because of the different costs
it carries, both in design cost and in simulation cost.

HLA’s Next Message Request service (abbreviated as
NMR) ensures that the logical time of the federate shall
be advanced to the timestamp of the next timestamped
message that will be delivered.

Let t be the time of a federate f1 sending messages, and
lah its lookahead. It sends its message to another federate
f2, and both federates uses the NMR service. The federate
wishes to send a message timestamped t+ d.

If t + d < t + lah, then the federate cannot send this
message.

If t+ d ≥ t+ lah, then the federate sends this message
with timestamp t+d. The receiving NMR federate receives
this message with the same timestamp t+ d.

Because of this potential modification, observations and
properties established in a (centralized) simulation does
not necessarily carry over to the distributed version: the
distributed model is then different from the centralized
one.

D. Motivation
The rising complexity of CPSes can be traced down to a

multitude of factors. For instance, more precise simulation

with smaller simulation steps, or more precise simula-
tion algorithms can induce more expensive computation.
Moreover, the CPS itself can be complex. In this paper,
we will focus on CPS simulation using heterogeneous
multimodeling and a discrete event simulation at the top
of our hierarchy.

To take full advantage of multicore architectures, it is
mandatory for programs to be able to run on multiple
cores at the same time, through the use of threads assigned
to different physical or logical cores. This approach also
naturally extends to multi-computer architectures through
mapping to cores on distinct computers, thanks to the HLA
framework that does not rely on shared memory.

For the remainder of this paper, we call a model able to
execute onto different cores at the same time a distributed
model, whereas a model that can only run onto a single
core is called a centralized model.

Whereas the model can be created already distributed,
as it is the case with systems that are distributed by nature,
some systems are designed centralized from the ground up.
Even a model created to simulate a centralized model can
benefit from distribution, as its simulation can be sped up
under the right conditions.

Our main motivation is to guide the user by proposing a
model representation that will be both a modeling support
and a cornerstone for our distribution process.

III. FROM CENTRALIZED TO DISTRIBUTED

We propose a methodology to transform centralized
discrete event models into distributed discrete event ones.
This methodology focuses heavily on making sure the
resulting distributed model will yield the same results as
the centralized one.

The process is as follows: we first split the model into
clusters that will become components of the distributed
simulation. We then modify the clusters to account for the
inserted distributed mechanisms, and finally we determine
the distributed parameters allowing for the fastest simula-
tion possible.

A. Representation of models

We discuss here a representation graph aimed at ab-
stracting our model. Our ideal representation is as min-
imalistic as possible, abstracting the studied models as
much as possible but still faithfully representing both the
structure and (some) timing elements of the modelled
system.

This representation takes inspiration from both event
graphs and dataflow diagrams. Event graphs [19] represent
event scheduling using edges (representing state transi-
tions), that connect nodes (representing events). These
edges can integrate a time delta, representing a delay
between two event e1(t1) and e2(t2). The existence of
an edge means that event e2(t2) can be generated during
the processingof event e2(t2).

Whereas the properties on edges are very interesting in
our scenario, we would like to represent how events are
circulating through the system rather than representing the
possible sequences of events.



In this prospect, our representation is closer to a
dataflow diagram, which describes processes and their
relations [20]. However, a dataflow diagram does not have
a notion of time. Since we want to capture time relations
within the system, a dataflow diagram is not here the best
match.

Finally, we would like to perform operations onto said
graph in a manner that is close to a program dependence
graph [21], albeit without representing explicitely both
data and control dependencies.

The discussed representation takes the meaning of
weighted edges from event graphs in order to represent
the scheduling of events, and takes the meaning of nodes
from dataflow diagrams in order to represent processes.

In the remainder of this paper, the following represen-
tations and notations will be used. Every reference to time
is a reference to logical time, until stated otherwise.

Let A be a component in a model. A component is a
“black box”, represented by a rectangle in Figure 1 that
takes in events and produces events. We have no interest
in the component’s inner workings: a component can be
a submodel, a single function, etc. . . without affecting its
interactions with the rest of the modelled system.

We consider that when component A is at time t, it can
generate a new event eA, of value v and of timestamp t′.

Events generated by a component may be sent to an-
other component. This behavior is modeled by a weighted
directed edge, starting from the component generating the
event, and pointing towards the component receiving the
event.

The weight on the edge represents the time between the
emission of an event eA by A, and the reception of eA by
B. For instance, with a weight of d on the edge linking
A to B, the production of an event at time t by A means
that B will receive an event eA(t∗, v) with t∗ = t+d and
v the value of the event. This event will be received at
time t∗.

An edge with an unspecified weight, such as the one
on depicted Figure 1 is an edge of weight 0. The dotted
edge means that A is part of a bigger model and receives
events from this edge in an unspecified manner. This is
the case for the initial events in the model.

A B

Figure 1: Component A sends data to component B.

A B
d

Figure 2: The same scenario, with a delay d between A
and B.

Thanks to this representation, we are able to express
delays in HLA the same way we express delays in
a discrete event simulation: A delay d introduced by
HLA has the same representation than a delay d exist-
ing within the discrete event simulation. For instance, a

component A at t sending an event eA at t + d will
be represented in the same way than a component A
at t sending an event eA(t + d) to the RTI, with the
RTI delivering the event at t + d. For HLA specialists,
the services used are updateAttributeValues and
reflectAttributeValues with a timestamp.

This abstraction level will allow us to change the origin
of a delay at will without changing the behavior of the
modelled system, thus allowing us to replace delays from
the discrete event simulation with HLA-induced delays.

B. Delay implementation equivalence

A B
Distribution
artifacts

??

Figure 3: The model on Figure 2 now distributed.

We model the distribution mechanisms as an added
component, called Distribution artifacts in
Figure 3. In order to ensure that the distribution does not
impact the output, events received by B in Figure 2 should
be the exact same events than received by B in Figure 3.
Let eA(t∗, v) be the event received by B in Figure 2 and
e′A(t

′, v′) the event received by B in Figure 3. We obtain
the following conditions:


∃eA ⇐⇒ ∃e′A (1)
t∗ = t′ (2)
v = v′ (3)

Condition 1 states that for every event eA, another event
e′A must exist : in other words, the Distribution
artifacts component in Figure 3 must transport events
without deleting or creating new ones. The HLA standard
defines different transport types. One of them is the
reliable transport type, that ensures that delivery of one
copy of the data is guaranteed [13]. Coupled with the fact
that HLA isn’t delivering data that isn’t supposed to be
delivered, using the reliable transport type is sufficient to
ensure that Condition 1 is respected.

Moreover, HLA ensures integrity of the delivered mes-
sage [13], thus validating Condition 3.

Recalling the properties of NMR discussed in Sec-
tion II-C , if d ≥ lah with lah > 0, the message passing
through the RTI behaves as if it have been delayed by an
edge of weight d.

A lookahead
lah ≤ d (4)

is thus a property sufficient to ensure Condition 2 for an
edge of weight d. At this point, lah is undefined, and we
only know that lah > 0. We will determine its value in a
later step.

As a consequence of these properties, Figure 4 can
represent/be implemented both by HLA in the simplified
Listing 1 and Ptolemy in Figure 5.

In a Ptolemy model, the components are called actors. A
model is made of a director and multiple actors. The direc-
tor dictates how time advance in the model, and how actors



A
d

Figure 4: A component A with an edge of weight d.

interact together. In this article, we will focus onto Ptolemy
models with a DE Director, implementing a discrete
event MoC. A special actor called TimeDelay allows to
modify the timestamp of its input events, simulating the
latencies in the model. Without any TimeDelay actors,
the model time would never advance.

Listing 1: Simplified HLA implementation of Figure 4.
nextMessageRequest(t_end)
reflectAttributesValues(object1, v1, t)
timeAdvanceGrant(t)
v2 = computeOutputValue(v2, t)
updateAttributeValues(object2, v2, t + d)

Figure 5: Ptolemy implementation of Figure 4.

C. Distribution methodology

Our approach for creating a distributed simulation is
composed of two steps: first, we find the maximum num-
ber of federates, then we compute the lookahead of said
federates in order to obtain the fastest simulation possible.

1) Clustering: In the first step of our methodology,
we determine a way to split our centralized model into
multiple federates.

On Figure 6, A and B cannot end up in two different
federates, as a 0-weight edge links them together. Indeed,
according to Equation 4, the lookahead would be 0, and
as presented on Section III-B we only consider lah > 0.
Let sp(A,B) be the shortest path between A and B. Two
components cannot end up being in two different federates
if sp(A,B) = 0 ∨ sp(B,A) = 0.

We thus obtain this sufficient rule for finding the
maximum distribution obtainable: if there is a 0-weight
edge between two components A and B (that is, if
sp(A,B) = 0 ∨ sp(B,A) = 0) then A and B must
be in the same federate.

Our approach allows to find the maximum number
of federates possible. However, this maximum may not
be suitable or necessary. If maximum distribution is not
desired, federates can be “fused” together by putting the
contents of two federates in a single one.

2) Lookahead computation: Once the clustering step
realized, we obtain a list of federates, each with a looka-
head lah > 0. To make the simulation as fast as possible,
we would like a value of lah as great as possible, as it
means less mandatory waiting for other federates [13], thus

A B
d

Figure 6: Weighted link that cannot be distributed.

less idle time and greater efficiency. However, we cannot
set a lookahead greater than what an edge allows, as it
would change the edge and thus change the model. Let an
edge originating from a component in a federate f1 and
pointing towards a component in federate f2. We call that
edge an outgoing edge for f1. Let Ed be the set of all
outgoing edges for fA. The lookahead for fA will be:

lah = min
d∈Ed

d (5)

In other words, the lookahead is the smallest weight on
all outgoing edges.

On Figure 7, components A,C,E can all be reached
from D through 0-weight edges and will be part of
the same federate f1. As such, f1 will have three
outgoing edges d1, d2, d3. Thus, its lookahead will be
min(d1, d2, d3).

A

B

d1

CD

E

d2

d3

f1

f2

Figure 7: Future federate f1 with multiple outgoing edges.

3) Edge reweighting for Ptolemy-HLA implementa-
tions: We will use the Ptolemy-HLA framework [22]
in order to implement our distributed smulation. This
framework allows a Ptolemy model to interact with a
RTI through the HlaManager that handles the high-
level HLA rules and services, and two actors: the
HlaPublisher that sends messages to the HLA fed-
eration, and the HlaPublisher that receives messages
from the HLA federation.

A HlaPublisher executed at time t will send an
event to the federation at time tsend = t + lah. This
behavior is a property that have been chosen for the
framework in order to let the system architect focus on the
Ptolemy implementation more than on HLA fine-tuning.
Since lah ≥ d, we need to insert special delays in the
Ptolemy model to accomodate the specifications of the
Ptolemy-HLA framework.

We compute a value d′ such as

d = lah+ d′ (6)

In other words, the weight d is decomposed into two
constitutive delays: the delay lah that will be implemented
using HLA, and the d′ delay, that will be implemented in-
model, using TimeDelay-induced delays.

For federates with a single outgoing weight, we have
lah = d as according to Equation 5, thus d′ = 0. As a
consequence, for federates with a single outgoing weight,



A B
lahd'

Figure 8: Weight from Figure 2 separated as HLA weight
and non-HLA weight.

the delay d′ does not exist, and the whole weight of the
edge is implemented using HLA. We choose a lookahead
as arbitrarily large as possible for it not to slow down the
simulation.

D. GRADE-II implementation

A Python implementation of our algorithm has been
written, called GRADE-II for Graph Requirements for
an Automatic Distribution Environment. This implemen-
tation takes in a graph and returns the different federates
that composes the now distributed model using the steps
described in Section III-C, including the edge reweighting
specific for Ptolemy-HLA implementations.

IV. EXAMPLES

A. A small example

We apply our distribution methodology to a Ptolemy
model depicted in Figure 9 using the developped tool
GRADE-II. In this model, the PoissonClock and
DiscreteClock generate events that are sent to their
respective TimeDelay. Its equivalent graph using the
representation proposed in Section III-A is depicted in
Figure 10.

Figure 9: A Ptolemy model we wish to distribute.

PoissonC

DiscreteC

Merge Time

Time2

Display

Display2

3.1

1.0

2.0

1.5

Figure 10: Figure 9 expressed as a graph.

Clustering the graph as described in Section III-C1
yields the 5 federates described in Figure 11.

PoissonC

DiscreteC

Merge Time

Time2

Display

Display2

3.1

1.0

2.0

1.5

Federate f1

Federate f2

Federate f3 Federate f4

Federate f5

Figure 11: Figure 10 after clustering.

The next step is to compute the lookahead for each
of the 5 federates. Applying Equation 5, we obtain
1.0, 2.0, 1.5 for respectively federates f1, f2, f3. Federates
f4, f5 do not have outgoing edges, thus the lookahead can
be arbitrarily large and is not specified.

Finally, the weight of the outgoing edges is reevaluated
using Equation 6. Federates f2, f3 only have one outoging
edge, and as such have d′ = 0. Federate f1 have two
outgoing edges: one takes a new weight d′ of 0 while the
other takes a new weight of 3.1− lah = 2.1. The resulting
federation is depicted in Figure 12. This federation was
implemented using the Ptolemy-HLA framework and is
represented on Figure 13. Each federate on Figure 12 is
implemented as a Ptolemy model with a HlaManager.
Outgoing edges start with a HlaPublisher and end
with a HlaSubscriber.

Executing both the centralized model in Figure 9 and
the distributed one in Figure 13, we obtain the same results
for the two executions.

PoissonC

DiscreteC
Merge Time

Time2

Display

Display2

Federate f1

Federate f2
Federate f3

Federate f4

Federate f5

lah = 1.0

lah = 2.0
lah = 1.5

A

B

A

B

C

C

D

D

2.1

Figure 12: Lookahead and delays for Figure 11’s federates.

V. THE F-14 CASE STUDY

In this section, we look at how variations of a model in-
fluence the distribution through study of an F-14 aircraft’s



(a) Federate F1

(b) Federate F2

(c) Federate F3

(d) Federate F4

(e) Federate F5

Figure 13: Ptolemy models obtained from the Figure 12.

longitudinal control. This system was implemented both
as a Simulink demo and later on, as a Ptolemy demo.

We study the autopilot system of an F-14 Tomcat twin-
engine fighter aircraft. As such, we identify three major
components for our model: the physical structure of the
plane, the integrated controller handling the autopilot,
and the pilot’s inputs. Their interactions are shown on
Figure 14.

Physical Autopilot

Pilot

Figure 14: Interactions between the different f14 parts.

As we would like to model these interactions in a
Discrete Event simulation, we have to insert delays in
our model in order to represent the passage of time. We
propose here three ways of implementing said delays,

represented on Figure 15. We would like to highlight
the fact that there is no “best” variation: every variation
produces slightly different results due to the emphasis
onto different time architectures. For instance, the
variation on Figure 15b puts the emphasis on an feedback
loop on the physical part and the autopilot, that occurs
once every d.

Recalling that in the described representation, an edge
represents a possibility to send a message. It is thus
implicit that the edge from Autopilot to Physical
is triggered by the reception of an event going through
the edge of weight d: in this representation, we can have
a 0-weight loop between Physical and Autopilot.
This representation does not fully reflect the knowledge
we have of the system because the variation on Figure 15c
takes into account the autopilot computation delay and the
delay between the state of our physical process and the
reading of said state through a sensor.

(a) A first variation (b) A second variation

(c) A third possible variation

Figure 15: Three different ways of representing the F-14
autopilot loop.

The F-14 variation pictured in Figure 15b is one of
the demonstration models that comes with the Ptolemy
simulator. The heterogeneous multimodeling abilities of
Ptolemy allows here to model the Physical compo-
nent internals in a Continuous Model of Computation.
Nonetheless, the whole Physical component behaves
as if it is a traditional Discrete Event component. A
PeriodicSampler actor within the Continuous MoC
simulates a periodic sensor with an analog-to-digital con-
verter. It can be seen as a self-edge on the Physical
component, since new events are produced with a period
D — in other words, events are produced with an interval
d between them.

Attempting to distribute it with the methodology de-
scribed in Section III-C does not yield a successful
distribution, as there are 0-weight edges connecting the
components.

Finally, the third variation, depicted in Figure 15c, can
be distributed as there are no 0-weight edges linking the
Physical, Autopilot and Pilot together.

With d1 = d2 = d3 = 0.005, our methodology
creates 3 federates, each with a lookahead lah = 0.005.
Execution of our distributed simulation took 3.9 seconds.



Changing the lookahead to a smaller value and adding
TimeDelay actors to keep the same event timestamps,
we obtain significantly slower executions: an execution
with lah = 0.001 took 6.2 seconds, and an execution with
lah = 0.0001 took 25.5 seconds. This demonstrates the
importance of a well-chosen lookahead in the simulation
process.

The distributed version, as well as the centralized one,
are downloadable with Ptolemy as demonstration models.

Other examples have been successfully studied, such
as SDSE [23], but cannot be presented because of space
constraints.

VI. CONCLUSION AND PERSPECTIVES

We have introduced a representation that requires very
little assumptions onto the model. This representation is
used to identify how a model can be sliced into submodels
for distribution purposes.

We identified two use cases for our distribution method-
ology. The first one takes an already existing centralized
model, expresses it in the discussed representation and
find a distribution that produces the same results (if the
distribution exists). The second one takes in a graph
expressed in our representation and find a distribution
compliant with the architecture and delays specified by
the system architect.

We believe that this automatic distribution can be inte-
grated as a feature of a larger framework. This framework
would make extensive use of the representation introduced
in this paper, extending it with new features and charac-
teristics that would not impact the ones described in this
paper. The hypothesized framework would allow a model
architect to develop a model out of a library of existing
components, test the soundness of the constructed model
by expressing and testing constraints onto component
connection (for instance to detect algebraic loops), and
attempt to distribute it before proposing an implementation
using a chosen simulator.

However, not all models can be distributed without
altering them. In some usecases, we believe the model
architect would obtain more from a slightly changed,
fast and parallelized model than from a exact, slow and
centralized model. We are convinced that providing the
model architect with a way to distribute the studied model
while inserting a minimum amount of alterations into said
model allows to keep the distributed behavior as close as
possible from the original.

Finally, HLA’s zero lookahead option will be exami-
nated, as well as compatibility between faithful distribu-
tion and HLA’s Time Advance Request will be studied,
to allow more diverse distributions and maybe better
performance gains.

ACKNOWLEDGMENTS

This research was partly supported by the French Min-
istry of Defense through financial support of the Direction
Générale de l’Armement and by the Occitanie region.

REFERENCES

[1] G. Yang and X. Zhou, Cyber-Physical Systems. 2013.
[2] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-

chronous data flow programming language LUSTRE,” Proceedings
of the IEEE, vol. 79, pp. 1305–1320, Sept. 1991.

[3] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A Multi-Periodic
Synchronous Data-Flow Language,” in 2008 11th IEEE High
Assurance Systems Engineering Symposium, pp. 251–260, Dec.
2008.

[4] P. H. Feiler and D. P. Gluch, Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis & Design
Language. The SEI series in software engineering, Upper Saddle
River, N.J: Addison-Wesley, 2013. OCLC: 820515268.

[5] F. Cottet and E. Grolleau, Systèmes temps réel embarqués: Con-
ception et implémentation. 2014. http://sbiproxy.uqac.ca/login?url=
http://international.scholarvox.com/book/88825521.

[6] MathWorks, “Verification, Validation, and Test - MATLAB
& Simulink Solutions.” https://fr.mathworks.com/solutions/
verification-validation.html.

[7] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou,
“Distributed Real-Time Software for Cyber-Physical Systems,”
Proceedings of the IEEE, vol. 100, pp. 45–59, Jan. 2012.

[8] E. A. Lee, “CPS foundations,” in Design Automation Conference,
pp. 737–742, June 2010.

[9] C. Ptolemaeus, ed., System Design, Modeling, and Simulation
Using Ptolemy II. Ptolemy.org, 2014. http://ptolemy.org/books/
Systems.

[10] C. Brooks, C. P. Cheng, T. H. Feng, E. A. Lee, and R. Von Hanxle-
den, “Model engineering using multimodeling,” tech. rep., Cal-
ifornia Univ. of Berkeley, Dept. of Electrical Engineering and
Computer Science, 2008.

[11] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Commun. ACM, vol. 21, pp. 558–565, July
1978. http://doi.acm.org/10.1145/359545.359563.

[12] K. M. Chandy and J. Misra, “Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs,” IEEE
Transactions on Software Engineering, vol. SE-5, pp. 440–452,
Sept. 1979.

[13] IEEE-SA Standards Board, IEEE Standard for Modeling and Simu-
lation (M & S) High Level Architecture (HLA): Federate Interface
Specification. New York: Institute of Electrical and Electronics
Engineers, 2010. http://ieeexplore.ieee.org/servlet/opac?punumber=
5557726.

[14] C. Gervais, J. B. Chaudron, P. Siron, R. Leconte, and D. Saussié,
“Real-Time Distributed Aircraft Simulation through HLA,” in 2012
IEEE/ACM 16th International Symposium on Distributed Simula-
tion and Real Time Applications, pp. 251–254, Oct. 2012.

[15] G. Lasnier, “Towards a Distributed and Deterministic Framework
to Design Cyber-Physical Systems,” tech. rep., ISAE-Supaero,
Toulouse, France, Oct. 2013.

[16] M. U. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias,
“The high level architecture RTI as a master to the functional
mock-up interface components,” in 2013 International Conference
on Computing, Networking and Communications (ICNC), pp. 315–
320, Jan. 2013.

[17] “CERTI Home page.” http://savannah.nongnu.org/projects/certi,
July 2002.

[18] C. Michel, J. Cardoso, and P. Siron, “Time Management of Het-
erogeneous Distributed Simulation,” in Proceedings of the 31st
European Simulation and Modelling Conference (ESM) - Modelling
and Simulation, (Lisbon, Portugal), pp. 343–349, EUROSIS-ETI,
Oct. 2017.

[19] A. Buss, “Basic Event Graph Modeling,” 2001. https://calhoun.nps.
edu/handle/10945/45519.

[20] P. D. Bruza and T. P. van der Weide, “The Semantics of Data
Flow Diagrams,” in In Proceedings of the International Conference
on Management of Data, pp. 66–78, McGraw-Hill Publishing
Company, 1993.

[21] J. Ferrante, “The Program Dependence Graph and Its Use in
Optimization,” ACM Transactions on Programming Languages and
Systems, vol. 9, p. 31, July 1987.

[22] G. Lasnier, J. Cardoso, P. Siron, C. Pagetti, and P. Derler, “Dis-
tributed Simulation of Heterogeneous and Real-Time Systems,” in
17th IEEE/ACM International Symposium on Distributed Simula-
tion and Real Time Applications, (Delft, Netherlands), pp. 55–62,
IEEE, Oct. 2013. http://ieeexplore.ieee.org/document/6690494/.

[23] J.-B. Chaudron, D. Sauccié, P. Siron, and M. Adelantado, “How to
solve ODEs in real-time HLA distributed simulation,” in Simulation
Innovation Workshop (SIW), (Orlando, United States), p. 13, Sept.
2016.


