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Spatial modulations of kinetic energy in the
roughness sublayer

Jérémy Basley1,2,†, Laurent Perret1 and Romain Mathis3

1LHEEA, UMR 6598 CNRS Centrale Nantes, 44300 Nantes, France
2Department of Aeronautics, Imperial College London, Kensington, London SW7 2AZ, UK

3Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, 31400 
Toulouse, France

High-Reynolds-number experiments are conducted in the roughness sublayer of a 
turbulent boundary layer developing over a cubical canopy. Stereoscopic particle 
image velocimetry is performed in a wall-parallel plane to evidence a high degree of 
spatial modulation of the small-scale turbulence around the footprint of large-scale 
motions, despite the suppression of the inner layer by the high roughness elements. 
Both Fourier and wavelets analyses show that the near-wall cycle observed in 
smooth-wall-bounded flows is severely disrupted by the canopy, whose wake in the 
roughness sublayer generates a new range of scales, closer to that of the outer-layer 
large-scale motions. This restricts significantly scale separation, hence a diagnostic 
method is developed to divide carefully and rationally the fluctuating velocity fields 
into large- and small-scale components. Our analysis across all turbulent kinetic energy 
terms sheds light on the spatial imprint of the modulation mechanism, revealing a 
very different signature on each velocity component. The roughness sublayer shows 
a preferential arrangement of the modulated scales similar to what is observed in 
the outer layer of smooth-wall-bounded flows – small-scale turbulence is enhanced 
near the front of high momentum regions and damped at the front of low momentum 
regions. More importantly, accessing spanwise correlations reveals that modulation 
intensifies the most along the flanks of the large-scale motions.

Key words: atmospheric flows, boundary layer structure, turbulent flows

1. Context and objectives

In the context of large-eddy simulation (LES) of atmospheric flows over rough
surfaces, better understanding of the multi-scale interchange between the canopy-
driven dynamics and the large-scale dynamics of the surface layer could lead to
more accurate and reliable wall models avoiding the computational expense of
explicitly resolving the flow in the near-wall region. The nonlinear character of
these canopy–atmosphere interactions calls specifically for a dynamic model of the
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interface, evolving with respect to the turbulent large-scale motions. Within this
scope, the amplitude modulation approach developed for smooth-wall boundary
layers represents an interesting prospect (Marusic, Mathis & Hutchins 2010; Mathis,
Hutchins & Marusic 2011a).

More than forty years ago Rao, Narasimha & Narayanan (1971), Brown &
Thomas (1977) and later Bandyopadhyay & Hussain (1984) opened a new path
to the modelling of turbulence in shear flows as they brought to light the phase
relationship between large-scale events and the turbulent activity at smaller scales.
Since then our understanding of turbulent boundary layers and coherent structure
interplay has expanded significantly. The development of numerical simulations and
particle image velocimetry (PIV) techniques have facilitated identifying coherent
structures, notably by providing space-extended datasets. Near-wall turbulence is now
known to consist of small-scale eddies generated at the wall, stretching and breaking
down under the stress exerted by streaky large-scale motions, that emerge in the
high-Reynolds-number boundary layers. One may notably refer to the works of Kim
& Adrian (1999), Adrian, Christensen & Liu (2000a) or Hunt & Morrison (2000)
for more detail on these aspects. In the last decade Marusic, Hutchins and their
co-workers have regenerated the findings of Bandyopadhyay & Hussain (1984) into a
novel approach of the inter-scale interactions in turbulent boundary layers (Hutchins &
Marusic 2007b; Mathis, Hutchins & Marusic 2009; Marusic et al. 2010; Talluru et al.
2014). They demonstrated that small scales in the near-wall region can be described as
being amplitude modulated by the large-scale fluctuations of momentum that prevail
in the outer layer. This approach led to a predictive model put forward in Marusic
et al. (2010) and Mathis et al. (2011a) to reconstruct near-wall dynamics from a
large-scale signal, measured much further from the wall. Frequency modulation was
also revealed in Ganapathisubramani et al. (2012) and Baars, Hutchins & Marusic
(2017) to occur in conjunction with amplitude modulation, although it was rather
constrained to the inner part of the boundary layer. A similar approach was applied
to a free jet by Fiscaletti, Ganapathisubramani & Elsinga (2015) who also observed
modulations of the small scales. It is worth noting that the robustness and accuracy
of this model rely on a clear separation in spectra between modulating and modulated
signals (Mathis et al. 2009). Such a separation is obtained for high Reynolds numbers,
at which the inner peak (fixed in wall units ν/Uτ , with ν the kinematic viscosity and
Uτ the friction velocity) and the outer peak (scaled with the boundary layer thickness
δ) drift apart (Hutchins & Marusic 2007b). This allows for a well-defined separation
between the (modulating) large scales and the (modulated) small scales.

While the modulation approach has been extensively documented in the canonical
smooth-wall case, its applicability to high-roughness cases like urban canopies remains
to be rigorously characterised. High-roughness elements disrupt near-wall turbulence
production by shedding intermediate-scale dynamics into the roughness sublayer,
in particular in urban-type geometries. This perturbation could alter or prevent
large-scale modulation. This also implies larger dissipative scales, hence reducing
the spectral separation with large-scale motions (LSMs). As for the LSMs, they are
not significantly different from the smooth-wall case: low/high momentum regions
have been evidenced in many numerical simulations (e.g. Coceal et al. 2007; Lee,
Sung & Krogstad 2011; Inagaki et al. 2012). These LSMs actually leave a footprint
deep within the roughness sublayer, despite the injection of intermediate scales by
the roughness elements. This was confirmed experimentally by Mejia-Alvarez, Wu
& Christensen (2014) dealing with a fully rough flow over an irregular roughness.
Their analysis also alluded to the amplitude modulation (AM) by LSMs yet did not

https://doi.org/10.1017/jfm.2018.458
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


explore that aspect further. In fact, only a few studies have applied the amplitude
modulation approach to high-roughness cases: Nadeem et al. (2015) performed
direct numerical simulations (DNS) over a sparsely spaced rod-roughened wall and
reported that rod-induced wakes strongly disrupted the amplitude modulation by the
LSMs; Anderson (2016) investigated the case of a staggered cubic canopy of plan
density λp = 25 %, similar to that of the present study but using LES of a channel
flow. Amplitude modulation by LSMs was observed in the roughness sublayer and
inside the canopy with a salient spatial variability. Note however the configuration
presented a much lower ratio δ/h = 4 (where h is the height of the roughness
elements) that reduced greatly the gap between scales associated with LSMs and
those associated with canopy-induced dynamics. To the authors’ knowledge, the
only experimental investigation of AM in a highly roughened boundary layer was
performed by Blackman & Perret (2016) using wall-normal measurements.

The present work focuses on the spatial organisation of the modulation within
the roughness sublayer. To that end, we make use of space-extended data acquired
over a large region to gain access to nonlinear interactions over a wide range of
length scales (§ 2). Spectral content analysis of the fluctuating kinetic energy is
carried out in § 3 using spatially reconstructed velocity fields and temporal data,
by means of Fourier and wavelet transforms. Since the outcome shows that high
roughness reduces the separation with outer scales by injecting intermediate scales
into the inner region of the flow, a diagnostic approach is put forward to choose
the appropriate cutoff frequency used for scale decomposition (§ 4). This relies on
third-order moments combining outer-layer large-scale fluctuations and small-scale
kinetic energy terms in the roughness sublayer. This gives us access to the degree of
amplitude modulation across all kinetic energy terms. Finally, § 5 brings new insights
to the organisation in the wall-parallel plane of the amplitude modulations inside the
roughness sublayer, and helps to complement the existing literature that generally
focuses on the wall-normal evolution across the boundary layer (Mathis et al. 2009;
Ganapathisubramani et al. 2012; Baars et al. 2015; Squire et al. 2016a; Yao, Huang
& Xu 2018, etc.). Our analysis extends to all velocity components to give access to
the kinetic energy, a Galilean invariant, hereby relating the amplitude modulation to
coherent structures interplay around the large-scale motions.

2. Experiments
The lower part of a suburban-type atmospheric boundary layer was reproduced

in the atmospheric boundary layer wind tunnel at the Laboratoire de recherche en
Hydrodynamique, Energétique et Environnement Atmosphérique of Ecole Centrale
de Nantes (LHEEA, Nantes, France), with a working section of dimensions
24 m× 2 m× 2 m (figure 1). The frame of reference (ex, ey, ez), attached to the wind
tunnel, corresponds to the streamwise, spanwise and wall-normal axes, respectively.
The high-Reynolds-number turbulent boundary layer was tailored using five vertical
tapered spires, 800 mm high and 134 mm wide at their base, in conjunction with a
200 mm-high solid fence, located 0.75 m downstream of the inlet across the working
section. The flow then developed over an idealised urban-type roughness, consisting
of a 22 m-long fetch of staggered h = 50 mm-high cubes, with a plan coverage
λp = 25 %. This urban canopy model constitutes a canonical geometry, known to
present a wake-interference regime (Oke 1988). Temperature was measured during
acquisitions to estimate the kinematic viscosity and the pressure gradient along the
test section, (ν/ρU3

e )(dP/dx)<−2.5× 10−8, which is small enough to have negligible
impact on the boundary layer (DeGraaff & Eaton 2000).
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FIGURE 1. (Colour online) Sketch (not to scale) of the atmospheric wind tunnel at
LHEEA laboratory, Nantes.

2.1. The atmospheric surface layer
Aerodynamic parameters of the atmospheric surface layer modelled here were deduced
from form drag and streamwise velocity profiles 〈U〉(z) (where 〈·〉 denotes the
time average, U the instantaneous streamwise velocity and u its fluctuation). Both
displacement height d and friction velocity Uτ were estimated using wall-pressure
measurements around a cube within the canopy (Perret et al. 2017, 2018), as
proposed by Cheng & Castro (2002) and Cheng, Hayden & Robins (2007). Hot-wire
measurements of streamwise velocity U(z, t) were acquired across the boundary layer
from 1.2h 6 z 6 30h∼ 1.4δ to identify roughness length k0 from the logarithmic law

〈U〉+ = 〈U〉
Uτ

= 1
K

ln
(

z− d
k0

)
(2.1)

with the von Kármán constant K set to 0.4. Wall-normal profiles of mean and variance
of streamwise velocity are plotted in figure 2(a), against the logarithmic law for the
mean velocity given above in its meteorological form in (2.1), and the logarithmic law
for the variance proposed by Marusic et al. (2013)

〈u2〉
U2
τ

= B1 − A1 ln
(

z− d
k0

)
, (2.2)

where B1 is a constant that depends on the flow geometry and wake parameter. Note
that (2.1) and (2.2) assume the uniformity of the mean flow at a given wall distance
z but strictly speaking, that assumption is only valid outside the roughness sublayer.
As for the mean velocity profile, it can be seen that a large portion of the profiles
follows the logarithmic law, confirming the well-developed high-Reynolds-number
character of the investigated flow. The influence of the spires can only be seen by
the reduced strength of the wake component of the mean streamwise velocity profile.
Regarding the variance profile, again, no deformation that could be attributed to the
presence of spires upstream of the variance profile is visible. Close inspection of
the power spectral density of the streamwise velocity component across the entire
boundary layer (not shown here) confirmed the absence of any visible mark of the
spires on the flow (Perret et al. 2018). Furthermore, it is remarkable that despite
the completely different wall configuration in the present study, compared to the
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FIGURE 2. (Colour online) (a) Wall-normal profiles of mean streamwise velocity (black
open squares) and standard deviation (purple filled squares), from hot-wire measurements
presented in Perret et al. (2017, 2018), plain lines depict logarithmic laws (2.1) and (2.2)
and vertical dotted lines mark the wall-normal positions zr = 1.5h and zo = 5.0h
(investigated in the following, as seen in figure 3). (b) Diagnostic plot as introduced
in Castro, Segalini & Alfredsson (2013), the plain and dashed lines represent smooth
(asmooth= 0.286 and bsmooth=−0.255) and rough (arough= 0.436 and brough=−0.389) cases
(2.3), respectively.

smooth-wall boundary layers examined by Marusic et al. (2013), the value of the
slope A1 = 1.26 found in their study enables here a very good collapse of the data
with the theoretical logarithmic profile originally proposed by Townsend for the
streamwise variance (the value of the intercept B1 has been adjusted as its value
is expected to depend on the flow configuration). This confirms that in the region
corresponding to the logarithmic portion of the variance profile, the structure of the
flow is expected to match that of conventionally developing flows.

Figure 2(b) depicts the diagnostic plot introduced by Castro et al. (2013) to assess
the self-similarity of rough-wall boundary layers and the fact that the flow is in fully
rough regime and free of any potential spurious effects caused by the experimental
set-up or the measurement method. This method consists in plotting the ratio of the
standard deviation and the mean of the streamwise velocity component as a function
of the mean streamwise velocity component normalised by the free-stream velocity

σu

〈U〉 = a+ b
〈U〉
Ue
. (2.3)

Based on an extensive survey of the literature, Castro et al. (2013) have shown that
all the rough flow configurations collapse onto a single line in the outer region of the
flow, resulting in a linear relationship between σu/〈U〉 and 〈U〉/Ue. The same was
found for smooth-wall configurations but with a different slope. More recently, Placidi
& Ganapathisubramani (2017) have attributed the departure from the rough-wall
asymptote to a possible lack of outer-layer similarity, which they tied to a too low
ratio δ/h. Figure 2 right shows the present data in the form of the diagnostic plot
along with the linear asymptote proposed by Castro et al. (2013) for the rough-wall
(dashed line) and the smooth-wall (solid line) configurations. In the outer region,
the collapse of the present data and the asymptote is excellent confirming that the
flow is in fully rough regime and fully developed. Table 1 compiles the aerodynamic
parameters of the canopy where, δ+ = Uτδ/ν, h+ = Uτh/ν and δ the boundary layer
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FIGURE 3. (Colour online) Sketch of the experimental set-up for stereoscopic PIV and
hot-wire-synchronised measurements, side view (a) and top view (b). The shaded green
area marks the region of interest of the stereoscopic PIV acquisitions.

λp (%) d/h k0/h Ue (m s−1) Uτ (m s−1) δ/h δ+ h+

25 0.59 0.113± 5 % 5.73± 1 % 0.42± 3 % 22.7± 5 % 32 200± 9 % 1420± 4 %

TABLE 1. Characteristics of the high-roughness canopy and the boundary layer.

thickness measured where mean velocity reaches 99 % of the free-stream velocity
Ue. The aerodynamic parameters k0, d and Uτ are consistent with previous studies
carried out over cubical canopies, both based on experiments (Cheng et al. 2007;
Kanda et al. 2007; Hagishima et al. 2009) and on numerical simulations (Kanda,
Moriwaki & Kasamatsu 2004; Leonardi & Castro 2010; Ahn, Lee & Sung 2013).
Note that in channel flows or some low-Reynolds-number simulations, the inertial
region is drastically reduced, not unlike a developing boundary layer. This may lead
to overestimated friction velocity Uτ and thus underestimated roughness length k0 (see
for instance the dependency on δ/h reported in Cheng & Castro (2002)). The present
study considers a high-Reynolds-number boundary layer, δ/h > 20, and therefore
comparison with lower δ/h configurations must be treated with caution. Discussing
further the boundary layer profiles and aerodynamic parameters would be out of the
scope of this study. This is done in more detail for different canopy configurations
in other works by the authors (Blackman et al. 2017; Perret et al. 2017, 2018).

2.2. Stereoscopic particle image velocimetry
Three-component two-dimensional stereoscopic particle image velocimetry (SPIV)
measurements were conducted in a streamwise–spanwise plane at wall distance
zr = 1.5h in the roughness sublayer. Two 2048 pixel× 2048 pixel cameras FlowSense
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were positioned at forward scattering angles α={20◦, 53◦} and associated with 60 mm
and 105 mm Nikkor lenses at aperture f# = 2.8. The laser sheet was produced by a
Nd–Yag laser (532 nm, 200 mJ/cavity); its thickness estimated between 3 and 5 mm.

It is worthwhile noting that such a high-Reynolds-number yet low-speed experiment
(δ+' 3.2× 104, Ue' 5.7 m s−1) imposes a region of interest (RoI) of large dimension
to encompass the large-scale motions of the boundary layer as well as the obstacle-
induced dynamics. The RoI extends over 11h × 9h – that is, 0.5 m × 0.45 m or
0.5δ× 0.4δ – entailing a resolution of the velocity fields of about 20× 12 vectors/h2.
The trade-off on the resolution of particle images impacts the attainable quality of
SPIV fields, though only the smallest scales of the spectrum are significantly impacted.
Image pre-processing was required (background cleaning, contrast enhancement and
Gaussian filtering). Then cross-correlation and stereo reconstruction (polynomial) were
performed using DANTEC Dynamic Studio software, which provides a 1/32th pixel
resolution on the cross-correlation peak. Multi-pass computation was used from 64×
64 to 32× 32 pixel windows but no window deformation was required since no strong
gradient occurs in such a wall-parallel plane. Up to 5 % outliers were detected in
raw velocity fields prior to stereoscopic projection. Mainly located along the edges
of the RoI, these outliers were replaced using a 3× 3-window median filter. The rest
of the random noise polluting the smallest scales of the flow was reduced using a
low-pass 3× 3-window Gaussian filter after stereoscopic reconstruction. The low-pass
filtering effect is visible in power spectral densities presented in § 3.2 compared to
hot-wire measurements. As for biased errors, mean velocity fields (U, V, W) show
a spatial heterogeneity up to (0.022, 0.022, 0.0143)U across the field – with U the
averaged velocity. Standard deviations vary across the field by (4 %, 1 %, 8 %) at most.
These biases cumulate all sources of errors from SPIV projection bias and varying
wall-normal distance of the laser sheet to background artefacts in particle images, such
as reflections and laser sheet heterogeneities.

Five SPIV recordings were acquired at fspiv = 7 Hz to form a dataset of Ns= 10 500
velocity fields designed to resolve both statistically and spatially the LSMs of the
flow. Statistical convergence is assured with a total acquisition span comprising 8000
turnover time scales. At the same time, the streamwise extent of the vector fields is
such that the corresponding convective time of the large-scale events (using Taylor’s
hypothesis) is lower than the interval time step between two consecutive snapshots, i.e.
1/fspiv . δ/Ue. This allows us to stitch together successive snapshots, whose content
captures all the dynamics of the large-scale motions, as detailed in § 3.

2.3. Hot-wire anemometry
Streamwise velocity measurements were obtained by constant-temperature hot-wire
anemometry (HWA) using 5 µm-diameter 1.25 mm-long probes DANTEC-55P11
and DISA anemometers associated with anti-aliasing linear-phase elliptic filters. HWA
time series were synchronised with SPIV acquisitions and span over a total duration
of THWA = 5 × 20 min (THWAUe/δ > 3 × 104). Two probes were used downstream of
the SPIV region of interest (see figure 3), located at a distance h downstream of
a cube. The first probe was aligned with the SPIV plane at zr = 1.5h to support
SPIV data through Taylor’s hypothesis while the second one was set at zo = 5.0h to
give access to cross-correlation with outer-layer dynamics. It should be noted that
this experimental set-up allows capture of the spatial heterogeneity of the flow close
to the canopy (PIV), and gives access to one-point time-series information (HWA)
from outside the roughness sublayer, where the flow is spatially homogeneous on
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average and insensitive to the heterogeneity caused by the high-roughness elements
(see Appendix for details).

The choice of these wall-normal distances has been driven by several considerations.
On one hand, zr = 1.5h is a location close to the top of the canopy, where the
exchanges between the boundary layer and the canopy take place. Blackman &
Perret (2016) have shown that zr = 1.5h corresponds approximately to the maximum
of the term ũu′2, where ũ and u′ are the large-scale and small-scale contributions
to fluctuations of streamwise velocity, respectively. It is also worth noting that
the three-dimensional effects caused by the cubes alter the reliability of HWA
measurements when getting closer to the canopy. On the other hand, zo = 5.0h
has been chosen so as to have a reference point within the outer layer, hypothesised
to be out of the influence of the cubes. Several studies have been performed in a
similar cube array configuration (Cheng & Castro 2002; Rivet 2014), who found that
for a packing density of 25 % the upper limit of the roughness sublayer, defined as
the height at which the spatial variation of the Reynolds shear stress falls below 5 %,
is approximately 1.8 to 1.85h. In the present study, zo= 5.0h is well above this limit
and the spatial variation of the shear stress remains below 2 % (while it reaches 9 %
at zr = 1.5h).

3. Datasets and spectral content
This section presents the combined results of SPIV and synchronised HWA data at

both zr = 1.5h and zo= 5.0h, focusing on the spectral signature of the flow dynamics
depending on the wall-normal location and the velocity component under study.

3.1. Taylor’s hypothesis to reconstruct large-scale motions
Each velocity field {U(x, y, zr)} out of the SPIV wall-parallel plane at zr = 1.5h is
decomposed as

U(x, y, zr)= 〈U〉 + u= (〈U〉, 〈V〉, 〈W〉)+ (u, v,w), (3.1)

where 〈·〉 denotes the time average and u(x, y, zr, t) is the fluctuating field at instant
t. The fluctuating time series ur(t) is decomposed the same way from HWA data
recorded at the same wall-normal location zr = 1.5h. The flow is in a steady regime
and the spatial heterogeneity induced by the canopy is already low at zr: it has
been assessed through statistical moments and found to be generally less than 2 %.
Keeping that in mind, the approximation of frozen turbulence (Taylor 1938) is applied
to reconstruct streamwise information with successive SPIV fields and compare the
resulting signal to HWA time series. In practice this entails assuming the existence
of a scale-independent advection velocity Ua such that

η(x, z, t)≡ x− x0 − tUa(z), tη(x, z, t)≡ t− (x− x0)/Ua(z) (3.2a,b)

are defined as the new abscissa and time coordinate, respectively, with x0 the origin
in the SPIV field. Space–time correlation between SPIV streamwise series ur(x, yhw, t)
and HWA time series ur(xhw, yhw, t) gives the estimation Ua(zr) = 6.7Uτ , which
matches the profile reported in Castro, Cheng & Reynolds (2006). A two-dimensional
fluctuating field ur(η, y) can then be built by concatenation of SPIV snapshots, whose
large extension Lx = 0.55δ > Ua/fspiv provides a conservative overlap. A sample of
stitched velocity field is given in figure 4, showing a qualitatively good recombination

https://doi.org/10.1017/jfm.2018.458
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


0

0.1
0

-0.1

1 2 3 4 5 6
x/∂

y/
∂

7 8 9 10 11

-6 -4 -2 0 2 4
u/U†

FIGURE 4. (Colour online) Excerpt of stitched velocity field in plane zr = 1.5h, with
contours of fluctuations of streamwise velocity u, normalised by friction velocity Uτ .
Vertical lines mark the junctions between SPIV fields.

and continuity between the stitched snapshots. Particularly, large-scale motions of
elongated regions in the streamwise direction with a slightly spanwise meandering
effect are clearly observed as in the smooth turbulent boundary layer (Hutchins &
Marusic 2007a).

The streamwise auto-spectrum Sx{ur, ur} of the resulting field is compared with
that of HWA data ur(η(xhw, zr, t)) in figure 5(a). The two match fairly well in the
large-scale range that is hence properly reconstructed using Taylor’s approximation.
On the other hand, there exist discrepancies around λx' 0.2δ∼ 4h, which derive from
spatial heterogeneity caused by the roughness elements. This infringement to Taylor’s
hypothesis remains limited to scales associated with the canopy pattern. This is visible
in SPIV pre-multiplied spectra plotted in figure 5(b), where a secondary peak can be
observed at λx' 0.2δ ('4h). This does not impede the reconstruction, which involves
much larger scales such that Lx >Ua/fspiv ∼ 0.4δ.

3.2. Energy streamwise spectrum

The different contributions of fluctuating kinetic energy ξ 2
r to the streamwise energy

spectrum Ξr in plane zr = 1.5h

ξ 2
r = 1

2(u
2
r + v2

r +w2
r ), Ξr(λx)= 1

2(Sx{ur, ur} + Sx{vr, vr} + Sx{wr,wr}), (3.3a,b)

are presented in figure 5(b) where they are compared to that of uo(η(xhw, zo, t)),
which assumes Ua(zo) ' 〈U〉(zo) = 9.5Uτ (Castro et al. 2006). Streamwise velocity
fluctuations exhibit a peak at large scales, centred on λx ∼ δ in the roughness
sublayer and attaining λx ' 3δ to 4δ in the outer layer. These δ-scaled LSMs are
typical of wall-bounded flows (Blackwelder & Kovasznay 1972; Kim & Adrian 1999;
Ganapathisubramani et al. 2005; McKeon 2017), identified as elongated meandering
regions of alternative low and high momentum encompassing the whole boundary
layer thickness. As already shown by Squire et al. (2016b) for weakly roughened
wall, we find again here that the large-scale log-region events remain independent
of the rough characteristic of the wall even in the case of high-roughness elements.
On the other hand, it should then be emphasised that the inner layer, as encountered
in smooth or weakly roughened wall boundary layers, is largely altered here by
the high-roughness elements and replaced by the canopy and roughness sublayers.
Therefore the wall-normal position zr is in the near-canopy region and remains far
from the outer region. Contrarily to smooth or weakly roughened walls (Hutchins &
Marusic 2007b; Monty et al. 2009), the high roughness of the canopy removes the
inner peak and sheds wake-type dynamics at intermediate scales, as seen in figure 5(b)
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FIGURE 5. (Colour online) Streamwise spectra from HWA and SPIV data are compared
using Taylor’s hypothesis: (a) auto-spectra of streamwise velocity at both zr = 1.5h and
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r )/2. Power spectral densities (PSDs) are estimated over 1500, 50 %-overlapped 2s-long

windows. The grey dotted line indicates the streamwise extent of the SPIV field of view
and the black slope the 5/3 power law.

by the secondary peak appearing at λx ' 0.2δ ('4h). This peak, characterising the
signature of canopy-induced dynamics, appears more strikingly in wall-normal and
spanwise velocity spectra and is confined to the roughness sublayer (Basley & Perret
2017). It should be noted that the gap between this new small-scale range and outer
scaling motions is now constrained by the ratio δ/h rather than δ+, even for high
Reynolds numbers.

3.3. Time–frequency analysis using wavelet transforms
Spectral analysis can be extended to joint time–frequency description of the flow
dynamics to help track the occurrence of inter-scale modulations. To give access to
the time evolution of the spectral signature of the flow, continuous wavelet transforms
(Burrus, Gopinath & Guo 1998) are performed on the combined fluctuating fields
{ur, vr,wr}. Wavelet analysis relies on projecting the dynamics onto a base of similar
functions generated from a single characteristic shape, often referred to as mother
wavelet. This wavelet is defined as a function of (dimensionless) time t/s, where
s is the characteristic scale. Frequency decomposition is then achieved by applying
the mother wavelet onto a selected set of scales. Contrary to harmonic functions
used in Fourier transform, wavelet functions have a finite extension that produces a
time-dependent coefficient of projection. As a result, one obtains an instantaneous
spectral information of the dynamics. It must be noted that using non-periodic
functions also implies a non-unique frequency signature: wavelet functions are
typically defined as a wave packet, associated with a broad peak about a central
frequency. Similarly, time resolution depends directly on the scale over which the
wavelet spans.

The forthcoming analysis uses the (analytic) Morlet wavelet, which consists in a
complex harmonic wave localised with a Gaussian-shaped envelope (figure 6a). It
writes

ψ(t/s)= eiωt/se−(|t/s|
2)/2, (3.4)

where s denotes the scale under consideration and ω is the non-dimensional angular
frequency. The equivalent frequency to scale s is the central frequency f0 = 0.8125/s
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(a). Corresponding one-sided spectrum is shown in (b), with associated central frequency
f0 = 0.8125/s.

of the peak in the spectral space (figure 6b). In their study of amplitude and frequency
modulations of small-scale dynamics Baars et al. (2015) compared the use of Morlet
(3.4) and Mexican hat wavelets. The harmonic nature of Morlet wavelet offers a
better frequency resolution while Mexican hat presents a shorter support time and is
therefore more precise time wise. Ultimately, both functions produced similar results
in Baars et al. (2015), except for discrepancies in the estimation of modulation time
shifts. The present analysis aims for a trade-off by using Morlet wavelet with a
reduced angular frequency ω = 5 compared to that chosen by Baars et al. (2015)
(ω= 6 therein).

For a given scale s, the wavelet coefficient X̆(t, s) of a signal X(t) is obtained by
convoluting the target signal with the wavelet function ψ(t/s)

X̆(t, s)=
∫

X(t′)ψ∗
(

t− t′

s

)
dt′, (3.5)

where (·)∗ is the complex conjugate. Note that in practice convolution is performed
in spectral space through Fourier transforms. Target signals are here extracted from
SPIV data at zr = 1.5h, namely X(t)= {ur(tη, yhw), vr(tη, yhw),wr(tη, yhw)}, and wavelet
transforms are computed over a set of logarithmically distributed scales corresponding
to central frequencies ranging from 0.0336 f0δ/Ue 6 89. The wavelet power spectrum
is computed from the squared modulus of wavelet coefficients normalised by the
scale s

$X(tη, f0)= |X̆(tη, s)|2
s

. (3.6)

Similarly to (3.3), the wavelet spectrum corresponding to total kinetic energy is
defined as

$ξ (tη, f )= 1
2($u +$v +$w). (3.7)

Excerpts of pre-multiplied wavelet spectra are plotted for all terms of kinetic energy
in figure 7. With wavelet transforms, the spectral contents of the flow unfold to reveal
the differences between velocity components even more strikingly than in Fourier
spectra. Large-scale motions are seen exclusively in the spectrum of streamwise
component, $u, while spectra $v and $w are contained in the small-scale range. A
cutoff frequency could indeed be chosen to separate the dynamics of both v and w
components from the large-scale fluctuations of streamwise velocity. That aspect is
discussed in depth in § 4.2.
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ξ (tη, f ), (b) $w(tη, f ), (c) $v(tη, f ) and (d) $u(tη, f ). In each graph the
horizontal dashed grey line marks cutoff frequency f co = 0.3 Ue/δ (discussed in § 4.2 and
used thereafter). Outer-layer large-scale fluctuations ũo (see § 4.2) are reported in (e) for
reference, taking into account the time shift τ o

r = −0.80δ/Ue between uo and ur signals
(see § 4.1).

Furthermore, time–frequency plots displayed in figure 7 clearly illustrate the
amplitude modulation of small-scale dynamics by large-scale streamwise velocity
in the outer layer. Note that ũo is low-pass filtered from hot-wire measurements at
zo=5.0h, as detailed later in § 4.2. To negative fluctuations of ũo correspond a reduced
energy of the small-scale content in all components, while positive fluctuations of ũo

correspond to bursts of higher energy levels. This is consistent with results shown in
Baars et al. (2015, 2017).
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4. Global modulation by outer-layer dynamics
This section connects the large-scale fluctuations of the flow reported in the outer

layer to global modulations of small-scale dynamics in the roughness sublayer.

4.1. Identifying coherent large-scale dynamics
It is well known that the large-scale motions range deep within the roughness sublayer
(Inagaki et al. 2012; Mejia-Alvarez & Christensen 2013). This is shown here by the
coherence and the phase between uo(tη, yhw, zo) and SPIV abstract ur(tη, yhw, zr)

γ 2 = |ûoûr
∗|2

|ûo|2|ûr|2 , φ = angle{ûoûr
∗} =−i ln

(
ûoûr

∗

|ûoûr
∗|
)
, −π6 φ 6π, (4.1a,b)

where û denotes the Fourier transform of u, |û| its modulus and ln(·) the complex
logarithm. Featured in figure 8(a), both show highly coherent dynamics for frequencies
up to f δ/Ue 6 0.4, demonstrating that only large scales correlate both the roughness
sublayer and the outer layer. In the roughness sublayer, it is therefore relevant to
separate large scales – dominated by outer-layer-related structures – from primarily
roughness-driven small-scale dynamics. Nonetheless, it should be noted that the
highest level of coherence found here, approximately 0.35, is approximately half of
the one reported by Baars, Hutchins & Marusic (2016) for smooth-wall cases. Note
that the coherence shown in figure 8(a) is computed between hot-wire time series
at zo and SPIV streamwise series at zr, hence uses Taylor’s hypothesis of frozen
turbulence. For information coherence using exclusively HWA time series reaches
0.55 for the largest scales. The lower coherence likely comes from the presence of
the large-roughness wake dynamics shed above the canopy, which not only disrupts
the near-wall turbulence and the smallest scales but shed motions at scales closer to
the outer-layer large scales.

The phase φ{uo, ur} can be written as a time shift τ o
r = φ/2πf between the

two signals uo and ur. Since φ{uo, ur} increases fairly linearly with the frequency
throughout the range of coherent dynamics, it yields a constant time shift τ o

r '−0.80δ/Ue. This provides an estimation for the average inclination of the large-scale
motions between 15◦ 6 θ 6 21◦ depending on the advection velocity (between Ua(zr)

and Ua(zo)). This angle is larger than for smooth walls, as expected for highly
roughened flows (Wu & Christensen 2010; Lee et al. 2011).

4.2. Scale interactions and choice of cutoff frequency
In order to investigate the nonlinear influence of the large-scale motions on small-scale
turbulence, the flow is split into coherent dynamics on one hand and so-called
stochastic fluctuations on the other hand. Following that approach Blackman & Perret
(2016) recently used linear stochastic estimation to identify the large-scale dynamics
measured by PIV in the vicinity of the canopy that was coherent with fluctuations
measured much higher in the log region. The results showed the occurrence of
amplitude modulation for all three velocity components in the roughness sublayer,
less so within the canopy flow. A spectral counterpart to this approach was introduced
by Baars et al. (2016) in the case of a smooth-wall boundary layer. These methods
are attractive because they provide a decomposition based on physics only, the
sole arbitrary choice being the threshold above which fluctuations are considered as
coherent (a coherence of 0.05 in Baars et al. (2016)). On the other hand, results
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s ) against dimensionless
frequency f δ/Ue. PSDs are computed over 600, 50 %-overlapped 10s-long windows; on
the right, cross-correlation coefficients R{ũo, X′2r } (4.3) between large-scale signal ũo and
roughness-sublayer small-scale kinetic energy terms as functions of the cutoff frequency
f coδ/Ue, (b) maps depending on time delay and (c) profiles of maximal correlation
R{ũo, X′2r }max|τ .

can therefore be particularly sensitive to the distance between the two sources in the
outer region and closer to the wall since coherence levels depend significantly on
that distance. The authors discuss that aspect in Perret et al. (2018) in which they
apply spectral stochastic estimation to the same flow as that of the present work,
using a wall-normal distribution of hot-wire measurements. Another limitation of
the coherence-based scale-separation methods comes from the symmetry properties
of the flow, which cause a drop of coherence between spanwise velocity and any
other quantity when spanwise shift approaches zero. As the present study aims to
expand scale separation consistently to all terms of kinetic energy, the decomposition
must occur invariably regardless of the velocity component under study. Low-pass
filtering is more reliable in that respect and is, incidentally, most often employed in
the literature to reveal the large-scale modulation of small scales (Mathis et al. 2009;
Harun et al. 2013; Squire et al. 2016a; Yao et al. 2018, for instance). The fluctuating
flow is hence split into large-scale dynamics ũ and small-scale fluctuations u′ using
a low-pass gate function g(t) of cutoff frequency f co,

u= ũ+ u′, ũ= g ∗ u, u′ = u− ũ. (4.2)

In smooth-wall-bounded flows, the cutoff frequency/wavelength is generally chosen
arbitrarily within the relatively low energy plateau separating the inner and outer peaks
in wall-normal profiles of spectra of streamwise velocity (Bandyopadhyay & Hussain
1984; Hutchins & Marusic 2007b; Mathis et al. 2009, 2011b; Ganapathisubramani
et al. 2012; Harun et al. 2013; Talluru et al. 2014). The cutoff wavelength – Taylor’s
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hypothesis is considered in all cases – is typically chosen equal to λco∼ δ. With high
Reynolds numbers, the interval between the near-wall and outer regions broadens
significantly so that changing the cutoff was shown by Mathis et al. (2009) and
Ganapathisubramani et al. (2012) to have little influence on the occurrence of
modulation. On the other hand, high-roughness interference entails much larger
scales in the roughness sublayer relatively to those of the near-wall inner layer,
hereby drastically reducing the difference with outer-layer scales. The analysis of
the modulation of small-scale turbulence hence becomes more sensitive to cutoff
frequency than over a smooth wall.

We propose to search for the most relevant cutoff frequency f co that separates
modulated from modulating dynamics using a parametric study on third-order
moments. Mathis et al. (2011b) demonstrated that the cross-term 3〈ũu′2〉 in the
decomposed skewness 〈u3〉 = 〈ũ3〉 + 3〈ũ2u′〉 + 3〈ũu′2〉 + 〈u′3〉 is directly related to the
degree of AM. The connection between skewness and amplitude modulation has been
investigated in many studies since, for instance in Agostini, Leschziner & Gaitonde
(2016). The quantity 〈ũu′2〉 represents the single-point non-delayed correlation between
large-scale fluctuations ũ and small-scale Reynolds stress u′2. Here we expand this
approach to include third-order moments involving large-scale fluctuations in the outer
layer and small-scale kinetic energy in the roughness sublayer, namely ũoξ

′2
r , ũou′2r ,

ũov
′2
r and ũow′2r . To take into account the time shift τ between signals, time averages

are replaced by correlation coefficients

R{ũo, X′2r }(τ , f co)= 〈ũo(tη, f co)X′2r (tη + τ , f co)〉
σũoσX′2r

, X′2r = {ξ ′2r , u′2r , v
′2
r ,w′2r }, (4.3)

where σ denotes a standard deviation (figure 8b). It is important to point out the
significance of these correlation coefficients R{ũo, X′2r }: (i) they relate dynamics at
distant wall-normal locations (zo − zr > 0.15δ); (ii) the two unfiltered signals contain
entirely different ranges of scales: by definition, only the large-scale part of the
roughness-sublayer kinetic energy terms can potentially participate to the correlation
with the outer-layer dynamics, resulting in relatively low coefficient; (iii) HWA
time series at zo and reconstructed streamwise strips at zr can only be correlated
by considering Taylor’s hypothesis. The correlation levels are well above noise
level and of the same order as in Blackman & Perret (2016) (between 0.15 and
0.2) or Anderson (2016), who investigated the amplitude modulation of streamwise
velocity fluctuations in the roughness sublayer via LES performed in a similar wall
configuration as in the present study. The level of these correlation coefficients is
also in agreement with those reported in turbulent boundary layers over smooth walls
(above z+ = 20) by Mathis et al. (2011b).

Outer-layer large-scale motions (ũo) statistically precede roughness-sublayer kinetic
energy fluctuations (ξ ′2r ) by τ {ũo, X′2r } ' 0.6δ/Ue. Bandyopadhyay & Hussain (1984)
pointed out the significant change of the time shift across the boundary layer.
This is due to the inclination of the streaky large-scale motions. Numerous works
investigated the evolution of correlation between near-wall small-scale dynamics and
large-scale motions at decreasing wall-distance (Guala, Metzger & McKeon 2011;
Ganapathisubramani et al. 2012; Talluru et al. 2014; Baars et al. 2017, for instance).
They have shown that small-scale dynamics modulation is actually shifted forward
when considering its local large-scale counterpart (Mathis et al. 2011a). This will be
discussed in detail in § 5.

The maximum of correlation coefficients R{ũo,X′2r } is reached for cutoff frequencies
around 0.26 f coδ/Ue 6 0.4. The spectral content of each component being different, it

https://doi.org/10.1017/jfm.2018.458
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


is then natural that each Reynolds stress does not produce strictly the same correlation
with the large-scale streamwise velocity. It is worthwhile noting that these frequencies
correspond to those below which outer layer and roughness sublayer lose their
coherence (figure 8a). This confirms the correlation between outer-layer fluctuations
and roughness small-scale energy is a good criterion to separate outer-layer-related
dynamics from that intrinsic to the roughness sublayer.

In order to avoid the use of multiple cutoff frequencies depending on the velocity
component, which could have made the analysis unnecessarily complex, we choose to
perform the scale decomposition using f co ' 0.3Ue/δ, the cutoff frequency for which
the third-order correlation coefficient R{ũo, ξ

′2
r } is maximal. Note however that any

cutoff frequency chosen in the range 0.2 6 f coδ/Ue 6 0.5 would produce qualitatively
the same outcome. The frequency f co corresponds to streamwise wavelengths λco

x (zr)=
Ua(zr)/f co = 1.66δ and λco

x (zo) = Ua(zo)/f co = 2.36δ. It is important to observe that
spanwise and wall-normal components are almost entirely cut off by the low-pass
decomposition. In other words, all dynamics carried by v and w are recovered in the
small-scale part of the decomposition and are modulated by the large-scale motions.
One may refer to the wavelet spectra plotted in figure 7 for an illustration of that
result.

4.3. Large-scale evolution of kinetic energy: amplitude modulation coefficients
The amplitude modulation of the small-scale turbulence embodies the large-scale
evolution of the intensity of small-scale dynamics, in phase with fluctuations
associated with the large-scale motions of the flow. Various methods have been
employed to extract the envelope (or instantaneous amplitude) of the small-scale
turbulence in wall-bounded flows. After fluctuating velocity signals are split into
small-scale and large-scale components (4.2), the Hilbert transform of the small-scale
velocity is commonly employed since Mathis et al. (2009) to build an analytic signal
whose envelope is extracted. Note that Hilbert transform is also at the core of the
empirical mode decomposition used in Agostini & Leschziner (2014) and Agostini
et al. (2016). Recently Baars et al. (2015, 2017) introduced a procedure in which
the instantaneous amplitude is obtained via wavelet spectra. Alternatively, amplitude
modulation can be observed through Reynolds stresses, like Ganapathisubramani et al.
(2012) and Talluru et al. (2014). The authors have applied these methods on the data
presented here and all produce strikingly similar results. The forthcoming analysis
uses Reynolds stresses since access to all three velocity components allows us to
investigate small-scale energy, namely ξ ′2r = (u′2r + v′2r +w′2r )/2, a Galilean invariant.

The large-scale evolution of the small-scale kinetic energy is extracted in order to
be compared to large-scale motions and to quantify its level of amplitude modulation.
This is achieved using the same low-pass filtering as previously

X̃′2r = g ∗ X′2r , X′2r = {ξ ′2r , u′2r , v
′2
r ,w′2r }. (4.4)

Illustration of the scale decomposition is featured in figure 9. It shows that large-scale
motions are organised in high and low momentum regions (HMRs and LMRs) leading
to, respectively, high and low fluctuations of the streamwise velocity component. They
are identified both in the outer layer and in the roughness sublayer by the large-scale
signals ũo and ũr, respectively. Figure 9 also shows how ũo and ũr are strongly
correlated with the evolution of the small-scale kinetic energy in the roughness
sublayer. These findings confirm LES results by Anderson (2016) and are strikingly
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τ . Vertical lines mark the junctions between SPIV

fields.

similar to those of smooth-wall cases (Marusic et al. 2010; Baars et al. 2017).
To quantify the degree of amplitude modulation, Mathis et al. (2009) defined the
amplitude modulation coefficient as the correlation coefficient between the large-scale
fluctuations of streamwise velocity and the large-scale envelope of the small scales in
the near-wall region. This definition can be generalised to time-delayed correlations:

AMo
X(τ )=

〈ũo(tη) X̃′2r (tη + τ)〉
σũoσX̃′2r

, AMr
X(τ )=

〈ũr(tη) X̃′2r (tη + τ)〉
σũrσX̃′2r

, (4.5a,b)

that are plotted against time shift τ in figure 10. Coefficients AMo quantify the (global)
amplitude modulation by large-scale motions taken in the outer layer (ũo) whereas
coefficients AMr are single-point correlation coefficients, which convey the modulation
by the local imprint of the large-scale motions in the roughness sublayer (ũr). The
time shift defined by the salient peak of correlation is different depending on whether
one considers the modulation by the outer-layer dynamics or the local large-scale
signal, due to the inclination of the large-scale structures, mentioned earlier in § 4.1.

Before comparing these results to the smooth-wall case, one must remember that
Mathis et al. (2009) and Marusic et al. (2010) extracted the small-scale signal at
the inner peak location, typically around z+ = 15 in turbulent boundary layers over
smooth walls. High roughness invalidates this organisation and expands drastically
the inner region. As a result small-scale fluctuations are here measured at the core of
the roughness sublayer, that is much higher in wall units (z+r ' 2130). And yet, AM
coefficients unambiguously indicate a spike of amplitude modulation as strong as that
of the smooth-wall case, as predicted by the LES of Anderson (2016). One observes
high levels of amplitude modulation across all kinetic energy terms, as expected from
Talluru et al. (2014) and Blackman & Perret (2016), but with different levels of
modulation between components. While streamwise velocity is amplitude modulated
both locally and globally at similar levels (around 0.4), the other components present
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cutoff frequency f co = 0.3Ue/δ.

higher AMo coefficients than AMr. It is worth noting that the amplitude modulation on
the total kinetic energy is always more pronounced than any of its constitutive terms.
This integrated effect is explained by considering coherent structures, whose projection
on (x, y, z) axes obviously varies in time and space. While modulation might not be
observed in the fluctuations of a given velocity component, the inter-scale exchange
mechanism affects globally the coherent structures themselves.

The time shift of the main peak varies also significantly from one velocity
component to another. Figure 10(b) reveals that contrary to the streamwise velocity
that is locally forward in phase relatively to the large-scale motion, spanwise and
wall-normal Reynolds stresses are modulated with almost no time shift.

In the next section we demonstrate that the difference in phase is in fact due to the
bidimensional organisation in the wall-parallel plane of the AM mechanism for which
the maxima of modulation of the spanwise and wall-normal velocity components occur
preferentially on the flanks of the large-scale motions while the small scales of the
streamwise velocity component are modulated on the upstream front of the large-scale
motions. Finally, one may notice beside the main peak the presence of oscillations for
both AMo and AMr. These oscillations at a period of τUe/δ ' 3.3 are caused by the
low-pass filter cutting through the broadband signature of large-scale dynamics.

5. Spatial imprint of the large-scale modulations
The literature discussing modulation by LSMs has mainly focused on the

wall-normal distribution of the modulation coefficients (Mathis et al. 2011b; Baars
et al. 2015, 2017; Nadeem et al. 2015; Anderson 2016; Blackman & Perret 2016). It
is now well known that the modulation concentrates in the inner region and is locally
phase forward with respect to the large-scale fluctuations. In contrast, the wall-parallel
organisation of the modulation – spanwise in particular – has only been investigated
once, in the smooth-wall case, by Talluru et al. (2014). This section characterises the
local imprint of the phenomenon within the roughness sublayer, using bidimensional
maps of AM coefficients in the xy-plane at wall distance zr = 1.5h.

5.1. Scale decomposition in wall-parallel plane zr = 1.5h
The scale decomposition performed over time series in § 4 can be applied to
whole Taylor-combined SPIV fields, hereby identifying the large-scale motions, the
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FIGURE 11. (Colour online) Illustration of the scale decomposition in the roughness
sublayer with cutoff wavelength λco

x = 1.66δ: excerpt out of combined SPIV fields in plane
zr = 1.5h with, from top to bottom, the fluctuations of streamwise velocity component u,
the small-scale part u′ only, the large-scale part ũ (vectors depict the large-scale velocity
field ũex + ṽey), and the large-scale envelope of Reynolds stress ũ′2.

small-scale fluctuations and their large-scale envelope in a two-dimensional extension
(figure 11). It should be emphasised that low-pass filtering is only performed
streamwise, along η, using the cutoff wavelength λco

x (zr) = Ua(zr)/f co = 1.66δ.
The spatial coherence of large-scale motions ensures an intrinsic spanwise scale
decomposition. Note that from now on, the analysis is restricted to the plane zr= 1.5h
and notations are simplified (ur→ u, ξ 2

r → ξ 2, etc.).
Although one could expect a pronounced signature of the cubes at such wall-normal

location close to the canopy (zr = 1.5h), the convective nature of the flow and
the high turbulence intensity have already scattered most of the roughness-shed
fluctuations. This justifies the applicability of the modulation mechanism, in spite
of the heterogeneity induced by the high roughness. From a visual inspection of
figure 11, an undeniable correspondence between ũ and ũ′2 can indeed be observed.

5.2. Spatial modulation around large-scale motions
Amplitude modulation coefficients can be defined by both streamwise and spanwise
two-point correlations, i.e. in the wall-parallel plane at zr = 1.5h

AMX(∆x, ∆y)= R{ũ, X̃′2} = 〈ũ(η, y) X̃′2(η+∆x, y+∆y)〉η,y
σũσX̃′2

, (5.1)

as opposed to wall-normal correlations presented in § 4.3 and in Mathis et al. (2011b).
Note here that ũ(η, y) is the local large-scale imprint of the outer-layer large scales as
observed in the roughness sublayer at zr. This is equivalent to a one-point correlation
in the wall-normal direction as opposed to the two-point correlation used in (4.5).
The resulting AM maps are shown in figure 12(b–e). They represent the spatial
distribution of amplitude modulation of the small-scale dynamics with respect to the
LSMs associated with ũ fluctuations. Figure 12(b–e) indicates that the kinetic energy
modulations are statistically phase forward to LSMs – about ∆x ' 0.25δ upstream –
as previously observed (Talluru et al. 2014; Baars et al. 2015). Moreover, the AM is
more intense along the edges of the LSMs, with the presence of two lobes on both
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FIGURE 12. (Colour online) Two-point correlation maps in plane zr = 1.5h for (a)
auto-correlation R{ũ, ũ}, (b–e) amplitude modulation coefficients AMξ = R{ũ, ξ̃ ′2}, AMw =
R{ũ, w̃′2}, AMv = R{ũ, ṽ′2}, AMu = R{ũ, ũ′2}, respectively, shaded cyan areas delimit
R{ũ, ũ} > 0.2 in each case. Plain (dashed) contours depict positive (negative) iso-levels
for (a) ±[0.15, 0.9] by steps of 0.15, and for (b–e) ±[0.06, 0.34] by steps of 0.04.

sides (spanwise) of auto-correlation peak R{ũ, ũ}. This organisation combines the three
terms of kinetic energy, which exhibit very different modulation patterns. It is worth
noting that two-point correlation maps in figure 12 integrate all large-scale events
– both low and high momentum regions (LMRs and HMRs) – and the spanwise
symmetry of the flow. The meandering nature of LSMs and its local impact on the
distribution of AM coefficients cannot be identified this way.

A conditional analysis is carried out on the large-scale velocity field (ũ, ṽ) to
differentiate HMRs (ũ > 0) from LMRs (ũ < 0). Spanwise symmetry effects are
removed by a condition on the sign of the spanwise velocity component: only
the HMRs where (ṽ > 0) are considered, whereas only (ṽ < 0) is considered for
LMRs. The two-point correlation maps featured in figure 13 are hereby computed,
on the left-hand side, using (ũ|ũ > 0; ṽ > 0) and on the right-hand side, using
(ũ|ũ < 0; ṽ < 0). Auto-correlation R{ũ, ũ} contours depict slightly skewed patterns
which represent the meandering large-scale motions – HMRs and LMRs follow the
stream (ũ > 0, ṽ > 0) and (ũ < 0, ṽ < 0), respectively. But these structures induce
much stronger asymmetries in the modulation distributions, which concentrate towards
the side of the LSMs that faces upstream. This asymmetry is revealed even more
strikingly in the profiles extracted from figure 13 at ∆x = 0.1δ, plotted in figure 14.
Moreover, the modulation coefficients are organised differently depending on the
velocity components. Streamwise velocity fluctuations u′2 are primarily modulated
near the front of LSMs, consistent with the phase-forward time series reported
in the literature. This result completes the findings of Baars et al. (2017), who
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recently reported in the outer region a preferential arrangement of the modulated
small-scale activity in shear layers developing both downstream and upstream of the
large-scale motions. However, in the high-roughness case studied here, this preferential
arrangement begins to appear at a much lower wall-normal location, in the roughness
sublayer at zr. Note that the arrangement observed by Baars et al. (2017) in the inner
layer is absent since the latter has been utterly altered by the presence of roughness
elements.

The modulations of spanwise velocity fluctuations v′2 and wall-normal velocity
fluctuations w′2 shed light on the spanwise organisation of the modulation around the
high momentum and low momentum regions. Reynolds stress v′2 is modulated
in space as two lobes of equal importance attached to lateral parts of HMRs
and rather asymmetrically around the LMRs. Modulations of w′2 are significantly
shifted spanwise depending on the sign of ṽ. The amplitude modulation of the
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coherent structures inferred from the present AM analysis in (a) the spanwise wall-normal
plane and (b) the wall-parallel plane. Red and blue shaded areas correspond to high and
low momentum regions, respectively. Amplitude modulation patterns are represented by
red and blue hatched regions, where small-scale kinetic energy is enhanced and reduced,
respectively. The presence of large-scale streamwise vortices of positive and negative
streamwise vorticity is shown via dashed arrows in the wall-normal plane.

Galilean invariant ξ̃ ′2 integrates the contributions of all Reynolds stresses to form an
arrow-shaped region of enhanced small-scale turbulence at the front of HMRs. On
the other hand, the narrower LMRs are correlated with a single elongated region of
reduced small-scale turbulence along one of its flank, depending on its orientation.

The spatial arrangement of the amplitude modulation, evidenced here by the
bidimensional AM coefficients in the wall-parallel plane zr = 1.5h, sheds light on
the organisation of the dynamics in the roughness sublayer. The summary sketch
proposed in figure 15 is fully consistent with the literature that associated edges of
LMRs and HMRs with shear layers promoting smaller-scale turbulence. Previous
analyses of the spatio-temporal organisation of the coherent structures in turbulent
boundary layer flows (Kim & Adrian 1999; Adrian, Meinhart & Tomkins 2000b;
Tomkins & Adrian 2003) demonstrated that LMRs and HMRs, besides consisting
of elongated meandering structures, are flanked by regions of high shear (in the
horizontal plane) populated by vortical structures. These swirling motions were
identified as cross-sections of hairpin vortices straddling LMRs, consistently with
the model of hairpin vortex packet. These observations and interpretations were later
confirmed, notably by Dennis & Nickels (2011a,b) in the smooth-wall case, and by
Coceal et al. (2007) and Inagaki & Kanda (2010) in the case of flows developing
over high-roughness (urban-like) canopies. In particular, Dennis & Nickels (2011a,b)
showed that hairpin vortices are most of the time non-symmetric coherent structures
arranging preferentially around LMRs, and accompanied by ejection motions laterally
inclined (i.e. with a non-zero spanwise velocity fluctuation). The preferred spatial
organisation tying ejections to the flank of LMRs has been further confirmed by
Inagaki & Kanda (2010) in their experimental study of boundary layers over cube
arrays. Additionally, alternate LMRs and HMRs have been associated with up and
downward motions, respectively, generating large-scale streamwise-axis vortices. One
may refer to Zhong et al. (2015) or Barros & Christensen (2014) in the cases of
smooth open channel flows and boundary layers over irregular small roughness,
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respectively. This large-scale organisation – featured in figure 15(a) – highlights
further the role of large-scale structures in generating regions of shear at their
interfaces thereby influencing the small-scale turbulent activity.

6. Conclusions

An experimental study of an urban-type atmospheric surface layer was carried out
to uncover the spatial imprint of the amplitude modulation of small-scale turbulence
by large-scale motions. Large field SPIV data were obtained across a wall-parallel
plane inside the roughness sublayer and was synchronised with HWA measurements
to access the coherence with outer-layer large-scale dynamics. A novel method based
on correlations associated with (cubic) exchange terms was proposed to identify the
relevant cutoff frequency prior to performing the scale decomposition, and results are
consistent with existing literature dealing with both smooth and rough walls.

The three-component velocity fields were utilised to explore spatially the degree
of amplitude modulation for all terms of the fluctuating kinetic energy. The analysis
notably relied on conditionally averaged two-point correlations between large-scale
fluctuations of streamwise velocity and small-scale energy terms. While the literature
has been focusing on the streamwise–wall-normal plane, the present study used
a wall-parallel plane to extend the AM coefficients to spanwise correlations. The
patterns of AM coefficients revealed significant differences depending on the velocity
component considered. On one hand, amplitude modulation was confirmed to represent
the enhancement of small-scale turbulence at the front edges of the high momentum
regions and its damping at those of the low momentum regions when considering
the streamwise velocity component. On the other hand, the AM maps associated
with both spanwise and wall-normal velocity components demonstrated the key role
played by the regions of shear existing between HMRs and LMRs – especially on
the flanks of LMRs – in promoting or damping small-scale turbulence, respectively.
By cancelling the usual statistical homogeneity in the spanwise direction of boundary
layer flows, conditional AM maps based on the sign of the large-scale spanwise
velocity component showed that the location of amplitude modulation patterns is
tied to the meandering motion of the largest structures (figure 15). Incidentally,
the streamwise-elongated shape of the large-scale structures of the outer layer was
shown to leave its imprint onto the near-canopy turbulence. These findings unravel
the preferential spatial organisation of small-scale dynamics around low and high
momentum regions in the roughness sublayer. This establishes a direct connection
between the amplitude modulation mechanism and the distribution of coherent
structures into hairpin vortex packets straddling LMRs and HMRs, as proposed
in the literature.

More insights into the inter-scale interplay and exchanges could come from the
extension of this methodology to other Galilean invariants, such as swirling strength,
in order to track coherent structures and access directly to the dynamics without any
projection effects. Ultimately these findings open a path towards a space-extended
generalisation of the inner–outer interactions models in wall turbulence (Marusic
et al. 2010; Baars et al. 2016; Squire et al. 2016a) that can account for the complex
spatial organisation of the coherent structures in the near-wall region. In the frame
of large-eddy simulations such capability would allow for the derivation of more
accurate dynamic wall models driven by unsteady large-scale motions in the outer
layer.
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Appendix. Spatial variation of the statistics in and outside the roughness
sublayer

The SPIV campaign was carried out for two wall-parallel planes, at zr = 1.5h and
z= 4.0h. The latter location is not mentioned above but brings information regarding
the extent of the roughness sublayer. Figure 16 presents the spatial standard deviation
of statistical moments in order to quantify the heterogeneity of the flow properties
at both wall distances. Statistics exhibit a limited yet unambiguous heterogeneity at
zr (for wall-normal shear stress in particular). On the contrary all statistics are fairly
uniform at z = 4h. This demonstrates that the roughness sublayer ends between z =
1.5h and z= 4h. The reference time-series acquired at zo = 5.0h therefore capture the
dynamics outside the roughness layer.
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