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DRIFT ESTIMATION ON NON COMPACT SUPPORT FOR

DIFFUSION MODELS

F. COMTE AND V. GENON-CATALOT

Abstract. In this paper, we study non parametric drift estimation for an ergodic and
β-mixing diffusion process from discrete observation of the sample path. The drift is
estimated on a set A using an approximate regression equation by a least squares contrast
which is minimized over a finite dimensional subspace Sm of L2(A, dx). This yields a
collection of estimators indexed by the dimension of the projection space. The novelty
here is that, contrary to previous works, the set A is general and may be non compact and
the diffusion coefficient may be unbounded. This induces a restricted set for the possible
dimensions of the projection spaces. Under mild assumptions, risk bounds of a L2-risk
are provided where new variance terms are exhibited. A data-driven selection procedure
by penalization is proposed where the dimension of the projection space is chosen within
a random set contrary to usual selection procedures. Risk bounds are obtained showing
that the resulting estimator is adaptive in the sense that its risk achieves automatically
the bias variance compromise. The estimation method is illustrated on simulated data
for several diffusion models. November 8, 2018

1. Introduction

Non parametric drift estimation for diffusion processes from discrete observations is a
widely investigated subject and to some extent thoroughly known (see e.g. Hoffmann,
1999, Spokoiny, 2000, Gobet et al., 2004, Kutoyants, 2004, Dalalyan, 2005, Kessler et al.,
2012 among many authors). Nevertheless, gaps in this field remain and the aim of this
paper is to fill some of these.
Consider discrete observations with sampling interval ∆, (Xi∆)1≤i≤n+1, of the one-dimensional
diffusion process (Xt)t≥0, solution of

(1) dXt = b(Xt)dt+ σ(Xt)dWt, X0=η,

where (Wt) is a Wiener process and η is a random variable independent of (Wt). Assume
that model (1) is in stationary regime with marginal distribution π(x)dx and exponentially
β-mixing. The asymptotic framework is that, as n tends to infinity, the sampling interval
∆ = ∆n tends to 0 while the total length time of observations n∆n tends to infinity
(high frequency data). The functions b, σ are unknown and we are concerned here with
nonparametric estimation of b.
Drift estimation for diffusion models especially in high frequency framework is closely
related to heteroscedastic regression function estimation. Indeed, using equation (1), one

Key words and phrases. Discrete time observation. Mean square estimator. Model selection. Nonpara-
metric drift estimation. Stochastic differential equations.
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2 F. COMTE AND V. GENON-CATALOT

can build an approximate regression equation. Setting

(2) Yi∆ =
X(i+1)∆ −Xi∆

∆
, Zi∆ =

1

∆
σ(Xi∆)

(
W(i+1)∆ −Wi∆

)
yields Yi∆ = b(Xi∆) + Zi∆ + remainder, where the remainder term should be small for
small ∆. This is why regression function estimation methods have been applied for drift
estimation by several authors (see above). A first approach is to estimate both bπ and π
and then do the quotient to get an estimator of b, for instance using kernels (see e.g., Efro-
movich, 1999, Tsybakov, 2009, for regression and Kutoyants, 2004 for diffusion models).
There are no support constraints with kernels but the fact that two functions are to be
estimated is a drawback as two smoothing parameters are to be chosen and the quotient
may lead to unstable estimators. The alternative approach (see e.g. Birgé and Massart,
1998, Barron et al., 1999, Baraud, 2002, for regression and Comte et al. (2007) for diffu-
sions) is based on least-squares and sieves. An estimation set A is fixed and a collection of
finite-dimensional subspaces of L2(A, dx) is chosen. This leads directly, by minimization
of a least-squares contrast on each subspace, to a collection of estimators of b1A indexed
by the dimension of the projection space. Then, a data-driven selection procedure is ap-
plied to choose adequately an estimator among the collection. For this method, authors
generally assume that the set A is compact and proofs rely on this constraint.
Recently, the accuracy of least squares approximation in regression estimation is addressed
by Cohen et al. (1993) without any support constraint. Then adaptive regression function
estimation on non compact support is developed in Comte and Genon-Catalot (2018).
These two papers consider only an homoscedastic model. In here, we adapt these results
to drift estimation in diffusion models estimated on non compact support. Moreover, we
consider an unbounded diffusion coefficient σ(.). We show how the results of Comte et
al. (2007) can be generalized to these two extensions.
Section 2 gives the framework and assumptions on the model. Section 3 concerns the esti-
mation of the drift function and is divided in several subsections. First, the approximate
regression model is precised. Then, the projection estimators of b1A are built using a col-
lection of finite-dimensional subspaces of L2(A, dx) where the estimation set A is a general
Borel subset of R. Due to the non compactness of the estimation set, the possible dimen-
sions of the projection spaces are restricted to a set involving the inverse of a matrix, a
constraint called ”regularization” by Cohen et al. (2013). Risk bounds are obtained based
on the expectation of an empirical norm and of the L2(A, π(x)dx)- norm. The variance
term is completely new and differs from the one obtained in Comte et al. (2007). Exam-
ples of non compactly supported bases are provided and a data-driven procedure to select
among the collection of estimators is proposed. In the selection procedure, the dimension
is selected via a penalization criterion within a random set which is non standard in these
methods and induces difficulties in proofs. Section 4 is devoted to a simulation study.
Some concluding remarks are given in Section 5. Proofs are given in Section 6.

2. Assumptions on the diffusion model

Consider discrete observations with sampling interval ∆, (Xi∆)1≤i≤n+1, of the diffusion
process (Xt)t≥0, solution of (1) where (Wt) is a Wiener process and η is a random variable
independent of (Wt). The drift function b(.) is unknown and our aim is to propose non-
parametric estimators for it, relying on the sample (Xi∆)1≤i≤n+1. The diffusion coefficient
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σ2(.) is also unknown and our estimation procedure will not depend on it. The asymptotic
setting is: ∆ = ∆n tends to 0 and n∆n tends to infinity as n tends to infinity. Without
loss of generality, we assume log n∆n ≥ 1. To simplify notations, we only write ∆ without
the subscript n. However, when speaking of constants, we mean quantities that depend
neither on n nor on ∆. We consider the following assumptions.

(A1) b, σ ∈ C1(R) and there exists L ≥ 0, such that, for all x ∈ R, |b′(x)|+ |σ′(x)| ≤ L.
(A2) The scale density

s(x) = exp

{
−2

∫ x

0

b(u)

σ2(u)
du

}
satisfies

∫
−∞ s(x)dx = +∞ =

∫ +∞
s(x)dx and the speed densitym(x) = 1/(σ2(x)s(x))

satisfies
∫ +∞
−∞ m(x)dx = M < +∞.

(A3) X0 = η has distribution π(x)dx given by π(x) = M−1m(x).

Under (A1), Equation (1) has a unique strong solution adapted to the filtration (Ft =
σ(η,Ws, s ≤ t), t ≥ 0). The functions b, σ have linear growth:

(3) ∃K,∀x ∈ R, |b(x)|+ |σ(x)| ≤ K(1 + |x|).

Under the additional assumption (A2), Model (1) admits a unique invariant probability
π(x)dx. And under (A3), (Xt) is strictly stationary and ergodic.

(A4) (Xt) is geometrically β-mixing: there exist constants K > 0 and θ > 0 such that:

(4) βX(t) ≤ Ke−θt,

where βX(t) =
∫ +∞
−∞ π(x)dx‖Pt(x, dx′) − π(x′)dx′‖TV denotes the β-mixing coef-

ficient of (Xt). The norm ‖.‖TV is the total variation norm and Pt denotes the
transition probability.

(A5) ‖π‖∞ < +∞ (‖π‖∞ = supx∈A π(x) denotes the sup norm on A).

In Veretennikov (1988) or Pardoux and Veretennikov (2001), sufficient conditions ensuring
(A4) may be found. Assumption (A5) is only used in Section 3.4. The following result
is used below (see Proposition A, in Gloter (2000)):

Proposition 2.1. Assume (A1)-(A3) and let f : R→ R be C1 and such that there exists

a constant γ ≥ 0 such that, for all x ∈ R, |f ′(x)| ≤ c(1 + |x|γ). If E|η|k(1+γ) < +∞,

(5) E( sup
s∈[t,t+h]

|f(Xs)− f(Xt)|k) ≤ chk/2(1 + E|η|k(1+γ)).

In particular, Proposition 2.1 applies for b and σ with γ = 0. In what follows, for a
function h, we denote hA := h1A, ‖.‖ denotes the L2-norm, ‖.‖π the norm in L2(π(x)dx)
and ‖.‖2,m the Euclidian norm in Rm.

3. Drift estimation

3.1. Approximate regression model for the drift. Consider Yi∆, Zi∆ defined in (2)
and set Ri∆ := Ri∆,1 +Ri∆,2,

Ri∆,1 =
1

∆

∫ (i+1)∆

i∆
(σ(Xs)− σ(Xi∆))dWs, Ri∆,2 =

1

∆

∫ (i+1)∆

i∆
(b(Xs)− b(Xi∆))ds.
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Then, process (1) satisfies the following relation:

(6) Yi∆ = b(Xi∆) + Zi∆ +Ri∆.

Equation (6) is close to an heteroscedastic regression equation where Zi∆ plays the role
of the noise and Ri∆ is an additional residual term to take into account. This leads us
to apply part of the tools proposed for regression function estimation on non compact
support in Comte and Genon-Catalot (2018) to the present diffusion context. Note that
in this paper, only homoscedastic regression is studied.

Remark 3.1. Decomposition (6) is slightly different from the one used in Comte et

al. (2007) which was Yi∆ = b(Xi∆) + Z̃i∆ + Ri∆,2, where Z̃i∆ = ∆−1
∫ (i+1)∆
i∆ σ(Xs)dWs.

The ”new” noise Zi∆ has simpler structure than Z̃i∆. This is important for the technical
tools used in the proofs (Talagrand deviation inequalities with coupling method instead
of direct martingale deviations).

3.2. Definition of the projection estimator of the drift. In this section, several
definitions and notations are common or close to the ones used in Comte and Genon-
Catalot (2018) inducing some unavoidable repetitions for the text to be self-contained.
Consider model (1) with observations (Xi∆)1≤i≤n+1 decomposed as in (6). Let A ⊂ R and
let (ϕj , j = 0, . . . ,m−1) be an orthonormal system of A-supported functions belonging to
L2(A, dx). Define Sm = span(ϕ0, . . . , ϕm−1), the linear space spanned by (ϕ0, . . . , ϕm−1).
The ϕj ’s may depend on m but this is omitted in notations for simplicity.
We assume that for all j,

∫
ϕ2
j (x)π(x)dx < +∞, thus Sm ⊂ L2(A, π(x)dx), and define an

estimator of the drift function b on A, element of Sm, by:

b̂m = arg min
t∈Sm

γn(t)

where γn(t) is a least-squares contrast given by

(7) γn(t) =
1

n

n∑
i=1

[
t2(Xi∆)− 2Yi∆t(Xi∆)

]
= n−1

n∑
i=1

[Yi∆ − t(Xi∆)]2 − n−1
n∑
i=1

Y 2
i∆.

For functions s, t, we set

‖t‖2n =
1

n

n∑
i=1

t2(Xi∆), 〈s, t〉n :=
1

n

n∑
i=1

s(Xi∆)t(Xi∆) and 〈~u, t〉n =
1

n

n∑
i=1

uit(Xi∆)

when ~u is the vector (u1, . . . , un)′, ~u ′ the transpose of ~u, and t a function. Let

Φ̂m = (ϕj(Xi∆))1≤i≤n,0≤j≤m−1,

and

(8) Ψ̂m = (〈ϕj , ϕk〉n)
0≤j,k≤m−1

=
1

n
Φ̂′mΦ̂m, Ψm =

(∫
ϕj(x)ϕk(x)π(x)dx

)
0≤j,k≤m−1

= E(Ψ̂m).

Set
−→
Y = (Y∆, . . . , Yn∆)′ and define ~̂a(m) = (â

(m)
0 , . . . , â

(m)
m−1)′ as the m-dimensional vector

such that b̂m =
∑m−1

j=0 â
(m)
j ϕj . Assuming that Ψ̂m is invertible almost surely (a.s.) yields

(9) b̂m =
m−1∑
j=0

â
(m)
j ϕj , with ~̂a(m) = (Φ̂′mΦ̂m)−1Φ̂′m

−→
Y =

1

n
Ψ̂−1
m Φ̂′m

−→
Y .
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In what follows, the matrices Ψ̂m and Ψm play a central role for the comparability of the
norms ‖.‖π and ‖.‖n uniformly over a space Sm. Key tools are deviation inequalities proved
in Cohen al. (2013) and Comte and Genon-Catalot (2018) for independent sequences of
random variables. We extend these to discretely observed diffusion process.

3.3. Risk bounds for the drift estimator.
Notations. For M a matrix, we denote by ‖M‖op the operator norm defined as the square
root of the largest eigenvalue of MM ′. If M is symmetric, it coincides with sup{|λi|} where
λi are the eigenvalues of M .
Decomposition (6) allows to handle a non necessarily bounded volatility function. It
involves the empirical processes:

νn(t) =
1

n∆

n∑
i=1

t(Xi∆)σ(Xi∆)(W(i+1)∆ −Wi∆), Rn,k(t) =
1

n

n∑
i=1

t(Xi∆)Ri∆,k, k = 1, 2

(Rn,2 is the same as in Comte et al. (2007)). The following assumption is required:

(10) L(m) := sup
x∈A

m−1∑
j=0

ϕ2
j (x) < +∞.

One easily checks that L(m) does not depend on the choice of the L2(dx)-orthonormal
basis of Sm. If the spaces Sm are nested, i.e. m ≤ m′ ⇒ Sm ⊂ Sm′ , the map m 7→ L(m)
is increasing. Assuming Eη2 < +∞ and using (3) and (10), we define

(11) Ψm,σ2 :=

(∫
ϕj(x)ϕk(x)σ2(x)π(x)dx

)
0≤j,k≤m−1

.

To ensure the stability of the least-squares estimator, we must consider a truncated version
of b̂m given by

(12) b̃m = b̂m1{L(m)(‖Ψ̂−1
m ‖op∨1)≤cn∆/ log2(n∆)}, c =

θ(1− log 2)

C0

where C0 is a numerical constant, C0 ≥ 72. The choice of c is done using Proposition
6.1 (i) in Lemma 6.1. Due to θ, the constant c is unknown. To avoid this problem, for
n large enough, we can simply change log2(n∆) into log2+ε(n∆) with ε > 0, and take a
constant c equal to 1.

Note that, when the spaces Sm are nested and Ψm (resp. Ψ̂m) is invertible, m 7→
‖Ψ−1

m ‖op (resp. m 7→ ‖Ψ̂−1
m ‖op) is non-decreasing (see Proposition 2.2 in Comte and

Genon-Catalot (2018)). We prove:

Proposition 3.1. Let (Xi∆)1≤i≤n be observations drawn from model (6) under assump-
tions (A1)-(A4) and (10), with ∆ ≤ 1, ∆ = ∆n → 0 and n∆ → +∞ when n → +∞.

Assume that E(η4) < +∞. Consider the estimator b̃m of bA. Then for m such that

(13) L(m)(‖Ψ−1
m ‖op ∨ 1) ≤ cn∆

2 log2(n∆)
and m ≤ n∆

with c given in (12), we have

E[‖b̃m − b‖2n] ≤ 7 inf
t∈Sm

‖bA − t‖2π +
64

n∆
Tr[Ψ−1/2

m Ψm,σ2Ψ−1/2
m ] + c1∆ +

c2

n∆
,
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E[‖b̃m − b‖2π] ≤ c3{ inf
t∈Sm

‖bA − t‖2π +
1

n∆
Tr[Ψ−1/2

m Ψm,σ2Ψ−1/2
m ] + ∆ +

1

n∆
},

where c1, c2, c3 are positive constants.

Note that, for m satisfying condition (13), Ψm is invertible and its eigenvalues are lower
bounded by 2m log2(n∆)/cn∆. Condition m ≤ n∆ is actually included in the first part
of (13): indeed, if (θj , j = 0, . . . ,m − 1) is an orthonormal basis of Sm with respect to

L2(A, π(x)dx), and K(m) = supx∈A
∑m−1

j=0 θ2
j (x), then K(m) ≥ m and one can prove that

K(m) ≤ L(m)‖Ψ−1
m ‖op (see Lemma 6.2 in Comte and Genon-Catalot (2018)).

As the spaces Sm are nested, the bias term, inft∈Sm ‖bA− t‖2π decreases when m increases.
The terms c1∆ + c2/(n∆) are residual terms tending to zero under our asymptotic frame-

work. The novelty is the variance term Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ]. It is non-decreasing and

can be upper bounded in several manners (see Proposition below). Note that if σ(x) ≡ σ,

then Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m = σ2Idm and Tr[Ψ

−1/2
m Ψm,σ2Ψ

−1/2
m ] = σ2m.

Proposition 3.2. Let m be an integer. Assume that Ψm is invertible and Eη2 < +∞.

(1) If the spaces Sm are nested, then m 7→ Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] is non-decreasing.

(2) If σ is bounded on A, then Tr[Ψ−1/2
m Ψm,σ2Ψ−1/2

m ] ≤ ‖σA‖2∞m.
(3) Assume that (10) holds, then Tr[Ψ

−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ E[σ2

A(X0)]L(m)‖Ψ−1
m ‖op.

From (2), if σ is bounded on A (compact or not), we recover the result of Comte et al.
(2007), see the penalty term in Theorem 1 therein (which has order ‖σ‖∞m/(n∆)).
If in addition, A is compact, we can assume that π(x) ≥ π0 > 0,∀x ∈ A. By Proposition
4.1 in Comte and Genon-Catalot (2018), this implies that ‖Ψ−1

m ‖op ≤ 1/π0. In such a

case, condition (13) contains all indices up to order n∆/ log2(n∆). Therefore, the result
of Proposition 3.1 encompasses the result given in Proposition 1 of Comte et al. (2007).Note
that, in the latter paper, only the empirical risk is studied.
On the other hand, it is proved in Comte and Genon-Catalot (2018) that, with the non
compactly supported Laguerre and Hermite bases,

a) for all m ≤ n, Ψ̂m is a.s. invertible;
b) for all m, Ψm is invertible and there exists a constant c? such that, ‖Ψ−1

m ‖2op ≥ c?m.
Property b) enlightens that ‖Ψ−1

m ‖op has a real weight and increases the variance.

3.4. Model selection. We precise condition (10) as follows:

(B1) The collection of spaces Sm is nested (that is Sm ⊂ Sm′ for m ≤ m′) and such
that, for each m, the basis (ϕ0, . . . , ϕm−1) of Sm satisfies

(14) L(m) = ‖
m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm for c2
ϕ > 0 a constant.

This assumption is shared by most classical bases on a compact support (histograms,
trigonometric polynomials). For non compact support, we have in mind concrete examples
of orthonormal bases. First, for A = R+, the basis of L2(R+, dx) composed of Laguerre
functions (`j , j ≥ 0), and Sm = span(`0, . . . , `m−1); second, for A = R, the basis of
L2(R, dx) composed of Hermite functions (hj , j ≥ 0), and Sm = span(h0, . . . , hm−1) (see
Section 4.2 in Comte and Genon-Catalot (2018) and the simulation study below). Laguerre
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and Hermite functions being uniformly bounded functions, condition (14) holds.
We define, for π upper-bounded on A by ‖π‖∞ (that is under (A5)), the collection:

(15) Mn∆ =

{
m ∈ N, c2

ϕm (‖Ψ−1
m ‖2op ∨ 1) ≤ d

4

n∆

log2(n∆)

}
, d =

θ

8C0 (‖π‖∞ ∨ 1 + 1
3)
,

where θ is defined in (4) and C0 ≥ 72 is the same as in c. The choice of d comes from
Lemma 6.4 and uses Proposition 6.1, (ii). Due to ‖π‖∞ and θ, the constant d is unknown.
As previously, for n large enough, we can simply change log2(n∆) into log2+ε(n∆) with
ε > 0 and take a constant d equal to 1. Note that the constraint on m inMn∆ is stronger
than the one in (13) as m (‖Ψ−1

m ‖op ∨ 1) ≤ m (‖Ψ−1
m ‖2op ∨ 1).

Introducing the random collection of models M̂n∆ given by

(16) M̂n∆ =

{
m ∈ N, c2

ϕm(‖Ψ̂−1
m ‖2op ∨ 1) ≤ d

n∆

log2(n∆)

}
,

with d defined in (15), we define the data-driven selection of m by

(17) m̂ = arg min
m∈M̂n∆

{
−‖b̂m‖2n + κc2

ϕs
2m‖Ψ̂−1

m ‖op

n∆

}
, s2 = E[σ2(X0)],

where κ is a numerical constant. The set M̂n∆ is the empirical counterpart of Mn∆

defined by (15), with constant multiplied by 4. This is different from the usual selection
procedures where the set of possible values for choosing the dimension m is nonrandom.

Note that for m ∈ M̂n∆, b̂m = b̃m, and these are the only m which are considered.

Theorem 3.1. Let (Xi∆)1≤i≤n be observations from model (6). Assume that (A1)-(A5)
and (B1) hold and that Eη6 < +∞. Assume that ∆ = ∆n → 0 and n∆ → +∞ when
n→ +∞. Then, there exists a numerical constant κ0 such that for κ ≥ κ0, we have

(18) E(‖b̂m̂ − bA‖2n) ≤ C inf
m∈Mn∆

[ inf
t∈Sm
‖bA − t‖2π + κc2

ϕs
2m‖Ψ−1

m ‖op

n∆
] + c1∆ +

c1 log2(n∆)

n∆
,

and

(19) E(‖b̂m̂− bA‖2π) ≤ C1 inf
m∈Mn∆

[ inf
t∈Sm

‖bA− t‖2π +κc2
ϕs

2m‖Ψ−1
m ‖op

n∆
] + c′1∆ +

c′2 log2(n∆)

n∆

where C,C1 are numerical constants and c1, c2, c
′
1, c
′
2 are constants depending on π, b, σ.

Inequalities (18) and (19) show that the estimator b̂m̂ automatically realizes the com-
promise between the squared bias and the variance bound. The results are a substantial
generalization of Theorem 1 in Comte et al. (2007). In section 4, we explain how to
estimate s2 and how to fix κ.

4. Simulation study

Samples (Xi∆)1≤i≤n from the following models were generated for (n,∆) = (100000, 0.02)
(n∆ = 2000) and for (n,∆) = (50000, 0.01) (n∆ = 500).

Example 1. Hyperbolic diffusion. The model dXt = −θXt dt+γ
√

1 +X2
t dWt, X0 = η,

is simulated by a Euler scheme with step δ. We keep one out of 10 observations i.e.
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∆ = 10δ. Assumptions (A1)-(A2) hold for θ > −γ2/2. The invariant density is propor-

tional to 1/(1 + x2)1+(θ/γ2) and
∫
x4π(x)dx < +∞ for θ > 3γ2/2. We chose θ = 2 and

γ =
√

1/2. Setting Yt = arg shXt, we see that the process (Yt) satisfies the conditions of
Pardoux and Veretennikov (2001) ensuring the exponential β-mixing property. Therefore,
(Xt) satisfies (A4). For simplicity, as the invariant distribution is centered, instead of
starting the process with the invariant distribution, we set X0 = 0.

Example 1 Example 2
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Figure 1. 25 estimated curves in Hermite basis (dotted-green), the true
in bold (red), n∆ = 500, top and n∆ = 2000, bottom.

Example 1 Example 2

ŝ2 s̃2 ŝ2 s̃2

n∆ = 500 0.56 (0.005) 0.57 (0.004) 1.38 (0.046) 1.410 (0.048)
n∆ = 2000 0.55 (0.003) 0.57 (0.002) 1.33 (0.021) 1.40 (0.024)

Table 1. Estimation of s2 = E[σ2(X)] associated with the paths in Figure 1.

The other examples are obtained from a d-dimensional Ornstein-Uhlenbeck process (Ut)t≥0,
with dynamics given by

(20) dUt = −k
2
Utdt+

γ

2
dWt, U0 ∼ N (0,

γ2

4k
Id).
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Exact simulation is generated with step ∆ by computing

U(p+1)∆ = e−
k∆
2 Up∆ + ε(p+1)∆, εk∆ ∼iid N (0,

γ2(1− e−k∆)

4k
Id).

Example 2. Xt = tanh(Ut) where Ut is defined by (20) with d = 1 is solution of (1) with

b(x) = (1− x2)

(
−k

2
atanh(x)− γ2

4
x

)
, σ(x) =

γ

2
(1− x2), with k = 4 and γ = 2.

Example 3. Xt = exp(Ut) where Ut is defined by (20) with d = 1 is solution of (1) with

b(x) = x

(
−k

2
log(x) +

γ2

8

)
, σ(x) =

γ

2
x, with k = 1 and γ = 1/2.

Example 4. Cox-Ingersoll-Ross or square-root process. We take Xt = ‖Ut‖22,d where Ut
is defined by (20) with d = 3 is solution of (1) with

dXt = (
dγ2

4
− kXt)dt+ γ

√
XtdW

∗
t ,

where W ∗t is a standard brownian motion. We take k = 2 and γ = 1.

In examples 2,3,4, the models are strictly stationary, ergodic and β-mixing but the func-
tions b, σ do not satisfy (A1). Nevertheless, we implement the estimation method as
a specific study would show that our results hold. Examples 3,4 provide nonnegative
processes and allow to use Laguerre basis.

Implementation is done with either the Laguerre basis (A = R+) or the Hermite basis
(A = R) which are easy to handle in practice.
• Laguerre basis, A = R+. The Laguerre polynomials (Lj) and the Laguerre functions
(`j) are given by

(21) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 constitutes a complete orthonormal system on L2(R+) satisfying

(see Abramowitz and Stegun (1964)): ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2. The collection of
models (Sm = span{`0, . . . , `m−1}) is nested and obviously (14) holds with c2

ϕ = 2.
• Hermite basis, A = R. The Hermite polynomial and the Hermite function of order j are
given, for j ≥ 0, by:

(22) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). Moreover (see Abramowitz

and Stegun (1964), Szegö (1959) p.242), ‖hj‖∞ ≤ Φ0,Φ0 ' 1, 086435/π1/4 ' 0.8160, so
that (14) holds with c2

ϕ = Φ2
0. The collection of models (Sm = span{h0, . . . , hm−1}) is obvi-

ously nested. Laguerre polynomials were computed using formula (21) and Hermite poly-
nomials with H0(x) ≡ 1, H1(x) = x and the recursion Hn+1(x) = 2xHn(x)− 2nHn−1(x).

The computation of the set M̂n raises a problem: the value given by the theory, namely

c2
ϕm‖Ψ̂−1

m ‖2op is always very large so that the set of possiblem’s is reduced to {1}. Therefore
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Example 3 Example 4
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¯̂m = 3.5 (0.5), ¯̂mmax = 4 (0) ¯̂m = 3.9 (0.3), ¯̂mmax = 4.1 (0.2)
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Figure 2. 25 estimated curves in Laguerre basis (dotted-green), the true
in bold (red), n∆ = 500, top and n∆ = 2000, bottom.

Example 3 Example 4

ŝ2 s̃2 ŝ2 s̃2

n∆ = 500 0.07 (0.004) 0.07 (0.004) 0.37 (0.01) 0.37 (0.01)
n∆ = 2000 0.07 (0.002) 0.07 (0.002) 0.36 (0.007) 0.37 (0.007)

Table 2. Estimation of s2 = E[σ2(X0)] associated with the paths of Figure 2.

we choose a larger set given by M̂?
n = {m, ‖Ψ̂−1

m ‖
1/4
op ≤ [n∆/(log(n∆))2.1]}. Numerically,

we obtain M̂?
n = {1, . . . , m̂max}, with m̂max ≤ 10, which is more satisfactory.

The term s2 := E[σ2(X∆)] is estimated by residual least squares corresponding to this
maximal dimension,

ŝ2 =
∆

n

n∑
i=1

[Yi∆ − b̂m̂max(Xi∆)]2.

In Tables 1-2, we compare it with s̃2 = (1/n)
∑n

i=1 σ
2(Xi∆), a pseudo-estimator using

the (unavailable) knowledge of the function σ2. The comparison is done for the 25 paths
generated for Figures 1-2: we can see that the estimation is quite good.

The constant κ is standardly calibrated by preliminary simulations and taken equal to
κ = 2.10−4. It is not surprising that κ must be chosen very small: this is due to the
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fact that m‖Ψ̂−1
m ‖op is large, as noted above. The penalty is taken equal to p̂en(m) =

κc2
ϕŝ

2m‖Ψ̂−1
m ‖op/(n∆) and m̂ is selected as the minimizer of −‖b̂m‖2n + p̂en(m).

We present in Figures 1-2 beams of 25 estimators b̂m̂ corresponding to 25 simulated
trajectories of each model using the Hermite basis for examples 1 and 2 and Laguerre basis
for examples 3 and 4. We stress that the value of m̂ is rather small: under each graph,
we give the mean ¯̂m computed over the 25 estimators and the mean of the maximal value
m̂max, both with standard deviation in parenthesis. It is noteworthy that the function is
very well reconstructed using a small number of coefficients.

5. Concluding remarks

In this paper, we revisit the problem of nonparametric drift estimation for an ergodic
diffusion from discrete observations of the sample path. As in Comte et al., 2007, an
estimation set A is chosen. The drift function is estimated on A using an approximate
regression equation by a least squares contrast which is minimized over a finite dimensional
subspace Sm of L2(A, dx). This yields a collection of estimators indexed by the dimension
of the projection space. A data-driven procedure is proposed to select the best dimension
using a penalization criterion. While in Comte et al., 2007, the set A must be compact and
the diffusion coefficient must be uniformly bounded, the novelty of the present paper is to
get rid of these two assumptions. This leads to considerable modifications in the method of
estimation and complicates a lot proofs. First, we rely on a slightly different approximate
regression equation. This allows to modify the way of dealing with the adaptive procedure.
Second, the possible dimensions to define the projection estimators are restricted to a set
involving the inversion of a matrix which does not even appear when the set A is compact.
In the risk bounds, the variance term is different from the case where A is compact and
σ(.) bounded. Moreover, to define the adaptive procedure, the adequate dimension is to
be selected within a random set. This induces difficulties and a non standard treatment
of the classical method of penalization. The estimator obtained is nevertheless adaptive
in the sense that its L2-risk achieves the best compromise between the square bias and
the new variance term.
An important question may be to look at rates of convergence and optimality in this new
setting. This is treated in the case of the simple regression model with independent data
on non compact support in Comte and Genon-Catalot (2018) and is worth of interest in
the diffusion context.
Estimation of σ2 could be investigated too under the same set of assumptions but leads
to rather lengthy developments.

6. Proofs

6.1. Preliminary properties. Consider the set where the empirical and L2(A, π(x)dx)-
norms on Sm are equivalent:

(23) Ωm(u) =

{
sup

t∈Sm, t 6=0

∣∣∣∣‖t‖2n‖t‖2π − 1

∣∣∣∣ ≤ u
}
.

We generalize to the diffusion context Proposition 2.3 of Comte and Genon-Catalot (2018)(see
also Theorem 1 of Cohen et al. (1993) for part (i)).
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Proposition 6.1. Let (Xi∆)i be a discrete sampling of the process (Xt) given by (1) and
assume (A1)-(A4) (thus (Xi∆)i is strictly stationary and geometrically β-mixing with β-
mixing coefficients satisfying β(i) = βX(i∆) ≤ Ke−θi∆ for some constants K > 0, θ > 0).
Consider a basis satisfying (10) and let Idm denotes the m×m identity matrix.

(i) Assume that Ψm is invertible. For Ψ̂m defined by Equation (8), for all u ∈ [0, 1]

P(Ωm(u)c) = P
[
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > u

]
≤ 4m exp

(
− n∆θ c(u)

12 log(n∆) L(m)(‖Ψ−1
m ‖op ∨ 1)

)
+

θ

6(n∆)5
,

where c(u) = u+ (1− u) log(1− u).
(ii)If in addition (A5) holds, then, for all u > 0,

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 4m exp

(
− n∆θu2/2

12L(m) log(n∆) (‖π‖∞ ∨ 1 + 2u/3)

)
+

θ

6(n∆)5
.

6.2. Proof of Proposition 6.1. For t =
∑m−1

j=0 xjϕj in Sm, ‖t||2π = ~x′Ψm~x, ‖t||2n =

~x′Ψ̂m~x. Thus,

sup
t∈Sm,‖t‖π=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Xi)− Et2(Xi)]

∣∣∣∣∣ = sup
~x∈Rm,‖Ψ1/2

m ~x‖2,m=1

∣∣∣~x′Ψ̂m~x− ~x′Ψm~x
∣∣∣

= sup
~u∈Rm,‖~u‖2,m=1

∣∣∣~u′Ψ−1/2
m (Ψ̂m −Ψm)Ψ−1/2

m ~u
∣∣∣ = ‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op.

Hence,

(24) Ωm(u)c =
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > u

}
.

Now, we consider the coupling method and the associated variables (X∗i∆) with Berbee’s
Lemma, see Berbee (1979), with the method described in Viennet (1997, Prop.5.1 and its
proof p.484). Assume for simplicity that n = 2pnqn for integers pn, qn. Then there exist
random variables X∗i∆, i = 1, ..., n satisfying the following properties:

• For ` = 0, ..., pn − 1, the random vectors

~X`,1 =
(
X(2`qn+1)∆, ..., X(2`+1)qn∆

)′
and ~X∗`,1 =

(
X∗(2`qn+1)∆, ..., X

∗
(2`+1)qn∆

)′
have the same distribution, and so have the random vectors

~X`,2 =
(
X[(2`+1)qn+1]∆, ..., X(2`+2)qn∆

)′
and ~X∗`,2 =

(
X∗[(2`+1)qn+1]∆, ..., X

∗
(2`+2)qn∆

)′
.

• For ` = 0, ..., pn − 1,

(25) P
[
~X`,1 6= ~X∗`,1

]
≤ β(qn) = βX(qn∆) and P

[
~X`,2 6= ~X∗`,2

]
≤ βX(qn∆).

• For each δ ∈ {1, 2}, the random vectors ~X∗0,δ, ...,
~X∗pn−1,δ are independent.

Then let Ω∗ = {Xi∆ = X∗i∆, i = 1, . . . , n} and write that

P
[
‖Idm −Ψ−1/2

m Ψ̂mΨ−1/2
m ‖op > u

]
≤ P

[
{‖Idm −Ψ−1/2

m Ψ̂mΨ−1/2
m ‖op > u} ∩ Ω∗

]
+P[(Ω∗)c].(26)
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Using the definition of the variables X∗i∆, we get P[(Ω∗)c] ≤ 2pnβX(qn∆) ≤ 2pne
−θqn∆.

Choosing qn∆ = 6 log(n∆)/θ, thus 2pn = n/qn = n∆θ/6 log(n∆), yields

(27) P[(Ω∗)c] ≤ θn∆

6 log(n∆)(n∆)6
≤ θ

6(n∆)5
.

Now, we write Sm = (1/2)(Sm,1 + Sm,2) where Sm is given by

Sm = Ψ−1/2
m Ψ̂mΨ−1/2

m − Idm =
1

n

n∑
i=1

{Km(Xi∆)− E [Km(Xi∆)]},

(28) Km(Xi∆) = Ψ−1/2
m K̃m(Xi∆)Ψ−1/2

m , K̃m(Xi∆) = (ϕj(Xi∆)ϕk(Xi∆))0≤j,k≤m−1,

with obviously E [Km(Xi∆)] = Idm. Here, Sm,1 is built with the ~X`,1:

Sm,1 =
1

pn

pn−1∑
`=0

1

qn

qn∑
r=1

{Km(X(2`qn+r)∆)− E(Km(X(2`qn+r)∆))}

and Sm,2 is analogously defined with the ~X`,2. We have

P
[
{‖Idm −Ψ−1/2

m Ψ̂mΨ−1/2
m ‖op > u} ∩ Ω∗

]
= P [{‖Sm,1 + Sm,2‖op > 2u} ∩ Ω∗]

≤ P
[
‖S∗m,1‖op > u

]
+ P

[
‖S∗m,2‖op > u

]
,(29)

where S∗m,δ, δ = 1, 2 are built on the ~X∗`,δ. The two terms are similar so we only treat one.
We write

S∗m,1 =

pn−1∑
`=0

G∗` − Idm where G∗` =
1

pn

1

qn

qn∑
r=1

Km(X∗(2`qn+r)∆).

As ‖G∗`‖op ≤ L(m)‖Ψ−1
m ‖op/pn, by Theorem 1 in Cohen et al. (2013) and Lemma 6.2 in

Comte and Genon-Catalot (2018), we get

P(‖S∗m,1‖op > u) ≤ 2m exp

(
− c(u)pn

L(m)‖Ψ−1
m ‖op

)
.

Using the definition of pn, gives the result (i) of Proposition 6.1.

To prove (ii), we proceed similarly and bound P
[
{‖Ψm − Ψ̂m‖op ≥ u} ∩ Ω∗

]
. We

write S̃m = (1/2)(S̃m,1 + S̃m,2) where (K̃m is defined by (28)):

S̃m =
1

n

n∑
i=1

{K̃m(Xi∆)− E
[
K̃m(Xi∆)

]
} = Ψ̂m −Ψm,

S̃m,1 =
1

pn

pn−1∑
`=0

1

qn

qn∑
r=1

{K̃m(X(2`qn+r)∆)− E(K̃m(X(2`qn+r)∆))}

is built with the ~X`,1 and S̃m,2 is analogously defined with the ~X`,2. As above,

P
[
{‖Ψm − Ψ̂m‖op ≥ u} ∩ Ω∗

]
≤ P

[
‖S̃∗m,1‖op ≥ u

]
+ P

[
‖S̃∗m,2‖op ≥ u

]
,(30)
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where S̃∗m,δ, for δ = 1, 2 are built on the ~X∗`,δ. We treat only the first term applying

Tropp’s result to S̃∗m,1 which is a sum of pn independent matrices. It is clear that for all

`, r, ‖K̃m(X∗(2`qn+r)∆)‖op ≤ L(m) a.s. and thus

1

pnqn
‖
qn∑
r=1

K̃m(X∗(2`qn+r)∆)− E(K̃m(X∗(2`qn+r)∆))‖op ≤ 2
L(m)

pn
=

24

θ

L(m) log(n∆)

n∆
:= L.

Now, we must bound the variance of S∗m,1. We have

ν(S̃∗m,1) =
1

pn
sup

‖~x‖2,m=1
E

 1

q2
n

∥∥∥∥∥
[
qn∑
r=1

(K̃m(X∗r∆)− E(K̃m(X∗r∆)))

]
~x

∥∥∥∥∥
2

2,m


Next,

Ẽ1 = E

 1

q2
n

∥∥∥∥∥
[
qn∑
r=1

(K̃m(X∗r∆)− E(K̃m(X∗r∆)))

]
~x

∥∥∥∥∥
2

2,m


=

1

q2
n

m−1∑
j=0

Var

[
qn∑
r=1

m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

]

=
1

qn

m−1∑
j=0

qn∑
r=1

Var

[
m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

]
=

m−1∑
j=0

Var

[
m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

]
Therefore, for ‖x‖2,m = 1,

Ẽ1 ≤
m−1∑
j=0

E

(m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

)2
 ≤ L(m)E

(m−1∑
k=0

ϕk(Xr∆)xk

)2


= L(m)

∫ (m−1∑
k=0

ϕk(u)xk

)2

π(u)du ≤ L(m)‖π‖∞.

Thus, ν(S̃∗m,1) ≤ L(m) ‖π‖∞/pn = (12/θ)(L(m) log(n∆)/n∆) using the definition of qn.

Finally, applying Theorem 6.1 and joining the analogous of (26), (27), (30), the value of

L and the bound on ν(S̃∗m,1) gives (ii). �

6.3. Proof of Proposition 3.1. We define the sets

Λm =

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) ≤ c
n∆

log2(n∆)

}
and Ωm := Ωm(1/2) =

{∣∣∣∣‖t‖2n‖t‖2π − 1

∣∣∣∣ ≤ 1

2
,∀t ∈ Sm

}
.

Below, we prove the following lemma

Lemma 6.1. Under the assumptions of Proposition 3.1, for m satisfying (13), we have

P(Λcm) ≤ c/(n∆)5, P(Ωc
m) ≤ c/(n∆)5

where c is a positive constant, for any c ≤ θ(1−log 2)
6×12 .
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Now, we write

‖b̃m − bA‖2n = ‖b̂m − bA‖2n1Λm + ‖bA‖2n1Λcm

= ‖b̂m − bA‖2n1Λm∩Ωm + ‖b̂m − bA‖2n1Λm∩Ωcm + ‖bA‖2n1Λcm .(31)

We bound successively the expectation of the three terms.

• Study of E(‖b̂m − bA‖2n1Λm∩Ωm).
The following equality holds, for all functions s, t inSm:

(32) γn(t)− γn(s) = ‖t− b‖2n − ‖s− b‖2n − 2νn(t− s)− 2Rn,1(t− s)− 2Rn,2(t− s).

Thus γn(b̂m) ≤ γn(bm), for any function bm in Sm, implies

(33) ‖b̂m − b‖2n ≤ ‖bm − b‖2n + 2νn(b̂m − bm) + 2Rn,1(b̂m − bm) + 2Rn,2(b̂m − bm).

We first study the last term. In the same way as Comte et al. (2007) p.531, we have

2Rn,2(b̂m − bm) ≤ 1

8
‖b̂m − bm‖2n +

8

n∆2

n∑
k=1

(∫ (k+1)∆

k∆
(b(Xs)− b(Xk∆))ds

)2

Now, using (5) for f = b, we get

E

(∫ (k+1)∆

k∆
(b(Xs)− b(Xk∆))ds

)2

≤ ∆

∫ (k+1)∆

k∆
E[(b(Xs)− b(Xk∆))2]ds

≤ c∆3(1 + Eη2).

Thus, we have:

2E
[
Rn,2(b̂m − bm)1Λm∩Ωm

]
≤ 1

8
E[‖b̂m − bm‖2n1Λm∩Ωm ] + 8c′∆

≤ 1

4
E[‖b̂m − b‖2n1Λm∩Ωm ] +

1

4
E[‖b− bm‖2n1Λm∩Ωm ] + 8c′∆.(34)

For the two other terms to study in (33), we write

2E
[
(νn(b̂m − bm) +Rn,1(b̂m − bm))1Λm∩Ωm

]
≤ E

[
1

8
‖b̂m − bm‖2π1Λm∩Ωm + 8 sup

t∈Sm,‖t‖π=1
[νn(t) +Rn,1(t)]2

]
Then, by the definition of Ωm, we have

E
[

1

8
‖b̂m − bm‖2π1Λm∩Ωm

]
≤ E

[
1

4
‖b̂m − bm‖2n1Λm∩Ωm

]
≤ E

[
1

2
‖b̂m − b‖2n1Λm∩Ωm

]
+ E

[
1

2
‖b− bm‖2n1Λm∩Ωm

]
.(35)

Moreover

8E( sup
t∈Sm,‖t‖π=1

[νn(t) +Rn,1(t)]2]) ≤ 16E( sup
t∈Sm,‖t‖π=1

ν2
n(t) + sup

t∈Sm,‖t‖π=1
R2
n,1(t)).

Now the following result holds.
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Lemma 6.2. Under the assumptions of Proposition 3.1, we have

(36) E

(
sup

t∈Sm,‖t‖π=1
ν2
n(t)

)
=

1

n∆
Tr[Ψ−1/2

m Ψm,σ2Ψ−1/2
m ],

(37) E( sup
t∈Sm,‖t‖π=1

R2
n,1(t)) ≤ C∆.

Therefore, gathering (33), (34), (35), (36) and (37) we get, for m satisfying (13),

1

4
E
[
‖b̂m − b‖2n1Λm∩Ωm

]
≤ 7

4
E
[
‖bm − b‖2n1Λm∩Ωm

]
+

16

n∆
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
+ c1∆.

• Study of E(‖bA‖2n1Λcm).

We use Lemma 6.1. By the Cauchy-Schwarz inequality, E(‖bA‖2n1Λcm) ≤ cE1/2[b4(X0)]/(n∆)2

with the bound on P(Λcm) given in Lemma 6.1.

• Study of E(‖b̂m − bA‖2n1Λm∩Ωcm).
We introduce the operator Πm of orthogonal projection, for the scalar product of Rn, onto
the subspace {(t(X∆), . . . , t(X(n∆), t ∈ Sm} of Rn and denote by ΠmbA the projection of
~bA = (bA(X∆), . . . , bA(Xn∆)′. We can write:

(38) ‖b̂m − bA‖2n = ‖b̂m −ΠmbA‖2n + ‖ΠmbA − bA‖2n ≤ ‖b̂m −ΠmbA‖2n + ‖bA‖2n.

Recall that (see (6)) Yk∆ = b(Xk∆) + Ek∆ with Ek∆ = Zk∆ + Rk∆. Elementary compu-
tations yield:

ΠmbA = (
m−1∑
j=0

ã
(m)
j ϕj(Xk∆), k = 1, . . . , n)′ with ~̃a(m) =

1

n
Ψ̂−1
m Φ̂m

~bA,

while b̂m = (
∑m−1

j=0 â
(m)
j ϕj(Xk∆), k = 1, . . . , n)′ with ~̂a(m) = 1

nΨ̂−1
m Φ̂m

~Y . Therefore,

setting ~E = (R∆ + Z∆, . . . , Rn∆ + Zn∆)′, we have

‖b̂m −ΠmbA‖2n =
1

n

n∑
i=1

m−1∑
j=0

(â
(m)
j − ã(m)

j )ϕj(Xi∆)

2

= (~̂a(m) − ~̃a(m))′Ψ̂m(~̂a(m) − ~̃a(m))

=
1

n2
~E′Φ̂mΨ̂−1

m (Φ̂m)′ ~E ≤ ‖Ψ̂−1
m ‖op‖(Φ̂m)′ ~E/n‖22,m.

On Λm, ‖Ψ̂−1
m ‖op ≤ cn∆/L(m) log2(n∆). Consequently,

E
[
‖b̂m −ΠmbA‖2n1Λm∩Ωcm

]
≤ c

n∆

L(m) log2(n∆)
E1/2(‖(Φ̂m)′ ~E/n‖42,m)P1/2(Ωc

m)

We can prove the following Lemma:

Lemma 6.3. Under the assumptions of Proposition 3.1, we have for C > 0 a constant,

E(‖(Φ̂m)′ ~E/n‖42,m) ≤ CmL2(m)(
∆2

n3
+

1

(n∆)2
).
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Using Lemma 6.3, the bound on P(Ωc
m) given in Lemma 6.1 and the fact that m ≤ n∆,

we get E(‖b̂m − bA‖2n1Λm∩Ωcm) ≤ c/(n∆) for a constant c > 0.
Gathering the three bounds and plugging them in (31) implies the first result of result of
Proposition 3.1.

To get the result in L2(π)-norm, we write analogously:

(39) ‖b̃m − bA‖2π = ‖b̂m − bA‖2π1Λm∩Ωm + ‖b̂m − bA‖2π1Λm∩Ωcm + ‖bA‖2π1Λcm .

For any t ∈ Sm, we have using (x+ y)2 ≤ (1 + 1/θ)x2 + (1 + θ)y2 with θ = 4,

‖b̂m − bA‖2π1Λm∩Ωm ≤ 5

4
‖b̂m − t‖2π1Λm∩Ωm + 5‖t− bA‖2π1Λm∩Ωm

≤ 5

2
‖b̂m − t‖2n1Λm∩Ωm + 5‖t− bA‖2π1Λm∩Ωm ,

by using the definition of Ωm. We insert bA again and get:

‖b̂m − bA‖2π1Λm∩Ωm ≤ 5‖b̂m − bA‖2n1Λm∩Ωm + 5‖bA − t‖2n1Λm∩Ωm + 5‖t− bA‖2π1Λm∩Ωm .

Therefore taking expectation and applying the first result of Proposition 3.1 yield

E
(
‖b̂m − bA‖2π1Λm∩Ωm

)
≤ 45 inf

t∈Sm
(‖t− bA‖2π) + 5× 64

Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ]

n∆
.

Next, we study E
(
‖b̂m − bA‖2π1Λm∩Ωcm

)
+E(‖bA‖2π1Λcm). For the first term, we write that

‖b̂m − bA‖2π ≤ 2(‖b̂m‖2π + ‖bA‖2π) and

‖b̂m‖2π =

∫ m̂−1∑
j=0

âjϕj(x)

2

π(x)dx = (~̂a(m))′Ψm
~̂a(m) ≤ ‖Ψm‖op‖~̂a(m)‖22,m.

First, under ‖
∑m

j=0 ϕ
2
j‖∞ ≤ L(m), we get

‖Ψm‖op = sup
‖~x‖2,m=1

~x′Ψm~x = sup
‖~x‖2,m=1

∫ m−1∑
j=0

xjϕj(u)

2

π(u)du

≤ sup
‖~x‖2,m=1

∫ m−1∑
j=0

x2
j

m−1∑
j=0

ϕ2
j (u)

π(u)du ≤ L(m).

Next, ‖~̂a(m)‖22,m = (1/n2)‖Ψ̂−1
m Φ̂′m

~Y ‖22,m ≤ (1/n2)‖Ψ̂−1
m Φ̂′m‖2op‖~Y ‖22,n and

‖Ψ̂−1
m Φ̂′m‖2op = λmax

(
Ψ̂−1
m Φ̂′mΦ̂mΨ̂−1

m

)
= nλmax(Ψ̂−1

m ) = n‖Ψ̂−1
m ‖op

Therefore, on Λm we have L(m)(‖Ψ̂−1
m ‖op ∨ 1) ≤ cn∆, and thus

‖b̂m‖2π ≤
L(m)‖Ψ̂−1

m ‖op

n

(
n∑
i=1

Y 2
i∆

)
≤ C∆

(
n∑
i=1

Y 2
i∆

)
.

Then as E[(
∑n

i=1 Y
2
i∆)2] ≤ n2E(Y 4

∆), we get

E(‖b̂m‖2π1Λm∩Ωcm) ≤
√

E(‖b̂m‖4π)P(Ωc
m) ≤ CE1/2(Y 4

∆)n∆P1/2(Ωc
m) ≤ c′/(n∆)
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as E[Y 4
∆] ≤ c∆2. On the other hand E(‖bA‖2π1Ωcm) ≤ ‖bA‖2πP(Ωc

m) ≤ c”/(n∆)5. Thus

E
(
‖b̂m − bA‖2π1Ωcm

)
≤ c1/(n∆). Joining the bounds for the three terms of (39) ends the

proof of the second Inequality of Proposition 3.1. �

6.4. Proof of Lemma 6.1. We use Proposition 6.1, (i) for u = 1/2 and condition (10)
to get that

P(Ωc
m) = P(Ωm(1/2)c) ≤ 4n∆ exp

[
−θ(1− log 2) log n∆

24c/2

]
+

θ

6(n∆)5
≤ C

(n∆)5

for c ≤ (θ(1− log 2))/(6× 12). Besides, in Comte and Genon-Catalot (2018), Lemma 6.3,

it is proved that P(Λcm) ≤ P(Ωc
m) = P[‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Idm‖op > 1/2]. The proof of

Lemma 6.1 is thus complete. �

6.5. Proof of Lemma 6.2. • Proof of equality (36).
Write that

sup
t∈Sm,‖t‖π=1

ν2
n(t) = sup

t∈Sm,‖Ψ1/2
m ~a‖2,m=1,t=

∑m−1
j=0 ajϕj

〈−→σε, t〉2n

where −→σε is the n-dimensional vector with coordinates σ(Xi∆)εi, i = 1, . . . n and εi =

(W(i+1)∆−Wi∆)/∆. Let t =
∑m−1

j=0 ajϕj where ~a = Ψ
−1/2
m ~u, that is aj =

∑m−1
k=0 [Ψ

−1/2
m ]j,kuk

and ‖~u‖2,m = 1. Then t =
∑m−1

k=0 uk(
∑m−1

j=0 [Ψ
−1/2
m ]j,kϕj). By the Cauchy-Schwarz inequal-

ity, we have 〈−→σε, t〉2n ≤
∑m−1

k=0 〈
−→σε,
∑m−1

j=0 [Ψ
−1/2
m ]j,kϕj〉2n, and more precisely,

sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈−→σε, t〉2n =

m−1∑
k=0

〈−→σε,
m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n.

Therefore,

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈−→σε, t〉2n

 =
m−1∑
k=0

E

〈−→σε,m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n

 .

Then using that, for any function ψ bounded, E[εiεkψ(Xi∆)ψ(Xk∆)] is equal to 0 if i 6= k
and to E(ψ2(X0))/∆ if i = k, we get

E

〈−→σε,m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n

 =
1

n∆
E

σ2(X0)

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj(X0)

2
=

1

n∆

∑
0≤j,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k[Ψm,σ2 ]j,`.

We thus obtain equality (36) as

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈−→σε, t〉2n

 =
1

n∆

∑
0≤j,k,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k[Ψm,σ2 ]j,`

=
1

n∆
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
.
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• Proof of bound (37). Now write

sup
t∈Sm,‖t‖π=1

R2
n,1(t) = sup

t∈Sm,‖Ψ1/2
m ~a‖2,m=1,t=

∑m−1
j=0 ajϕj

R2
n,1(t).

Let t =
∑m−1

j=0 ajϕj where ~a = Ψ
−1/2
m ~u, ‖~u‖2,m = 1. Then (as above):

t =
m−1∑
k=0

uk

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 and R2
n,1(t) ≤

m−1∑
k=0

R2
n,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj


Therefore,

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

R2
n,1(t)

 ≤ m−1∑
k=0

E

R2
n,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 .
Then using that the

∫ (i+1)∆
i∆ (σ(Xs) − σ(Xi∆))dWs and Xj∆, j ≤ i are uncorrelated and

the terms are centered, and that the process (Xt) is stationary, we get

E

R2
n,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 =
1

n
E

R∆,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj(X∆)

2 .
Therefore,

E

(
sup

t∈Sm,‖t‖π=1
R2
n,1(t)

)
≤ 1

n

m−1∑
k=0

∑
0≤j,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,kE

(
ϕj(X∆)ϕ`(X∆)R2

∆,1

)
≤ 1

n

∑
0≤j,`≤m−1

(
m−1∑
k=0

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k

)
E
(
ϕj(X∆)ϕ`(X∆)R2

∆,1

)
=

1

n

∑
0≤j,`≤m−1

[Ψ−1
m ]j,`E

(
ϕj(X∆)ϕ`(X∆)R2

∆,1

)
≤ L(m)‖Ψ−1

m ‖op

n∆2
E

[(∫ 2∆

∆
(σ(Xs)− σ(X∆))dWs

)2
]
≤ CL(m)‖Ψ−1

m ‖op

n

since by (5) for f = σ, E
[∫ 2∆

∆ (σ(Xs)− σ(X∆))2ds
]
≤ c∆2(1+Eη2). Now, for m satisfying

(13), L(m)‖Ψ−1
m ‖op ≤ cn∆/2 log2(n∆) ≤ cn∆. Thus,

E

(
sup

t∈Sm,‖t‖π=1
R2
n,1(t)

)
≤ C ′∆.

This ends the proof of (37) and of Lemma 6.2. �

6.6. Proof of Lemma 6.3. Set

N2 = ‖n−1Φ̂′m ~E‖22,m = n−2
m−1∑
j=0

(

n∑
i=1

ϕj(Xi∆)Ei∆)2



20 F. COMTE AND V. GENON-CATALOT

where Ei∆ = 1
∆

∫ (i+1)∆
i∆ (b(Xs)−b(Xi∆))ds+ 1

∆

∫ (i+1)∆
i∆ σ(Xs)dWs.We can write

∑n
i=1 ϕj(Xi∆)Ei∆ =∫ (n+1)∆

0 H
(j)
s ds+

∫ (n+1)∆
0 K

(j)
s dWs with

H(j)
s =

1

∆

n∑
i=1

1
]i∆,(i+1)∆]

(s)ϕj(Xi∆)(b(Xs)−b(Xi∆)), K(j)
s =

1

∆

n∑
i=1

1
]i∆,(i+1)∆]

(s)ϕj(Xi∆)σ(Xs).

Therefore,

N4 =
1

(n∆)4

m−1∑
j=0

(∫ (n+1)∆

0
H(j)
s ds+

∫ (n+1)∆

0
K(j)
s dWs

)2
2

≤ 8
m

(n∆)4

m−1∑
j=0

(∫ (n+1)∆

0
H(j)
s ds

)4

+

(∫ (n+1)∆

0
K(j)
s dWs

)4


≤ 8
m

n4

m−1∑
j=0

 1

∆

∫ (n+1)∆

0
(H(j)

s )4ds+
1

∆4

(∫ (n+1)∆

0
K(j)
s dWs

)4
 .

We bound successively the expectation of the two terms. By (10),
∑m−1

j=0 ϕ4
j ≤ L2(m), so:

1

∆
E
m−1∑
j=0

∫ (n+1)∆

0
(H(j)

s )4ds ≤ L2(m)
1

∆
E

n∑
i=1

∫ (i+1)∆

i∆
(b(Xs)− b(Xi∆))4ds

≤ cL2(m)n∆2(1 + E(η4).

Next, using the Burkholder-Davis-Gundy and the Cauchy-Schwarz inequalities yields

1

∆4
E
m−1∑
j=0

(∫ (n+1)∆

0
K(j)
s dWs

)4

≤ c

∆4
E
m−1∑
j=0

(∫ (n+1)∆

0
(K(j)

s )2ds

)2

≤ c

∆4

m−1∑
j=0

E
m−1∑
j=0

n∆

∫ (n+1)∆

∆
(K(j)

s )4ds ≤ c

∆4
L2(m)n∆E

n∑
i=1

∫ (i+1)∆

i∆
σ4(Xs)ds

≤ c

∆4
L2(m)(n∆)2Eσ4(η) ≤ c′

∆4
L2(m)(n∆)2E(1 + η4)

Finally, EN4 ≤ CmL2(m)(∆2n−3 + (n∆)−2), which is the result of Lemma 6.3. �

6.7. Proof of Proposition 3.2. (1) The result follows from equality (36) and the fact
that the spaces are nested.

(2) For the second point, we use: Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ m‖Ψ−1/2

m Ψm,σ2Ψ
−1/2
m ‖op. Then,

‖Ψ−1/2
m Ψm,σ2Ψ−1/2

m ‖op = sup
‖x‖2,m=1

x′Ψ−1/2
m Ψm,σ2Ψ−1/2

m x = sup
y,‖Ψ1/2

m y‖2,m=1

y′Ψm,σ2y.

Now, if σ is bounded on A, y′Ψm,σ2y is equal to∫
(

m−1∑
j=0

yjϕj(x))2σ2(x)π(x)dx ≤ ‖σ2
A‖∞

∫
(
m−1∑
j=0

yjϕj(x))2π(x)dx = ‖σ2
A‖∞‖Ψ1/2

m y‖2,m.
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Thus, Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ m‖σ2

A‖∞.

(3) Let us prove the other variance bound. We recall that ‖A‖2F = Tr(AA′) = Tr(A′A).

Writing that Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m = (Ψ

−1/2
m Ψ

1/2
m,σ2)(Ψ

−1/2
m Ψ

1/2
m,σ2)′, we have

Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
= ‖Ψ−1/2

m Ψ
1/2
m,σ2‖2F

Using ‖AB‖2F ≤ ‖A‖2F‖B‖2op,

(40) Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
≤ ‖Ψ−1/2

m ‖2op‖Ψ
1/2
m,σ2‖2F = ‖Ψ−1

m ‖opTr(Ψm,σ2).

Lastly Tr(Ψm,σ2) =
∑m−1

j=0

∫
ϕ2
j (x)σ2(x)π(x)dx ≤ L(m)E[σ2

A(X0)] gives bound (3).

6.8. Proof of Theorem 3.1. We follow the scheme of Theorem 4.1 in Comte and Genon-
Catalot (2018). But here, the variables are not independent, the function σ(.) is unbounded
and there are two other main differences:

• the penalty

(41) p̂en(m) = κc2
ϕs

2m‖Ψ̂−1
m ‖op

n

is random and has to be compared to its deterministic counterpart, pen(m) =
κ′c2

ϕs
2m‖Ψ−1

m ‖op/n,
• there are the two additional terms, Rn,1 and Rn,2.

We denote by M̂n∆ the maximal element of M̂n∆ defined by (16), by Mn∆ the maximal
element of Mn∆ defined by (15) and by M+

n∆ the maximal element of the set defined by

(42) M+
n∆ =

{
m ∈ N, c2

ϕm(‖Ψ−1
m ‖2op ∨ 1) ≤ 4d

n∆

log2(n∆)

}
, with d is given in (16).

The value M̂n∆ is random but thanks to the constants associated with the sets, with large

probability, we prove Mn∆ ≤ M̂n∆ ≤M+
n∆ or equivalently Mn∆ ⊂ M̂n∆ ⊂M+

n∆. Set

(43) Ξn∆ :=
{
Mn∆ ⊂ M̂n∆ ⊂M+

n∆

}
, Ωn∆ = ∩m∈M+

n∆
Ωm.

Lemma 6.4. Under the Assumptions of Theorem 3.1, P(Ωc
n∆) ≤ c/(n∆)4 and P(Ξcn∆) ≤

c′/(n∆)4, where c, c′ are positive constants.

We do not give a detailed proof of this Lemma. As 4d ≤ c/2, the first bound of Lemma 6.4
is a simple consequence of Lemma 6.1. The proof of the second bound is not immediate
but quite similar to the one of Lemma 6.6 in Comte and Genon-Catalot (2018). It relies
on Inequality (ii) of Proposition 6.1 and this is the only place where this inequality is
applied.

Now we write the decomposition:

b̂m̂ − bA = (b̂m̂ − bA)1Ξn∆
+ (b̂m̂ − bA)1Ξcn∆

= (b̂m̂ − bA)1Ξn∆∩Ωn∆
+ (b̂m̂ − bA)1Ξn∆∩Ωcn∆

+ (b̂m̂ − bA)1Ξcn∆
(44)

Lemma 6.5. Under the Assumptions of Theorem 3.1, E
[
‖b̂m̂ − bA‖4n

]
≤ c(n∆)2.
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As in addition that P(Ξcn∆) ≤ c/(n∆)4 and P(Ωc
n∆) ≤ c/(n∆)4, we get

E
[
‖b̂m̂ − bA‖2n(1Ξn∆∩Ωcn∆

+ 1Ξcn∆
)
]
≤ c

n∆
.

Therefore it remains to study E(‖b̂m̂ − bA‖2n1Ξn∆∩Ωn∆
). We have

m̂ = arg min
m∈M̂n∆

{γn(b̂m) + p̂en(m)},

with p̂en(m) defined by (41). Thus, using the definition of the contrast, we have, for any

m ∈ M̂n∆, and any bm ∈ Sm,

(45) γn(b̂m̂) + p̂en(m̂) ≤ γn(bm) + p̂en(m).

Now, on the set Ξn∆ =
{
Mn∆ ⊂ M̂n∆ ⊂M+

n∆

}
, we have in all cases that m̂ ≤ M̂n∆ ≤

M+
n∆ and either Mn∆ ≤ m̂ ≤ M̂n∆ ≤M+

n∆ or m̂ < Mn∆ ≤ M̂n∆ ≤M+
n∆. In the first case,

m̂ is upper and lower bounded by deterministic bounds, and in the second,

m̂ = arg min
m∈Mn∆

{γn(b̂m) + p̂en(m)}.

Thus, on Ξn∆, Inequality (45) holds for any m ∈ Mn∆ and any bm ∈ Sm. With decom-
position (32), it yields, for any m ∈Mn∆ and any bm ∈ Sm, on Ξn∆ ∩ Ωn∆,

‖b̂m̂ − b‖2n ≤ ‖bm − b‖2n +
1

8
‖b̂m̂ − bm‖2f + 16 sup

t∈Bπm̂,m(0,1)
ν2
n(t) + p̂en(m)− p̂en(m̂)

+16 sup
t∈Bπm̂,m(0,1)

R2
n,1(t)1Ξn∆

+ 2Rn,2(b̂m̂ − b)

≤
(

1 +
1

2

)
‖bm − b‖2n +

1

2
‖b̂m̂ − b‖2n + 16

(
sup

t∈Bπm̂,m(0,1)
ν2
n(t)− p(m, m̂)

)
+

+16 sup
t∈Bπm̂,m(0,1)

R2
n,1(t)1Ξn∆

+ 2Rn,2(b̂m̂ − bm) + p̂en(m) + 16p(m, m̂)− p̂en(m̂).(46)

where Bπ
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖π = 1}.

Then, for m̂ a random index in M̂n∆, using (37),

E( sup
t∈Sm+Sm̂,‖t‖π=1

R2
n,1(t)1Ξn∆

) ≤ E( sup
t∈S

M+
n
,‖t‖π=1

R2
n,1(t)) ≤ C ∆.

The bound on Rn,2 is straightforward (see the proof of Proposition 3.1, non adaptive case)
and we get

(47) E
[
Rn,2(b̂m̂ − bm)1Ξn∆

]
≤ 1

8
E[‖b̂m̂ − bm‖2n1Ξn∆

] + 8c′∆.

The main point is the study of νn(t).

Lemma 6.6. Let (Xi∆, i = 1, . . . , n) be observations from model (1) under (A1)-(A4),
with basis satisfying (B1). Assume that Eη6 < +∞. Then there exists κ0 such that νn(t)
satisfies

E

[(
sup

t∈Bπm̂,m(0,1)
ν2
n(t)− p(m, m̂)

)
+

1Ξn∆∩Ωn∆

]
≤ C log2(n∆)

n∆



DRIFT ESTIMATION ON NON COMPACT SUPPORT FOR DIFFUSION MODELS 23

where

p(m,m′) = κ0s
2c2
ϕ

(m ∨m′)‖Ψ−1
m∨m′‖op

n∆
, s2 = E[σ2

A(X0)].

For κ′ ≥ 16κ0, 16p(m,m′) ≤ pen(m) + pen(m′) . Therefore, plugging the result of Lemma
6.6 and (47) in (46) and taking expectation yield that

1

4
E(‖b̂m̂ − b‖2n1Ξn∆∩Ωn∆

) ≤7

4
‖bm − b‖2n + pen(m) + C

log2(n∆)

n∆
+ C ′∆

+ E(p̂en(m)1Ξn∆∩Ωn∆
) + E[(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆

).

Lemma 6.7. Under the assumptions of Theorem 3.1, there exist constants c1, c2 > 0 such

that for m ∈Mn∆ and m̂ ∈ M̂n∆,

(48) E(p̂en(m)1Ξn∆∩Ωn∆
) ≤ c1pen(m) +

c2

n∆

(49) E[(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
) ≤ c2

n∆
.

Lemma 6.7 concludes the study of the expectation of the empirical risk on Ξn∆ ∩Ωn∆.
The proof of (18) is now complete. For the step from the empirical norm to the L2(π)-
norm, we proceed as in the proof of Proposition 3.1 and get (19). �

6.9. Proof of Lemma 6.5. We start as in (38) and equations following, for m replaced

by m̂. We have ‖b̂m̂ − Πm̂bA‖2n = (1/n2) ~E′Φ̂m̂Ψ̂−1
m̂ Φ̂′m̂

~E ≤ ‖Ψ̂−1
m̂ ‖op‖Φ̂′m̂ ~E/n‖22,m̂. Now we

have ‖Ψ̂−1
m̂ ‖op .

√
n∆ as m̂ ∈ M̂n∆, and m 7→ ‖Φ̂′m ~E/n‖22,m is increasing, so

‖b̂m̂ −Πm̂bA‖2n ≤
√
n∆‖Φ̂′n∆

~E/n‖22,n∆.

Thus, using the bound proved in Lemma 6.3, we get E(‖b̂m̂ −Πm̂bA‖4n) ≤ c(n∆)2. �

6.10. Proof of Lemma 6.6. To apply the Talagrand Inequality, we make the following
decompositions. Let ui = W(i+1)∆ −Wi∆,

ui = u
(1)
i + u

(2)
i , u

(1)
i = ui1|ui|≤kn

√
∆ − E

[
ui1|ui|≤kn

√
∆

]
,

set τ(x) = σA(x)1σ2
A(x)≤`n

√
∆ and σA(x) = τ(x)+θ(x). We have νn(t) = νn,1(t)+νn,2(t)+

νn,3(t), where

νn,1(t) =
1

n∆

n∑
i=1

t(Xi∆)τ(Xi∆)u
(1)
i , νn,2(t) =

1

n∆

n∑
i=1

t(Xi∆)θ(Xi∆)u
(1)
i , and

νn,3(t) =
1

n∆

n∑
i=1

t(Xi∆)σ(Xi∆)u
(2)
i .

Then we write(
sup

t∈Bπm̂,m(0,1)
ν2
n(t)− p(m, m̂)

)
+
≤

(
sup

t∈Bπm̂,m(0,1)
3ν2
n,1(t)− p(m, m̂)

)
+

+3 sup
t∈Bπm̂,m(0,1)

ν2
n,2(t) + 3 sup

t∈Bπm̂,m(0,1)
ν2
n,3(t),(50)



24 F. COMTE AND V. GENON-CATALOT

and we bound the three terms.
• First, we study the second term in (50). Recall that M+

n∆ ≤ 4dn∆/ log2(n∆) is the

dimension of the largest space of the collection M+
n∆. Then we have

E
[(

sup
t∈Bπm̂,m(0,1)

ν2
n,2(t)

)
+

1Ξn∆

]
≤ ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

E
[
ν2
n,2(ϕj)

]

= ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

Var(
1

n∆2

n∑
i=1

u
(1)
i θ(Xi∆)ϕj(Xi∆)) ≤

c2
ϕM

+
n∆‖Ψ

−1

M+
n∆

‖op

n∆2
E[(u

(1)
1 )2]E[θ2

A(X0)]

Now we use that E
[
(u

(1)
1 )2

]
≤ E[u2

1] = ∆ and that M+
n∆ is in M+

n∆, i.e.

c2
ϕM

+
n∆‖Ψ

−1

M+
n∆

‖op = c2
ϕ

√
M+
n∆

√
M+
n∆‖|Ψ

−1

M+
n∆

‖2op ≤ 4d
n∆

log2(n∆)

and we get

E
[(

sup
t∈Bπm̂,m(0,1)

ν2
n,2(t)

)
+

]
≤ c2

ϕ

1

log2(n∆)
E
[
σ2
A(X0)1σ2

A(X0)>`n
√

∆

]
≤ C

E
[
|σA(X0)|2+q

]
log2(n∆)(`n

√
∆)q/2

= CE
[
|σA(X1)|2+q

] logq−2(n∆)

(n∆)q/4
= CE

[
|σA(X1)|6

] log2(n∆)

n∆
,

by taking q = 4, and

(51) `n
√

∆ = c

√
n∆

log2(n∆)
.

• Let us now study the third term in (50). We have, relying on similar arguments,

E
[(

sup
t∈Bfm̂,m(0,1)

ν2
n,3(t)1Ξn

)
+

]
≤ ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

E
[
ν2
n,3(ϕj)

]

= ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

Var(
1

n∆

n∑
i=1

u
(2)
i σA(Xi∆)ϕj(Xi∆)) ≤

c2
ϕM

+
n∆‖Ψ

−1

M+
n∆

‖op

n∆2
E[σ2

A(X0)]E
[
(u

(2)
1 )2

]
≤

c2
ϕE[σ2

A(X0)]

∆ log2(n∆)
E
[
u2

11|u1|>kn
√

∆

]
≤

c2
ϕE[σ2

A(X0)]E
[
u6

1

]
∆ log2(n∆)(kn

√
∆)4

= C ′µ6
log2(n∆)

n∆
,

where the last line follows from the Markov inequality, µ6 = 15 = E[u6
1/∆

3] (sixth moment
of the standard gaussian) and the choices p = 4 and

(52) kn = c′
(n∆)1/4

log(n∆)
.

• To bound the first term, we use the Talagrand inequality applied to the process νn,1.
As the variables are not independent we must split again this term into several parts.

We proceed by the coupling strategy used in the proof of Proposition 6.1, applied to
vi = (ηi, Xi∆) which is also a β-mixing sequence with mixing coefficient such that βk =
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βX(k∆) ≤ ce−θk∆, as in Baraud et al. (2001a). We denote by Ω? = {vi = v?i , i = 1, . . . , n}.
We still have P((Ω?)c) ≤ pnβX(qn∆) ≤ c/(n∆)4 for qn∆ = 5 log(n∆)/θ.

On Ω?, we replace the vi by the v?i and split the term between odd and even blocks.
We have to bound, say

E
(

sup
t∈Bπm̂,m(0,1)

(ν?,1n,1)2(t)− p(m, m̂)
)
+

by using Talagrand inequality applied to mean of pn independent random variables

ν?,1n,1(t) =
1

pn

pn−1∑
`=0

(
1

2qn∆

qn∑
r=1

u
(1)?
2`qn+rτ(X?

(2`qn+r)∆)t(X?
(2`qn+r)∆)

)
.

Note that the random variables inside the sum in large brackets are not independent but
uncorrelated.

Set Y` = (u
(1)?
`,1 , X∗`,1) ∈ Rqn×Rqn , where u

(1)?
`,1 = (u

(1)?
2`qn+r)1≤`≤qn andX∗`,1 = (X?

(2`qn+r)∆)1≤`≤qn .

Then we have ν?,1n,1(t) = 1
pn

∑pn−1
`=0 [f (t)(Y`)− Ef (t)(Y`)], f (t) : Rqn × Rqn → R with

f (t)(z, x) =
1

2qn∆

qn∑
r=1

zr1|zr|≤kn
√

∆t(xr)τ(xr), z = (z1, . . . , zqn), x = (x1, . . . , xqn),

and F = {f (t), t ∈ Bπ
m′,m(0, 1)}. Using analogous tools as above, we get

E
[

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1(t)]2

]
≤ ‖Ψ−1

m∨m′‖op

∑
j≤m∨m′

1

n∆2
Var

(
u

(1)
1 τ(X0)ϕj(X0)

)

≤ ‖Ψ−1
m∨m′‖op

∑
j≤m∨m′

1

n∆2
E

[(
u

(1)
1 τ(X0)ϕj(X0)

)2
]

≤ 1

n
E
[
u2

1

]
‖Ψ−1

m∨m′‖op

∑
j≤m∨m′

E
[
τ2(X0)ϕ2

j (X0)
]
≤ E[σ2

A(X0)]c2
ϕ

(m ∨m′)‖Ψ−1
m∨m′‖op

n∆
:= H2.

Next, we have

sup
t∈Bπ

m,m′ (0,1)
Var

(
1

qn∆

qn∑
r=1

η∗r t(X
∗
r∆)σA(X∗r∆)

)

= sup
t∈Bπ

m,m′ (0,1)
Var

(
1

qn∆

qn∑
r=1

ηrt(X
∗
r∆)σA(X∗r∆)

)
=

E(η2
1)

qn∆2
sup

t∈Bπ
m,m′ (0,1)

E(t2(X0)σ2(X0))

≤ E(ε2
1)

qn∆2
sup

t∈Bπ
m′,m(0,1)

E1/2
[
σ4
A(X0)

]
E1/2[t2(X0)]‖t‖∞

≤ cϕ
qn∆

E1/2
[
σ4
A(X0)

]√
(m ∨m′)‖Ψ−1

m∨m′‖op := v
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Lastly sup
t∈Bπ

m′,m(0,1)
sup

~z∈Rqn ,~x∈Rqn

(
1

qn∆

qn∑
r=1

|zr|1|zr|≤kn
√

∆|σ(xr)1|σ2(xr)|≤`n
√

∆|t(xr)|

)

≤ c
kn
√
`n

∆1/4
sup

t∈Bπ
m′,m(0,1)

sup
x
|t(x)| ≤ cϕ

kn
√
`n

∆1/4

√
(m ∨m′)‖Ψ−1

m∨m′‖op := M1.

Therefore, by applying Talagrand Inequality:

E
(

sup
t∈Bπ

m,m′ (0,1)
(ν?,1n,1)2(t)− 2H2

)
+
≤ C1

(
v

pn
exp(−C2

pnH
2

v
) +

M2
1

p2
n

exp(−C3
pnH

M1

)
we obtain, recalling that 2pnqn = n and qn = (5/θ)(log(n∆)/∆), and m∗ = m ∨m′,

E
(

sup
t∈Bπ

m,m′ (0,1)
(ν?,1n,1)2(t)− 2H2

)
+

≤ C ′1


√
m∗‖Ψ−1

m∗‖op

pnqn∆
exp(−C ′2

√
m∗‖Ψ−1

m∗‖op) +
k2
n

√
`nm

∗‖Ψ−1
m∗‖op

p2
n

√
∆

exp

(
−C ′3

pn√
n∆kn

√
`n

) ,

Now we use that, for the first right-hand-side term,
√
xe−C2

√
x ≤ c′e−(C2/2)

√
x and c2

ϕm
∗‖Ψ−1

m∗‖op ≤
4dn∆/ log2(n∆). For the second right-hand-side term, we use the definition (51) and (52)
of `n and kn, the value of qn and c2

ϕm
∗‖Ψ−1

m∗‖op ≤ 4dn∆/ log2(n∆). This implies

E
(

sup
t∈Bπ

m,m′ (0,1)
[ν?,1n,1]2(t)− 1

6
p(m,m′)

)
+
≤ C ′′1

n∆

(
e
−(C′2/2)

√
m∗‖Ψ−1

m∗‖op +
n
√

∆

log4(n∆)
e−C

′′
3 log(n∆)

)
.

where p(m,m′) = 12H2. Next note that ‖Ψ−1
m ‖op ≥ 1/‖Ψm‖op ≥ 1/‖π‖∞, and choose c, c′

in the definition of kn and `n so that C ′′3 = 2. This yields

E
(

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1]2(t)− 1

3
p(m,m′)

)
+
≤ C ′′1
n∆

(
exp(−C4

√
m∗) +

1

n log4(n∆)

)
.

By summing up all terms over m′ ∈M+
n∆, we deduce

E
(

sup
t∈B̂m,mπ(0,1)

[ν?,1n,1]2(t)− 1

6
p(m, m̂)

)
+
≤

∑
m′

E
(

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1]2(t)− 1

6
p(m,m′)

)
+

≤ C

n∆
.(53)

It remains to bound E[(supt∈Bπm̂,m(0,1)(νn,1)2(t)−p(m, m̂))1(Ω?)c ]+. We use the infinite norm

computed to evaluate M1 and the bound on P[(Ω?)c]. �

6.11. Proof of Lemma 6.7. First write that

p̂en(m) ≤ κc2
ϕs

2m‖Ψ̂−1
m −Ψ−1

m ‖op

n∆
+
κ

κ′
pen(m)
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Moreover, for m ∈Mn∆ and on Ξn∆ (thus m ∈ M̂n∆), c2
ϕm‖Ψ−1

m ‖op ≤ (d/4)n∆/ log2(n∆)

and c2
ϕm‖Ψ̂−1

m ‖op ≤ dn∆/ log2(n∆). Thus,

c2
ϕm‖Ψ̂−1

m −Ψ−1
m ‖op1Ξn∆∩Ωn∆

= c2
ϕm‖Ψ̂−1

m −Ψ−1
m ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m −Ψ−1

m ‖op≤‖Ψ−1
m ‖op}

+c2
ϕm‖Ψ̂−1

m −Ψ−1
m ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m −Ψ−1

m ‖op>‖Ψ−1
m ‖op}

≤ c2
ϕm‖Ψ−1

m ‖op1Ξn∆∩Ωn∆
+

5

4

dn∆

log2(n∆)
1{‖Ψ̂−1

m −Ψ−1
m ‖op>‖Ψ−1

m ‖op}

We obtain:

E(p̂en(m)1Ξn∆∩Ωn∆
) ≤ 2

κ

κ′
pen(m) +

5

4

dn∆

log2(n∆)
P
(
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

)
.

Now by Proposition 2.4 in Comte and Genon-Catalot (2018),

P
(
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

)
≤ P

(
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op >

1

2

)
≤ c/(n∆)5

for m ∈Mn∆, by Lemma 6.1. This completes the proof of (48).

Now we turn to the proof of (49). Writing that ‖Ψ̂−1
m̂ ‖op ≥ ‖Ψ−1

m̂ ‖op−‖Ψ̂−1
m̂ −Ψ−1

m̂ ‖op, we
get

pen(m̂)− p̂en(m̂) ≤ κc2
ϕs

2 m̂‖Ψ̂
−1
m̂ −Ψ−1

m̂ ‖op

n∆
+ (κ′ − κ)

s2c2
ϕm̂‖Ψ−1

m̂ ‖op

n
.

Next we decompose similarly to previously, with a change in the cutoff,

c2
ϕm̂‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op1Ξn∆∩Ωn∆

= c2
ϕm̂‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m̂ −Ψ−1

m̂ ‖op≤ 1
2
‖Ψ−1

m̂ ‖op}

+c2
ϕm̂‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m̂ −Ψ−1

m̂ ‖op>
1
2
‖Ψ−1

m̂ ‖op}

≤ 1

2
c2
ϕm̂‖Ψ−1

m̂ ‖op1Ξn∆∩Ωn∆
+ 5

dn∆

log2(n∆)
1{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op>

1
2
‖Ψ−1

m̂ ‖op}.

Now, m̂ ∈ M̂n ⊂M+
n , implies that c2

ϕm̂‖Ψ−1
m̂ ‖op ≤ 4dn log2(n∆). We get

(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
≤ 4κc2

ϕs
2 dn∆

log2(n∆)
1{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op>

1
2
‖Ψ−1

m̂ ‖op}1Ξn∆∩Ωn∆

+(κ′ − κ

2
)
s2c2

ϕm̂‖Ψ−1
m̂ ‖op

n
.

We choose κ′ − κ
2 ≤ 0 that is κ ≥ 2κ′, so that the last term vanishes and then obtain:.

E [(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
]

≤ 4κc2
ϕs

2 dn∆

log2(n∆)
P
(
{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op >

1

2
‖Ψ−1

m̂ ‖op} ∩ Ξn∆ ∩ Ωn∆

)
.

Now

P
(
{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op >

1

2
‖Ψ−1

m̂ ‖op} ∩ Ξn∆ ∩ Ωn∆

)
≤

∑
m∈M+

n∆

P
(
‖Ψ̂−1

m −Ψ−1
m ‖op >

1

2
‖Ψ−1

m ‖op

)
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Then we use Proposition 2.4 (ii) in Comte and Genon-Catalot (2018), to get

P
(
{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op >

1

2
‖Ψ−1

m̂ ‖op} ∩ Ξn∆ ∩ Ωn∆

)
≤ P

(
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op >

1

4

)
.

The choice of d implies that this probability is less than K/(n∆)5. This leads to

E [(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
] ≤ c/(n∆).

This ends the proof of (49) and we can set κ′ = κ/2 and take κ ≥ 2× 12× 16. �

6.12. Appendix. We recall the following result of Tropp (2015) and the Talagrand con-
centration inequality given in Klein and Rio (2005).

Theorem 6.1 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of inde-
pendent, random matrices with common dimension d1 × d2. Assume that ESk = 0 and
‖Sk‖op ≤ L for all k. Introduce the random matrix Z =

∑
k Sk. Let ν(Z) be the variance

statistic of the sum: ν(Z) = max{λmax (E[Z′Z]), λmax (E[ZZ′])}. Then for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

Theorem 6.2. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H
and v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v.

Then for all α > 0, with C(α) = (
√

1 + α− 1) ∧ 1, and b = 1
6 ,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−
√

2bC(α)
√
α

7
nH
M

)
.

By density arguments, this result can be extended to the case where F is a unit ball of a
linear normed space.
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