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Abstract

When simulating systems of particles embedded in a Stokes flow, it is necessary
to question the treatment of close interacting particles. Indeed, when two solids
come close one to another, it becomes difficult to approximate the velocity and
pressure fields which become singular. However, taking the corresponding singu-
larity is essential, both from a numerical and physical point of view. Moreover,
experimentalists now need more and more precise results, taking into account the
effect of these interactions on the whole flow. The method we propose is based
on a decomposition of the fluid/particle problem into two subproblems: a singular
problem (when the distance between the particles goes to zero) and a regular prob-
lem. The singular field is supposed to be known and the resolution of the problem
comes back to solving the regular problem. A first approach have been proposed
in [6], where the singular field is tabulated. Here, we propose a new method, based
on an asymptotic expansion of the singular field. This method allows to catch the
effect of the lubrication on the whole velocity and pressure flows and can deal with
any forms of particles. We focus on a toy problem in two dimensions to present the
method. Numerical results are given, using a finite element discretization.

Keywords. Suspensions. Numerical simulations. Stokes. Lubrication.

Simulation numérique de suspensions : prise en compte des forces de
lubrification avec correction du champ fluide.

Résumé. Lors de simulations numériques d’écoulements de particules dans un
fluide de Stokes, se pose inévitablement la question de la gestion des interactions
entre particules proches. En effet, quand deux solides se rapprochent, les champs
de vitesse et de pression sont singuliers et il devient difficile de les approcher
numériquement. Or, la bonne prise en compte de ces interactions est primordiale,
tant d’un point de vue physique que numérique. Par ailleurs, les expérimentateurs
ont besoin de résultats de plus en plus précis, prenant en particulier en compte
l’effet de ces interactions sur la totalité du champ fluide. La méthode que nous pro-
posons ici consiste à résoudre le problème fluide/particules en le décomposant en
deux sous problèmes : un problème singulier (quand les distances inter-particulaires
tendent vers zéro) et un problème régulier. La partie singulière du champs est sup-
posée connue et le problème initial se ramène alors à résoudre un problème régulier.
Une première approche avait été proposée dans [6], dans laquelle le champs singulier
était tabulé. Nous proposons ici une nouvelle méthode, basée sur un développement
asymptotique du champs singulier. Cette méthode permet de prendre en compte
les effets de la lubrification sur les champs de vitesse et de pression dans tout le do-
maine et permettent la prise en compte de particules de formes quelconques. Afin de
présenter la méthode, on se concentre ici sur un problème jouet en deux dimensions
d’espace. Nous présentons des résultats numériques basés sur une discrétisation
éléments finis.

Mots clés. Suspensions, simulations numériques, Stokes, lubrification
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1. Introduction

Dense suspensions are present in various domains coming from industry (nuclear
waste reprocessing, concretes, reinforced plastics) to natural environment (silting
up), biology (blood tests) or even sanitary concerns (wastewater treatment). This
large area of applications gave rise to a great amount of research. However, the flow
properties of these systems are still partly misunderstood. The applications we have
in mind such as studying migration or understanding the interphase stress contribu-
tion to the total fluid stress involve dense systems, close to the maximal packing and
for which the grains are most of the time in contact (or quasi-contact). It consists
in a challenging problem, for which no result is available (neither experimental, nor
theoretical, nor numerical).

From a computational point of view, it leads to suspension simulations with
density between 30% and 50%, containing up to about one million of suspended
particles. Experimental results show that the key points to make a breakthrough in
the domain is to compute the velocity and pressure fields in the whole fluid domain
for a dense suspension, to model carefully the multi-body lubrication and contact
interactions and their feedback on the flow. An evaluation using numerical simula-
tions is not possible with classical methods since they do not calculate accurately
the fluid pressure and the resulting flow when the particles are close to each other.
As a consequence, there is a great need of designing new mathematical models,
stable and efficient numerical methods, together with HPC programming.

The objectives are the following : calculate accurately the whole pressure and
velocity fields even for coarse meshes and small distances, deal with any form of
particles (poly-disperse suspensions of spheres, fibres, anisotropic particles...), take
advantage of the existing fast solvers for Stokes equations and obtain a paralleli-
zable method. For the sake of clarity, we consider in this manuscript a toy problem
involving 2 particles in 2 dimensions. Each of the methods presented can be ea-
sily extended to multi-particle suspensions in 3 dimensions with general relative
displacements.

In section 2, we present the problem and the lubrication singularity. Then, we
explain how the relative movement of close particles can be decomposed in the
sum of two movements : a regular one and a singular one. We explain how this
decomposition has been used since the Stokesian Dynamics was proposed in 1988 [2]
to compute precisely the total force exerted on the particles. Then, we present a
recent work [6] where the decomposition was used to compute precisely the whole
fluid and pressure fields. In both of these methods, tabulations are used to compute
accurately the singular forces or fields, which prevents the use of the methods for
non mono-disperse suspensions.

In section 3, we present a new method to decompose the velocity and pressure
fields using an explicit expansion of the singular fields, which is available for any
form of particles. We explain how the decomposition can be implemented using
finite elements and finally, we present numerical results and compare the precision
of the new method with a classical direct method.

2. Numerical simulation of suspensions : a singular problem.

2.1. A toy problem. We consider (see Fig. 1) Ω = [0, 1]× [0, 1] ⊂ R2. We denote
by (Bi)i=1,2 two rigid spheres in Ω. B = ∪iBi is the whole rigid domain. We suppose
that Ω \ B̄ is filled with a Newtonian fluid governed by the Stokes equations. The
two spherical particles are aligned along the horizontal direction : if Xi ∈ R2 denotes
the center of particle i, we have

X1 = (0.5− d/2− r1, 0.5) and X2 = (0.5 + d/2 + r2, 0.5)
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where ri is the radius of particle i and d stands for the distance between the two
particles.

Ω \ B̄

X1

×
B1 X2

×
B2

r1
r2

d

V1 V2

Figure 1. Notations.

We consider homogeneous Dirichlet boundary conditions on ∂Ω. We suppose that
the velocities V1, V2 of the particles are given and are oriented along the horizon-
tal direction. The problem we consider consists in computing the corresponding
pressure field, velocity field and forces :

(1)



Find (u,p) ∈ H1(Ω \ B̄)× L2(Ω \ B̄) such that

−4u +∇p = 0 in Ω \ B̄
∇ · u = 0 in Ω \ B̄

u = 0 on ∂Ω

u = Vi on ∂Bi, i = 1, 2

and compute the corresponding forces exerted on the particles :

Fi =

∫
∂Bi

σ(u,p) · n, i = 1, 2.

where σ is the stress tensor and n the outward normal to the boundary of the
particles.

2.2. A singular problem due to lubrication. It is well known that the main
difficulty in designing numerical methods for approximating (1) arises when the
configuration involves close particles. Indeed, when the two particles are almost in
contact, the possible discrepancy between the velocities on both sides of the thin
gap between them leads to large variations of the velocity fields. This phenomena
combines with the incompressibility constraint to generate lubrication forces : large
hydrodynamic forces with densities located in small areas.

More precisely, let us consider the toy problem for two spheres of radius 1 with
opposite velocities V1,2 = ±ex (see Figure 2, extracted from [6] where the force
distribution was numerically computed using a decomposition in spherical harmo-
nics). The magnitude of the force density exerted on ∂B1 is displayed on the figure
for different values of d. We can observe that the force densities concentrate on
spherical caps with radii of order of

√
d.

For such large localized densities, if one wants to compute the hydrodynamic
forces exerted on the particles, a large number of degrees of freedom is required in
order to capture the relevant phenomenon. Therefore, simulations based on volume
discretization (such as finite element or finite volume methods) will require very
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B1

θ

B2

d

ex −ex

Figure 2. Pair of close spheres of radius 1. Notations (left). Ma-
gnitude (middle) and normalized magnitude (right) of the force
density near the (almost) contact point on ∂B1 for various dis-
tances : d = 2.10−2 (◦ ◦ ◦), d = 4.10−2 (? ? ?), d = 8.10−2 (+ + +)
and d = 16.10−2 (· · ·).

fine meshes to take these forces into account. For spectral discretizations (such
as multipole methods) this corresponds to a truncation order L satisfying L �
1/
√
d. Such a precision cannot be achieved in simulations of 3-dimensional dense

suspension and a numerical strategy has to be implemented to take the lubrication
effects into account.

2.3. A singular/regular decomposition of the movement. All the numerical
methods to include lubrication into simulations are based on two key ingredients.
First, the movement of two close particules can be decomposed in the sum of two
movements : a regular one plus a singular one. Then, once the decomposition is
achieved, the behavior of the singular part of the solution can be investigated in a
theoretical framework and the regular movement can be easily approximated using
numerical solvers.

More precisely, using the linearity of Stokes equations, problem (1) can be decom-
posed in two similar problems with modified boundary conditions on the particles
(see Fig. 3). In the first regular problem, the two particles undergo a global mo-
vement of translation. The solution of this problem do not contain singularity in
the sense that the norm of the solution is bounded when the distance goes to zero.
In the second singular problem, they move one towards the other with the same
velocity. The key idea to estimate the singular effects due to the singular boundary
conditions is to note that the asymptotic behavior of the solution is well known,
provided we consider that the two particles are embedded in an unbounded fluid.

Such a strategy has been proposed by Durlofsky, Brady and Bossis in 1988 to take
lubrication into effects in Stokesian Dynamics simulations [2] and has been widely
used since then. Recently, their method has also been used to include lubrication
effects in direct solvers [4]. Their founding remark is the following : supposing that
the particles are embedded in an infinite fluid and have the same radius, the solution
to the problem with opposite velocities Vsing

1,2 = ±ex only depends on the distance
between the particles. Then, in that case, the forces exerted on the two particles
can be expressed as a (vector-valued) function of d : d → Fsing

i,R2 (d). This function

can be accurately approximated for any distance using its well-know asymptotic
expansion when d goes to zero [1], together with an accurate tabulation for greater
distances. As a consequence, since the asymptotic behavior when the distance goes
to zero of the initial problem in Ω is the same as the one in R2, the forces exerted
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B1 B2
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V1 = V1 ex V2 = V2 ex

= V1+V2
2 ×
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B1 B2

d
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singular movement

B1 B2

d

ex −ex

Figure 3. Decomposition of the movement into the sum of two
movements : a regular movement and a singular movement.

on the particles can be computed as follows :

Fi = Fsing
i,R2 (d) + Freg

i , i = 1, 2

where the remaining part of the force Freg
i is regular (i.e. is bounded when the

distance goes to zero) and can be computed using any numerical solver with a
small number of degrees of freedom.

This singular/regular decomposition provides an accurate approximation of the
forces exerted on the particles. However, using this method, there is no way to
obtain velocity and pressure fields including lubrication effects. Here, the fluid solver
is used to compute the regular part of the forces and no correction is achieved on
the flow to provide an approximation of the fields (u,p) solution to (1). Moreover,
a precise tabulation of the forces is possible, provided the corresponding function
only depends on the distance between the particles. In the case it depends on two
parameters or more, this step is too demanding in CPU time, even if achieved off-
line. This prevents the use of this correction method in simulations of suspensions
made of poly-disperse spherical particles (the singular part of the forces depends
both on the distance and the ratio between the radius of the particles) or suspensions
of non spherical particles (the singular part of the forces depends on the distance,
the form and the relative position of the particles).

3. A singular/regular decomposition of the flow

3.1. Description of the method. We proposed in [6] a new method based on a
singular/regular decomposition of the whole flow. We write

(2)

{
u = ureg + using,

p = preg + psing.

The singular field is supposed to catch the singularity of the solution when the
distance goes to zero in such a way that the remaining regular field is bounded
independently of the distance in H1(Ω \ B̄) × L2(Ω \ B̄). Let us for the moment
suppose that such a singular field can be computed (this point will be discussed
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later). Then, to solve the initial problem (1) for (u,p), it is enough to compute
(ureg,preg), solution to the following regular problem :

(3)



Find (ureg,preg) ∈ H1(Ω \ B̄)× L2(Ω \ B̄) such that

−4ureg +∇preg = 4using −∇psing in Ω \ B̄
∇ · ureg = −∇ · using in Ω \ B̄

ureg = −using on ∂Ω

ureg = Vi − using on ∂Bi, i = 1, 2

and compute the corresponding forces exerted on the particles :

F̃reg
i =

∫
∂Bi

σ(ureg,preg) · n, i = 1, 2.

3.2. Choice for the singular field. If (ureg,preg) is computed as a solution to
problem (3), the field (u,p) given by (2) is solution the initial problem (1), whatever
the singular field is. The remaining question is to manage to design (using,psing)
such that the regular problem (3) can be numerically approximated with a number
of degrees of freedom not depending on the distance between the particles.

This can be achieved using, as for the Stokesian Dynamics correction, the singular
part of the movement described in Fig. 3. Note that the decomposition has to be
achieved as soon as the relative movement of the two particules is non zero i.e. as
soon as V1 is different from V2. In [6], the singular field (using,psing) is defined as

(using,psing) =
V2 − V1

2
(using

R2 ,psing
R2 )

where (using
R2 ,psing

R2 ) is the solution to the fluid-particle problem in R2 with the

boundary conditions Vsing
1,2 = ±ex. Again, for particles with the same radius, this

singular field only depends on the distance between the particles and in [6] we
propose to tabulate its coefficients in a well-chosen basis. This leads to a precise
method to compute the solution to problem (1). Here, the lubrication is taken into
account in the computed flow (u,p). However, since the singularity is computed
using tabulations, the method is limited to mono-disperse suspensions of spherical
particles. Moreover, the singular field is not truncated and therefore, the boundary
conditions for the regular problem has to be modified in the whole boundary of
Ω \ B̄, which will induce heavy computations when extending the method to dense
suspensions.

Here, we propose a new choice for the singular field, based on an asymptotic ex-
pansion of the flow when the distance goes to zero. The computations to obtain such
an expansion are similar to the ones achieved in [1] to obtain the asymptotic beha-
vior of the total lubrication force. More recently, in [5], the authors provide explicit
formulas for the expansion and prove that the remaining part of the flow is regular
in the sense that its norm is bounded in H1

0 (Ω \ B̄) × L2(Ω \ B̄) independently of
the distance between the particles. We propose to use

(4) (using,psing) =
V2 − V1

2
(using

exp ,p
sing
exp )

where (using
exp ,p

sing
exp ) is a truncation of the explicit asymptotic expansion for the fluid-

particle problem in R2 with the boundary conditions Vsing
1,2 = ±ex. An example of

such a field is given in Fig 4.
Then, solving the corresponding regular problem (3) and computing the solution

as the sum of the regular and singular fields(2), the lubrication is taken into account
in the computed flow (u,p). The new singular field is explicit and only depends
(explicitly) on the local geometry of the particles near the (almost) contact point
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Figure 4. Truncated asymptotic singular field. r1 = 0.07, r2 =
0.1, d = r2/10. psing

exp (top) and using
exp , horizontal component (bot-

tom left) and vertical component (bottom right).

between them. Then, the method can be implemented for poly-disperse suspensions
of spherical particles and for various forms of particles. Moreover, the singular field
is localized in space, which avoids too many computations when modifying the
boundary conditions to solve the regular problem (3).

3.3. Numerical implementation. We propose to solve (3) using a finite element
method. Let Vh ⊂ H1(Ω \ B̄) and Mh ⊂ L2(Ω \ B̄) be a stable pair of finite ele-
ment spaces for the Stokes problem. The singular field is given by the truncated
asymptotic expansion (4). We want to compute the approximation of the regular
field (ureg

h ,preg
h ) solution to

(5)



Find (ureg
h ,preg

h ) ∈ Vh ×Mh such that

−4ureg
h +∇preg

h = 4using −∇psing in Ω \ B̄
∇ · ureg

h = −∇ · using in Ω \ B̄
ureg
h = 0 on ∂Ω

ureg
h = Vi − using on ∂Bi, i = 1, 2,

where the right-hand side is computed as precisely as possible. Then, from (2) ,the
discrete field approximating (u,p) solution to problem (1) is

uh = using + ureg
h ∈ using + Vh

ph = psing + preg
h ∈ psing +Mh

Non-homogeneous Stokes problems as (3) or (5) have a unique solution if and
only if a compatibility condition is satisfied by the right-hand side of the problem,
expressing the fact that one may have∫

Ω\B̄
∇ · ureg =

∫
∂Ω\B̄

ureg · n and

∫
Ω\B̄
∇ · ureg

h =

∫
∂Ω\B̄

ureg
h · n.

Concerning the continuous problem (3), the compatibility condition is verified since∫
Ω\B̄
∇ · using =

∫
∂Ω\B̄

using · n.
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It is not true anymore for the discrete problem (5). Indeed, inside Ω, the divergence
equation gives ∫

Ω\B̄
∇ · ureg

h =

∫
Ω\B̄
∇ · using.

Concerning the boundary we have

ureg
h |∂Ω\B̄ = Vi − Proj

(
using

)
on ∂Bi

where Proj is the projection onto the space made of the traces on ∂Ω \ B̄ of the
functions of Vh. Then,∫

Ω\B̄
∇ · ureg

h =

∫
Ω\B̄
∇ · using 6=

∫
∂Ω\B̄

Proj
(
using

)
· n =

∫
∂Ω\B̄

ureg
h · n.

As a consequence, problem (5) may not have solutions.
To circumvent this problem, we chose ε > 0 and we introduce a modified discrete

regular problem :

(6)



Find (ureg
h,ε ,p

reg
h,ε ) ∈ Vh ×Mh such that

−4ureg
h,ε +∇preg

h,ε = 4using −∇psing in Ω \ B̄
∇ · ureg

h,ε + εpreg
h,ε = −∇ · using in Ω \ B̄

ureg
h,ε = 0 on ∂Ω

ureg
h,ε = Vi − using on ∂Bi, i = 1, 2.

This problem has a unique solution. Testing the divergence equation with vh ≡ 1 ∈
Vh we see that

ε

(∫
Ω\B̄

p

)
= −

∫
Ω\B̄
∇ · using +

∫
∂Ω\B̄

Proj
(
using

)
· n 6= 0.

The classical unknown constant in the pressure field will be chosen by the solver so
as to compensate the fact that the compatibility condition is not satisfied from the
numerical point of view.

The constant ε has to be chosen sufficiently small in order that the error intro-
duced in the divergence equation is smaller than the one due to the finite element
discretization. On the other hand, the finite element discretization being fixed, let-
ting ε go to zero in the numerical tests shall induce numerical errors.

4. Numerical results

The numerical tests have been implemented with freefem++ [3]. We chose Vh =
P 1
b and Mh = P 1. The configuration is the one given in Fig. 1 with r1 = 0.07,
r2 = 0.1, V1 = ex, V2 = −ex. Three distances have been tested : d = r2/2,
d = r2/5 and d = r2/10.

We plot in Fig. 5 the numerical solutions obtained for d = r2/10. The solution is
given by the singular/regular decomposition with ε = 10−4 and using a quadrature
formula of order 10 to compute the right-hand side of the regular problem. The
direct solver Crout is used to solve the linear system. The reference is computed
using the direct finite element method for (1), the same direct linear system solver,
and a very fine mesh (until convergence). The constant in the pressure field is
computed such that

∫
p = 0. We can observe that, even for a very coarse mesh, the

solution is well approximated.
To be more precise, we plot on Fig. 6 the relative errors in norm L2(Ω \ B̄)

for the pressure and H1(Ω \ B̄) for the velocity. The convergence of the direct
method and the decomposition method are compared for different distances. We
can observe that the classical order of convergence for the P 1

b ×P 1 approximation of
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Figure 5. Numerical solution. Reference (left) and numerical so-
lution (right). Zoom of the mesh in the gap between the particles
(top), pressure (line 2), horizontal velocity (line 3) and vertical
velocity (line 4)
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Stokes equations is recovered. The decomposition method is equivalent to the direct
method for d = r2/2 but becomes more precise than the direct method when the
distance between the particles decreases. These numerical tests also confirm that
the precision is less dependent on the distance when the decomposition method is
used.

5. Conclusion

We presented in this manuscript a new method to include lubrication in nume-
rical simulations of particles. The lubrication effects are transmitted to the whole
velocity and pressure flows. The singularity is taken into account by solving a nu-
merical regular problem which is a Stokes problem with a modified right-hand side.
This allows the use of existing fast solvers to compute its solution. It can deal
with poly-disperse suspensions and with any forms of particles since the explicit
asymptotic expansion only depends on the local geometry of the particles.

This method can straightforwardly be extended to the three dimensional case
with any number of particles. In this manuscript we tested the singularity induced
by normal relative translation of the two particles. The general relative movement of
two particles can be decomposed as a regular movement (a global rigid movement)
plus a singular movement including normal and tangential relative translations as
well as relative rotations. All these singular relative movements can be taken into
account in the simulations since the asymptotic expansion of the corresponding
singular fields are available.

We believe this method can be useful for intensive simulations of dense three-
dimensional suspensions. Indeed, in that case, the lubrication effects are predo-
minant but only coarse meshes can be used. Moreover, the size of the problem
imposes to use iterative solvers. Using the decomposition method, we end with a
regular numerical problem and then, less iterations of the solvers shall be needed
to obtain a given precision. Moreover, the computation of the right-hand side can
be parallelized since the contributions of each pairs of particles are independent.
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Figure 6. Relative errors versus h for the direct method (· · · )
and the decomposition method (—). The tests are run for different
values of the distance : d = r2/2 (+), d = r2/5 (◦) and d = r2/10
(?). Slope 2 is given on the top plot (black line). Slope 1 is given
on the middle and bottom plot (black line).


