
HAL Id: hal-01916425
https://hal.science/hal-01916425v3

Submitted on 27 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A metric interpretation of the geodesic curvature in the
Heisenberg group

Mathieu Kohli

To cite this version:
Mathieu Kohli. A metric interpretation of the geodesic curvature in the Heisenberg group. Journal
of Dynamical and Control Systems, 2020, 26 (1), pp.159-174. �10.1007/s10883-019-09444-7�. �hal-
01916425v3�

https://hal.science/hal-01916425v3
https://hal.archives-ouvertes.fr


A METRIC INTERPRETATION OF THE GEODESIC

CURVATURE IN THE HEISENBERG GROUP

MATHIEU KOHLI1

Abstract. In this paper we study the notion of geodesic curvature of
smooth horizontal curves parametrized by arc lenght in the Heisenberg
group, that is the simplest sub-Riemannian structure. Our goal is to
give a metric interpretation of this notion of geodesic curvature as the
�rst corrective term in the Taylor expansion of the distance between two
close points of the curve.
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1. Introduction

Since the �rst half of the nineteenth century and the introduction by Carl
Friedrich Gauss of the concept of intrinsic curvature of a surface, several
other notions of curvature have been de�ned. Curvature functions provide
a scalar measure of the local geometry around each point of a space or of a
geometric object embedded in a space. Our work, that focuses on geodesic
curvature of curves in the Heisenberg group, is motivated by [BTV17], [DV16]
and [CL13]. Our contribution is to show that the geodesic curvature of a
curve corresponds to a measure of a metric property of that same curve.
More precisely, we prove that this geodesic curvature appears in the Taylor
expansion of the distance between two close points of the curve.

Let us recall what happens in the Euclidean case. In this setting, the
classical notion of geodesic curvature of a curve ζ parametrized by arc length
at a point ζ(t) is simply de�ned as ‖ζ ′′(t)‖. In a Riemannian manifold one
can do the same, since it is possible to di�erentiate the velocity ζ ′ along
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2 MATHIEU KOHLI

the curve ζ thanks to the canonical connection ∇, called the Levi-Civita
connection that has no torsion and that respects the metric. The previous
formula for the geodesic curvature at a point ζ(t) becomes ‖∇ζ′(t)ζ ′‖. The
geodesic curvature of a curve quanti�es its deviation with respect to the
Levi-Civita connection.

Notice that in a two dimensional oriented Riemannian surface, we can
de�ne the signed geodesic curvature as ±‖∇ζ′(t)ζ ′‖ where the sign is positive

if and only if the frame
(
ζ ′(t),∇ζ′(t)ζ ′

)
is positively oriented. This is relevant

since if two smooth curves parametrized by arc length have the same initial
point, the same initial velocity and the same signed geodesic curvature as
a function of time, they are actually the same curve. This result can be
interpreted as a �Frenet-Serret� theorem in a two dimensional Riemannian
space. For more information about Frenet-Serret theory, see for example
[Man76].

To come back to an arbitrary dimension, another perspective on the geo-
desic curvature of a curve parametrized by arc lenght is the metric one. The
key idea is that the geodesic curvature of such a curve is zero along the whole
curve if and only if it is a geodesic. In other words, the geodesic curvature
is identically zero if and only if the distance between ζ(s) and ζ(s + t) is
equal to t for every s and for t small enough. Now for an arbitrary curve
parametrized at unit speed, the distance between ζ(s) and ζ(s+ t) is smaller
than t and we expect the correction should depend on the geodesic curvature.
As a matter of fact, as a consequence of the expansion of the exponential
map, we obtain that for every time s,

d2 (ζ(s), ζ(s+ t)) = t2 −
‖∇ζ′(s)ζ ′‖2

12
t4 +O(t5).(1)

A natural generalization of Riemannian spaces are sub-Riemannian spaces.
In order to understand what happens in such spaces, we begin by studying
the easiest example, namely the Heisenberg group.

The Heisenberg group H is R3 whose coordinates we call x, y and z en-
dowed with a two dimensional distribution spanned by

X1 =
∂

∂x
− y

2

∂

∂z
, X2 =

∂

∂y
+
x

2

∂

∂z
,

which we choose to be an orthonormal frame.
A smooth curve ζ(t) = (x(t), y(t), z(t)) that is everywhere tangent to the

distribution is said to be horizontal (we will de�ne the notion of horizontality
for non necessarily smooth curves afterwards).

We consider a smooth horizontal curve ζ such that the norm of ζ ′ decom-
posed on the orthonormal frame (X1, X2) is everywhere one and we de�ne
the characteristic deviation of ζ as

hζ(t) = ẋ(t)ÿ(t)− ẏ(t)ẍ(t).(2)

Now if we write

ζ ′(t) = cos(θ(t))X1 + sin(θ(t))X2,
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then ẋ(t) = cos(θ(t)) and ẏ(t) = sin(θ(t)) so we can simplify the expression
of hζ :

hζ(t) = θ̇(t).(3)

We now summarize in a proposition two properties we already mentioned
concerning the curvature of curves in the Riemannian case, that are also
valid in the Heisenberg group. We prove the following proposition in this
paper and it is also possible to recover it from [CL13]

Proposition 1.1. i.If ζ1 :]−T, T [→ H and ζ2 :]−T, T [→ H are two smooth
horizontal curves parametrized by arc length such that for every t in ]−T, T [,

hζ1(t) = hζ2(t)

then there exists ι an isometry of the Heisenberg group such that

ζ2 = ι ◦ ζ1.

ii. The derivative of the characteristic deviation ḣζ is identically equal to
zero along ζ if and only if ζ is a geodesic.

To use the same term as we did in the Riemannian setting, we can say
that a �Frenet-Serret� characterization of ζ is given by ζ(0), ζ ′(0) and the
knowledge of hζ(t) at all times t.

Furthermore, according to the second point of the previous proposition,
the quantity

kζ(t) := ḣζ(t) = θ̈(t)

is called the geodesic curvature of ζ at time t.
We are interested in the in�uence of this geodesic curvature on the distance

between two close points of the curve we are considering. The main result
we prove is the following :

Theorem 1.2. If ζ :]−T, T [→ H is a smooth horizontal curve parametrized
by arc length in the Heisenberg group then

d2H(ζ(0), ζ(t)) = t2 −
(
kζ(0)

)2
720

t6 +O(t7).

We notice that there is a qualitative jump between what happens in the
Riemannian case and the Heisenberg group. Indeed, in the Heisenberg group,
the correction in the Taylor expansion of the squared distance between two
close points of a curve appears at order six, when in Riemannian spaces, it
appears before, at order four.

However, we may wonder if the Taylor expansion of the distance between
two points of a horizontal curve in the Heisenberg group is the limit of the
Taylor expansion of that distance in Riemannian structures that �tend to�
the Heisenberg group ? This is not the case if we consider the easiest way
in which we can imagine Riemannian spaces that tend to the Heisenberg
group, but there is nevertheless a link between these Taylor expansions. In
fact this comes from the interpretation of the characteristic deviation of a
curve in the Heisenberg group that was given in [BTV17] in terms of Rie-
mannian curvature of the same curve in Riemannian spaces "approximating"
the Heisenberg group.
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We then complete our brief overview of the characteristic deviation of a
curve. We link this deviation to the covariant derivative of the velocity of the
curve with respect to ∇, the Tanaka-Webster connection in the Heisenberg
group. More speci�cally, we have

|hζ(t)| =
∥∥∇ζ′(t)ζ ′∥∥H ,

which entails that

|kζ(t)| =
∣∣∣∣ ddt ∥∥∇ζ′(t)ζ ′∥∥H

∣∣∣∣ .
We also notice that the characteristic deviation of a curve corresponds to the
Euclidean curvature of the projection of the curve along the z-axis on the
(x, y)-plane. In particular, we �nd out that curves with constant geodesic
curvature are projected onto so called �Euler spirals�.

Acknowledgment. I thank my phD advisor Davide Barilari for having pre-
sented me with the di�erent aspects of sub-Riemannian curvature that have
been studied up to now and encouraged me to work in that direction as well
as for having showed me how to write a paper in a scienti�c style.

2. The Heisenberg group

Here we will quickly present what we need to know about the Heisenberg
group. We also refer to [Mon02], [Bel96], [ABB17] and [Rif14]. We have
already introduced the Heisenberg group H as R3 with coordinates x, y and
z endowed with a sub-Riemannian structure whose distribution is spanned
by the orthonormal frame

X1 =
∂

∂x
− y

2

∂

∂z
, X2 =

∂

∂y
+
x

2

∂

∂z
.(4)

We also de�ne

X3 =
∂

∂z
.(5)

We call g the metric on the distribution whose orthonormal frame is
(X1, X2).

We say that the curve ζ :]−T, T [→ H is horizontal if ζ is a Lipshitz curve
that is almost everywhere tangent to the distribution, whose speed de�ned
with respect to the orthonormal frame (X1, X2) is measurable and essentially
bounded.

We can compute the length of a horizontal curve by integrating its norm
along the curve. The distance between two points is de�ned as the in�mum
of length of curves that link those two points. This in�mum happens to be
a minimum.

We also emphasize the fact that the Heisenberg group is in fact a Lie
group on which the sub-Riemannian structure is left-invariant, where the
group law ∗ is given by :

(x1, y1, z1) ∗ (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − y1x2)

)
.

(6)
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Remark 1. In order to study properties of curves that only depend on the
sub-Riemannian distance, it is su�cient to consider curves that leave from
the origin at time zero, since every other curve can be sent to such a curve
by the isometry that corresponds to the left-multiplication by the inverse of
the initial point.

Moreover, we introduce dilations. Speci�cally we call "dilation centered
at 0 of coe�cient r", where r is a positive real number, the map

δr : H −→ H
(x, y, z) 7−→

(
rx, ry, r2z

)
.

Dilations preserve the distribution and transform the Heisenberg group's
norm ‖ · ‖H of a horizontal vector V through the following process :

‖δr∗(V )‖H = r‖V ‖H.(7)

Moreover, dilations satisfy a certain homogeneity property. For any points
A and B in H :

dH (δr(A), δr(B)) = rdH (A,B) .

Another interesting piece of information about the Heisenberg group is
the expression of the geodesics in this space. We recall that a geodesic is a
horizontal curve γ : R → H parametrized at constant speed such that for
any t in R and for s in R close enough to t, the lenght of the curve γ between
times t and s is equal to the distance between γ(t) and γ(s).

It is su�cient to give the expression of geodesics parametrized by arc
lenght leaving from the origin since the Heisenberg group is a Lie group, it
follows that all the other geodesics will be left translations and reparametriza-
tions of these geodesics.

Proposition 2.1. A curve γ is a geodesic parametrized by arc length leaving
from the origin at time zero if, and only if, there exist two real numbers ω
and θ0 such that the coordinates (x(t), y(t), z(t)) of γ(t) are

x(t) = sin(ωt+θ0)−sin(θ0)
ω

y(t) = cos(θ0)−cos(ωt+θ0)
ω

z(t) = 1
2ω2 (ωt− sin (ωt)) ,

for ω 6= 0. When ω = 0 these formulas become : x(t) = t cos (θ0)
y(t) = t sin (θ0)
z(t) = 0.

3. Main result

We study ζ :]−T, T [→ H a unitary speed smooth horizontal curve leaving
from (0, 0, 0). By using notations we have previously introduced, we can
write :

ζ ′(t) = cos(θ(t))X1 + sin(θ(t))X2,

where θ is a C∞ smooth function. In coordinates this means that :
ẋ(t) = cos(θ(t))
ẏ(t) = sin(θ(t))

ż(t) = −y(t)
2 cos(θ(t)) + x(t)

2 sin(θ(t)),
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where ζ(t) = (x(t), y(t), z(t)). We have the following properties.

Proposition 3.1. Let x(t), y(t) and z(t) be the coordinates of ζ(t). They
are C∞ smooth functions of t and

ż(0) = z̈(0) = 0.

Moreover,

• Either for every integer i > 1, θ(i)(0) = 0 and in this case for all

integers j, z(j)(0) = 0 and for every i integer greater or equal to two,

x(i)(0) = 0 and y(i)(0) = 0.

• Or there exists an integer i > 1 such that θ(i)(0) 6= 0 which entails

that for t > 0 close enough to zero, θ̇(t) is non-vanishing and the
two following identities hold true :

x2(t) + y2(t) = 4

∫ t

0

∫ u

0

(
−θ̇(s)ż(s) + 1

2

)
dsdu,(8)

...
z (t) = θ̈(t)

∫ t

0

(
−θ̇(s)ż(s) + 1

2

)
ds− θ̇2(t)ż(t) + θ̇(t)

2
.(9)

Proof. First let us notice that x(0) = y(0) = z(0) = 0 since ζ leaves from
(0, 0, 0) by de�nition. The smoothness of x and y with respect to time comes
from the fact that θ is C∞ smooth and that

x(t) =

∫ t

0
cos(θ(s))ds and y(t) =

∫ t

0
sin(θ(s))ds.

The coordinate z(t) is also a smooth function of t according to its expression

z(t) =

∫ t

0
−y(s)

2
cos(θ(s)) +

x(s)

2
sin(θ(s))ds.

Then we show that z satis�es a di�erential equation.
We start by writing :

ż =
xẏ − yẋ

2
, ẍ = −θ̇ẏ, ÿ = θ̇ẋ.(10)

In particular, ż(0) = 0 and if we di�erentiate z once more

z̈ =
θ̇ (xẋ+ yẏ)

2
.(11)

This implies that z̈(0) = 0 and if we go further in the di�erentiation

...
z =

θ̈ (xẋ+ yẏ) + θ̇(

=1︷ ︸︸ ︷
ẋ2 + ẏ2) + θ̇2(−xẏ + yẋ)

2
.

If we multiply this last identity by θ̇ and combine it with (10) and (11), we
obtain

θ̇
...
z = θ̈z̈ − θ̇3ż + θ̇2

2
.(12)

Moreover, (10) and (11) allow us to assert that if for every integer i greater

or equal to one θ(i)(0) = 0, then for every i integer greater or equal to two,

x(i)(0) = 0, y(i)(0) = 0 and z(i)(0) = 0.
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On the other hand if we consider θ such that there exists an integer i > 1
that satis�es θ(i)(0) 6= 0 then for t > 0 close enough to zero, θ̇(t) is non-

vanishing and for such t we can divide the di�erential equation (12) by θ̇2(t)
and �nd out that :

∂

∂t

(
z̈(t)

θ̇(t)

)
= −θ̇(t)ż(t) + 1

2
.

Therefore the di�erence between z̈(t)

θ̇(t)
and

∫ t
0

(
−θ̇(s)ż(s) + 1

2

)
ds is a con-

stant. But since (11) holds we know that

z̈(t)

θ̇(t)
=
x(t)ẋ(t) + y(t)ẏ(t)

2

t→0−→ 0.

So that for t > 0 small enough such that θ̇(t) 6= 0 :

z̈(t)

θ̇(t)
=

∫ t

0

(
−θ̇(s)ż(s) + 1

2

)
ds.(13)

But through (11), we are able to �nd a second expression for z̈(t)

θ̇(t)
:

z̈(t)

θ̇(t)
=

1

4

∂

∂t

(
x2(t) + y2(t)

)
.

As a consequence of the two previous formula, for t > 0 small enough

∂

∂t

(
x2(t) + y2(t)

)
= 4

∫ t

0

(
−θ̇(s)ż(s) + 1

2

)
ds.

The fact that ∂
∂t

(
x2(t) + y2(t)

)
is continuous and that x2(0) + y2(0) = 0 is

su�cient to be sure that for t small enough

x2(t) + y2(t) = 4

∫ t

0

∫ u

0

(
−θ̇(s)ż(s) + 1

2

)
dsdu.

Finally, still in the case where there exists an integer i > 1 such that
θ(i)(0) 6= 0, we consider t > 0 small enough to have θ̇(t) 6= 0 and we divide

the di�erential equation (12) we have already established by θ̇(t) :

...
z (t) = θ̈(t)

z̈(t)

θ̇(t)
− θ̇2(t)ż(t) + θ̇(t)

2
.

Then we replace z̈(t)

θ̇(t)
using (13) and we �nd out that :

...
z (t) = θ̈(t)

∫ t

0

(
−θ̇(s)ż(s) + 1

2

)
ds− θ̇2(t)ż(t) + θ̇(t)

2
.

�

3.1. Proof of Theorem 1.2. We recall that in the Introduction, we stated
as Theorem 1.2, that if ζ is a smooth horizontal curve parametrized by arc
length in the Heisenberg group then

d2H(ζ(0), ζ(t)) = t2 −
(
kζ(0)

)2
720

t6 +O(t7).
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Proof. We know from [ABR13, Chapter 5, section 5.7. about the Heisenberg
group] that the squared distance between ζ(t) and the origin, which is also
ζ(0) can be expressed as

d2H(ζ(0), ζ(t)) =
x2(t) + y2(t)

sinc2 ◦ φ
(

z(t)
x2(t)+y2(t)

) ,(14)

where φ is the inverse function of

ψ : [−π, π] −→ R
u 7−→ 1

4

(
u

sin2(u)
− cot(u)

)
.

We notice that we can rewrite

ψ(u) =
2u− sin(2u)

4(1− cos(2u))
.

Then we check that

ψ(u) =
u

6
+
u3

45
+O

(
u5
)
.

And since ψ is odd and analytic, so is φ = ψ−1 and

φ(u) = 6u+ αu3 +O
(
u5
)
.

Now

u = ψ ◦ φ(u) = u+

(
24

5
+
α

6

)
u3 +O

(
u5
)
,

so α = −144
5 and

φ(u) = 6u− 144

5
u3 +O

(
u5
)
.

We recall that sinc, the cardinal sine function is de�ned as the entire function

such that sinc(x) = sin(x)
x for all x di�erent from 0, which implies that

sinc(u) = 1− u2

6
+

u4

120
+O

(
u6
)
.

We are then able to compute

1

sinc2 ◦ φ(u)
= 1 + 12u2 − 144

5
u4 +O

(
u5
)
.(15)

Now we will need to know the Taylor expansion of z at time zero. We
are interested only in the case where there exists an integer i > 1 such that
θ(i)(0) 6= 0. Indeed, in the other case, we have already noticed in Proposition

3.1 that for all integers i, z(i)(0) = 0. First, by Proposition 3.1, we have that
z(0) = ż(0) = z̈(0) = 0. Then we write (9)

...
z = θ̈

∫ t

0

(
−θ̇(s)ż(s) + 1

2

)
ds− θ̇2ż + θ̇

2
.

We evaluate this identity at zero and �nd out that :

...
z (0) =

θ̇(0)

2
.(16)
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Then we di�erentiate (9) and evaluate the identity we �nd at zero to obtain

z(4)(0) = θ̈(0).(17)

Similarly when we di�erentiate (9) twice and look at what we �nd at t = 0
we get

z(5)(0) =
3θ(3)(0)

2
− θ̇3(0)

2
.(18)

These formula for the �rst di�erentials of z at zero entail that

z(t) =
θ̇(0)

12
t3 +

θ̈(0)

24
t4 +

(
θ(3)(0)

80
− θ̇3(0)

240

)
t5 +O(t6).(19)

A last ingredient we will need in order to complete the proof is the ex-
pression of the �rst di�erentials of x2 + y2 at zero. In order to �nd these
di�erentials, we use Proposition 3.1 :

x2(t) + y2(t) = 4

∫ t

0

∫ u

0

(
−θ̇(s)ż(s) + 1

2

)
dsdu.

This identity enables us to compute the derivatives of x2(t)+y2(t) which we
postpone to appendix A and we obtain :

x2(t) + y2(t) = t2 − θ̇2(0)

12
t4 − θ̇(0)θ̈(0)

12
t5

+

(
− θ̇(0)

...
θ (0)

40
− θ̈2(0)

45
+
θ̇4(0)

360

)
t6 +O(t7).(20)

Remark 2. The expansions that are given by (19) and (20) are still valid in

the case where for all integers i > 1, θ(i)(0) = 0, according to the �rst point
in Proposition 3.1.

Now we can combine (14), (15), (19) and (20) to obtain

d2H(ζ(0), ζ(t)) = t2 −
(
θ̈2(0)

)2
720

t6 +O(t7).

�

4. Proof of Proposition 1.1

In the introduction, we stated in Proposition 1.1 that for ζ a horizontal
curve parametrized by arc length, the function hζ characterizes ζ up to
isometry and that its derivative is identically zero if and only if ζ is a geodesic.
This was already noticed in [CL13] but let us give a quick proof. We need
two de�nitions and a lemma :

De�nition 4.1. For u ∈ H we de�ne the left translation by u :

Lu : H −→ H
v 7−→ u ∗ v.
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We also de�ne for any real number α, Rα the rotation around the z-axis on
H, namely

Rα =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 .

Both of the previous de�nitions are relevant because of the following
lemma.

Lemma 4.2. For any real number α, Rα is an isometry that preserves
(X1, X2, X3). Moreover, if ζ :] − T, T [→ H is a smooth horizontal curve
parametrized by arc lenght and u ∈ H,

hζ = hRα◦ζ and hζ = hLu◦ζ .

Proof. The fact that Rα preserves (X1, X2, X3) comes from a computation
in coordinates. Since Rα preserves (X1, X2, X3), it is an isometry. Moreover,
the fact that Rα preserves (X1, X2, X3) means that the angle θ(t) between
ζ ′(t) and X1 is left invariant by Rα so by using (3), we obtain

hζ = hRα◦ζ .

To get hζ = hLu◦ζ we combine (2) and (6). �

We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1. Let us assume that ζ1 and ζ2 are two smooth hor-
izontal curves parametrized by arc length that are de�ned on a same time
interval and that for times t in their domain,

hζ1(t) = hζ2(t)

There exists an angle α0 such that Lζ1(0)−1 ◦ ζ1 and Rα0 ◦ Lζ2(0)−1 ◦ ζ2 are
two curves that start at the origin with the same initial velocity

cos (θ0)X1 + sin (θ0)X2.

But according to (3), the velocity of Lζ1(0)−1 ◦ ζ1 at time t is :

cos

(
θ0 +

∫ t

0
hLζ1(0)−1◦ζ1dt

)
X1 + sin

(
θ0 +

∫ t

0
hLζ1(0)−1◦ζ1dt

)
X2

= cos

(
θ0 +

∫ t

0
hζ1dt

)
X1 + sin

(
θ0 +

∫ t

0
hζ1dt

)
X2, by Lemma 4.2.

= cos

(
θ0 +

∫ t

0
hζ2dt

)
X1 + sin

(
θ0 +

∫ t

0
hζ2dt

)
X2

= cos

(
θ0 +

∫ t

0
hRα0◦Lζ2(0)−1◦ζ2dt

)
X1

+ sin

(
θ0 +

∫ t

0
hRα0◦Lζ2(0)−1◦ζ2dt

)
X2, thanks to Lemma 4.2.

By using the identity (3), we notice that this last vector is equal to the
velocity of Rα0 ◦ Lζ2(0)−1 ◦ ζ2 at time t.

Since Lζ1−1(0) ◦ ζ1 and Rα0 ◦ Lζ2−1(0) ◦ ζ2 both start at the origin and are

integral lines of the same vector �elds they are in fact the same curve and it
follows that ζ1 and ζ2 are equal up to an isometry.
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Furthermore, we know by Proposition 2.1 that a smooth horizontal curve
ζ that is parametrized by arc length and leaves from the origin at time zero is
a geodesic if and only the angle θ it forms with (X1, X2) is an a�ne function
of time, which means that hζ is a constant. Now for ζ leaving from any
point,

ζ is a geodesic if and only if Lζ−1(0) ◦ ζ is a geodesic,

if and only if hLζ−1(0)◦ζ is constant,

if and only if hζ is constant.

�

5. Final remarks

At this point, we intend to emphasize the fact that our interpretation
of the geodesic curvature of a curve is linked to the curvature de�ned in
[BTV17] as the common Riemannian curvature of the curve in spaces that
tend to the Heisenberg space.

More explicitly, for ε > 0, we consider the ε−Riemannian structures on the
Heisenberg group such that (X1, X2, εX3) is an orthonormal frame, where
we recall that the vector �elds Xi are de�ned in (4) and (5).

We denote by gε the metric on the ε-Riemannian structure, by ‖.‖ε its
norm, by dε(., .) the distance function on this structure and by ∇ε the as-
sociated Levi-Civita connection. These ε−Riemannian structures converge
in the pointed Gromov-Haussdor� sense to the Heisenberg sub-Riemannian
structure as ε goes to zero (see for example [Bel96]).

Corollary 5.2 tells us that the Riemmannian curvature of ζ in these various
ε−Riemannian structures does not depend on ε. We prove this result here
and another proof of this fact is contained in [BTV17]. In that same paper,
they choose to call this common Riemannian curvature the sub-Riemannian
curvature of the curve. In our own vocabulary, this corresponds to the
characteristic deviation.

Proposition 5.1. The following identities are satis�ed :

∇εX1
X1 = 0, ∇εX2

X2 = 0, ∇εX1
X2 =

X3

2
= −∇εX2

X1.

Before we prove this proposition we give the corollary we mentioned a few
lines ago :

Corollary 5.2. If ζ :]−T, T [→ H is a smooth horizontal curve parametrized
by arc length that forms at time t an angle θ(t) with X1 then

∇εζ′(t)ζ
′ = hζ(t) (− sin(θ(t))X1 (ζ(t)) + cos(θ(t))X2 (ζ(t))) .

In particular,

‖∇εζ′(t)ζ
′‖ε = |hζ(t)|.
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Proof of Proposition 5.1. We recall that for X, Y and Z three vector �elds :

2g (∇XY,Z) =Xg (Y,Z) + Y g (Z,X)− Zg (X,Y )

+ g ([X,Y ] , Z) + g ([Z,X] , Y )− g ([Y,Z] , X) .

Now if we consider the ε-Riemannian structure and we choose X, Y , and Z
among X1, X2 and εX3, this Koszul identity is reduced to

2gε (∇εXY, Z) = gε ([X,Y ] , Z) + gε ([Z,X] , Y )− gε ([Y,Z] , X) .

Moreover, we notice that in the case where Y = Z we simply get

gε (∇εXY, Y ) = 0.

Another usefull remark is that for all i, [Xi, εX3] = ε [Xi, X3] = 0.
This allows us to write

gε
(
∇εX1

X1, X1

)
= gε

(
∇εX1

X1, εX3

)
= 0,

and

gε
(
∇εX1

X1, X2

)
= −gε ([X1, X2] , X1)

= −gε (X3, X1)

= 0.

So ∇εX1
X1 = 0. The same way we prove that ∇εX2

X2 = 0.
We must also compute

gε
(
∇εX1

X2, X1

)
= gε ([X1, X2] , X1)

= gε (X3, X1)

= 0,

as well as

2gε
(
∇εX1

X2, εX3

)
= gε ([X1, X2] , εX3) = gε (X3, εX3) =

1

ε
,

which implies that

∇εX1
X2 =

X3

2
.

But by the torsion-freedom of the Levi-Civita connection ∇εX1
X2−∇εX2

X1 =
[X1, X2] = X3 so

∇εX2
X1 = −

X3

2
.

�

Since the main result of this paper is the Taylor expansion in Theorem
1.2, a natural question is : can we compare it to the same expansion in the
ε−Riemannian structures ? Indeed we can, by combining Corollary 5.2 and
(1). We denote by dε the distance in the ε−Riemannian structure and we
obtain :

Corollary 5.3. If ζ :]−T, T [→ H is a smooth horizontal curve parametrized
by arc length then

d2ε (ζ(0), ζ(t)) = t2 −
(hζ(0))

2

12
t4 +O(t5).
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Now we can also give a proposition similar to Corollary 5.2 but where the
connection that appears actually is linked to the Heisenberg structure and
not to a Riemannian approximation. Indeed, in the Heisenberg group, we
can de�ne the Tanaka-Webster connection. Before we do this, we recall that
the vector �elds Xi are de�ned by (4) and (5).

De�nition 5.4. The Tanaka-Webster connection ∇ in the Heisenberg group
is the connection, such that :

• the Reeb vector �eld X3 is parallel with respect to ∇,

• for any horizontal vector �eld X and any vector �eld Y , ∇YX is hori-
zontal,

• ∇g = 0,

• the torsion of any two horizontal vector �elds is colinear to X3,

• for any i ∈ {1, 2, 3}, ∇X3Xi = 0.

We now link this connection and the characteristic deviation in the Heisen-
berg group as we did before in the ε−Riemannian structures :

Proposition 5.5. For (i, j) ∈ {1, 2}2 : ∇XiXj = 0.

Which entails that :

Corollary 5.6. If ζ :]−T, T [→ H is a smooth horizontal curve parametrized
by arc length that forms at time t an angle θ(t) with X1 then

∇ζ′(t)ζ ′ = hζ(t) (− sin(θ(t))X1 (ζ(t)) + cos(θ(t))X2 (ζ(t))) .

In particular, ∥∥∇ζ′(t)ζ ′∥∥H = |hζ(t)|.

Proof. If we write T (X,Y ) for the torsion with respect to the Tanaka-
Webster connection of two vector �elds X and Y then

∇X1X2 −∇X2X1 = [X1, X2] + T (X1, X2) = X3 + T (X1, X2).

By the de�ntion of ∇, the left hand side of the previous identity is in the
distribution and the right hand side is colinear to X3. As a consequence,
both these quantities vanish and

∇X1X2 = ∇X2X1.

And since these vector �elds are horizontal, we can rewrite this identity as :

g
(
∇X1X2, X1

)
= g

(
∇X2X1, X1

)
and g

(
∇X1X2, X2

)
= g

(
∇X2X1, X2

)
.

(21)

Moreover, we know by de�nition of the Tanaka-Webster connection that
∇g = 0, therefore we can transform all the equations

Xig(Xj , Xk) = 0 for (i, j, k) ∈ {1, 2}3,
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into

g
(
∇X1X1, X1

)
= g

(
∇X2X1, X1

)
= g

(
∇X1X2, X2

)
= g

(
∇X2X2, X2

)
= 0,

(22)

and

g
(
∇X1X1, X2

)
+ g

(
∇X1X2, X1

)
= 0,(23)

as well as

g
(
∇X2X1, X2

)
+ g

(
∇X2X2, X1

)
= 0,(24)

Now if we solve the system that comes from (21), (22), (23) and(24) we �nd
out that for (i, j, k) ∈ {1, 2}3 we have

g
(
∇XiXj , Xk

)
= 0.

From which we deduce that for (i, j) ∈ {1, 2}2 : ∇XiXj = 0.

�

A last interpretation of the characteristic deviation of a curve in the
Heisenberg space comes from the Euclidean curvature of the projection of
the curve on the (x, y)-plane. It is not too far-fetched since the Heisenberg
group can be constructed in the �rst place as a convenient extension of the
(x, y)-plane to solve the isoperimetric problem (see for example [ABB17]).

We denote by π the projection onto the (x, y)-plane de�ned as π : H→ R2

such that π(x, y, z) := (x, y).

Proposition 5.7. For ζ :]−T, T [→ H a smooth horizontal curve parametrized
by arc length, its characteristic deviation at time t, hζ(t) is equal to the Eu-
clidean curvature of π ◦ ζ at time t.

Proof. The projection of a smooth horizontal curve ζ parametrized by arc
length along the z axis on the plane (x, y) (that we can endow with the
canonical Euclidean structure on R2) is a curve parametrized by arc length.
Indeed ẋ2+ ẏ2 = 1 as a consequence of the fact that ζ is parametrized by arc
length in the Heisenberg group. But the expression of the signed curvature
of a curve at time t in the Euclidean plane is

ẋ(t)ÿ(t)− ẏ(t)ẍ(t)
(ẋ2(t) + ẏ2(t))

3
2

.

That means that in the case we are considering hζ that is de�ned in (2) is
equal to the curvature in the Euclidean plane (x, y) of the projection of ζ
along z. �

In particular, we obtain the following corollary :

Corollary 5.8. The projection along the z axis on the (x, y) plane of the
trajectories of curves with constant geodesic curvature are so-called "Euler
spirals", which are, up to rotations, translations, symmetries and dilations
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(followed by an a�ne reparametrization to keep a unitary speed) no more
than the trajectory given by

R −→ R

t 7−→
(∫ t

0 cos(u
2)du∫ t

0 sin(u
2)du

)
.

Proof. For ζ a smooth horizontal curve parametrized by arc length, its ge-
odesic curvature kζ is by de�nition the derivative of hζ which is itself the
Euclidean curvature of the projection of ζ on the plane (x, y) according to
Proposition 5.7. Therefore, the curves that have no geodesic curvatures are
projected along z onto circles of the plane (x, y), while the curves with con-
stant geodesic curvature in the Heisenberg group are projected onto curves
with a�ne Euclidean curvature. But curves with a�ne Euclidean curvature
have their velocity that forms a quadratic angle with a �xed direction.

In coordinates, we can write the projection through π of any curve ζ with
constant geodesic curvature in the Heisenberg group as :

π ◦ ζ(t) =

∫ t0 cos(±((as+ b)2 + c
))

ds∫ t
0 sin

(
±
(
(as+ b)2 + c

))
ds

 .

Therefore an arbitrary curve with constant geodesic curvature is projected
through π onto :

1

a

(
1 0
0 ±1

)(
cos(c) − sin(c)
sin(c) cos(c)

)(∫ at+b
0 cos

(
u2
)
du∫ at+b

0 sin
(
u2
)
du

)
.

�

Remark 3. Euler spirals have been extensively studied. It is possible to
�nd a history and important properties of those curves in [Lev08].

Another property of the curvature we might be interested in is : how is it
transformed by the action of dilations ? We give the answer in the following
proposition

Proposition 5.9. We consider ζ :] − T, T [→ H a smooth horizontal curve
parametrized by arc length. For r > 0, its dilation

ξr(t) := δr ◦ ζ
(
t

r

)
is horizontal and parametrized by arc length. Moreover the geodesic curvature
of the dilated curve is linked to the geodesic curvature of the initial curve by
the relation :

kξr(rt) =
1

r2
kζ(t).

Proof. We already stated as a general property of dilations that they preserve
horizontal curves and thanks to (7) we learn that for ζ a horizontal curve
parametrized by arc length and r positive, the curve ξr is a horizontal curve
parametrized by arc length. Now we remember that according to 5.7, the
characteristic deviation of a smooth horizontal curve parametrized by arc
length is simply the curvature of its projection along z and since dilations
of the Heisenberg group act as usual Euclidean dilations when projected on
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(x, y) we �nd out that hξr(rt) = 1
rhζ(t) which implies by de�nition of the

geodesic curvature, that kξr(rt) =
1
r2
kζ(t). �

Appendix A. Proof of the identity (20)

We recall that according to Proposition 3.1 :

x2(t) + y2(t) = 4

∫ t

0

∫ u

0

(
−θ̇(s)ż(s) + 1

2

)
dsdu.

As a consequence

x2(0) + y2(0) =
∂

∂t

∣∣∣
t=0

(
x2(t) + y2(t)

)
= 0,

∂2

∂t2

∣∣∣
t=0

(
x2(t) + y2(t)

)
= 2 (since ż(0) = 0 by Proposition 3.1),

and for n > 3 :

∂n

∂tn
(
x2(t) + y2(t)

)
= −4

n−2∑
i=0

(
n− 2
i

)
θ(i+1)z(n−i−1).

Now we remember that ż(0) = z̈(0) = 0 by Proposition 3.1) and that z(3)(0),

z(4)(0) and z(5)(0) are given by (16), (17) and (18) so we get

∂3

∂t3

∣∣∣
t=0

(
x2(t) + y2(t)

)
= 0,

and

∂4

∂t4

∣∣∣
t=0

(
x2(t) + y2(t)

)
= −4θ̇(0)z(3)(0) = −2θ̇2(0),

and also

∂5

∂t5

∣∣∣
t=0

(
x2(t) + y2(t)

)
= −12θ̈(0)z(3)(0)− 4θ̇(0)z(4)(0) = −10θ̇(0)θ̈(0),

and �nally

∂6

∂t6

∣∣∣
t=0

(
x2(t) + y2(t)

)
= −24

...
θ (0)z

(3)(0)− 16θ̈(0)z(4)(0)− 4θ̇(0)z(5)(0)

= −18θ̇(0)
...
θ (0)− 16θ̈2(0) + 2θ̇4(0).
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