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Abstract

Compatible Galerkin methods (the Galerkin analogue of an Arakawa C-Grid) are growing
in popularity for simulating geophysical fluid flows, due to their desirable characteristics,
including but not limited to: energy conservation, higher-order accuracy, steady geostrophic
modes and the absence of spurious stationary modes, such as pressure modes. However,
these characteristics still do not guarantee good wave dispersion properties. In this work,
we study the dispersion properties of two compatible Galerkin families for the 2D linear
rotating shallow water equations on quadrilaterals: the Q´nΛk family from finite element
exterior calculus and the newly developed MGDn family. These families are the extensions
to quadrilaterals of the PC

n ´ PDG
n´1 and GDn ´DGDn´1 pairs, respectively, studied for the

1D linear shallow water equations in [13]. A major finding from that paper was that the
PC
n ´P

DG
n´1 pair has spectral gaps for n ě 2 and the GDn´DGDn´1 does not. These spectral

gaps are non-dimensional wavenumbers where the dispersion relationship is double-valued,
and lead to anomalous dispersion and noise in numerical simulations. On quadrilaterals,
previous work [24, 26] on the Q´nΛk family for inertia waves with n “ 2 and for gravity waves
for arbitrary n has indicated the presence of spectral gaps, in the form of line discontinuities.
The investigation of these gaps for the Q´nΛk family is extended in this paper to inertia-
gravity waves for arbitrary n, including plots of the dispersion relationship for n “ 2 when
using the lumping developed in [26, 35] that eliminates the spectral gaps. Additionally,
the MGDn family is studied (including the use of reduced quadrature), which is found to
be free of spectral gaps. For both families asymptotic convergence rates are established,
effective resolutions determined and plots of the dispersion relationships for a range of n
and Rossby radii are shown. Finally, a pair of numerical simulations are run to investigate
the consequences of the spectral gaps and highlight the main differences between the two
families.
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1. Introduction

Compact Galerkin methods (such as finite element, discontinuous Galerkin and spec-
tral element methods) are finding increasing use in numerical models of geophysical fluid
flows. Of particular interest amongst these approaches are compatible Galerkin methods
[14], which are a generalization of compatible finite element methods [4, 5, 9, 29] to a more
general definition of an element. A compatible Galerkin family is a realization of a discrete
deRham complex, and are the compact Galerkin analogue of Arakawa C-grid finite difference
schemes (also known as staggered grid methods or Marker and Cell methods). A commonly
used compatible Galerkin family on quadrilaterals is the Q´nΛk compatible finite element
family from finite element exterior calculus. Like C-grid schemes, they have many desir-
able properties, including but not limited to energy conservation, steady geostrophic modes
and absence of spurious pressure modes or inertial modes; however, all known examples do
have an f-mode (also known as a CD or Coriolis mode) [9, 19] due to the discrete Coriolis
matrix being rank-deficient. Unfortunately, these desirable properties are not sufficient to
ensure that compatible Galerkin methods have good wave dispersion properties. In par-
ticular, two types of problems in the dispersion relationship are known to arise: spurious
branches and spectral gaps. Considering the linear shallow water equations in 1D or 2D with
constant Coriolis parameter f , there are three branches of the dispersion relationship: one
set of geostrophic modes (these become Rossby modes when f is variable), and two pairs
of inertia-gravity waves with opposite sign. Ideally a numerical model would also posses
only three branches in the dispersion relationship, but certain discretizations will have extra
branches of either Rossby or inertia-gravity (IGW) modes [9, 11, 30, 36]. Typically, these
occur on non-quadrilateral grids due to an imbalance between the number of degrees of free-
dom in the wind field and the mass field, although the SnΛk family on quadrilaterals has
spurious Rossby modes. For example, the RT0 ´ P

DG
0 and BDM1 ´ P

DG
0 pairs on triangles

have spurious branches of IGW and Rossby waves, respectively. The other problem that can
arise are spectral gaps. Spectral gaps are non-dimensional wavenumbers where the disper-
sion relationship is multivalued and the group velocity goes to zero. These gaps seem to be
a general feature of high order finite element discretizations [1, 2, 27], not just compatible
finite elements. Such gaps, which typically take the form of points in 1D and lines in 2D,
result in a piecewise continuous dispersion relationship. A comprehensive understanding of
spurious modes and spectral gaps is still lacking, especially for triangular elements. However,
it is known that certain choices of spaces, such as quadrilateral elements formed by a tensor
product construction (both the Q´nΛk and MGDn families are built like this), can ensure a
lack of spurious branches [9]. In this work we will show that the MGDn family additionally
avoids spectral gaps in the dispersion relationship for any n, unlike the Q´nΛk family which
has gaps for n ě 2.

Dispersion relationships have been studied since the beginning of geophysical fluid mod-
eling [3], initially using finite differences. Within the class of compatible Galerkin methods,
the RT0 ´ P

DG
0 and/or BDM1 ´ P

DG
0 pairs on triangles were studied in [19, 20, 21, 33, 34].

These are the lowest-order members of the corresponding P´r Λk (RT0) and PrΛ
k (BDM1)

families on triangles from finite element exterior calculus [5]. However, both of these families
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are known to have spurious branches [9], and the presence or absence of spectral gaps is
unclear, although the results from the PC

n ´ PDG
n´1 pair in 1D strongly suggest the presence

of gaps. A low-order compatible finite element pair on arbitrary polygonal elements (termed
compound finite elements, introduced in [37]) were studied for quadrilaterals and hexagons
in [28], and compared to the corresponding C-grid finite difference schemes [30, 32, 36]. Both
pairs were found to be similar to the finite-difference schemes, and the hexagonal pair pos-
sesses a similar spurious branch of Rossby waves. For higher order elements, a spectral gap
was found for the PC

2 ´ P
DG
1 pair [10] in 1D. A solution to this gap for the 1D gravity wave

equations, obtained through partial lumping of the velocity mass matrix, is given in [35],
and was extended to the 2D shallow water equations in [26]. However, [13] showed that this
form of lumping does not work for n ě 3, and for n “ 2 it leads to a reduction in the order
of convergence. The dispersion relationship for a simplified version of the fully compressible
Euler equations, in a doubly periodic slice domain using 2D versions of the PC

2 ´ PDG
1 and

PC
1 ´ PDG

0 pairs was studied in [25], where it was found that a vertically continuous and
horizontal discontinuous space (the finite element analogue of a C-grid staggering in the
horizontal and a Charney-Phillips staggering in the vertical) gave the best results. The pure
inertia and pure gravity limits of the PC

n ´ P
DG
n´1 pair in 1D were studied in [24], along with

2D gravity waves using the Q´nΛk family. Finally, the PC
n ´P

DG
n´1 and GDn ´DGDn´1 pairs

were studied for inertia-gravity waves in 1D in [13]. Both [24] and [13] showed that the
PC
n ´ PDG

n´1 pair suffers from spectral gaps when n ě 2, and also has a maximal frequency
that increases with n. Due to the spectral gaps, anomalous wave dispersion occurs when
there are wave packets with significant energy close to the frequency of the gaps, and the
maximal frequency increase is expected to cause a decrease in maximum stable time step
for explicit timestepping schemes due to the CFL limit. It would be possible to partially
address these issues through the addition of numerical dissipation, but this is undesirable
since such dissipation is not physically motivated. In contrast, the GDn´DGDn´1 pair was
found [13] to be free of spectral gaps for any n and has a maximal frequency that does not
increase with n.

In this work, we extend the study started in [13] from the 1D shallow water equations to
the 2D shallow water equations on quadrilaterals, and investigate the dispersion properties
of the Q´nΛk and MGDn families, which are the 2D extensions of the PC

n ´P
DG
n´1 and GDn´

DGDn´1 pairs. Additionally, we clarify a partially erroneous claim found at the end of [24],
about the expression of the 2D inertia-gravity wave dispersion relationship in terms of the
1D inertia wave and gravity wave dispersion relationships.

The remainder of this paper is structured as follows. In Section 2 we introduce the model
problem under consideration: the 2D linear shallow water equations. A general discretization
of this problem by compatible Galerkin methods is developed in Section 3, along with the
corresponding Fourier analysis to compute the discrete dispersion relationship. The tensor
product structure of the spaces is exploited in Section 4 to express the 2D matrices in terms
of Kronecker products of the 1D matrices. Using this tensor product structure, it is also
shown that the 2D inertia wave (IW) and gravity wave (GW) dispersion relationships can
be expressed in terms of the 1D IW and GW dispersion relationships for any n. However,
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this is not true for 2D inertia-gravity waves (IGW) for compatible Galerkin discretizations
that have multiple degrees of freedom per geometric entity (i.e. when d ě 2), such as the
Q´nΛk family when n ě 2). Nevertheless, using the general approach from Section 3, and
exploiting the tensor product structure discussed in Section 4, the asymptotics and dispersion
relationships for the Q´nΛk and MGDn families are studied in Section 5 and Section 6. This
includes asympototics and a dispersion plot for the Q´2 Λk family using the mass lumping
from [26, 35] that eliminates the spectral gaps. It is shown that the Q´nΛk family suffers from
spectral gaps when n ě 2, in the form of line discontinuities, while the MGDn family is free
of gaps for any n. Two test cases are run in Section 7 to investigate the impact of these gaps.
This section also includes a study of the effective resolution for the two families. Finally,
some conclusions and possible future work are discussed in Section 8. The work in this
paper represents a starting point for the analysis of the dispersion properties of compatible
Galerkin schemes applied to geophysical fluid models: in particular, an extension to the
fully compressible Euler equations (and other relevant geophysical fluid models) in three-
dimensional domains with boundaries and variable Coriolis force and the incorporation of
time discretization remains to be done.

2. Model Problem

We start with the 2D, inviscid, rotating (with a constant Coriolis parameter f) shallow
water equations in a doubly periodic domain with a flat bottom and uniform gravitational
constant g. These are linearized about a state of rest (u “ v “ 0) with a constant fluid depth
H. Using a Cartesian coordinate system the linear shallow water equations are written [22]
as

Bu

Bt
´ f v ` g

Bη

Bx
“ 0 , (1)

Bv

Bt
` f u` g

Bη

By
“ 0 , (2)

Bη

Bt
`H

ˆ

Bu

Bx
`
Bv

By

˙

“ 0 , (3)

with relative velocity vpx, y, tq “ pu, vq and surface height ηpx, y, tq. Since (1) - (3) are
a linear system with constant coefficients in a doubly periodic domain, Fourier analysis
can be used to determine the linear modes. Introducing temporal frequency ω and spatial
wavenumbers k and l, a single Fourier mode is written as

η “ η̂e´iωteikxeily u “ ûe´iωteikxeily v “ v̂e´iωteikxeily (4)

where η̂, û and v̂ are the Fourier amplitudes. Substituting (4) into (1) - (3) gives

´iωû´ fv̂ ` ikgη̂ “ 0, (5)

´iωv̂ ` fû` ilgη̂ “ 0, (6)

´iωη̂ ` ikHû` ilHv̂ “ 0. (7)
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For non-zero (η̂, û, v̂), (5) - (7) can be solved and give a dispersion polynomial of degree 3
in ω. This polynomial has 3 solutions: the geostrophic mode ω “ 0 and two inertia-gravity
modes:

ω2
AN “ f 2

` gHpk2 ` l2q “ f 2
` gHK2 (8)

where K2 “ k2 ` l2. The temporal frequency ωAN can be normalized as σAN “
ωAN

f
, which

gives
σ2
AN “ 1` λ2K2 (9)

where λ2 “ gH
f2

is the squared Rossby radius of deformation λ. Finally, introducing a length

scale h̃ to facilitate comparison with numerical results, we have

σ2
AN “ 1` µpĄKhq2, (10)

with µ “ λ2

h2
and pĄKhq2 “ pĂkhq2 ` prlhq2 is the non-dimensional wavenumber (Ăkh P r0, πs and

rlh P r0, πs). Plots of σANpkh, lhq for λ{h̃ “ 2.0 and λ{h̃ “ 0.1 are found in Figures 1 and 2.
Since ω is purely real, all modes are neutrally stable and neither amplify nor decay. Ad-

ditionally, the dispersion relationship is monotonic and non-zero for all kh, lh ą 0, provided
g, f and H are all non-zero. Other than a discussion of the use of tensor product structure
to obtain the 2D dispersion relationship in terms of the 1D dispersion relationship, we do
not consider the limiting cases of f “ 0 (pure gravity waves) or g “ H “ 0 (pure inertia
waves) in this paper. The case of pure gravity waves was considered for the Q´nΛk family in
[24], and both pure inertia and pure gravity waves for the Q´2 Λk family are discussed in [26].
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Figure 1: Plots of the analytic dispersion relationship σAN versus non-dimensional wavenumbers Ăkh and rlh

for λ{h̃ “ 2.0 (left) and λ{h̃ “ 0.1 (right). Note that σAN is monotonic and non-zero for all Ăkh, rlh ą 0.

3. General Compatible Galerkin Discretization

We will now discretize (1) - (3) using compatible Galerkin methods, and discuss how
to obtain the discrete linear modes corresponding to a particular choice of discretization.
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Figure 2: Plots of the analytic dispersion relationship σAN versus non-dimensional wavenumbers Ăkh and rlh

for λ{h̃ “ 2.0 (left) and λ{h̃ “ 0.1 (right). Note that σAN is monotonic and non-zero for all Ăkh, rlh ą 0.

Here we consider only the case when time is continuous. An extension to incorporate time
discretization is the subject of future work.

3.1. 2D Spaces

Consider a pair of 1D spaces A Ă H1 and B Ă L2 that are a partition of unity and form

the 1D discrete deRham complex A B{Bx
ÝÝÑ B. These are precisely the class of spaces studied in

[13]. A 2D discrete deRham complex is formed by taking tensor products of the 1D spaces:

W0 “ Ab A Ă H1 (11)

W1 “ pAb Bq̂i` pBb Aq̂j Ă Hpdivq (12)

W2 “ Bb B Ă L2 (13)

where î and ĵ are the unit vectors in the x and y directions on the reference quadrilateral.
This complex is illustrated for d “ 1 in Figure 3. More details about the tensor product
construction can be found in [12, 14, 23, 29]. In this paper we consider the Q´nΛk family
from finite element exterior calculus with A “ PC

n and B “ PDG
n´1 [4, 5] and the MGDn

family (mimetic Galerkin differences) with A “ GDn and B “ DGDn´1 [12, 13]. These
are the extension of the element pairs in [13] to quadrilaterals. Recall that PC

n is the order
n Lagrange space, PDG

n´1 the order n ´ 1 discontinuous Lagrange space, GDn the order n
Galerkin difference space and DGDn´1 the order n ´ 1 discontinuous Galerkin difference
space. Alternative choices for A and B lead to the mimetic spectral element method [14] and
isogeometric discrete differential forms [7, 8, 14]. As shown in Section 4, the tensor product
construction can be exploited to simplify the dispersion analysis, especially as compared to
triangles or other polygons.
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Figure 3: The 2D discrete deRham complex formed by taking tensor products of A and B. The operators
∇T and ∇¨ are strong, while r∇ and r∇T ¨ are weak (defined by integration by parts). The degrees of freedom
are illustrated for d “ 1.

3.2. Discrete Model

Choose η PW2 and v “ pu, vq PW1. This means

u P AbB v P BbA η P BbB (14)

which corresponds with the placement in 1D of η, v P B and u P A [13]. Given test functions
η˚ P W2 and v˚ “ pu˚, v˚q P W1, (1) - (3) are discretized as (after appropriate integration
by parts) 〈

u˚,
Bu

Bt

〉
´ f 〈u˚, v〉´ g

〈
B

Bx
u˚, η

〉
“ 0, (15)〈

v˚,
Bv

Bt

〉
` f 〈v˚, u〉´ g

〈
B

By
v˚, η

〉
“ 0, (16)〈

η˚,
Bη

Bt

〉
`H

〈
η˚,

B

Bx
u

〉
`H

〈
η˚,

B

By
v

〉
“ 0, (17)

where 〈a, b〉 is the L2 inner product. Written in matrix form, (15) - (17) are

Mu
Bu

Bt
´ f Cu v ` gGu η “ 0, (18)

Mv
Bv

Bt
` f Cv u` gGv η “ 0, (19)

Mη
Bη

Bt
`H Du u`H Dv v “ 0, (20)

where u, v and η denote the basis coefficients in the Galerkin expansion and the matrices
are given by

Mu
Bu

Bt
“

〈
u˚,

Bu

Bt

〉
, Mv

Bv

Bt
“

〈
v˚,
Bv

Bt

〉
, Mη

Bη

Bt
“

〈
η˚,
Bη

Bt

〉
,

Gu η “ ´

〈
B

Bx
u˚, η

〉
, Gv η “ ´

〈
B

By
v˚, η

〉
, Du u “

〈
η˚,

B

Bx
u

〉
, Dv v “

〈
η˚,

B

By
v

〉
,

Cu v “ 〈u˚, v〉 , Cv u “ 〈v˚, u〉 .

7



Use of compatible Galerkin spaces ensures

Mu “ Mu
˚, Mv “ Mv

˚, Mη “ Mη
˚, (21)

Gu
˚
“ ´Du, Gv

˚
“ ´Dv, (22)

Cu
˚
“ Cv . (23)

with A˚ the Hermitian transpose. These properties are inherited by the matrices rA and
pA that arise after performing Fourier analysis. The properties (21) - (23) will be useful in
proving some features of the dispersion relationship.

3.3. Fourier Analysis

Now consider a doubly periodic computational grid made of N by N uniform elements of
width h. For what follows, d is an integer that depends on the choice of spaces: d “ n for the
Q´nΛk family, and d “ 1 for the MGDn family. In fact, d is the number of distinct Fourier
coefficients in 1D for each variable, and therefore the number of distinct Fourier coefficients
in 2D are d2. Thus, the matrices in (18) - (20) have size pNdq2 ˆ pNdq2. Assume a Fourier
dependence in space and time for the basis coefficients:

ujptq “ ũje
´iωteikxjeilyj , vjptq “ ṽje

´iωteikxjeilyj , ηjptq “ η̃je
´iωteikxjeilyj , (24)

where (xj, yj) is the nodal location of the jth basis function for the relevant variable and
(ũj, ṽj, η̃j) are the Fourier amplitudes, with j “ 1, . . . , pNdq2,. Inserting (24) into (18) - (20)
yields

´iωĄMuũ´ fĂCuṽ ` gĂGuη̃ “ 0, (25)

´iωĄMvṽ ` fĂCvũ` gĂGvη̃ “ 0, (26)

´iωĄMηη̃ `HĂDuũ`HĂDvṽ “ 0, (27)

where
ũ “

“

ũ1, . . . , ũpNdq2
‰

, ṽ “
“

ṽ1, . . . , ṽpNdq2
‰

, η̃ “
“

η̃1, . . . , η̃pNdq2
‰

. (28)

The relationship between A and rA is given by

rAmn “ Amn e
ikpxm´x0qeilpym´y0q, (29)

where we have normalized each row by eikx0eily0 , with (x0, y0) the lower left corner of a
specific element: for example, the middle element located at (N

2
, N

2
). Using the translational

invariance of the basis functions, there are actually only d2 unique degrees of freedom for ũ,
ṽ and η̃:

û “ rû1, . . . , ûd2s
T , v̂ “ rv̂1, . . . , v̂d2s

T , η̂ “ rη̂1, . . . , η̂d2s
T . (30)

Thus we can write (28) as

ũ “ rû1, . . . , ûd2 , û1, . . . , ûd2 , . . . s , (31)
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and similarly for ṽ and η̃. Considering now only the d2 rows for the degrees of freedom
associated with a specific element (the one used for normalization), the final discrete system
is

´iωyMuû´ fxCuv̂ ` gxGuη̃ “ 0, (32)

´iωyMvv̂ ` fxCvû` gxGvη̂ “ 0, (33)

´iωyMηη̂ `HxDuû`HxDvv̂ “ 0, (34)

The matrices rA and pA are related by

pAmn “
ÿ

p

rAmp, (35)

with m “ 1, . . . , d2, n “ 1, . . . , d2, and p is the set of integers belonging to the interval
r1, . . . , pNdq2s such that x̃p “ x̂n. The final matrices pA will have the same properties (21) -
(23) as the original matrices A, which is essential to proving various features of the dispersion
relationship. Equations (32) - (34) can be written in the form of a generalized eigenvalue
problem (GEP)

´iωxMx̂ “ pSx̂, (36)

where x̂ “ rû1, . . . , ûd2 , v̂1, . . . , v̂d2 , η̂1, . . . , η̂d2s
T and

xM “

¨

˚

˝

yMu 0 0

0 yMv 0

0 0 yMη

˛

‹

‚

, pS “

¨

˚

˝

0 fxCu ´gxGu

´fxCv 0 ´gxGv

´HxDu ´HxDv 0

˛

‹

‚

. (37)

Both xM and pS are 3ˆ 3 block matrices of total size 3d2ˆ 3d2, with individual blocks of size
d2 ˆ d2. As a note, we recover the case of pure gravity waves when f “ 0 and the case of
pure inertia waves when g “ H “ 0. Equation (36) reduces to the eigenvalue problem (since
xM is invertible)

´iω I x̂ “ xM
´1
pSx̂ “ pFx̂ (38)

The eigenvalues of pF “ xM
´1
pS correspond to the linear modes of the discretized system,

and form the dispersion relationship. Unfortunately, unlike the 1D case, it is not possible
to obtain a reduced formulation for (36). This is because the reduced formulation relies on
the existence of zero blocks in the generalized eigenvalue problem, and there are none for 2D
inertia-gravity waves. A reduction is possible in 2D only in the special cases of pure gravity
waves (due to the existence of zero blocks) or pure inertia waves (due to the matrix problem
being only 2 by 2). See Section 4 for more details.

Proposition 1. The generalized eigenvalue problem (36) has 3d2 purely imaginary eigen-
values and thus ω is real.
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Proof. Start with (36), and note that it is equivalent to

ωxMx̂ “ ipSx̂, (39)

Now replace η̂ with
b

H
g
η̂ in order to symmetrize the terms in pS involving g and H

pS “

¨

˚

˝

0 fxCu ´
?
gHxGu

´fxCv 0 ´
?
gHxGv

´
?
gHxDu ´

?
gHxDv 0

˛

‹

‚

(40)

where we have used the same symbols η̂ and pS to ease notation. Using (21) - (23), we obtain

xM “ xM
˚

, (41)

and
pS “ ´pS

˚

. (42)

and thus pipSq˚ “ ipS. Since both xM and ipS are Hermitian matrices, the revised generalized
eigenvalue problem (39) has real eigenvalues, and thus ω is real.

Conjecture 1. The 3d2 eigenvalues are divided into d2 geostrophic modes ω “ 0 and d2

pairs of inertia-gravity waves: d2 positive modes ωpos,i and d2 negative modes ωneg,i with
ωneg,i “ ´ωpos,i (where i “ 1, . . . , d2).

This has been observed analytically for d “ 1, 2, and numerically up to d “ 4 for the
case of 2D inertia-gravity waves, and analytically in the case of 1D IGW up to d “ 15 [13].
However, we have been unable to find a proof of this conjecture using the matrix properties
of xM and pS, although presumably one must exist. A closely related statement has been
proven in [9] using the Helmholtz decomposition for W1 (see sections 2.5 and 2.8 in that
paper) in the context of linear modes for a compatible Galerkin discretization on arbitrary
meshes. In this case we deal with tensor-product elements on a doubly periodic domain,
which ensures that there are no spurious inertia-gravity or geostrophic modes.

3.4. Non-Dimensional Spatial Wavenumbers

It is useful to define an adjusted grid spacing

h̃ “
h

d
, (43)

For equally-spaced degrees of freedom (nodes) this is the distance between nodes. However,
in practice non-uniform nodes are often used (to improve the conditioning of the result-
ing matrices), and so h̃ can be viewed as an average distance. Using h̃, non-dimensional
wavenumbers are naturally defined as

Ăkh “ kh̃, rlh “ lh̃, (44)
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with the associated wavelengths

ζx “
2π

k
“

2πh̃

Ăkh
, ζy “

2π

l
“

2πh̃

rlh
, (45)

and non-dimensional wavelengths

rζx “
ζx

h̃
“

2π

Ăkh
, rζy “

ζy

h̃
“

2π

rlh
. (46)

For a grid with N by N elements, the maximal wavelengths are ζx “ ζy “ Ndh̃ “ Nh,

with k “ l “ 2π
Nh

, Ăkh “ rlh “ 2π
Nd

and rζx “ rζy “ Nd; and the minimum wavelengths are

ζx “ ζy “ 2h̃, with k “ l “ π
h̃
, Ăkh “ rlh “ π and rζx “ rζy “ 2. These are useful in the

definition of effective resolution, and also in determining the relevant wavenumber ranges to
plot over.

3.5. Branches and Spectral Gaps

The eigenvalue problem in (36) has d2 pairs of solutions corresponding to inertia-gravity

modes. For a given non-dimensional wavenumber (Ăkh, rlh), when d ě 2, only one of these
solutions should be retained in order to correspond to the analytic dispersion relationship.
The procedure for this is given in Section 3.7. Therefore, for each solution of (36) there
exists a non-dimensional wavenumber range over which it is retained, and the particular
solution of (36) over this range is termed a branch. The remaining parts of each solution
are mathematical artifacts that should be disregarded. The union of all branches constitutes
the discrete dispersion relationship. This corresponds exactly to the situation in 1D, as
discussed in [13]. At the boundaries between two branches, the dispersion relationship
is usually discontinuous. This defines a spectral gap as a spatial wavenumber for which
the dispersion relationship becomes double valued, and these gaps result in a piecewise
continuous dispersion relationship. In 1D, these gaps are point discontinuities. As shown in
Section 5, on quadrilaterals in 2D these gaps become line discontinuities.

3.6. Solution Procedure

Following [13], two complementary approaches are used to solve (36). In the first, we
use a computer algebra system (Maple) to construct the matrices (see Section 4 for how the
tensor product structure is exploited to facilitate this) and solve the determinant to obtain
σpkh, lh, µq. The asymptotics are then obtained by performing a series expansion around
h “ 0. This procedure is only tractable at relatively moderate values of d (in fact, only
d “ 1, 2 are solvable), due to the need to compute the determinant of a 3d2ˆ3d2 matrix and
solve the resulting polynomial of degree 3d2. Some examples of the Maple sheets (run using
Maple 2018) employed for the Q´nΛk and MGDn families can be found in the Supplementary
Materials available with the online version of this paper.

Therefore, a second approach is used to make the plots of dispersion relationships and
effective resolution. Starting from a computational grid of size N by N with N “ 60

d
, the
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eigenvalues and eigenvectors (36) are determined numerically for each pkh, lhq pair and µ of
interest. The set of pkh, lhq sampled is a uniformly spaced set belonging to r 2π

Nd
, πs2. When

d ě 2 (which occurs for the Q´nΛk family with n ě 2), there are d2 eigenvalues. Then, using
the procedure in Section 3.7, the solution is determined from these d2 eigenvalues.

3.7. Branch determination for d ě 2

The following procedure is used to select the appropriate branch (it is the 2D generaliza-
tion of the approach in [13]):

1. Let pkh, lhq P p0, πs2 and numerically compute the d2 eigenvalues ωm (m “ 1, . . . , d2)
and eigenvectors x̂m.

2. For each eigenvalue and eigenvector pair, determine the branch (px, py) that it belongs
to, with px “ 1, . . . , d and py “ 1, . . . , d. This is done by constructing the discrete
solution corresponding to x̂m and comparing it to the continuous solution eikxeily.

3. Determine the effective wavenumber (Ăkh, rlh) associated with ωpx,py using the explicit
formula

Ăkh “
p´1qαxpkhq ` 2πβx

d
, rlh “

p´1qαyplhq ` 2πβy
d

, (47)

where αx “ 1 ` px, αy “ 1 ` py, βx “ t
px
2

u and βy “ t
py
2

u. This gives an effective
wavenumber range of p0, πs2.

4. Exploiting Tensor Product Structure

In [24] it is claimed without proof (see equations (80) - (85) in that paper) that the 2D
IW, GW and IGW dispersion relationships for the Q´nΛk family (and other finite element
type compatible Galerkin schemes with multiple degrees of freedom when n ě 2, ie d “ n)
can be constructed from the 1D GW and IW relationships by exploiting the tensor product
structure. Here we will prove that this claim is true for 2D IW and 2D GW for any d and
for 2D IGW when d “ 1. The case d “ 1 is special since there is only only degree of freedom
per geometric entity, and the resulting determinant matrix is only 3 x 3. However, for 2D
IGW with d ě 2 we provide counterexamples for the Q´nΛk family in the form of numerical
dispersion relationship calculations and asymptotic convergence results. Nevertheless, the
tensor product structure can still be used in the 2D IGW case to determine the matrices xM
and pS in terms of the 1D matrices.

4.1. Kronecker Products

Before continuing, it it useful to recall some basic properties of the Kronecker (or tensor)
product [31]:

• Hermitian Transpose:
pAbBq˚ “ A˚

bB˚ (48)
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• Determinant: If A is an n x n matrix and B is an m x m matrix then

|AbB | “ |A |m|B |n (49)

• Inverse: If A and B are invertible then

pAbBq´1 “ A´1
bB´1 (50)

• Mixed Product: If A, B, C, D are sized such that the products A C and B D can be
formed then

pAbBqpCbDq “ A CbB D (51)

Also recall the Kronecker sum ‘ for an n x n matrix A and m x m matrix B

A‘B “ Ab Im` InbB (52)

where Ik is the k x k identity matrix.

4.1.1. Eigenvalues of Kronecker Products and Sums

Of particular interest are the eigenvalues of Kronecker products and sums. Let αi denote
the eigenvalues of A and βj the eigenvalues of B. Then the eigenvalues of the Kronecker
product

C “ AbB (53)

are
cij “ αiβj (54)

or in other words, simply the pairwise product of the eigenvalues of A and B. Similarly, the
eigenvalues of the Kronecker sum

D “ A‘B “ Ab I` IbB (55)

are
δij “ αi ` βj (56)

or in other words, simply the pairwise sum of the eigenvalues of A and B. These two key
facts will be used to show that the 2D IW and GW dispersion relationships can be expressed
in terms of the 1D IW and GW dispersion relationships. This, however, is not true for 2D
IGW.

4.2. 1D IGW Problem

Start by recalling the 1D IGW problem from [13].

xM “

¨

˚

˝

yMx
C 0 0

0 yMx
D 0

0 0 yMx
D

˛

‹

‚

, pS “

¨

˚

˝

0 fxCx
u ´gxGx

´fxCx
v 0 0

´HxDx 0 0

˛

‹

‚

(57)
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where we have added the superscript x to indicate that the spatial wavenumber is k. The
submatrices yMx

C, yMx
D, xGx, xDx, xCx

u and xCx
v are defined in [13], and they satisfy

yMx
C

˚

“ yMx
C,

yMx
D

˚

“ yMx
D, (58)

xGx
˚

“ ´xDx, xCx
u

˚

“ xCx
v. (59)

When g “ H “ 0, the 1D IW problem is recovered; and when f “ 0 the 1D GW problem
is recovered. There are also similar matrices denoted with a superscript y, where the only
change is that spatial wavenumber k has been replaced with l.

4.3. 2D Matrices

The tensor product structure of the basis functions means that the submatrices in 2D are
Kronecker products of the submatrices in 1D. In fact, each submatrix in 2D is the product
of matrix with superscript x (containing only terms with k) and matrix with superscript y
(containing only terms with l):

yMu “ yMx
C b

yMy
D,

yMv “ yMx
D b

yMy
C,

yMη “ yMx
D b

yMy
D, (60)

xDu “ xDx b yMy
D,

xDv “ yMx
D b

xDy, (61)

xGu “ xGx b yMy
D,

xGv “ yMx
D b

xGy, (62)

xCu “ xCx
u b

xCy
v, xCv “ xCx

v b
xCy

u, (63)

and they satisfy

yMu

˚

“yMu, yMv

˚

“yMv, yMη

˚

“yMη, (64)

xGu

˚

“ ´xDu, xGv

˚

“ ´xDv, xCu

˚

“ xCv. (65)

This tensor product structure can be exploited in the solution of the 2D IW and GW prob-
lems, as detailed below. It is also useful in the construction of the matrices used to make
dispersion plots and compute asymptotics for 2D IGW.

4.4. 2D Inertia Waves

4.4.1. 1D IW

Letting g “ H “ 0 in the 1D IGW (57) gives the simplified form for 1D IW:

xM “

˜

yMx
C 0

0 yMx
D

¸

, pS “

˜

0 fxCx
u

´fxCx
v 0

¸

. (66)

plus a identical system using y. Inertia waves do not have any dependence on η, and therefore
x̂ “ rû1, . . . , ûd, v̂1, . . . , v̂ds

T .
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Proposition 2. The eigenvalues of (66) are the solution of the reduced eigenvalue problem

ω2
1D,xû “ f 2

pyMx
Cq
´1

xCx
up
yMx

Dq
´1

xCx
uû “ f 2 zFIW,x

u û (67)

and

ω2
1D,yv̂ “ f 2

pyMy
Dq
´1

xCy
vp
yMy

Cq
´1

xCy
uv̂ “ f 2 zFIW,y

v v̂ (68)

Proof. This is obtained by noting that (66) is solving for the determinant of

detppF` iω Iq “ detppxMq
´1
pS` iω Iq (69)

Now use

pF` iω I “

«

iω I fpyMx
Cq
´1

xCx
u

´fpyMx
Dq
´1

xCx
v iω I

ff

(70)

and apply the 2 x 2 block matrix determinant formula that comes from the Schur complement,
using either the upper left or lower right blocks since they are both trivially invertible
provided ω ‰ 0, which we know is true due to the properties of the matrices. Using the
lower right block gives (67), while using the upper left block gives (68).

Here we have chosen to solve for û in x and v̂ in y for the 1D problem. This corresponds
with the choice to solve for û in 2D. The same exact expression for the 2D eigenvalues in
terms of the 1D eigenvalues is obtained if we solve instead for v̂ in x and û in y for the 1D
problem and v̂ in 2D.

4.4.2. 2D IW

Letting g “ H “ 0 in the 2D IGW problem (36) gives

xM “

˜

yMu 0

0 yMv

¸

, pS “

˜

0 fxCu

´fxCv 0

¸

. (71)

This has the same form as (66).

Proposition 3. The solutions to 2D eigenvalue problem (71) can be written as

ω2
2Dû “ f 2

pyMuq
´1

xCupyMvq
´1

xCvû “ f 2
yFIW
u û (72)

Proof. This again follows by expressing F`iω I as a block matrix

F`iω I “

„

iω I fpMuq
´1 Cu

´fpMvq
´1 Cv iω I



(73)

and using the lower right block for the 2 x 2 block matrix determinant.

15



Proposition 4. The matrix yFIW
u can be written as the Kronecker product of the 1D matrices

zFIW,x
u and zFIW,y

v

yFIW
u “

zFIW,x
u b

zFIW,y
v (74)

Therefore, the eigenvalues of the 2D inertia wave problem (72) can be written as

w2
2D “

w2
1D,xw

2
1D,y

f 2
(75)

Proof. Start by expanding the right hand side yFIW
u of (72) in terms of the 1D matrices using

the tensor product structure (60) - (63) to get

yFIW
u “ pyMuq

´1
xCupyMvq

´1
xCv “ pyMx

C b
yMy

Dq
´1
pxCx

u b
xCy

vqpyMx
D b

yMy
Cq
´1
pxCx

v b
xCy

uq (76)

Applying the inverse property (50) this becomes

yFIW
u “ ppyMx

Cq
´1
b pyMy

Dq
´1
qpxCx

u b
xCy

vqppyMx
Dq
´1
b pyMy

Cq
´1
qpxCx

v b
xCy

uq (77)

Now using the mixed property (51) this is

yFIW
u “ ppyMx

Cq
´1

xCx
up
yMx

Dq
´1

xCx
vq b pp

yMy
Dq
´1

xCy
vp
yMy

Cq
´1

xCy
uq “

zFIW,x
u b

zFIW,y
v (78)

Therefore, using (54) we can express the eigenvalues of yFIW
u in terms of those for zFIW,x

u and
zFIW,y
v

w2
2D

f 2
“
w2

1D,xw
2
1D,y

f 4
(79)

which can be simplified to give (75).

Note that (75) is the same as equation (80) (with g “ H “ 0) from [24].

4.5. 2D Gravity Waves

4.5.1. 1D GW

In 1D, gravity waves have no dependence on v and therefore x̂ “ rû1, . . . , ûd, η̂1, . . . , η̂ds
T .

Letting f “ 0 in the 1D IGW problem (57) gives the simplified form for 1D GW:

xM “

˜

yMx
C 0

0 yMx
D

¸

, pS “

˜

0 ´gxGx

´HxDx 0

¸

. (80)

plus an identical system in y (with k replaced by l).

Proposition 5. The solutions to 1D eigenvalue problem (80) can be written as

ω2
1D,xη̂ “ ´gHp

yMx
Dq
´1

xDxpyMx
Cq
´1

xGxv̂ “ ´gH{FGW,x
η η̂ (81)

or the equivalent in y.

Proof. This is computed similarly to Proposition 2, using the 2x 2 block matrix determinant
formula, and the proof is left to the interested reader.
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4.5.2. 2D GW

Letting f “ 0 in the 2D IGW problem (36) gives the 2D GW problem

xM “

¨

˚

˝

yMu 0 0

0 yMv 0

0 0 yMη

˛

‹

‚

, S “

¨

˚

˝

0 0 ´gxGu

0 0 ´gxGv

´HxDu ´HxDv 0

˛

‹

‚

. (82)

Proposition 6. The solutions to 2D eigenvalue problem (82) can be written as

ω2
2Dη̂ “ ´gH

”

pyMηq
´1

xDupyMuq
´1

xGu ` pyMηq
´1

xDvpyMvq
´1

xGv

ı

η̂ “ ´gHzFGW
η η̂ (83)

plus n geostrophic solutions ω “ 0.

Proof. Start by rewriting (82) as
˜

iωxM ´g pG

´H pD iωyMη

¸

(84)

where

xM “

˜

yMu 0

0 yMv

¸

pG “

˜

xGu

xGv

¸

pD “

´

xDu
xDv

¯

. (85)

Now using the 2 x 2 block matrix determinant formula the determinant of (84) is

detpiωxMqdetpiωyMη ´
gH

iω
pDxM

´1
pGq. (86)

The first term in (86) gives n geostrophic modes ω “ 0 along with a factor of piωqn that can
be absorbed into the second term, yielding

detpω2
yMη ` gH pDxM

´1
pGq, (87)

which is equivalent to

detpω2
` gHyMη

´1
pDxM

´1
pGq. (88)

Now using the definitions for pD, pG and xM we have

yMη

´1
pDxM

´1
pG “yMη

´1
´

xDu
xDv

¯

˜

yMu 0

0 yMv

¸´1˜

xGu

xGv

¸

(89)

Expansion using block matrix multiplication then gives (83).

Proposition 7. The 2D matrix zFGW
η can be written as the Kronecker sum of the 1D matrices

{FGW,x
η and {FGW,y

η

zFGW
η “

{FGW,x
η b I` Ib{FGW,y

η “
{FGW,x
η ‘

{FGW,y
η (90)

Therefore, the eigenvalues of the 2D gravity wave problem (82) can be written as

w2
2D “ w2

1D,x ` w
2
1D,y (91)

17



Proof. Start by expanding the first term of (83) in terms of the 1D matrices using as (60) -
(63)

pyMηq
´1

xDupyMuq
´1

xGu “ pyMx
D b

yMy
Dq
´1
pxDx b yMy

Dqp
yMx

C b
yMy

Dq
´1
pxGx b yMy

Dq (92)

Use the inverse property (50) to get

ppyMx
Dq
´1
b pyMy

Dq
´1
qpxDx b yMy

Dqpp
yMx

Cq
´1
b pyMy

Dq
´1
qpxGx b yMy

Dq (93)

Now the mixed product property (51) gives

ppyMx
Dq
´1

xDxpyMx
Cq
´1

xGxq b ppyMy
Dq
´1
yMy

Dp
yMy

Dq
´1
yMy

Dq “
{FGW,x
η b I (94)

Identical calculations on the pyMηq
´1

xDvpyMvq
´1

xGv term yield

pyMηq
´1

xDvpyMvq
´1

xGv “ Ib{FGW,y
η (95)

Therefore (90) holds. Since the 2D GW matrix zFGW
η is the Kronecker sum of the 1D GW

matrices {FGW,x
η and {FGW,y

η , using (56) the eigenvalues of (82) are simply the sum of the
eigenvalues of the 1D problems (81) in x and y, and (91) holds.

Note that (91) is the same as equation (80) (with f “ 0) from [24].

4.6. 2D Inertia-Gravity Waves

In [24] it is claimed without proof that the 2D IGW dispersion relationship can be
constructed from the 1D GW and IW relationships. We have demonstrated this to be true
for the 2D IW (Section 4.4) and 2D GW (Section 4.5). For 2D IGW, a proof for d “ 1 is
found below in Section 4.6. However, we have been unable to prove this assertion for d ě 2.
The expression of the 2D GW in terms of the 1D GW, and of the 2D IW in terms of the
1D IW rested on the existence of a simplified form and corresponding reduced eigenvalue
problem. This simplified form was possible to derive only because there were either zero
blocks (GW), or the matrix was only 2 x 2 (IW). In 1D, the reduced forms for IW, GW
and IGW also rely on the presence of zero blocks. However, 2D IGW has a 3 x 3 block
matrix without any zeros blocks, and therefore it does not appear to be possible to express
the determinant in a reduced form.

Two lines of evidence supporting the claim that for d ě 2 the 2D IGW eigenvalues cannot
be expressed in terms of the the 1D IW and GW eigenvalues are presented in Section 5.3.
The first is a demonstration that the asymptotics of the 2D IGW dispersion relationship do
not agree with those calculated using equation (80) from [24]. The second is a numerical
comparison of the dispersion relationship computed using the approach in this paper and
using the approach in [24] , where it is found that they differ by around 1%. Another
possibility might be that the 2D IGW relationship can be expressed in terms of the 1D IGW
relationship. This is demonstrated to be impossible for d “ 1 below, and therefore it seems
very unlikely to hold for d ě 2.
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Proposition 8. When d “ 1, the 2D IGW eigenvalues can be be expressed in terms of the
2D GW and IW eigenvalues (and therefore the 1D GW and IW eigenvalues) as

w2
IGW “ w2

GW ` w
2
IW “

w2
1D,IW,xw

2
1D,IW,y

f 2
` w2

GW,1D,x ` w
2
GW,1D,y (96)

Proof. When d “ 1, both xM and pS are 3 x 3 matrices, and there exists a direct formula for
the eigenvalues of the matrix. The eigenvalue problem (36) can be written as

¨

˚

˝

iωxMu fxCu ´gxGu

´fxCv iωxMv ´gxGv

´HxDu ´HxDv iωxMη

˛

‹

‚

, (97)

which has determinant (after factoring out the ω “ 0 root)

ω2
IGW “ f 2

xCuxCv
xMu

xMv

` gH

˜

xGv
xDv

xMv
xMη

`
xGu

xDu

xMu
xMη

¸

. (98)

Use of (21) - (23) was made in calculating this. By repeating this procedure for f “ 0 and
g “ H “ 0, it can also be shown that

ω2
GW “ gH

˜

xGv
xDv

xMv
xMη

`
xGu

xDu

xMu
xMη

¸

, (99)

ω2
IW “ f 2

xCuxCv
xMu

xMv

. (100)

This proves the first part of (96), that w2
IGW “ w2

GW `w
2
IW . Now use the results of Sections

4.4 and 4.5, which give w2
IW “

w2
1D,IW,xw

2
1D,IW,y

f2
and w2

GW “ w2
GW,1D,x ` w2

GW,1D,y. Therefore

the second part of (96) holds.

Note that (96) is just equation (80) from [24] with n “ 1.
Similar arguments can be used to show that the 1D dispersion relationship (when d “ 1)

can be written as
w2

1D,IGW “ w2
1D,GW ` w

2
1D,IW , (101)

in both x and y directions. However, comparing (96) and (101), it is not possible to express
w2
IGW purely in terms of w2

1D,IGW , even with the ability to express it in terms of w2
1D,IW and

w2
1D,GW . Since this is not possible when d “ 1, it seems very likely that it is also not possible

for d ě 2.
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5. Q´nΛk family

The Q´nΛk family (also as finite element exterior calculus or compatible finite elements)
is constructed by choosing A “ PC

n and B “ PDG
n´1, and is defined for all n ě 1. A diagram

of the Fourier degrees of freedom for n “ 2 is found in Figure 4. Recall that W0 Ă H1,
W1 Ă Hpdivq and W2 Ă L2. A key point here is that d “ n, that is, there are 3n2 degrees
of freedom in the Fourier analysis. This gives rise to multiple branches in the dispersion
relationship, and therefore associated line discontinuities.

Figure 4: The Fourier degrees of freedom for the Q´
nΛk family with n “ 2. Since d “ 2 there are 22 “ 4

degrees of freedom for each quantity. The W0 degrees of freedom (ψ, which are not used) are shown on the
left, the two components of W1 (u and v) in the middle and the W2 (η) degrees of freedom on the right.

5.1. Asymptotics

On a uniform grid, the maximal degree of the polynomials that occur in the integrals is
2n in x and y. Therefore, any quadrature rule of at least that degree will exactly integrate
the equations. One example is tensor-product Gauss-Lobatto quadrature with n` 1 points
in each direction, which exactly integrates polynomials of degree 2n ` 1 in x and y. Exact
quadrature gives the following results for the asymptotics:

Theorem 1. In the limit as mesh spacing hÑ 0 we obtain the asymptotic results for n ď 2
:

ω “ ωAN ˘
1

22n`1

n
ź

j“1

p4j2 ´ 1q

p´f 2pk2n ` l2nq ` g H pk2n`2 ` l2n`2q
a

f 2 ` g H pk2 ` l2q
phq2n `Oph2n`2q.

It is conjectured that this result holds @n ě 1.

These results were obtained using Maple and the analytic solution procedure described
above, and are at the limits of the software. Solving n “ 3 would require computing the
symbolic determinant of a 27 x 27 matrix, and then finding the roots of the resulting degree
27 polynomial. This proved to be intractable. However, there are two lines of evidence
supporting the conjecture. The first is that when l “ 0, the result for the PC

n ´ PDG
n´1 pair

from [13] is recovered, which was shown to hold until n “ 15. The second is that the 2D
GW dispersion relationship (obtained by setting f “ 0) satisfies this until at least n “ 12
(an attempt to prove it beyond n “ 12 was made, but again it was beyond the limits of
Maple). The Oph2nq order of convergence is superconvergence specific to a regular mesh,
and on arbitrary smooth meshes the expected order is Ophn`1q.
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5.2. Dispersion Relationships

Plots of the dispersion relationship σ “ ω
f

versus (Ăkh, rlh) for n “ 1, . . . , 4 are found in

Figures 5 and 6 with λ{h̃ “ 2.0 (a well-resolved Rossby radius) and in Figures 7 and 8 with
λ{h̃ “ 0.1 (a poorly resolved Rossby radius). The use of λ{h̃ ensures the same effective
resolution of the Rossby radius for all n. The long wavelength part of the spectrum is well-
represented in all cases, but when λ{h̃ “ 0.1 the short wavelength part of the spectrum is
significant underestimated and has a group velocity with the wrong sign. This portion is
progressively confined to higher wavenumbers as n increases. When n ě 2, spectral gaps
where the dispersion relationship is double-valued (in the form of line discontinuities) are

found at Ăkh “ jπ
n

(j “ 1, . . . , n ´ 1) and rlh “ mπ
n

(m “ 1, . . . , n ´ 1). As n increases, the

jump in frequency at the discontinuities for large Ăkh and rlh increase, but the size of the other
gaps decreases. It seems likely that numerical dissipation will be required to control these
gaps, especially in the short wavelength portion of the spectrum. The use of such dissipation
can be undesirable, especially since it is introduced for numerical stability rather than for
physically-motivated reasons. In addition to the gaps, there is also significant overestimation
of the frequency in the short wavelength part of the spectrum, that gets worse as n increases.
This is a plausible explanation of the observation that the CFL condition gets increasingly
strict as n increases.

5.3. Comparison with the results obtained in [24]

In [24], it is claimed (see equation (80) in that paper) that

w2
IGW “ w2

GW ` w
2
IW “

w2
1D,IW,xw

2
1D,IW,y

f 2
` w2

GW,1D,x ` w
2
GW,1D,y (102)

holds for any d. In Section 4.6 this was proven to be true for 2D IGW with d “ 1, and for any
d for 2D IW (g “ H “ 0, Section 4.4) and 2D GW (f “ 0, Section 4.5). However, as discussed
previously, here we will present counterexamples for the case of 2D IGW when d ě 2. The
first piece of evidence is found by computing the difference pwtp´wdirectq{wdirect˚100 between
the numerical dispersion relationship wdirect found by the procedure in Section 3.6, and wtp
obtained by using (102) for n “ 1, . . . , 4. This is shown in Figure 9, which gives the results
for λ{h̃ “ 2.0 and n “ 1, . . . , 4 using exact quadrature. Similar results (not shown) are
found for λ{h̃ “ 0.1. As expected, when n “ 1 there is no difference. However, when n ě 2,
there is a difference of around 1%. The second piece of evidence comes from computing the
asymptotics for wtp in the case n “ 2

ωtp “ ωAN ˘
1

1440

gHpk6 ` l6q
a

f 2 ` gHpk2 ` l2q
h4 `Oph6q (103)

Such a result is different than found in Section 5.1. Therefore, based on the counterexamples
of the numerical dispersion relationships for n “ 1, . . . , 4 and the asymptotics for n “ 2, we
conjecture that (102) holds for 2D IGW only when d “ 1.
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5.4. Mass Lumping for n “ 2

As shown in Section 5.2, when n ě 2 the 2D IGW dispersion relationship has line
discontinuities. This was also shown for the 2D GW dispersion relationship in [24, 26].
However, it is possible to eliminate these discontinuities for n “ 2 through a careful mass
lumping of the Mx

C and My
C matrices. This was demonstrated for the 1D IGW dispersion

relationship in [26, 35] and for the 2D GW and IW dispersion relationships in [26]. The
latter also included numerical evidence in the form of a simulation that the gap was closed
for 2D IGW, but no plots of the dispersion relationship were provided.

This lumping is accomplished by adding a term MLa to the Mx
C and My

C matrices that
are used in constructing Mu and Mv, where

MLa “

¨

˝

α β ´α
β γ β
´α β α

˛

‚, (104)

with β “ γ “ 0 and α “ 1
60

. The precise value of α will depend on how the basis functions
are normalized, and this value corresponds to using a reference element of size r0, 1s2 and
normalizing the basis functions such that the basis coefficients correspond to integrals over
the relevant geometric entities: sampling at points for W0, integrating over lines for W1 and
integrating over cells for W2. These lumping parameters are derived by enforcing that Mx

C

(My
C) remains positive-definite, and that the spectral gap at Ăkh “ π

2
(rlh “ π

2
) for 1D IGW

is eliminated. As shown in Figure 10, simply using this lumping for Mx
C and My

C when they
are used to construct Mu and Mv is sufficient to ensure that the 2D IGW gaps are also
eliminated. Using this mass lumping and exact quadrature, the asymptotics are

ω “ ωAN ¯
α

4
pk2 ` l2q

a

gHpk2 ` l2q ` f 2h2 `Oph4q.

As in 1D, the convergence rate is reduced from Oph4q to Oph2q, and when l “ 0 the result
for the lumped PC

2 ´ P
DG
1 pair from [13] is recovered.

6. MGDn family

The MGDn family is constructed by choosing A “ GDn [6] and B “ DGDn´1, and is
defined for n odd (n “ 1, 3, 5, 7 . . . ). Recall that GDn is the space of order n Galerkin differ-
ences in 1D, and that DGDn´1 is the corresponding compatible L2 space in 1D constructed
following [14]. More details about this construction can be found in [12]. A diagram of the
degrees of freedom for n “ 3 is found in Figure 11, and the basis functions for W0, W1 and
W2 are found in Figure 12. A key point is that d “ 1 independent of n, and therefore there
are only 3 degrees of freedom in the Fourier analysis. This is fundamental to the ability of
the MGDn family to avoid spectral gaps.
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6.1. Exact Quadrature Asymptotics

Just as for the Q´nΛk family, using a quadrature rule of at least degree 2n in each direc-
tion will ensure that all integrals are exactly integrated. Using exact quadrature yields the
following results for the asymptotics:

Theorem 2. With exact quadrature, in the limit as mesh spacing h Ñ 0 we obtain the
asymptotic results for n ď 17 :

ω “ ωAN ˘
αr
βr

p´f 2pk2n ` l2nq ` g H pk2n`2 ` l2n`2q
a

f 2 ` g H pk2 ` l2q
phq2n `Oph2n`2q.

where αe and βe are given in Table 1. It is conjectured that this result holds @n ě 1.

As before, we obtained these results using Maple and the analytic solution procedure
described in Section 3.6. When l “ 0, the results for the GDn ´ DGDn´1 pair from [13]
are recovered, albeit with a significant improvement in n from n “ 9 to n “ 17. Again, the
Oph2nq order of convergence is superconvergence specific to a regular mesh, and on arbitrary
smooth meshes the expected order is Ophn`1q.

Table 1: The coefficients αe and βe for the MGDn family using exact quadrature.

n αe βe
n “ 1 1 23 ˆ 3

n “ 3 17 26 ˆ 33 ˆ 7

n “ 5 13ˆ 317 210 ˆ 35 ˆ 52 ˆ 11

n “ 7 47ˆ 318749 213 ˆ 36 ˆ 53 ˆ 72 ˆ 11ˆ 13

n “ 9 44734915633 218 ˆ 38 ˆ 53 ˆ 73 ˆ 13ˆ 17ˆ 19

n “ 11 107ˆ 5693ˆ 716143ˆ 6211 221 ˆ 311 ˆ 55 ˆ 73 ˆ 112 ˆ 17ˆ 19ˆ 23

n “ 13 631ˆ 5519ˆ 145523547391 225 ˆ 313 ˆ 55 ˆ 72 ˆ 112 ˆ 132 ˆ 17ˆ 19ˆ 23

n “ 15 11304410571523ˆ 88334167 228 ˆ 315 ˆ 57 ˆ 72 ˆ 113 ˆ 132 ˆ 19ˆ 23ˆ 29ˆ 31

n “ 17 6703742237ˆ 155719ˆ 3541ˆ 2297 234 ˆ 315 ˆ 58 ˆ 75 ˆ 113 ˆ 132 ˆ 172 ˆ 23ˆ 29ˆ 31

6.2. Reduced Quadrature Asymptotics

It is useful to also consider reduced quadrature to ameliorate the computational cost
of the MGDn elements. This becomes particularly important as the dimension increases.
As proven in [13], reduced quadrature does not effect any of the desirable properties of the
scheme and does not change the matrix sparsity pattern. Using a tensor product, 2 point
Gaussian quadrature for all integrals yields the following result for asymptotics:
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Theorem 3. Using reduced quadrature, in the limit as mesh spacing h Ñ 0 we obtain the
asymptotic results for n ď 19:

ω “ ωAN ˘
αr
βr

g H pk2n ` l2nq
a

f 2 ` g H pk2 ` l2q
phqn`1 `Ophn`3q, (105)

where αr and βr are given in Table 2. It is conjectured that (105) holds for n ě 1.

As in the case of exact quadrature, the results for the GDn´DGDn´1 pair from [13] are
recovered when l “ 0, with again a significant improvement in n from n “ 9 to n “ 19. It is
interesting to note that this reduction in order is simply removing the superconvergence on
uniform meshes, and still recovers the expected order on arbitrary smooth meshes. Therefore
it is not clear if there will be significant differences between exact and reduced quadrature
on more realistic (deformed) meshes.

Table 2: The coefficients αr and βr for the MGDn family using reduced quadrature.

n αr βr
n “ 3 ´1 23 ˆ 33 ˆ 5

n “ 5 ´5 25 ˆ 34 ˆ 7

n “ 7 ´17 28 ˆ 33 ˆ 5ˆ 7

n “ 9 ´133741 210 ˆ 39 ˆ 5ˆ 7ˆ 11

n “ 11 ´23ˆ 1069ˆ 4111 214 ˆ 310 ˆ 52 ˆ 7ˆ 11ˆ 13

n “ 13 ´44346011 216 ˆ 310 ˆ 53 ˆ 7ˆ 13

n “ 15 ´824695933877 219 ˆ 314 ˆ 53 ˆ 72 ˆ 13ˆ 17

n “ 17 ´45381741803663 221 ˆ 315 ˆ 53 ˆ 72 ˆ 13ˆ 17ˆ 19

n “ 19 ´3837131ˆ 37661489 226 ˆ 315 ˆ 53 ˆ 73 ˆ 13ˆ 19

6.3. Dispersion Relationships

Plots of the dispersion relationship σ “ ω
f

versus pĂkh, rlhq for n “ 1, 3, 5, 7, are found in

Figures 13 and 14 with λ{h̃ “ 2.0 and in Figures 15 and 16 with λ{h̃ “ 0.1. The use of λ{h̃
ensures the same effective resolution of the Rossby radius for all n. When λ{h̃ “ 2.0, the

spectrum is well represented, with the exception of the CD mode that occurs at Ăkh “ rlh “ π
(this is a common feature of all known compatible Galerkin discretizations). When λ{h̃ “ 0.1,
the short wavelength part of the spectrum is again underestimated, and has a group velocity
with the wrong sign; in a region that grows smaller as n increases. However, unlike the Q´nΛk

family, there are no spectral gaps for any n and the maximal frequency does not increase
with n. Therefore, the CFL condition is not expected to grow worse as n increases. Using
reduced quadrature (not shown) does not materially alter these conclusions. Importantly,

24



there are still no spectral gaps and the maximum frequency is still insensitive to the value
of n.

Comparing the Q´nΛk (Figures 7 and 8) and MGDn families (Figures 15 and 16) for
the case λ{h̃ “ 0.1, the long wavelength part of the dispersion relationship for the Q´n rΛ

k

family is somewhat better, especially near the end of the spectrum before the underestimated
branches. However, the Q´nΛk family has a significant spectral gap in the shortest wavelength
part of the spectrum that the MGDn family avoids. It is unclear which of the two families
will perform better in practice, and it seems likely that both will do poorly, just like C-grid
finite difference models with a poorly resolved Rossby radius [17, 18, 30, 32, 36].

7. Simulations

To investigate the issues that arise due to the presence of line discontinuities in the
dispersion relationship, and to compare the Q´nΛk and MGDn families, two different simu-
lations were performed. Before proceeding to these tests, let us take a slight digression into
a discussion of effective resolution.

7.1. Effective Resolution

A measure of effective resolution is obtained by computing the fractional error ωN´ωAN

ωAN

in the dispersion relationship as a function of non-dimensional wavelengths ζ̃x and ζ̃y. The
calculation was performed for λ{h̃ “ 2 using exact quadrature with n “ 1, . . . , 4, in the case
of the Q´nΛk family (Figure 17) and n “ 1, 3, 5, 7, in the case of the MGDn family (Figure
18). An error level of 1% was used, which is indicated with the thick black line.

It is clear that for both families, the largest gains in effective resolution come from
increasing n from 1 to 3, giving an effective maximal resolution of around 4h̃ in both x and
y, with marginal gains after that. However, for the MGDn family, despite the marginal
gains in effective resolution as n increases, the maximal error decreases significantly and by
n “ 7 it is around 5%. Similar results are obtained for λ{h̃ “ 0.1 (not shown) and when
reduced quadrature is used for the MGDn family (not shown). In fact, reduced quadrature
for MGDn gives a slight increase in effective resolution. These results are similar to others
found in the literature [13, 15, 16, 38, 39] for a variety of finite-difference, finite-element and
finite-volume schemes.

7.2. Test Cases

Two separate test cases were used to investigate the influence of the line discontinuities
and compare the Q´nΛk and MGDn families. For both test cases, the domain Ω “ r0, Ls2

with N “ 120{d elements in each direction and h “ L{N , which ensures 1202 degrees of
freedom independent of d; where the parameters are: L “ 2 m, η0 “ 1 m, α “ 1{60,
x0 “ L{2, g “ 1 ms´1, H “ 1 m and f “ 25 s´1. This gives λ “ 1{25, and λ{h̃ “ 2.4,
corresponding to a well-resolved Rossby radius. These parameters fit with the tests run in
[13, 27, 35]. The time integrator is implicit midpoint, with ∆t “ 1{120 s and taking 100
steps for a total time of T “ 100{120 s.
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7.2.1. Unsupported Test Case

The first test case sets

η “ η0 exp

„

´
px´ x0q

2 ` py ´ y0q
2

α2



(106)

and u “ v “ 0. This test was run for n “ 1, . . . , 6, with exact quadrature for the Q´nΛk family
and for n “ 1, 3, 5, 7, with exact and reduced quadrature for the MGDn family. Additionally,
a high resolution run using exact quadrature and MGD7 with N “ 720 (giving a total of 7202

degrees of freedom) and ∆T “ 1{720 s for 600 steps was performed. The initial condition
along with the high resolution results can be found in Figure 19.

Results for the Q´nΛk family are found in Figure 20, and those for the MGDn family
with exact quadrature are found in Figure 21. The main features of the solution are a
steady geostrophic mode in the center of the domain and a propagating, annular inertia-
gravity mode, which both the Q´nΛk and MGDn families were able to capture. However, for
n ě 2 the Q´nΛk family shows significant noise in the interior of the annular inertia-gravity
mode, along with noise ahead of the wave mode along the x and y axes. There is also
significant dispersion, and an underestimation of the magnitude of the propagating mode.
These problems lesson somewhat as n increases, but they do not go away. In contrast, the
MGDn family does not have noise at any n, captures the amplitude of the propagating
mode better and shows significantly lower dispersion, especially at higher n. Similar results
were obtained using reduced quadrature for the MGDn family (not shown). A possible
hypothesis for this difference in behavior is as follows: the initial condition projects onto a
range of spatial wavenumbers, concentrated in the lower-frequency part of the spectrum. For
the Q´nΛk family this will include the line discontinuities. These discontinuities lead to noise
and enhanced dispersive errors, especially in the high-frequency part of the spectrum. As
n is increased, the problematic modes are increasingly localized to the high-frequency part
of the spectrum, which has less energy for this initial condition and therefore the problems
lessen but are not eliminated. This motivates the second test case, which is designed to
study the influence of the line discontinuities directly.

7.2.2. Supported Test Case

This test case starts with the initial condition for η from the unsupported test case
and modulates it by a sinusoidal function, designed to force at the frequency of the line
discontinuities:

η “ η0 exp

„

´
px´ x0q

2 ` py ´ y0q
2

α2



cospkpx´ x0qq cosplpy ´ y0qq (107)

where k “ l “ jπ{pnh̃q. The test was run for n “ 5 and j “ 1, 2, 3, 4 with exact quadrature
for the Qr

´Λk family and for n “ 5 with exact and reduced quadrature for the MGDn family.
Results for the Q´nΛk family are found in Figure 22, and those for the MGDn family

in Figure 23. Those for reduced quadrature with the MGDn family are very similar to
Figure 23 (not shown). Comparing the two families, it is clear that the Q´nΛk family has
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significantly more noise and anomalous dispersion than the MGDn family, even for j “ 1
where the line discontinuity is very small. It appears than even small discontinuities, such
as those that occur in the longer wavelength part of the spectrum for large n, can cause
issues for the Q´nΛk family. This is anticipated to be particularly relevant for more realistic
geophysical fluid models, which have forcings at range of scales due to nonlinear processes,
topography and physics parameterizations. It seems likely that some of these issues could
be ameliorated through the additional of numerical dissipation, but this is undesirable since
such dissipation is not physically motivated.

8. Conclusions

This work has shown that the 2D extension of the PC
n ´ PDG

n´1 pair, the Q´nΛk family,
shares its problems: spectral gaps and increasing maximal frequency with n, all of which
grow worse with increasing n. When n “ 2, the spectral gaps can be removed via mass
lumping [26, 35], but this degrades the order of convergence and still does not fix the high
maximal frequency. In 1D, the alternative pair GDn ´ DGDn´1 avoids these issues. We
have shown that the 2D extension of this pair, the MGDn family, also avoids the issues. In
particular, for any n theMGDn family pair is free of spectral gaps and the maximal frequency
does not increase with n. It does have increased computational cost relative to the Q´nΛk

family, but this can be partially ameliorated through reduced quadrature without changing
any of the features of the dispersion relationship or other desirable properties; except for a
loss in order of convergence from 2n to n ` 1. This is still less than the loss seen in the
mass lumped Q´nΛk family at n “ 2. Simulation results support these conclusions, with
the MGDn family producing significantly better results than the Q´nΛk family when n ě 2.
Therefore, it appears that the MGDn family is a strong candidate for the development
of geophysical fluid flow models. Study of the effective resolution suggests that n “ 3 is
a sweet spot in terms of maximizing resolvable wavenumber and order of convergence per
unit computational cost. Following this idea, a discretization of the thermal shallow water
equations using the MGD3 family can be found in [12] and work is ongoing to extend this
to the fully compressible Euler equations using Eulerian vertical coordinates. An extension
of this study of 2D shallow water dispersion relationships to incorporate time discretization
is also underway.
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Figure 5: Contour plots of the numerical dispersion relationship σ “ ω
f versus (Ăkh, rlh) for n “ 1, . . . , 4

using the Q´
nΛk family and exact quadrature when the Rossby radius is well resolved (λ{h̃ “ 2.0). Note the

presence of spectral gaps (in the form of line discontinuities) at Ăkh “ jπ
n (j “ 1, . . . , n ´ 1) and rlh “ mπ

n

(m “ 1, . . . , n´ 1), and the increasing maximal frequency occurring at large Ăkh and rlh as n increases.
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Figure 6: Surface plots of the numerical dispersion relationship σ “ ω
f versus (Ăkh, rlh) for n “ 1, . . . , 4

using the Q´
nΛk family and exact quadrature when the Rossby radius is well resolved (λ{h̃ “ 2.0). Note the

presence of spectral gaps (in the form of line discontinuities) at Ăkh “ jπ
n (j “ 1, . . . , n ´ 1) and rlh “ mπ

n

(m “ 1, . . . , n´ 1), and the increasing maximal frequency occurring at large Ăkh and rlh as n increases.
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Figure 7: As Figure 5, but for a poorly resolved Rossby radius (λ{h̃ “ 0.1). There are still spectral gaps
and an increasing maximal frequency as n increases, but now the short-wavelength part of the spectrum is
under-estimated and has a group velocity with the wrong sign.
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Figure 8: As Figure 6, but for a poorly resolved Rossby radius (λ{h̃ “ 0.1). There are still spectral gaps
and an increasing maximal frequency as n increases, but now the short-wavelength part of the spectrum is
under-estimated and has a group velocity with the wrong sign.
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Figure 9: The difference pwtp ´ wdirectq{wdirect ˚ 100 between wdirect found following Section 3.6, and wtp
obtained using (102) for λ{h̃ “ 2.0 and n “ 1, . . . , 4 using exact quadrature. As expected, there is no
difference when n “ 1, but there is an error of around 1% for n ě 2. This is evidence that (102) is not giving
the correct dispersion relationship for n ě 2.
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Figure 10: Surface and contour plots of the numerical dispersion relationship σ “ ω
f versus (Ăkh, rlh) for

the lumped version of the Q´
2 Λk family with exact quadrature when the Rossby radius is well resolved

(λ{h̃ “ 2.0) and poorly resolved (λ{h̃ “ 0.1). Note there are no spectral gaps, and the poorly resolved case
has a group velocity with the wrong sign.

Figure 11: The Fourier degrees of freedom for the MGDn family, with W0 (ψ, not used) on the left, the two
components of W1 (u and v) in the middle and W2 (η) on the right. Note that since d “ 1, there is only one
degree of freedom for any n.
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ψ̂
1

η̂ 1

û
1

v̂ 1

Figure 12: The basis functions for the W0 (top left), W1 (bottom, u on left and v on right) and W2 (top
right) spaces from the MGD3 family. Unlike the Q´

nΛk family, the basis functions have extended support
beyond neighboring elements. Here a 4 x 4 element mesh with element width equal to 1 is used, and we show
the basis function associated with the unique degrees of freedom for the element spanning (2,3) in both x
and y.
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Figure 13: Contour plots of the numerical dispersion relationship σ “ ω
f versus (Ăkh, rlh) for n “ 1, 3, 5, 7

using the MGDn family and exact quadrature when the Rossby radius is well resolved (λ{h̃ “ 2.0). Unlike
the Q´

nΛk family, there are no spectral gaps and the maximal frequency does not increase with n.
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Figure 14: Surface plots of the numerical dispersion relationship σ “ ω
f versus (Ăkh, rlh) for n “ 1, 3, 5, 7 using

the MGDn family and exact quadrature when the Rossby radius is well resolved (λ{h̃ “ 2.0). Unlike the
Q´
nΛk family, there are no spectral gaps and the maximal frequency does not increase with n.
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Figure 15: As Figure 13, but with a poorly resolved Rossby radius (λ{h̃ “ 0.1). There are still no spectral
gaps, but there is a significant underestimation of the frequency in the short wavelength part of the spectrum
and a group velocity with the wrong sign.
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Figure 16: As Figure 13, but with a poorly resolved Rossby radius (λ{h̃ “ 0.1). There are still no spectral
gaps, but there is a significant underestimation of the frequency in the short wavelength part of the spectrum
and a group velocity with the wrong sign.
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Figure 17: Plots of the fractional error ωN´ωAN

ωAN
as a function of non-dimensional wavelengths ζ̃x and ζ̃y for

the Q´
nΛk family using exact quadrature with n “ 1, . . . , 4 and λ{h̃ “ 2. The thick black line indicates an

error level of 0.01 or 1%, and can be used to diagnose an effective resolution. The largest gains in effective
resolution occur as n increases from 1 to 3, giving around 4h̃ in both x and y.
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Figure 18: As for Figure 17, but using the MGDn family with n “ 1, . . . , 7. Again, the largest gain in
effective resolution comes from increasing n from 1 to 3, giving around 4h̃ in both x and y. Note also that
the maximum error decreases quickly as n increases, and it is around 5% for n “ 7.
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Figure 19: The initial condition (left) ηp0q and the high resolution reference solution (right) at the end of
the simulation ηpT q for the unsupported test case. The reference solution was computed using MGD7 with
N “ 720 (7202 degrees of freedom total) and ∆T “ 1{720 s (600 steps total).
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Figure 20: The final height ηpT q for the unsupported test case using the Q´
nΛk family with exact quadrature

for n “ 1, . . . , 6. There is significant noise and anomalous dispersion for all n ě 1, with the effects somewhat
improving at n increases but not going away. In particular, the anomalous dispersion along the x and y axes
remains strong, even at n “ 6.
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Figure 21: As for Figure 20, but using the MGDn family with n “ 1, 3, 5, 7. Unlike the Q´
nΛk family there

is essentially no noise for any n and reduced anomalous dispersion, especially for higher n.
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Figure 22: Height ηpT q for the supported test case using the Q´
nΛk family using n “ 5 and exact quadrature.

This test forces specifically at the gap frequency k “ l “ jπ{pnh̃q, and was run for j “ 1, 2, 3, 4. For all j
there is significant noise and anomalous dispersion, even for the case j “ 1 when the gap is very small.
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Figure 23: As Figure 22, but for the MGDn family with n “ 5. Unlike the Q´
nΛk family, there is no little

anomalous dispersion and almost no noise for any j.
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