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Measured displacement elds constitute a rich database for the identication of mechanical behavior. A variety of methods are available today to address this problem. A formalism is proposed showing that they all revert to the minimization of a quadratic norm (or semi-norm) between measured and computed displacement elds. However, they dier in the chosen metric.

Transporting image noise through Digital Image Correlation and identication procedures, the uncertainty in the measured displacement elds (i.e., their full covariance) and the resulting uncertainty in the estimated constitutive parameters is assessed. Consequently, an optimal choice of metric (with respect to image noise) is proposed so that the resulting identication uncertainty is minimized.

Introduction

Nowadays' use of materials requires high mechanical properties, complex microstructures with ever less usage of raw components (to lower energy consumption, and CO 2 imprint), in increasingly severe conditions, may po- tentially jeopardize the safety in domains such as energy and transportation.

In these areas mechanical sciences must provide reliable and complete numerical tools to enable for decision-making [1]. The need for ever more robust and faithful constitutive models calls for advanced identication and validation strategies. The latter ones have seen numerous developments with the emergence and democratization of full-eld measurement techniques [START_REF] Sutton | Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation[END_REF].

Preprint submitted to Elsevier November 8, 2018 Very large numbers of measured data (i.e., dense elds in some cases) are accessible with rather standard equipments [START_REF] Neggers | Big Data in Experimental Mechanics and Model Order Reduction: Today's Challenges and Tomorrow's Opportunities[END_REF]. Their weakness is that their uncertainties are generally higher than those of point measurements.

Gaussian noise (potentially correlated) is the most frequently encountered case. Its statistical properties are exhaustively captured by the full covariance aecting the measured data [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF]. When using optical cameras to measure displacement elds, it is then possible to propose general frameworks that link image noise to displacement uncertainties, and the latter ones with parameter uctuations [START_REF] Mares | Stochastic model updating: Part 1-theory and simulated example[END_REF][START_REF] Neggers | Big Data in Experimental Mechanics and Model Order Reduction: Today's Challenges and Tomorrow's Opportunities[END_REF].

In the eld of solid mechanics, various identication methods have been developed over the last decades [START_REF] Avril | Overview of identication methods of mechanical parameters based on full-eld measurements[END_REF]. Some of them explicitly require full-eld measurements to be available [START_REF]Full-Field Measurements and Identication in Solid Mechanics[END_REF]. Finite element model updating (FEMU)

was the rst proposition [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF][START_REF] Farhat | Updating nite element dynamic models using an element-by-element sensitivity methodology[END_REF][START_REF] Pagnacco | Parameter Identication from Mechanical Field Measurements using Finite Element Model Updating Strategies[END_REF], which is an iterative procedure comparing measured and simulated displacement, strain or load levels [START_REF] Collins | Statistical identication of structures[END_REF][START_REF] Kavanagh | Extension of classical experimental techniques for characterizing composite-material behavior[END_REF][START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF]. Least squares errors were considered with no special emphasis on their weighting. Other types of gaps were introduced. In elasticity, dierent variational principles were considered [START_REF] Bonnet | Inverse problems in elasticity[END_REF][START_REF] Bonnet | Introduction to Identication Methods[END_REF]. The constitutive equation error, which was initially introduced for the verication of numerical models [START_REF] Ladevèze | Error estimate procedure in the nite element method and applications[END_REF], was also used for identication purposes [START_REF] Ladevèze | Updating of nite element models using vibration tests[END_REF][START_REF] Calloch | Identication de modèles de comportement de matériaux solides : utilisation d'essais et de calculs[END_REF][START_REF] Geymonat | Identication of elastic parameters by displacement eld measurement[END_REF][START_REF] Allix | Identication strategy in the presence of corrupted measurements[END_REF][START_REF] Feissel | Modied constitutive relation error identication strategy for transient dynamics with corrupted data: The elastic case[END_REF]. The reciprocity gap [START_REF] Andrieux | The reciprocity gap: a general concept for aws identication problems[END_REF][START_REF] Andrieux | Reciprocity principle and crack identication[END_REF][START_REF] Andrieux | Reciprocity Gap Method[END_REF] considers only surface measurements to determine various types of defects in the bulk of the analyzed domain. Non iterative methods such as the virtual elds method [START_REF] Grédiac | Principe des travaux virtuels et identication[END_REF][START_REF] Grédiac | The use of full-eld measurement methods in composite material characterization: interest and limitations[END_REF][START_REF] Pierron | The Virtual Fields Method[END_REF] and the equilibrium gap method [START_REF] Claire | Identication of damage elds using kinematic measurements[END_REF][START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF][START_REF] Roux | Digital image mechanical identication (DIMI)[END_REF][START_REF] Crouzeix | An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material[END_REF][START_REF] Périé | Digital image correlation and biaxial test on composite material for anisotropic damage law identication[END_REF] were introduced to calibrate elastic parameters and damage models.

In the vast majority of studies mentioned so far measurement uncertainties were not explicitly accounted for. Optimal extractors, namely, the least sensitive to measurement uncertainties were introduced for the choice of virtual elds [START_REF] Avril | Sensitivity of the virtual elds method to noisy data[END_REF], the estimation of fracture mechanics parameters [START_REF] Réthoré | Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements[END_REF], or the identiability of load and contrast elds in microcantilevers [START_REF] Amiot | Identication of elastic property and loading elds from full-eld displacement measurements[END_REF]. Specic weighting based on global DIC uncertainties was also proposed for the identication of elastic properties [START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3d woven composite: Uncertainty analysis and regularization[END_REF]. Last, under the assumption of small noise level, it was shown that weighted FEMU and integrated DIC led to the same covariances of identied parameters [START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF].

The present paper aims at extending this optimality feature by analyzing each of the afore-mentioned identication methods in view of their sensitivity to measurement uncertainties. Once these various sensitivities have been discussed, it is proposed to formulate an optimal approach. The statement of the problem is introduced in Section 2. Section 3 reviews various identication methods in a unied framework. An optimal method is proposed in Section 4. Extensions to nonlinear problems are discussed in Section 5.

Statement of the problem

The identication problem consists in estimating the constitutive parameters at best from a measured displacement eld (and possibly additional data such as applied forces, temperature elds).

It is worth noting that even the very existence of a constitutive law may be relaxed in data-driven approaches where stresses and strains are related from a cloud of data rather than an algebraic relationship [START_REF] Kirchdoerfer | Data-driven computational mechanics[END_REF][START_REF] Leygue | Databased derivation of material response[END_REF]. In the present study, the choice has been made to stick to a more traditional view where a constitutive law is formulated explicitly and parameterized.

To ease the discussion, only the case of linear elasticity (i.e., the most universal constitutive postulate) will be addressed rst, and extensions to more general constitutive laws will be addressed at the end of this paper.

Hence, the constitutive law reduces to the Hooke's tensor, C, parameterized by a set of parameters, {p} = {p 1 , ..., p m } , collected into a column vector (e.g., isotropic elasticity requires only two parameters, the Lamé's moduli, or the Young's modulus and Poisson's ratio).

Let us also stress that no model error are assumed to be present. That is to say the actual constitutive law of the material under study lies within the space of the considered constitutive laws, and the diculty is to nd the best estimates of the constitutive parameters, knowing that one such set exists. In other words, an elastic law will not be sought when the behavior is elastoplastic, or elasticity will be restricted to isotropy when the behavior is anisotropic. Such cases of model error are much more demanding as they call for an appropriate metric in a space of constitutive laws, a question that is dicult to address on objective grounds. The simpler issue of asking whether the behavior that is known to belong to a large class of laws may be restricted to a subclass (that of specic symmetries or properties), thereby leading to strategies of gradual enrichments of considered models [START_REF] Neggers | Improving full-eld identication using progressive model enrichments[END_REF] is even considered beyond the scope of the following analyses. Similarly, it will be assumed that discretization errors are not relevant. Equipped with error estimates, one may consider today that the issue of numerical verication is mature enough to be under control [START_REF] Ladevèze | Error estimate procedure in the nite element method and applications[END_REF][START_REF] Zienkiewicz | A simple error estimator and adaptive procedure for practical engineering analysis[END_REF][START_REF] Zienkievicz | The Finite Element Method. 4th edition[END_REF][START_REF] Szabó | Introduction to nite element analysis: formulation, verication and validation[END_REF].

One issue of the problem is to dene at best. A distinctive feature of experimental measurements is that they are corrupted by noise [START_REF] Iso | Guide to the Expression of Uncertainty in Measurements (GUM). International Organization for Standardization[END_REF][START_REF]International Vocabulary of Metrology -Basic and General Concepts and Associated Terms, VIM. International Organization for Standardization[END_REF].

Consequently, the determination of {p} will inherit from the noisy input data a uctuating part {δp}, which may display a systematic error {δp} , and a (co)variance {δp}{δp} where the angular brackets stand for the expectation over statistical realizations of the noise. The best determination will thus be dened as that 1) which has no bias, and 2) minimizes the uncertainty.

Problem. From a given measured displacement eld, u m (x), over a region of interest Ω, the problem consists in estimating the constitutive parameters, {p}, with no bias and the least uncertainties.

Let us note that the rst condition (i.e., no bias), is not necessarily met.

For instance, a method that would aim at the computation of the elastic energy from the given displacement eld would involve a quadratic form on the displacement, and hence the displacement uncertainties will give rise to a contribution to this energy, which in turn will result in a systematic error.

Hence, estimates of {p} based on nonlinear functions of the displacements are to be rejected based on the bias argument. Alternatively obtaining a bias-free estimate can be solved straightforwardly from any evaluation of {p} that is linear (or whose incremental correction is linear) in the measured displacement.

Simplifying assumptions

Nowadays, mechanical tests are more and more systematically equipped with imaging devices to provide surface (be it planar stemming from singleview or 3D surface displacements from multiview systems) or volume (based on tomography) displacement [START_REF] Rastogi | Photomechanics[END_REF][START_REF] Rastogi | Optical Methods for Solid Mechanics. A Full-Field Approach[END_REF]. Thus one experiment is often studied all along a loading history and long time series of images are available (this is mandatory for complex constitutive laws). It is even sometimes necessary to combine several experiments to reach a complete description. Strategies designed to address such image series, be they relative to single or multiple experiments have been proposed, but they will not be discussed hereafter.

For the sake of simplicity, the most simple case is rst addressed, namely a single deformed state. Dense elds are considered, thus either in 2D based on DIC measurement or 3D using Digital Volume Correlation (DVC). The case of stereocorrelation, which only informs on the surface deformations of a solid without volume kinematic measurement is not considered herein.

As a further simplication in phase with the recourse to a single image, a linear elastic description is assumed to hold. A measured displacement eld u m , say by DIC or DVC, is considered to be available. Similarly, Neumann boundary conditions as well as the density of body forces are assumed to be known exactly. The problem then consists in nding the elastic properties such that the displacement eld computed from a numerical model, for instance using Finite Element Analyses (FEAs) matches as well as possible the measured eld. Further, geometry is expected to be known exactly. Hence the specimen shape to be meshed in the model is known precisely, and the reference frame of the image is assumed to be perfectly registered onto that of the numerical twin so that the matching of points does not introduce any discrepancy per se.

Last, the discretization of the kinematic measurement in the FE modeling, which can dier from that of the DIC analysis is not addressed at this point. For global DIC/DVC techniques that can use arbitrary meshes, this question is not critical, but for local approaches this point is more relevant as boundaries are more delicate to be described [START_REF] Hild | Digital Image Correlation[END_REF]. It is assumed that the discrete measurement data are localized at points x i , where the modeled displacement eld is to be evaluated for comparison to measurements.

The previously cited assumptions introduce some restrictions, which are initially introduced to ease the discussion. After having reached the stage where an optimal identication method has been dened, the above assumptions will be revisited in order to show that they can be relaxed within the identication framework.

FEA

Within the framework of a nite element discretization of the problem, the Lamé's equation takes a very classical form [START_REF] Zienkievicz | The Finite Element Method. 4th edition[END_REF] [K]{v} = {f }

(1)

where [K] For the Dirichlet degrees of freedom, it is natural to consider that the displacement is set by the measurement. Thus, a modeled displacement eld {v} is introduced, such that

([I] -[D]){v} = ([I] -[D]){u m } [D][K]{v} = [D]{f } (2) 
where the rst condition stands for the Dirichlet boundary conditions, and the second equation expresses both the constitutive law and equilibrium. It may be noted that the second equation can also be rewritten as

[D][K][D]{v} = [D]{f } -[D][K]([I] -[D]){u m } (3) 
where the stiness matrix, restricted to inner nodes and Neumann degrees 

of freedom, [K I ] ≡ [D][K][D],
[D]{f eff } ≡ [D] ({f } -[K]([I] -[D]){u m }) (4) 
With only displacement data, a rescaling of all moduli by a xed amount does not aect the data, and hence the stress unit cannot be determined.

The problem should be rephrased with dimensionless constitutive parameters where moduli are scaled by, say, the Young's modulus. Prescribing known tractions or body forces is a simple way to circumvent the previous argument, leaving open the possibility of identifying all constitutive parameters.

Spectral sensitivity

Because the measured displacement eld is subjected to noise, it will be important to characterize the sensitivity of the following operators or norms to high frequency modulations. For this purpose, trial displacement elds w in the form of a plane wave w = w 0 exp(ik • x) are introduced, and the scaling of norms (or semi-norms) {w} [A]{w} with the wave-number amplitude k = |k|, is dened as

{w} [A]{w} ∼ k ς (5) 
where the brackets here stand for spatial averages. In practice, for the nite element method which is beyond the scope of the usage of the present argument the corresponding wavelength 2π/|k| should be much larger than the element size, and much smaller than the domain size, so that the sine waves can be well resolved and well sampled. A large value of the spectral sensitivity ς will mean a high sensitivity to white noise, and without further information on the noise spectral properties, are not recommended. Matrices such as [M ] (e.g., mass matrix [START_REF] Zienkievicz | The Finite Element Method. 4th edition[END_REF] or DIC matrix [START_REF] Hild | Digital Image Correlation[END_REF]) or [I] have a spectral sensitivity of ς = 0. The stiness matrix is the discretized form of the balance operator ∇ • (C : ∇ ⊗ •) applied to the displacement eld and the presence of two dierential operators implies that the spectral sensitivity of [K] is ς = 2.

In the following, some classical identication techniques will be rephrased, emphasizing their similarities and dierences, in particular in terms of their spectral sensitivities.

Identication techniques 3.1. Finite Element Model Updating (FEMU)

The oldest and most natural method consists in matching {v} and {u m } [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF][START_REF] Kavanagh | Extension of classical experimental techniques for characterizing composite-material behavior[END_REF][START_REF] Collins | Statistical identication of structures[END_REF]. Introducing an L2 (Euclidian) norm, the FEMU method was formulated as nding the constitutive parameters (embedded in the stiness matrix [K]) that minimizes the following functional

T (FEMU) = {v} -{u m } 2 = ({v} -{u m }) ({v} -{u m }) (6) 
Because {v} and {u m } already coincide on the Dirichlet boundary conditions, it is equivalent to introducing the diagonal [D] matrix inside the scalar product

T (FEMU) = ({v} -{u m }) [D]({v} -{u m }) (7) 
It is noteworthy that if a nonuniform mesh is used, the above expression is not uniformly sampled in space. If such a uniform weighting is preferred, the above norm should be generalized by a summation over space with a uniform Lebesgue measure. Taking into account the fact that at the element scale, shape functions are known, the continuous summation can be expressed in terms of the discretized nodal values. This will automatically produce another L2 norm, which is expressed with the mass matrix, [M ]

T (FEMU) = ({v} -{u m }) [M ]({v} -{u m }) (8) 
The latter weighting has the merit of being apparently transparent to the choice of mesh provided the region of interest remains the same, and that the mesh does not impede an accurate description of the displacement eld.

Let us note that in all of these expressions an arbitrary scale factor can be introduced. It is usual to introduce a prefactor of (1/2), and/or a normalization by the total number of degrees of freedom in [D] or the surface / volume. At this stage, this scaling has no consequence. It will when other functionals will be considered together with T.

The spectral sensitivity of T (FEMU) is ς (FEMU) = 0.

Equilibrium Gap (EG)

The minimization of the equilibrium gap seeks to fulll Equation (3) for a displacement eld equal to u m . More precisely, if the measured displacement eld is prescribed instead of {v} in Equation ( 3), the second member will display spurious unbalanced forces {ϕ} such that

[D][K][D]{u m } -[D]{f eff } = [D]{ϕ} (9) 
The euclidian norm of [D]{ϕ} is the so-called equilibrium gap [START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF]. Thus, it is written as

T (EG) = [D][K][D]{u m } -[D]{f eff } 2 = [K I ]{u m } -[D]{f eff } 2 (10) 
Observing Equation ( 4), the above cost function is rewritten as

T (EG) = [K I ]({v} -{u m }) 2 = ({v} -{u m }) [K I ][M ][K I ]({v} -{u m }) (11) 
Here again, the mass matrix reappears because the euclidian norm is considered based on a uniform measure over the domain of interest. If an equal weight is given to all degrees of freedom, the mass matrix [M ] should be turned into the identity [I] matrix, and hence the metric is simply

[K I ] 2 .
One nice feature of this formulation is that the above cost function is for some specic cases (such as scalar or modal anisotropic damage laws [START_REF] Roux | Digital image mechanical identication (DIMI)[END_REF][START_REF] Périé | Digital image correlation and biaxial test on composite material for anisotropic damage law identication[END_REF]) quadratic in {p}, thereby leading to linear systems for identication purposes. This is however not a universal statement, and apart from aesthetic reasons, this argument should not matter in the selection of a methodology.

For both variants, the spectral sensitivity is the double of that of [K I ], thus ς (EG) = 4. This spectral sensitivity is a key property when using regularized DIC since it can be shown that the equilibrium gap functional, taken as a penalty to gray level conservation, then acts as a mechanics-based low pass lter [START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis fractured samples[END_REF][START_REF] Tomi£evi¢ | Mechanics-aided digital image correlation[END_REF] of fourth order.

Constitutive Law Error (CLE)

The constitutive law error is a concept that was rst developed as a tool to control and assess the quality of numerical simulations [START_REF] Ladevèze | Error estimate procedure in the nite element method and applications[END_REF]. Using the same formulation to address identication from full-eld measurements is an extension from its primary purpose [START_REF] Ladevèze | Updating of nite element models using vibration tests[END_REF][START_REF] Calloch | Identication de modèles de comportement de matériaux solides : utilisation d'essais et de calculs[END_REF][START_REF] Geymonat | Identication of elastic parameters by displacement eld measurement[END_REF][START_REF] Allix | Identication strategy in the presence of corrupted measurements[END_REF][START_REF] Feissel | Modied constitutive relation error identication strategy for transient dynamics with corrupted data: The elastic case[END_REF]. The spirit of the method is as previously to minimize unbalanced forces [D]{ϕ} with the measured displacement eld. However, rather than computing the Euclidian norm of ϕ, an energy-like norm is introduced, namely, the work of these unbalanced forces in a displacement eld, ({v} -{u m }) that is admissible to 0 (on Dirichlet degrees of freedom)

T (CLE) = ({v} -{u m })[D]{ϕ} = ({v} -{u m }) [D][K][D]({v} -{u m }) = ({v} -{u m }) [K I ]({v} -{u m }) (12) 
This writing shows that the above form is quadratic and vanishes only if the two elds coincide (i.e., [K I ] is denite). The spectral sensitivity of the CLE strategy is equal to that of

[K I ], thus ς (CLE) = 2.
Let us note that the Modied Constitutive Law Error, (M-CLE), was introduced as the sum of CLE and FEMU-type cost functions, T (CLE) + αT (FEMU) [START_REF] Allix | Identication strategy in the presence of corrupted measurements[END_REF][START_REF] Feissel | Modied constitutive relation error identication strategy for transient dynamics with corrupted data: The elastic case[END_REF][START_REF] Ben Azzouna | Robust identication of elastic properties using the Modied Constitutive Relation Error[END_REF][START_REF] Huang | Modied constitutive relation error: An identication framework dealing with the reliability of information[END_REF]. The weighting parameter α gives an additional handle to optimize the identication procedure. Huang et al. [START_REF] Huang | Modied constitutive relation error: An identication framework dealing with the reliability of information[END_REF] suggest using standard heuristics to determine the choice of α (such as Morozov [START_REF] Nair | Morozov's discrepancy principle under general source conditions[END_REF] criterion or L-curve [START_REF] Miller | Least squares methods for ill-posed problems with a prescribed bound[END_REF]). One may note that this α parameter, which relates two functionals with a dierent spectral sensitivity, implicitly denes a length scale, ξ, such that FEMU dominates at larger scales than ξ, and conversely, the CLE cost function rules the smaller length scales. Because the M-CLE approach is a linear combination of two pure cases, it will not be further distinguished.

Reconditioned Equilibrium Gap (REG)

The equilibrium gap shows a very high sensitivity to high frequency noise (since ς (EG) = 4), and hence is expected not to be very robust with respect to noise. In order to counteract this trend, it is desirable to integrate twice the unbalanced nodal forces to displacements, and this is the motivation for introducing the Reconditioned Equilibrium Gap, or REG [START_REF] Roux | Digital image mechanical identication (DIMI)[END_REF]. Such an integration is provided by the solution to an elastic problem. For this purpose, a reference elastic medium is chosen, as characterized by a rigidity matrix [K 0 ] over the same geometry (and same mesh) as the studied sample, and as previously, the restriction of this operator to non-Dirichlet degrees of freedom is dened, 

[K I 0 ] = [D][K 0 ][D].
= [K I 0 ] -1 {ϕ} (13) 
The quadratic norm of {w} is the reconditioned equilibrium gap

T (REG) = {w} [M ]{w} = {ϕ} [K I 0 ] -1 [M ][K I 0 ] -1 {ϕ} = ({v} -{u m }) [K I ][K I 0 ] -1 [M ][K I 0 ] -1 [K I ]({v} -{u m }) (14) 
It is to be noted that [K I 0 ] -1 is never to be computed explicitly, but only the trial displacements {w} whose cost is that of solving a linear elastic problem.

A reference medium is introduced, and among all possible choices, one natural candidate is to choose precisely that of the studied sample. In this case, (REG) coincides with the FEMU criterion. However, if no link is established between [K] and [K 0 ] the above mentioned linearity property of the EG criterion when solving for damage elds is preserved, in contrast to FEMU that would be nonlinear. However, here again, computationally, the advantage of such linearity is marginal.

[K I 0 ] = [K I ], T
As expected from its very construction, the reconditioned equilibrium gap method displays a zero spectral sensitivity, ς (REG) = 0, and hence is much less sensitive to noise, and thus becomes comparable to FEMU.

Virtual Fields Method (VFM)

The virtual elds method, which was proposed long ago [START_REF] Grédiac | Principe des travaux virtuels et identication[END_REF], and which has been matured to a large number of successful cases [START_REF] Pierron | The Virtual Fields Method[END_REF], can be cast into a similar formalism. Because unbalanced forces {ϕ} should be ideally vanishing, for any kinematically admissible displacement eld, referred to as virtual eld, {ψ}, the virtual work {ψ} {ϕ} should vanish. This condition denes a scalar equation with which at most one constitutive parameter can be determined. When n such parameters are needed (depending on the complexity of the constitutive law, and hence, in the present case of linear elasticity, on its class of symmetry), one may introduce as many virtual elds {ψ i }, i = 1, ..., n, to obtain as many equations as unknowns. The equations to solve read

{ψ i } [K I ]({v} -{u m }) = 0 (15)
This set of equation is identical to the one that would result from the minimization of

T (VF) = ({v} -{u m }) [K I ][Ψ][K I ]({v} -{u m }) (16)
where [Ψ] is the projector along the subspace generated by the virtual elds

[Ψ] = i {ψ i }{ψ i } (17)
Since the rank of this matrix is n, the above cost function T (VF) is a seminorm, with a large kernel (subspace orthogonal to [Ψ]). It is thus essential to choose the virtual elds wisely. In the review paper [START_REF] Grédiac | The virtual elds method for extracting constitutive parameters from full-eld measurements: a review[END_REF], the selection of the virtual elds is discussed, and dierent solutions are proposed (although the problem of selecting the best set of virtual elds is declared unsettled by the authors). The dierent options that were proposed are:

• a heuristic approach where the dierent elds ψ i are chosen to be orthogonal to one another. In fact it could be argued that orthogonality is not relevant computationally inasmuch as only the subspace generated by the ψ i matters.

• a second mentioned criterion is (equivalent) to achieve the best conditioning of the linear system.

• let us mention that it was recently proposed to use the sensitivity elds as computed virtual elds for using the virtual eld method in the context of nonlinear constitutive laws [START_REF] Marek | Sensitivity-based virtual elds for the non-linear virtual elds method[END_REF]. It is interesting to note how close this choice actually brings the VFM to the original FEMU technique that extensively uses sensitivity elds [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF][START_REF] Mottershead | The sensitivity method in nite element model updating: A tutorial[END_REF].

• another possible choice is to minimize the eect of noise, leading to so-called special virtual elds. In ref. [START_REF] Avril | Sensitivity of the virtual elds method to noisy data[END_REF], an operational way of optimizing the virtual elds was based on the assumption that the measured strains are aected by a Gaussian white noise. Since a displacement eld is generally measured, the strains cannot be aected by a white noise as it fullls a compatibility condition, and the strain noise displays a strong anticorrelation character resulting from the partial dierentiation that relates strain to displacement. However, noting that the measurement noise is the limiting feature of the identication is a very relevant observation, this calls for taking into account the actual covariance of the displacement eld noise, Cov u (from which that of strains can be derived [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]).

It is noteworthy that in the case of linear elasticity or viscoelasticity, such an approach (for any choice of the virtual elds) may lead to linear systems provided the constitutive parameters are chosen so that the rigidity matrix is ane in {p} [START_REF] Pierron | The Virtual Fields Method[END_REF], akin to what was observed for the EG and REG methods [START_REF] Claire | Identication of damage elds using kinematic measurements[END_REF][START_REF] Roux | Digital image mechanical identication (DIMI)[END_REF].

Because typically n is a small number, the spectral sensitivity is not meaningful. Virtual elds are usually structural (i.e., not related to a particular mesh) exactly for the purpose of not being too sensitive to noise so that the k-dependence is not meaningful. Let us note that if a larger number of virtual elds is considered the minimization of T V F could still be considered although it would generally not be possible to reach 0 for all Equations [START_REF] Ladevèze | Error estimate procedure in the nite element method and applications[END_REF]. In this case, the advantage of formulating the problem as a minimization is to naturally deal with more equations. Considering all possible elds as generated by the nite element mesh (i.e., Ψ would then reduce to the identity or mass operator and it would generate the entire space of discretized displacements) leads to the EG method (i.e., ς (V F M ) = 4).

In contrast, keeping the number of elds small corresponds to ignoring all information coming from the complementary subspace (i.e., ς (V F M ) ≈ 0).

Summary

All methods to be discussed below tend to evaluate the elastic properties, e.g., Hooke's tensor C({p}), which is parameterized by {p} so that {v} and {u m } become as close as possible. A general framework that has been shown as suitable for all the above cited methods is to estimate C, or rather {p} as the argument minimizing a functional T({p})

C identif = Argmin {p} T({p}) (18) 
where

T({p}) = ({v({p})} -{u m }) [N ]({v({p})} -{u m }) (19)
is a norm (or a semi-norm) dening a metric to evaluate the distance between computed and measured displacement elds. However, all these methods differ in the expression of the symmetric matrix [N ] as summarized in Table 1. 

[I] 0 FEMU (uniform) [M ] 0 EG (dof ) [K I ] 2 4 EG (uniform) [K I ][M ][K I ] 4 CEE [K I ] 2 REG [K I ][K I 0 ] -1 [M ][K I 0 ] -1 [K I ] 0 VFM [K I ][Ψ][K I ]
(not relevant)

Optimal methods

In the previous section, a set of dierent criteria have been shown to dier only by their metric. Thus the next question to answer is to point out the best one. The rst diculty to address is to dene properly what is understood as best. The present choice for the denition of best is to not only evaluate the constitutive parameters, but also their uncertainty. This will provide an objective criterion to decide on the best method, namely, the one that will lead to the minimum uncertainty.

Identication algorithm

With the above common framework, one may proceed to the solution through generic algorithms. Because of the generally nonlinearity of the minimization, a very common one is a Newton-Raphson minimization of the norm [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF]. The determination of the elastic parameters is iteratively corrected.

To this aim, the variation of the displacement eld with respect to each of the constitutive parameters, p i , namely, the so-called sensitivity elds [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF][START_REF] Mottershead | The sensitivity method in nite element model updating: A tutorial[END_REF], {s i },

{s i } = ∂{v} ∂p i (20) 
are needed. Hence, varying the constitutive parameters by a small amount leads to a change in the computed displacement eld

{δv} = i {s i }δp i (21) 
and hence, at step t of the algorithm, the minimization of T({p (t) }) with respect to the variations δp i leads to

{s (t) i } [N ]   {v (t) } -{u m } + j {s (t) j }δp j   = 0 (22) 
where the superscript (t) has been added to v (t) and s (t) i to recall that they are computed with the current determination of the constitutive parameters, here the Hooke's tensor C({p (t) }).

Introducing the Hessian [H (t) ],

H (t) ij = {s (t) i } [N ]{s (t) j } (23) 
and second member, {J (t) },

J (t) i = {s (t) i } [N ] {u m } -{v (t) } (24) 
the incremental correction of the constitutive parameters {p (t) }, is obtained from

{p (t+1) } = {p (t) } + [H (t) ] -1 {J (t) } (25) 
Such a scheme is quite general, and not unique. In particular, because updating the sensitivity elds should ideally be performed at each iteration is a costly operation, dierent variants can be considered keeping a non updated Hessian for some iterations, or updating the sensitivities only along the direction of the last increment {p (t+1) } -{p (t) }. Numerical algorithms optimized for an ecient solution is an interesting topic far from being exhausted here. However, a plain Newton-Raphson algorithm is applicable and provides a solution, irrespective of chosen method.

Uncertainty quantication

In the following, the structure of the tangent problem about the ideal solution is considered for perfect input data, u m 0 . The problem is assumed to be well-posed, and hence its solution provides the constitutive parameter {p 0 }, as well as the set of sensitivities s 0 i . However, in real life, the mea- surement data are corrupted by noise. Hence {u m } = {u m 0 } + {η u }, where {η u } is the noise in the input measurement. It is assumed that the DIC analysis has been performed correctly, thus producing an unbiased result, or {η u } = 0 [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]. Moreover, the noise is assumed to be Gaussian. One argument for this assumption is the stability of Gaussian noise through linear combinations, so that even if initially non-Gaussian, linear combinations of local noise will converge asymptotically to a Gaussian distribution (i.e., convergence in law) when the number of independent perturbations tends to innity (i.e., central limit theorem). One such example would be white noise aecting the gray level value of each pixel in images to be processed by DIC. When the number of pixels used for all kinematic degrees of freedom is large, the noise aecting the discrete displacement variables is Gaussian.

The displacement noise is then completely characterized by its covariance matrix

Cov u ij = η u i η u j ( 26 
)
Assuming that the tangent identication problem about the ideal solution remains valid for the amplitude of input noise, the displacement uncertainties can be propagated down to the noise aecting the identied parameters, {η p }

η p i = H -1 ij {s 0 j } [N ]{η u } ( 27 
)
As a result, for all identication methods (i.e., all [N ] metrics), the identied parameters are unbiased, and as linear combination of Gaussian noises, η p is also Gaussian. Thus it is completely characterized by its covariance

Cov p ij = η p i η p j = H -1 ik {s 0 k } [N ][Cov u ][N ]{s 0 l }H -1 lj (28)
Equation ( 27) has a simple geometric interpretation. The operator [P ] dened as

[P ] ≡ {s 0 i }H -1 ij {s 0 j } [N ] ( 29 
)
is the projector from the space of displacements U onto the subspace S generated by the sensitivity vectors, and this projection is orthogonal with respect to the scalar product dened by [N ]. It can easily be checked that

[P ]{s 0 k } = {s 0 i }H -1 ij {s 0 j } [N ]{s 0 k } = {s 0 i }H -1 ij H jk = {s 0 i }δ ik = {s 0 k } (30) 
and for any vector {v} orthogonal to all sensitivities {s 0 k } [N ]{v} = {0}, then [P ]{v} = 0. Thus Equation [START_REF] Claire | Identication of damage elds using kinematic measurements[END_REF] expresses that the noise on the constitutive parameters translated into displacements from their sensitivity elds is simply the normal projection of the displacement noise onto the subspace S, or i

η p i {s 0 i } = [P ]{η u } (31) 
Henceforth, all norms [N ] produce the same unbiased result when averaging out noise. However, they dier in their noisiness, i.e., in the uncertainties of the noise that will aect the identied parameters, and hence it is attractive to look for the optimal norm, which is here dened as the one that minimizes the noise amplitude on {p}. Let us underline that because {p} is multidimensional, the noise amplitude has to be characterized by the full covariance matrix [Cov p ]. Thus, it is not obvious that such an optimal norm even exists, since only a partial order is available for such symmetric matrices. However, there is a simple shortcut to the result that allows one to understand that such an optimum exists and provides its expression.

If displacement noise were uncorrelated and uniform, [Cov u ] = σ 2 [I], then the optimal norm is the Euclidian one, [N opt ] = [I]. Noise could be seen as blurring the displacement eld to a hypersphere of radius σ in U centered onto the actual displacement. Any norm would project this hypersphere onto the hyperplane S as a hyper-ellipse. The smallest domain that can be reached is the ordinary (Euclidian) orthogonal projection.

The diculty is to extend this simple result to a more complex case where the covariance matrix in U is arbitrary. Let us observe that if a linear transformation of the displacement space {v} = [Cov u ] -1/2 {u} is introduced, then noise aecting {v} reads

{η v } = [Cov u ] -1/2 {η u } (32) then {η v }{η v } = [Cov u ] -1/2 {η u }{η u } [Cov u ] -1/2 = [Cov u ] -1/2 [Cov u ][Cov u ] -1/2 = [I] (33) 
Therefore, in the new coordinates {v}, the displacement is only aected by a white and uniform noise for which the optimal solution is known. Thus it suces to see how such a linear transformation aects the scalar product

{u 1 } [N ]{u 2 } = {v 1 } [Cov u ] 1/2 [N ][Cov u ] 1/2 {v 1 } ≡ {v 1 } [N ]{v 2 } (34) or [N ] = [Cov u ] 1/2 [N ][Cov u ] 1/2 . Therefore the optimal norm [N opt ] = [I] is transported from {v} to {u} [N opt ] = [Cov u ] -1/2 [N opt ][Cov u ] -1/2 = [Cov u ] -1 (35) 
This last result is both simple and powerful. There are many ways to evaluate norms or to measure distances with noisy data, but among those one and only one (up to a multiplicative factor) is optimal in the sense that it minimizes the eect of noise. This best norm has to account precisely for the character of noise, which is summed up in the covariance matrix for a Gaussian noise, and the optimal metric has to unravel the correlations that are present there. This optimal norm has long been known in statistics and is due to P.C. Mahalanobis [START_REF] Mahalanobis | On the generalised distance in statistics[END_REF], who has given his name to it, as the Mahalanobis distance. For two vectors {u 1 } and {u 2 }, their Mahalanobis distance d({u 1 }, {u 2 }) is expressed as

d({u 1 }, {u 2 }) = ({u 1 } -{u 2 }) [Cov u ] -1 ({u 1 } -{u 2 }) (36) 
It is also noteworthy that this norm can be encountered from a dierent reasoning. Assuming that the dierence between two vectors, {u 1 } and {u 2 }, is only due to noise, and that the latter is Gaussian with a known covariance, the exact probability that such a noise vector {η} = ({u 1 } -{u 2 }) be observed reads

P({η}) = 1 (2π) n/2 det([Cov u ]) 1/2 exp - 1 2 {η} [Cov u ] -1 {η} (37) 
The maximum of this probability or likelihood is reached when the Mahalanobis norm is precisely minimum. Actually the cologarithm of the likelihood coincides with this norm. Let us turn back to the initial problem of calibrating elastic properties. It is striking that none of the metrics listed in Table 1 actually depend on the nature of the noise that aects the measured data. Thus, none may claim to be optimal with respect to their (least) sensitivity to noise. The optimal identication method is simply the one that minimizes the Mahalanobis distance between the measured and the computed displacement elds, namely, [N opt ] = [Cov u ] -1 . The name weighted FEMU was proposed [START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3d woven composite: Uncertainty analysis and regularization[END_REF], as a result of the fact that if the noise aecting the displacement data were white, then [Cov u ] being the identity matrix, the optimal identication norm would be that of the FEMU method.

DIC measurements

Given the fact that the computed displacement elds are assumed to be the result of FEAs, it was assumed that the displacement measurements were expressed on the same mesh. Under such conditions, global DIC [START_REF] Sun | Finite-element formulation for a digital image correlation method[END_REF][START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF] is a natural choice to measure displacement elds. However, dierent discretizations may be considered between measured and computed displacement elds [START_REF] Mathieu | Identication of interlaminar fracture properties of a composite laminate using local full-eld kinematic measurements and nite element simulations[END_REF], or even local DIC [START_REF] Sutton | Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation[END_REF] for displacement measurements. In all these cases, the covariance matrices of the measured displacements can be assessed [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]. Other measurement techniques may also be considered [START_REF] Rastogi | Photomechanics[END_REF][START_REF]Full-Field Measurements and Identication in Solid Mechanics[END_REF][START_REF] Rastogi | Optical Methods for Solid Mechanics. A Full-Field Approach[END_REF] and will then require the covariance matrices to be estimated.

The spirit of DIC consists in minimizing the norm of the registration residual between a reference image f (x) and a deformed image, g(x), corrected by the measured displacement eld u(x), ĝu (x) = g(x + u(x)). The registration residual is ρ u (x) = ĝu (x) -f (x). Because images are prone to noise, (both f and g), the displacement elds that are measured are corrupted by a uctuation δu. Usually, images are assumed to be aected by Gaussian white noise of small amplitude. This assumption of a white and uniform Gaussian image noise implies that images are to be compared with an optimal Mahalanobis distance that is simply the L2 Euclidian norm. Such is the case for some DIC strategies (local or global). The interesting point here is that if noise deviates from a such simple case, the above derived result allows to optimally measure the registration between images.

Local and global DIC approaches can be distinguished [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF][START_REF] Sutton | Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation[END_REF]. The rst ones partition the domain into elementary windows (or subsets), the center of which is characterized by a mean displacement that is evaluated independently from window to window. If no overlap is considered between subsets, then the noise aecting the displacement is white (i.e., uncorrelated), and thus the optimal identication method is standard FEMU. However, often subsets overlap, and interpolation or smoothing operations are performed thereby creating correlations. The mere fact of expressing the measurement within the language of the computed ones involving a projection induces non-trivial spatial correlations, and hence one should be extremely careful in the post-processing of such data where reference with the raw data (i.e., images) is lost.

The global approach proceeds through a unique and simultaneous determination of all degrees of freedom simultaneously, allowing them to be coupled. The advantage of this methodology is that it can naturally be interfaced with numerical models as it can share the very same discretization (say a nite element mesh). Yet one consequence of these couplings is that global DIC has always a non trivial covariance matrix [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]. It will be shown however that the latter is naturally available from the DIC code, as it is needed to measure the displacements.

The interested reader is referred to Ref. [START_REF] Hild | Digital Image Correlation[END_REF] for a general presentation of global DIC. Let us mention one key result in relation with the above uncertainty analysis. The displacement eld is written in a chosen discretization that can take many a form. A basis of vector elds φ i (x) being chosen, the displacement eld is sought under the discrete form u(x) = i u i φ i (x). Usually an iterative algorithm is chosen to perform the registration whereby the displacement eld is progressively corrected until a satisfactory match was found. Close to convergence, displacement correction δu i is found through a linearization of the eect of a further displacement.

Introducing the Hessian

H DIC ij = x (φ i (x) • ∇f (x))(φ j (x) • ∇f (x)) (38) 
and second member

r i = x (φ i (x) • ∇f (x))(f (x) -g(x)) (39) 
where g has been corrected by the current determination of the displacement eld, the incremental correction obeys

H DIC ij δu j = r i (40) 
The eect of noise in the f and g images produces a uctuation in the displacements η u that can be compared to the last iterations of the displacement corrections, in the sense that the tangent problem is similar, upon the substitution of image noise (η g -η f ) instead of mere residuals (f (x) -g(x)) in Equation [START_REF] Neggers | Improving full-eld identication using progressive model enrichments[END_REF]. Thus introducing

ρ i = x (φ i (x) • ∇f (x))(η f (x) -η g (x)) (41) 
the noise on {u i }, {η u i }, reads

{η u } = [H DIC ] -1 {ρ} (42) 
from which the covariance matrix becomes [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF] Cov

u = 2σ 2 [H DIC ] -1 (43) 
where σ is the standard deviation of the white noise aecting the images (assumed to be statistically similar but independent in the two images, which provides the factor 2 in the r.h.s. term). Thus, it is observed that the Mahalanobis distance for the identication that involves [Cov u ] -1 reduces to simply using the Hessian of DIC, [H DIC ], up to the noise variance, and hence it does not involve any additional cost to deliver the full covariance matrix of the displacement eld noise.

Let us nally underline a nal result of interest. Integrated DIC, (or I-DIC [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF][START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF][START_REF] Bertin | Integrated digital image correlation applied to elasto-plastic identication in a biaxial experiment[END_REF]), was introduced in the context of identication as being a special form of global DIC where the kinematic basis φ i (x) is chosen to be directly the sensitivity elds s i (x) previously dened in Section 4.1. It is easy to show that using global DIC and further the optimal identication procedure, or weighted FEMU, is mathematically equivalent to using I-DIC to perform the identication directly [START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF]. This remarkable property however relies on the assumption that no model error was introduced, such as for instance using too coarse a mesh as may be required to keep a low uncertainty on u m . In contrast, I-DIC may use a very ne spatial discretization devoid of spatial discretization error while still keeping the number of unknowns to a xed (small) value [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF][START_REF] Lindner | On the evaluation of stress triaxiality elds in a notched titanium alloy sample via integrated DIC[END_REF], namely, equal to the number of constitutive parameters (plus rigid body motions when needed).

Extensions

Within the above framework it is possible to include additional unknowns or measurements.

Noisy boundary conditions

The above discussion considered boundary conditions to be exactly known.

It may be true in particular for Neumann boundary conditions when tractionfree surfaces are present. Otherwise, these boundary conditions are generally corrupted by noise, and moreover noise is known to be amplied at boundaries. After identication, in fact, boundary conditions may even constitute the major source of uncertainty. The above presented case thus only covers partly the conditions for optimality with respect to uncertainty (i.e., only when boundary condition uncertainties can be neglected).

When noisy Dirichlet boundary conditions are considered, one should distinguish between actual and estimated displacement elds along those boundaries. Hence, actual displacements are to be considered as unknown.

However, estimates are available together with the statistical properties of their uncertainties [START_REF] Bertin | Integrated digital image correlation applied to elasto-plastic identication in a biaxial experiment[END_REF]. Thus, one may proceed exactly as for constitutive parameters. They are needed for a direct problem, yet only an approximate version may be sucient. In the course of the identication procedure, boundary conditions as well as constitutive parameters, {p}, are to be identied, using the very same procedure, namely, with sensitivity elds that characterize the changes in displacement eld induced by a Dirichlet boundary degree of freedom [START_REF] Bertin | Crystal plasticity parameter identication with 3D measurements and Integrated Digital Image Correlation[END_REF].

Unknown geometry

In some cases, the geometry of the observed medium is not entirely known. In particular, it is a usual problem for propagating cracks say in fatigue problems where the tip position may not be known precisely. In this case, parameters describing the geometry may be added to the list of constitutive parameters, {p}, and treated similarly. Namely, sensitivity elds accounting for the change in displacement eld due to a small variation of the geometrical parameters can be computed to complement the library of elds over which the displacement is to be projected [START_REF] Roux | Digital image correlation and fracture: An advanced technique for estimating stress intensity factors of 2d and 3d cracks[END_REF].

Fusion of information

More than often, load information is measured and this measurement comes with some uncertainty, in contrast to the previous section where applied forces where assumed to be known exactly. In such a case, not only should one match the displacement eld in the identication process but also the applied forces should be compared to computed ones. It has been shown above that the appropriate distance between displacement eld was the Mahalanobis distance to be used in T u , (see Equation ( 19)). Similarly, the distance between the temporal series of external forces and the computed ones should be the Mahalanobis distance. In most cases, white noise may be fully justied and hence this will reduce to the Euclidian norm of force dierences T F = F comput -F meas 2 .

These two functionals are to be minimized together, and hence, they are to be alloyed into a single one. The appropriate weight to be given to each of these two terms may not be obvious at rst glance. In fact, the cologlikelihood argument shows that these two functional are to be summed with the same weight if the covariance matrix of each measurement is used in both T functionals [START_REF] Mathieu | Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC[END_REF]. The same result is straightforwardly obtained by gathering all measurements (be they kinematic or static) into a global vector, and writing the covariance matrix of this full vector. Hence, no choice is to be exerted here if one aims at the optimal solution. Let us stress however that, here as before when using any norm [N ], it is not wrong to give other weights than unity, but it results in a larger uncertainty for the result as compared to the optimal one.

Nonlinear constitutive laws

The above discussion about identication was restricted to linear elastic problems. Let us however note that heterogeneous elastic media are naturally included in the previous analysis. Identication of the elastic parameters can be restricted to specic sub-domains, and potentially, the geometry of sub-domains can also be included in the list of unknowns as previously mentioned [START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF][START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3d woven composite: Uncertainty analysis and regularization[END_REF].

For nonlinear constitutive laws, it is to be emphasized that the local tangent stress/strain relationship can be written as

σ = C : ε + τ (44) 
where the dierence with an elastic law is gathered in the so-called stress polarization tensor τ (equivalently a stress-free strain could have been introduced). However, the polarization stress as well as the tangent tensor C depend on the current strain tensor and possibly on one or several internal variables. When accounted for in the nite element formalism, the polarization will be included in the nodal force vector, {F }. The previous remark is also relevant herein. The very existence of a constitutive law implies that the nodal force vector is constrained (in fact determined) by the constitutive law, and hence iterative methods should drive the system to a xed point where constitutive law and balance equations are both satised. In the nal steps of this iterative procedure, the tangent problem is expected to remain essentially stationary and hence the mathematical complexity is not much dierent than the previously discussed elastic problem.

The specic issue to get a rough description of the constitutive law, suciently robust to provide a reliable tangent law is not discussed herein. When this is achieved, the identication problem takes precisely the same form as previously. Although a nonlinear constitutive law is an additional diculty, the availability of robust numerical methods and softwares renders sensitivity elds accessible from mere nite dierences. Usually, several loading levels (say N ) are considered, so that the displacement elds are actually a stack of N elds indexed by the load at which images were captured. Similarly, sensitivity elds will also be a stack of N elementary sensitivity elds, one per load level. However once computed these sensitivities are transformed into a very long vector, and hence the multiplicity of load levels does not change the mathematical nature of the problem as compared to a single level.

The very nature of the problem remains actually quite close. The current determination of the constitutive parameters, at iteration n, {p n }, and the known boundary conditions are sucient to compute the displacement eld at all nodes and measurement times, {v n }. Similarly sensitivities may be computed from s n i = ∂v n /∂p i , so that within a small neighborhood of {p n }, the displacement eld may be written as {v} = {v n } + i {s n i }(p i -p n i ).

This computed displacement eld is now to be compared with the measured one u m and the squared Mahalanobis distance

T u = {v n } + i {s n i }(p i -p n i ) -{u m } 2 (45) 
minimized with respect to (p i -p n i ). Each update from {p n } to {p n+1 } theoretically implies that all displacements and sensitivities should be recomputed at each iteration.

One limitation to be mentioned, is the possible existence of a high sensitivity to some parameters (e.g., close to instabilities) that may induce a deviation from the Gaussian statistics for the uncertainty. For those cases, a closer inspection may lead to the disqualication of some nodes at some time steps, but this may not hamper identication.

As a nal comment, let us note that this optimal procedure was already followed quite a few times in the past although without necessarily claiming to be optimal [START_REF] Avril | Sensitivity of the virtual elds method to noisy data[END_REF][START_REF] Réthoré | Optimal and noise-robust extraction of fracture mechanics parameters from kinematic measurements[END_REF][START_REF] Gras | Identication of a set of macroscopic elastic parameters in a 3d woven composite: Uncertainty analysis and regularization[END_REF]].

Conclusions

A unied framework was proposed to recast many of the identication procedures used nowadays. The main dierence is the metric used to measure the distance between measured and computed displacement elds. Let us stress that, for some methods, no reference is usually made to a computed eld. In the proposed unied framework, the computed displacement eld may belong to the kernel of the operator [N ] restricted to non-Dirichlet degrees of freedom making the underlying method strictly equivalent mathematically in spite of an unusual presentation. Moreover, the spectral sensitivity of all these identication methods was assessed. It allows the sensitivity of all these methods to measurement uncertainties to be compared.

The optimality of the identication being dened as its least sensitivity to measurement noise, it was shown that the metric based on the inverse covariance matrix of the measured displacements minimizes the Mahalanobis distance. It corresponds to weighted nite element model updating (or equivalently to integrated DIC when the signal to noise ratio remains high).

For the sake of simplicity, the discussion was restricted to a single loading step. The present results may be generalized to time series of images (and loading steps). Similarly, the boundary conditions were assumed to be noiseless. This assumption can also be relaxed using similar approaches.

Let us also emphasize that in the entire paper, it was assumed that no model error was present. Using the same formalism as above presented, it is sometimes argued that the constitutive law satisfaction could be relaxed to better account for the measured data [START_REF] Kirchdoerfer | Data-driven computational mechanics[END_REF][START_REF] Leygue | Databased derivation of material response[END_REF]. In this way, identication appears as a compromise between a constitutive law describing a material and noise corrupting the measurements. When phrased in this way, it appears clearly that now the metric on measured and computed displacement eld, and in particular the optimal one based on Mahalanobis distance, has to be balanced by a metric in the constitutive law space. The latter is however very rarely addressed, but even if it were, how to gauge it with the measurement metric appears as a dicult, not to say impossible, epistemological question.
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