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Abstract

Measured displacement �elds constitute a rich database for the identi�cation
of mechanical behavior. A variety of methods are available today to address
this problem. A formalism is proposed showing that they all revert to the
minimization of a quadratic norm (or semi-norm) between measured and
computed displacement �elds. However, they di�er in the chosen metric.

Transporting image noise through Digital Image Correlation and identi�-
cation procedures, the uncertainty in the measured displacement �elds (i.e.,
their full covariance) and the resulting uncertainty in the estimated consti-
tutive parameters is assessed. Consequently, an optimal choice of metric
(with respect to image noise) is proposed so that the resulting identi�cation
uncertainty is minimized.

Keywords: identi�cation of constitutive law; calibration of parameters;
full-�eld measurements; uncertainty;

1. Introduction

Nowadays' use of materials requires high mechanical properties, complex
microstructures with ever less usage of raw components (to lower energy
consumption, and CO2 imprint), in increasingly severe conditions, may po-
tentially jeopardize the safety in domains such as energy and transportation.
In these areas mechanical sciences must provide reliable and complete numer-
ical tools to enable for decision-making [1]. The need for ever more robust
and faithful constitutive models calls for advanced identi�cation and valida-
tion strategies. The latter ones have seen numerous developments with the
emergence and democratization of full-�eld measurement techniques [2].
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Very large numbers of measured data (i.e., dense �elds in some cases)
are accessible with rather standard equipments [3]. Their weakness is that
their uncertainties are generally higher than those of point measurements.
Gaussian noise (potentially correlated) is the most frequently encountered
case. Its statistical properties are exhaustively captured by the full covari-
ance a�ecting the measured data [4]. When using optical cameras to measure
displacement �elds, it is then possible to propose general frameworks that
link image noise to displacement uncertainties, and the latter ones with pa-
rameter �uctuations [5, 3].

In the �eld of solid mechanics, various identi�cation methods have been
developed over the last decades [6]. Some of them explicitly require full-�eld
measurements to be available [7]. Finite element model updating (FEMU)
was the �rst proposition [8, 10, 9], which is an iterative procedure comparing
measured and simulated displacement, strain or load levels [11, 12, 8]. Least
squares errors were considered with no special emphasis on their weight-
ing. Other types of gaps were introduced. In elasticity, di�erent variational
principles were considered [13, 14]. The constitutive equation error, which
was initially introduced for the veri�cation of numerical models [15], was
also used for identi�cation purposes [16, 17, 18, 19, 20]. The reciprocity
gap [21, 22, 23] considers only surface measurements to determine various
types of defects in the bulk of the analyzed domain. Non iterative meth-
ods such as the virtual �elds method [24, 25, 26] and the equilibrium gap
method [27, 28, 29, 30, 31] were introduced to calibrate elastic parameters
and damage models.

In the vast majority of studies mentioned so far measurement uncertain-
ties were not explicitly accounted for. Optimal extractors, namely, the least
sensitive to measurement uncertainties were introduced for the choice of vir-
tual �elds [32], the estimation of fracture mechanics parameters [33], or the
identi�ability of load and contrast �elds in microcantilevers [34]. Speci�c
weighting based on global DIC uncertainties was also proposed for the iden-
ti�cation of elastic properties [35]. Last, under the assumption of small noise
level, it was shown that weighted FEMU and integrated DIC led to the same
covariances of identi�ed parameters [36].

The present paper aims at extending this optimality feature by analyzing
each of the afore-mentioned identi�cation methods in view of their sensitiv-
ity to measurement uncertainties. Once these various sensitivities have been
discussed, it is proposed to formulate an optimal approach. The statement
of the problem is introduced in Section 2. Section 3 reviews various identi-
�cation methods in a uni�ed framework. An optimal method is proposed in
Section 4. Extensions to nonlinear problems are discussed in Section 5.
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2. Statement of the problem

The identi�cation problem consists in estimating the constitutive param-
eters �at best� from a measured displacement �eld (and possibly additional
data such as applied forces, temperature �elds).

It is worth noting that even the very existence of a constitutive law may
be relaxed in data-driven approaches where stresses and strains are related
from a cloud of data rather than an algebraic relationship [37, 38]. In the
present study, the choice has been made to stick to a more traditional view
where a constitutive law is formulated explicitly and parameterized.

To ease the discussion, only the case of linear elasticity (i.e., the most
universal constitutive postulate) will be addressed �rst, and extensions to
more general constitutive laws will be addressed at the end of this paper.
Hence, the constitutive law reduces to the Hooke's tensor, C, parameterized
by a set of parameters, {p} = {p1, ..., pm}>, collected into a column vector
(e.g., isotropic elasticity requires only two parameters, the Lamé's moduli,
or the Young's modulus and Poisson's ratio).

Let us also stress that no model error are assumed to be present. That
is to say the actual constitutive law of the material under study lies within
the space of the considered constitutive laws, and the di�culty is to �nd
the best estimates of the constitutive parameters, knowing that one such set
exists. In other words, an elastic law will not be sought when the behavior
is elastoplastic, or elasticity will be restricted to isotropy when the behavior
is anisotropic. Such cases of model error are much more demanding as they
call for an appropriate metric in a space of constitutive laws, a question
that is di�cult to address on objective grounds. The simpler issue of asking
whether the behavior that is known to belong to a large class of laws may be
restricted to a subclass (that of speci�c symmetries or properties), thereby
leading to strategies of gradual enrichments of considered models [39] is even
considered beyond the scope of the following analyses. Similarly, it will be
assumed that discretization errors are not relevant. Equipped with error
estimates, one may consider today that the issue of numerical veri�cation is
mature enough to be under control [15, 40, 41, 42].

One issue of the problem is to de�ne �at best.� A distinctive feature
of experimental measurements is that they are corrupted by noise [43, 44].
Consequently, the determination of {p} will inherit from the noisy input
data a �uctuating part {δp}, which may display a systematic error 〈{δp}〉,
and a (co)variance 〈{δp}{δp}>〉 where the angular brackets stand for the
expectation over statistical realizations of the noise. The best determination
will thus be de�ned as that 1) which has no bias, and 2) minimizes the
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uncertainty.

Problem. From a given measured displacement �eld, um(x), over a region

of interest Ω, the problem consists in estimating the constitutive parameters,

{p}, with no bias and the least uncertainties.

Let us note that the �rst condition (i.e., no bias), is not necessarily met.
For instance, a method that would aim at the computation of the elastic
energy from the given displacement �eld would involve a quadratic form on
the displacement, and hence the displacement uncertainties will give rise to
a contribution to this energy, which in turn will result in a systematic error.
Hence, estimates of {p} based on nonlinear functions of the displacements
are to be rejected based on the bias argument. Alternatively obtaining a
bias-free estimate can be solved straightforwardly from any evaluation of
{p} that is linear (or whose incremental correction is linear) in the measured
displacement.

2.1. Simplifying assumptions

Nowadays, mechanical tests are more and more systematically equipped
with imaging devices to provide surface (be it planar stemming from single-
view or 3D surface displacements from multiview systems) or volume (based
on tomography) displacement [45, 46]. Thus one experiment is often studied
all along a loading history and long time series of images are available (this
is mandatory for complex constitutive laws). It is even sometimes necessary
to combine several experiments to reach a complete description. Strategies
designed to address such image series, be they relative to single or multiple
experiments have been proposed, but they will not be discussed hereafter.
For the sake of simplicity, the most simple case is �rst addressed, namely a
single deformed state. Dense �elds are considered, thus either in 2D based
on DIC measurement or 3D using Digital Volume Correlation (DVC). The
case of stereocorrelation, which only informs on the surface deformations of
a solid without volume kinematic measurement is not considered herein.

As a further simpli�cation in phase with the recourse to a single image, a
linear elastic description is assumed to hold. A measured displacement �eld
um, say by DIC or DVC, is considered to be available. Similarly, Neumann
boundary conditions as well as the density of body forces are assumed to be
known exactly. The problem then consists in �nding the elastic properties
such that the displacement �eld computed from a numerical model, for in-
stance using Finite Element Analyses (FEAs) matches as well as possible the
measured �eld. Further, geometry is expected to be known exactly. Hence
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the specimen shape to be meshed in the model is known precisely, and the
reference frame of the image is assumed to be perfectly registered onto that
of the numerical twin so that the matching of points does not introduce any
discrepancy per se.

Last, the discretization of the kinematic measurement in the FE model-
ing, which can di�er from that of the DIC analysis is not addressed at this
point. For global DIC/DVC techniques that can use arbitrary meshes, this
question is not critical, but for local approaches this point is more relevant
as boundaries are more delicate to be described [47]. It is assumed that the
discrete measurement data are localized at points xi, where the modeled
displacement �eld is to be evaluated for comparison to measurements.

The previously cited assumptions introduce some restrictions, which are
initially introduced to ease the discussion. After having reached the stage
where an optimal identi�cation method has been de�ned, the above assump-
tions will be revisited in order to show that they can be relaxed within the
identi�cation framework.

2.1.1. FEA

Within the framework of a �nite element discretization of the problem,
the Lamé's equation takes a very classical form [41]

[K]{v} = {f} (1)

where [K] is the sti�ness matrix, {v} the nodal displacement vector and
{f} the nodal forces expressing the presence of body forces and/or surface
tractions. Boundary nodes have degrees of freedom that are assumed to be
subjected to either Neumann (i.e., known tractions) or Dirichlet (i.e., known
displacements), possibly component-wise. Other types of linear boundary
conditions such as Robin type can be incorporated in a similar description
by moving the boundary to include the elastic coupling within the domain,
and hence the restriction to either Neumann or Dirichlet is not limiting.

2.1.2. Notations

It will be convenient for the following discussion to introduce a diagonal
matrix [D], valued 1 for interior and Neumann degrees of freedom, and 0
for the other (Dirichlet) degrees of freedom where displacements are known.
For the Dirichlet degrees of freedom, it is natural to consider that the dis-
placement is set by the measurement. Thus, a modeled displacement �eld
{v} is introduced, such that

([I]− [D]){v} = ([I]− [D]){um}
[D][K]{v} = [D]{f} (2)
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where the �rst condition stands for the Dirichlet boundary conditions, and
the second equation expresses both the constitutive law and equilibrium. It
may be noted that the second equation can also be rewritten as

[D][K][D]{v} = [D]{f} − [D][K]([I]− [D]){um} (3)

where the sti�ness matrix, restricted to inner nodes and Neumann degrees
of freedom, [KI ] ≡ [D][K][D], is symmetric, positive and de�nite (because
the Dirichlet boundary conditions are accounted for). The notation [KI ] is
introduced to simplify the following derivations. The right hand side de�nes
e�ective nodal forces, {f eff}, for non-Dirichlet boundary conditions, or

[D]{f eff} ≡ [D] ({f} − [K]([I]− [D]){um}) (4)

With only displacement data, a rescaling of all moduli by a �xed amount
does not a�ect the data, and hence the stress unit cannot be determined.
The problem should be rephrased with dimensionless constitutive parameters
where moduli are scaled by, say, the Young's modulus. Prescribing known
tractions or body forces is a simple way to circumvent the previous argument,
leaving open the possibility of identifying all constitutive parameters.

2.1.3. Spectral sensitivity

Because the measured displacement �eld is subjected to noise, it will be
important to characterize the sensitivity of the following operators or norms
to high frequency modulations. For this purpose, trial displacement �elds
w in the form of a plane wave w = w0 exp(ik · x) are introduced, and
the scaling of norms (or semi-norms) {w}>[A]{w} with the wave-number
amplitude k = |k|, is de�ned as

〈{w}>[A]{w}〉 ∼ kς (5)

where the brackets here stand for spatial averages. In practice, for the �nite
element method � which is beyond the scope of the usage of the present
argument � the corresponding wavelength 2π/|k| should be much larger than
the element size, and much smaller than the domain size, so that the sine
waves can be well resolved and well sampled. A large value of the spectral
sensitivity ς will mean a high sensitivity to white noise, and without further
information on the noise spectral properties, are not recommended. Matrices
such as [M ] (e.g., mass matrix [41] or DIC matrix [47]) or [I] have a spectral
sensitivity of ς = 0. The sti�ness matrix is the discretized form of the balance
operator ∇ · (C : ∇⊗ •) applied to the displacement �eld and the presence
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of two di�erential operators implies that the spectral sensitivity of [K] is
ς = 2.

In the following, some classical identi�cation techniques will be rephrased,
emphasizing their similarities and di�erences, in particular in terms of their
spectral sensitivities.

3. Identi�cation techniques

3.1. Finite Element Model Updating (FEMU)

The oldest and most natural method consists in matching {v} and {um} [8,
12, 11]. Introducing an L2 (Euclidian) norm, the FEMU method was for-
mulated as �nding the constitutive parameters (embedded in the sti�ness
matrix [K]) that minimizes the following functional

T(FEMU) = ‖{v} − {um}‖2
= ({v} − {um})>({v} − {um})

(6)

Because {v} and {um} already coincide on the Dirichlet boundary condi-
tions, it is equivalent to introducing the diagonal [D] matrix inside the scalar
product

T(FEMU) = ({v} − {um})>[D]({v} − {um}) (7)

It is noteworthy that if a nonuniform mesh is used, the above expression
is not uniformly sampled in space. If such a uniform weighting is preferred,
the above norm should be generalized by a summation over space with a
uniform Lebesgue measure. Taking into account the fact that at the ele-
ment scale, shape functions are known, the continuous summation can be
expressed in terms of the discretized nodal values. This will automatically
produce another L2 norm, which is expressed with the �mass� matrix, [M ]

T(FEMU) = ({v} − {um})>[M ]({v} − {um}) (8)

The latter weighting has the merit of being apparently transparent to the
choice of mesh provided the region of interest remains the same, and that
the mesh does not impede an accurate description of the displacement �eld.

Let us note that in all of these expressions an arbitrary scale factor can
be introduced. It is usual to introduce a prefactor of (1/2), and/or a nor-
malization by the total number of degrees of freedom in [D] or the surface
/ volume. At this stage, this scaling has no consequence. It will when other
functionals will be considered together with T.

The spectral sensitivity of T(FEMU) is ς(FEMU) = 0.
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3.2. Equilibrium Gap (EG)

The minimization of the equilibrium gap seeks to ful�ll Equation (3) for a
displacement �eld equal to um. More precisely, if the measured displacement
�eld is prescribed instead of {v} in Equation (3), the second member will
display spurious unbalanced forces {ϕ} such that

[D][K][D]{um} − [D]{f eff} = [D]{ϕ} (9)

The euclidian norm of [D]{ϕ} is the so-called �equilibrium gap� [28]. Thus,
it is written as

T(EG) = ‖[D][K][D]{um} − [D]{f eff}‖2
= ‖[KI ]{um} − [D]{f eff}‖2

(10)

Observing Equation (4), the above cost function is rewritten as

T(EG) = ‖[KI ]({v} − {um})‖2
= ({v} − {um})>[KI ][M ][KI ]({v} − {um})

(11)

Here again, the mass matrix reappears because the euclidian norm is con-
sidered based on a uniform measure over the domain of interest. If an equal
weight is given to all degrees of freedom, the mass matrix [M ] should be
turned into the identity [I] matrix, and hence the metric is simply [KI ]2.

One nice feature of this formulation is that the above cost function is for
some speci�c cases (such as scalar or modal anisotropic damage laws [29, 31])
quadratic in {p}, thereby leading to linear systems for identi�cation pur-
poses. This is however not a universal statement, and apart from aesthetic
reasons, this argument should not matter in the selection of a methodology.

For both variants, the spectral sensitivity is the double of that of [KI ],
thus ς(EG) = 4. This spectral sensitivity is a key property when using regu-
larized DIC since it can be shown that the equilibrium gap functional, taken
as a penalty to gray level conservation, then acts as a mechanics-based low
pass �lter [48, 49] of fourth order.

3.3. Constitutive Law Error (CLE)

The constitutive law error is a concept that was �rst developed as a tool
to control and assess the quality of numerical simulations [15]. Using the
same formulation to address identi�cation from full-�eld measurements is
an extension from its primary purpose [16, 17, 18, 19, 20]. The spirit of
the method is as previously to minimize unbalanced forces [D]{ϕ} with the
measured displacement �eld. However, rather than computing the Euclidian
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norm of ϕ, an energy-like norm is introduced, namely, the work of these
unbalanced forces in a displacement �eld, ({v} − {um}) that is admissible
to 0 (on Dirichlet degrees of freedom)

T(CLE) = ({v} − {um})[D]{ϕ}
= ({v} − {um})>[D][K][D]({v} − {um})
= ({v} − {um})>[KI ]({v} − {um})

(12)

This writing shows that the above form is quadratic and vanishes only if
the two �elds coincide (i.e., [KI ] is de�nite). The spectral sensitivity of the
CLE strategy is equal to that of [KI ], thus ς(CLE) = 2.

Let us note that the �Modi�ed Constitutive Law Error,� (M-CLE), was
introduced as the sum of CLE and FEMU-type cost functions, T(CLE) +
αT(FEMU) [19, 20, 50, 51]. The weighting parameter α gives an additional
handle to optimize the identi�cation procedure. Huang et al. [51] suggest
using standard heuristics to determine the choice of α (such as Morozov [52]
criterion or L-curve [53]). One may note that this α parameter, which relates
two functionals with a di�erent spectral sensitivity, implicitly de�nes a length
scale, ξ, such that FEMU dominates at larger scales than ξ, and conversely,
the CLE cost function rules the smaller length scales. Because the M-CLE
approach is a linear combination of two �pure� cases, it will not be further
distinguished.

3.4. Reconditioned Equilibrium Gap (REG)

The equilibrium gap shows a very high sensitivity to high frequency noise
(since ς(EG) = 4), and hence is expected not to be very robust with respect
to noise. In order to counteract this trend, it is desirable to �integrate twice�
the unbalanced nodal forces to displacements, and this is the motivation
for introducing the Reconditioned Equilibrium Gap, or REG [29]. Such
an integration is provided by the solution to an elastic problem. For this
purpose, a reference elastic medium is chosen, as characterized by a rigidity
matrix [K0] over the same geometry (and same mesh) as the studied sample,
and as previously, the restriction of this operator to non-Dirichlet degrees
of freedom is de�ned, [KI

0 ] = [D][K0][D]. The displacement �eld, {w}, is
computed in this reference medium with zero displacement over the Dirichlet
boundary, and body forces equal to the above unbalanced forces, {ϕ}

{w} = [KI
0 ]−1{ϕ} (13)
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The quadratic norm of {w} is the reconditioned equilibrium gap

T(REG) = {w}>[M ]{w}
= {ϕ}>[KI

0 ]−1[M ][KI
0 ]−1{ϕ}

= ({v} − {um})>[KI ][KI
0 ]−1[M ][KI

0 ]−1[KI ]({v} − {um})
(14)

It is to be noted that [KI
0 ]−1 is never to be computed explicitly, but only the

trial displacements {w} whose cost is that of solving a linear elastic problem.
A reference medium is introduced, and among all possible choices, one natu-
ral candidate is to choose precisely that of the studied sample. In this case,
[KI

0 ] = [KI ], T(REG) coincides with the FEMU criterion. However, if no link
is established between [K] and [K0] the above mentioned linearity property
of the EG criterion when solving for damage �elds is preserved, in contrast
to FEMU that would be nonlinear. However, here again, computationally,
the advantage of such linearity is marginal.

As expected from its very construction, the reconditioned equilibrium
gap method displays a zero spectral sensitivity, ς(REG) = 0, and hence is
much less sensitive to noise, and thus becomes comparable to FEMU.

3.5. Virtual Fields Method (VFM)

The virtual �elds method, which was proposed long ago [24], and which
has been matured to a large number of successful cases [26], can be cast
into a similar formalism. Because unbalanced forces {ϕ} should be ideally
vanishing, for any kinematically admissible displacement �eld, referred to as
virtual �eld, {ψ}, the virtual work {ψ}>{ϕ} should vanish. This condition
de�nes a scalar equation with which at most one constitutive parameter
can be determined. When n such parameters are needed (depending on the
complexity of the constitutive law, and hence, in the present case of linear
elasticity, on its class of symmetry), one may introduce as many virtual �elds
{ψi}, i = 1, ..., n, to obtain as many equations as unknowns. The equations
to solve read

{ψi}>[KI ]({v} − {um}) = 0 (15)

This set of equation is identical to the one that would result from the mini-
mization of

T(VF) = ({v} − {um})>[KI ][Ψ][KI ]({v} − {um}) (16)

where [Ψ] is the projector along the subspace generated by the virtual �elds

[Ψ] =
∑
i

{ψi}{ψi}> (17)
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Since the rank of this matrix is n, the above cost function T(VF) is a semi-
norm, with a large kernel (subspace orthogonal to [Ψ]). It is thus essential
to choose the virtual �elds wisely. In the review paper [54], the selection of
the virtual �elds is discussed, and di�erent solutions are proposed (although
the problem of selecting the best set of virtual �elds is declared unsettled by
the authors). The di�erent options that were proposed are:

• a heuristic approach where the di�erent �elds ψi are chosen to be or-
thogonal to one another. In fact it could be argued that orthogonality
is not relevant computationally inasmuch as only the subspace gener-
ated by the ψi matters.

• a second mentioned criterion is (equivalent) to achieve the best condi-
tioning of the linear system.

• let us mention that it was recently proposed to use the sensitivity
�elds as computed virtual �elds for using the virtual �eld method in
the context of nonlinear constitutive laws [55]. It is interesting to note
how close this choice actually brings the VFM to the original FEMU
technique that extensively uses sensitivity �elds [4, 56].

• another possible choice is to minimize the e�ect of noise, leading to
so-called �special virtual �elds.� In ref. [32], an operational way of
optimizing the virtual �elds was based on the assumption that the
measured strains are a�ected by a Gaussian white noise. Since a dis-
placement �eld is generally measured, the strains cannot be a�ected
by a white noise as it ful�lls a compatibility condition, and the strain
noise displays a strong anticorrelation character resulting from the par-
tial di�erentiation that relates strain to displacement. However, noting
that the measurement noise is the limiting feature of the identi�cation
is a very relevant observation, this calls for taking into account the
actual covariance of the displacement �eld noise, Covu (from which
that of strains can be derived [57]).

It is noteworthy that in the case of linear elasticity or viscoelasticity,
such an approach (for any choice of the virtual �elds) may lead to linear
systems provided the constitutive parameters are chosen so that the rigidity
matrix is a�ne in {p} [26], akin to what was observed for the EG and REG
methods [27, 29].

Because typically n is a small number, the spectral sensitivity is not
meaningful. Virtual �elds are usually structural (i.e., not related to a par-
ticular mesh) exactly for the purpose of not being too sensitive to noise
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so that the k-dependence is not meaningful. Let us note that if a larger
number of virtual �elds is considered the minimization of TV F could still
be considered although it would generally not be possible to reach 0 for
all Equations (15). In this case, the advantage of formulating the problem
as a minimization is to naturally deal with more equations. Considering all
possible �elds as generated by the �nite element mesh (i.e., Ψ would then re-
duce to the identity or mass operator and it would generate the entire space
of discretized displacements) leads to the EG method (i.e., ς(V FM) = 4).
In contrast, keeping the number of �elds small corresponds to ignoring all
information coming from the complementary subspace (i.e., ς(V FM) ≈ 0).

3.6. Summary

All methods to be discussed below tend to evaluate the elastic properties,
e.g., Hooke's tensor C({p}), which is parameterized by {p} so that {v} and
{um} become as close as possible. A general framework that has been shown
as suitable for all the above cited methods is to estimate C, or rather {p} as
the argument minimizing a functional T({p})

Cidentif = Argmin{p} T({p}) (18)

where
T({p}) = ({v({p})} − {um})>[N ]({v({p})} − {um}) (19)

is a norm (or a semi-norm) de�ning a metric to evaluate the distance between
computed and measured displacement �elds. However, all these methods dif-
fer in the expression of the symmetric matrix [N ] as summarized in Table 1.

Table 1: Di�erent proposed metrics.

Method Metric [N ] Spectral sensitivity

FEMU (dof) [I] 0
FEMU (uniform) [M ] 0

EG (dof) [KI ]2 4

EG (uniform) [KI ][M ][KI ] 4

CEE [KI ] 2

REG [KI ][KI
0 ]−1[M ][KI

0 ]−1[KI ] 0

VFM [KI ][Ψ][KI ] (not relevant)
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4. Optimal methods

In the previous section, a set of di�erent criteria have been shown to
di�er only by their �metric.� Thus the next question to answer is to point
out the �best� one. The �rst di�culty to address is to de�ne properly what
is understood as �best.� The present choice for the de�nition of best is to not
only evaluate the constitutive parameters, but also their uncertainty. This
will provide an objective criterion to decide on the best method, namely, the
one that will lead to the minimum uncertainty.

4.1. Identi�cation algorithm

With the above common framework, one may proceed to the solution
through generic algorithms. Because of the generally nonlinearity of the
minimization, a very common one is a Newton-Raphson minimization of the
norm [4]. The determination of the elastic parameters is iteratively corrected.
To this aim, the variation of the displacement �eld with respect to each of
the constitutive parameters, pi, namely, the so-called sensitivity �elds [4, 56],
{si},

{si} =
∂{v}
∂pi

(20)

are needed. Hence, varying the constitutive parameters by a small amount
leads to a change in the computed displacement �eld

{δv} =
∑
i

{si}δpi (21)

and hence, at step t of the algorithm, the minimization of T({p(t)}) with
respect to the variations δpi leads to

{s(t)
i }
>[N ]

{v(t)} − {um}+
∑
j

{s(t)
j }δpj

 = 0 (22)

where the superscript (t) has been added to v(t) and s
(t)
i to recall that they

are computed with the current determination of the constitutive parameters,
here the Hooke's tensor C({p(t)}).

Introducing the Hessian [H(t)],

H
(t)
ij = {s(t)

i }
>[N ]{s(t)

j } (23)
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and second member, {J (t)},

J
(t)
i = {s(t)

i }
>[N ]

(
{um} − {v(t)}

)
(24)

the incremental correction of the constitutive parameters {p(t)}, is obtained
from

{p(t+1)} = {p(t)}+ [H(t)]−1{J (t)} (25)

Such a scheme is quite general, and not unique. In particular, because up-
dating the sensitivity �elds should ideally be performed at each iteration is
a costly operation, di�erent variants can be considered keeping a non up-
dated Hessian for some iterations, or updating the sensitivities only along
the direction of the last increment {p(t+1)} − {p(t)}. Numerical algorithms
optimized for an e�cient solution is an interesting topic far from being ex-
hausted here. However, a plain Newton-Raphson algorithm is applicable and
provides a solution, irrespective of chosen method.

4.2. Uncertainty quanti�cation

In the following, the structure of the tangent problem about the ideal
solution is considered for perfect input data, um

0 . The problem is assumed
to be well-posed, and hence its solution provides the constitutive parameter
{p0}, as well as the set of sensitivities s0

i . However, in real life, the mea-
surement data are corrupted by noise. Hence {um} = {um

0 } + {ηu}, where
{ηu} is the noise in the input measurement. It is assumed that the DIC
analysis has been performed correctly, thus producing an unbiased result,
or 〈{ηu}〉 = 0 [57]. Moreover, the noise is assumed to be Gaussian. One
argument for this assumption is the stability of Gaussian noise through lin-
ear combinations, so that even if initially non-Gaussian, linear combinations
of local noise will converge asymptotically to a Gaussian distribution (i.e.,
convergence in law) when the number of independent perturbations tends
to in�nity (i.e., central limit theorem). One such example would be white
noise a�ecting the gray level value of each pixel in images to be processed by
DIC. When the number of pixels used for all kinematic degrees of freedom
is large, the noise a�ecting the discrete displacement variables is Gaussian.

The displacement noise is then completely characterized by its covariance
matrix

Covu
ij = 〈ηui ηuj 〉 (26)

Assuming that the tangent identi�cation problem about the ideal solution
remains valid for the amplitude of input noise, the displacement uncertainties
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can be propagated down to the noise a�ecting the identi�ed parameters, {ηp}

ηpi = H−1
ij {s

0
j}>[N ]{ηu} (27)

As a result, for all identi�cation methods (i.e., all [N ] metrics), the identi�ed
parameters are unbiased, and as linear combination of Gaussian noises, ηp

is also Gaussian. Thus it is completely characterized by its covariance

Covp
ij = 〈ηpi η

p
j 〉

= H−1
ik {s

0
k}>[N ][Covu][N ]{s0

l }H−1
lj

(28)

Equation (27) has a simple geometric interpretation. The operator [P ] de-
�ned as

[P ] ≡ {s0
i }H−1

ij {s
0
j}>[N ] (29)

is the projector from the space of displacements U onto the subspace S
generated by the sensitivity vectors, and this projection is orthogonal with
respect to the scalar product de�ned by [N ]. It can easily be checked that

[P ]{s0
k} = {s0

i }H−1
ij {s

0
j}>[N ]{s0

k}
= {s0

i }H−1
ij Hjk

= {s0
i }δik

= {s0
k}

(30)

and for any vector {v} orthogonal to all sensitivities {s0
k}>[N ]{v} = {0},

then [P ]{v} = 0. Thus Equation (27) expresses that the noise on the consti-
tutive parameters translated into displacements from their sensitivity �elds
is simply the normal projection of the displacement noise onto the subspace
S, or ∑

i

ηpi {s
0
i } = [P ]{ηu} (31)

Henceforth, all norms [N ] produce the same unbiased result when aver-
aging out noise. However, they di�er in their �noisiness,� i.e., in the uncer-
tainties of the noise that will a�ect the identi�ed parameters, and hence it
is attractive to look for the �optimal norm,� which is here de�ned as the one
that minimizes the noise amplitude on {p}. Let us underline that because
{p} is multidimensional, the noise amplitude has to be characterized by the
full covariance matrix [Covp]. Thus, it is not obvious that such an optimal
norm even exists, since only a partial order is available for such symmetric
matrices. However, there is a simple shortcut to the result that allows one
to understand that such an optimum exists and provides its expression.
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If displacement noise were uncorrelated and uniform, [Covu] = σ2[I],
then the optimal norm is the Euclidian one, [Nopt] = [I]. Noise could be seen
as blurring the displacement �eld to a hypersphere of radius σ in U centered
onto the actual displacement. Any norm would project this hypersphere
onto the hyperplane S as a hyper-ellipse. The smallest domain that can be
reached is the ordinary (Euclidian) orthogonal projection.

The di�culty is to extend this simple result to a more complex case
where the covariance matrix in U is arbitrary. Let us observe that if a
linear transformation of the displacement space {v} = [Covu]−1/2{u} is
introduced, then noise a�ecting {v} reads

{ηv} = [Covu]−1/2{ηu} (32)

then
〈{ηv}{ηv}>〉 = [Covu]−1/2〈{ηu}{ηu}>〉[Covu]−1/2

= [Covu]−1/2[Covu][Covu]−1/2

= [I]

(33)

Therefore, in the new coordinates {v}, the displacement is only a�ected by
a white and uniform noise for which the optimal solution is known. Thus it
su�ces to see how such a linear transformation a�ects the scalar product

{u1}>[N ]{u2} = {v1}>[Covu]1/2[N ][Covu]1/2{v1}
≡ {v1}>[N ′]{v2}

(34)

or [N ′] = [Covu]1/2[N ][Covu]1/2. Therefore the optimal norm [N ′opt] = [I]
is transported from {v} to {u}

[Nopt] = [Covu]−1/2[N ′opt][Covu]−1/2

= [Covu]−1 (35)

This last result is both simple and powerful. There are many ways to
evaluate norms or to measure distances with noisy data, but among those
one and only one (up to a multiplicative factor) is optimal in the sense that
it minimizes the e�ect of noise. This �best� norm has to account precisely
for the character of noise, which is summed up in the covariance matrix for
a Gaussian noise, and the optimal metric has to unravel the correlations
that are present there. This optimal norm has long been known in statistics
and is due to P.C. Mahalanobis [58], who has given his name to it, as the
Mahalanobis distance. For two vectors {u1} and {u2}, their Mahalanobis
distance d({u1}, {u2}) is expressed as

d({u1}, {u2}) = ({u1} − {u2})>[Covu]−1({u1} − {u2}) (36)
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It is also noteworthy that this norm can be encountered from a di�erent
reasoning. Assuming that the di�erence between two vectors, {u1} and {u2},
is only due to noise, and that the latter is Gaussian with a known covariance,
the exact probability that such a noise vector {η} = ({u1} − {u2}) be
observed reads

P({η}) =
1

(2π)n/2 det([Covu])1/2
exp

(
−1

2
{η}>[Covu]−1{η}

)
(37)

The maximum of this probability or likelihood is reached when the Maha-
lanobis norm is precisely minimum. Actually the cologarithm of the likeli-
hood coincides with this norm. Let us turn back to the initial problem of
calibrating elastic properties. It is striking that none of the metrics listed in
Table 1 actually depend on the nature of the noise that a�ects the measured
data. Thus, none may claim to be optimal with respect to their (least) sen-
sitivity to noise. The optimal identi�cation method is simply the one that
minimizes the Mahalanobis distance between the measured and the com-
puted displacement �elds, namely, [Nopt] = [Covu]−1. The name �weighted
FEMU� was proposed [35], as a result of the fact that if the noise a�ecting
the displacement data were white, then [Covu] being the identity matrix,
the optimal identi�cation norm would be that of the FEMU method.

4.3. DIC measurements

Given the fact that the computed displacement �elds are assumed to
be the result of FEAs, it was assumed that the displacement measurements
were expressed on the same mesh. Under such conditions, global DIC [59, 60]
is a natural choice to measure displacement �elds. However, di�erent dis-
cretizations may be considered between measured and computed displace-
ment �elds [61], or even local DIC [2] for displacement measurements. In all
these cases, the covariance matrices of the measured displacements can be as-
sessed [57]. Other measurement techniques may also be considered [45, 7, 46]
and will then require the covariance matrices to be estimated.

The spirit of DIC consists in minimizing the norm of the registration
residual between a reference image f(x) and a deformed image, g(x), cor-
rected by the measured displacement �eld u(x), ĝu(x) = g(x+ u(x)). The
registration residual is ρu(x) = ĝu(x) − f(x). Because images are prone
to noise, (both f and g), the displacement �elds that are measured are cor-
rupted by a �uctuation δu. Usually, images are assumed to be a�ected by
Gaussian white noise of small amplitude. This assumption of a white and
uniform Gaussian image noise implies that images are to be compared with
an optimal Mahalanobis distance that is simply the L2 Euclidian norm. Such
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is the case for some DIC strategies (local or global). The interesting point
here is that if noise deviates from a such simple case, the above derived result
allows to optimally measure the registration between images.

Local and global DIC approaches can be distinguished [57, 2]. The �rst
ones partition the domain into elementary windows (or �subsets�), the center
of which is characterized by a mean displacement that is evaluated indepen-
dently from window to window. If no overlap is considered between subsets,
then the noise a�ecting the displacement is white (i.e., uncorrelated), and
thus the optimal identi�cation method is standard FEMU. However, often
subsets overlap, and interpolation or smoothing operations are performed
thereby creating correlations. The mere fact of expressing the measurement
within the language of the computed ones involving a projection induces
non-trivial spatial correlations, and hence one should be extremely careful
in the post-processing of such data where reference with the raw data (i.e.,
images) is lost.

The global approach proceeds through a unique and simultaneous de-
termination of all degrees of freedom simultaneously, allowing them to be
coupled. The advantage of this methodology is that it can naturally be in-
terfaced with numerical models as it can share the very same discretization
(say a �nite element mesh). Yet one consequence of these couplings is that
global DIC has always a non trivial covariance matrix [57]. It will be shown
however that the latter is naturally available from the DIC code, as it is
needed to measure the displacements.

The interested reader is referred to Ref. [47] for a general presenta-
tion of global DIC. Let us mention one key result in relation with the
above uncertainty analysis. The displacement �eld is written in a cho-
sen discretization that can take many a form. A basis of vector �elds
φi(x) being chosen, the displacement �eld is sought under the discrete form
u(x) =

∑
i uiφi(x). Usually an iterative algorithm is chosen to perform the

registration whereby the displacement �eld is progressively corrected until a
satisfactory match was found. Close to convergence, displacement correction
δui is found through a linearization of the e�ect of a further displacement.
Introducing the Hessian

HDIC
ij =

∑
x

(φi(x) ·∇f(x))(φj(x) ·∇f(x)) (38)

and second member

ri =
∑
x

(φi(x) ·∇f(x))(f(x)− g̃(x)) (39)
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where g̃ has been corrected by the current determination of the displacement
�eld, the incremental correction obeys

HDIC
ij δuj = ri (40)

The e�ect of noise in the f and g images produces a �uctuation in the dis-
placements ηu that can be compared to the last iterations of the displacement
corrections, in the sense that the tangent problem is similar, upon the sub-
stitution of image noise (ηg − ηf ) instead of mere residuals (f(x)− g̃(x)) in
Equation (39). Thus introducing

ρi =
∑
x

(φi(x) ·∇f(x))(ηf (x)− ηg(x)) (41)

the noise on {ui}, {ηui }, reads

{ηu} = [HDIC]−1{ρ} (42)

from which the covariance matrix becomes [57]

Covu = 2σ2[HDIC]−1 (43)

where σ is the standard deviation of the white noise a�ecting the images
(assumed to be statistically similar but independent in the two images, which
provides the factor 2 in the r.h.s. term). Thus, it is observed that the
Mahalanobis distance for the identi�cation that involves [Covu]−1 reduces
to simply using the Hessian of DIC, [HDIC], up to the noise variance, and
hence it does not involve any additional cost to deliver the full covariance
matrix of the displacement �eld noise.

Let us �nally underline a �nal result of interest. �Integrated DIC�, (or
I-DIC [62, 36, 63]), was introduced in the context of identi�cation as being
a special form of global DIC where the kinematic basis φi(x) is chosen to
be directly the sensitivity �elds si(x) previously de�ned in Section 4.1. It
is easy to show that using global DIC and further the optimal identi�cation
procedure, or weighted FEMU, is mathematically equivalent to using I-DIC
to perform the identi�cation directly [36]. This remarkable property however
relies on the assumption that no model error was introduced, such as for
instance using too coarse a mesh as may be required to keep a low uncertainty
on um. In contrast, I-DIC may use a very �ne spatial discretization devoid
of spatial discretization error while still keeping the number of unknowns to
a �xed (small) value [62, 64], namely, equal to the number of constitutive
parameters (plus rigid body motions when needed).
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5. Extensions

Within the above framework it is possible to include additional unknowns
or measurements.

5.1. Noisy boundary conditions

The above discussion considered boundary conditions to be exactly known.
It may be true in particular for Neumann boundary conditions when traction-
free surfaces are present. Otherwise, these boundary conditions are generally
corrupted by noise, and moreover noise is known to be ampli�ed at bound-
aries. After identi�cation, in fact, boundary conditions may even constitute
the major source of uncertainty. The above presented case thus only covers
partly the conditions for optimality with respect to uncertainty (i.e., only
when boundary condition uncertainties can be neglected).

When noisy Dirichlet boundary conditions are considered, one should
distinguish between actual and estimated displacement �elds along those
boundaries. Hence, actual displacements are to be considered as unknown.
However, estimates are available together with the statistical properties of
their uncertainties [63]. Thus, one may proceed exactly as for constitutive
parameters. They are needed for a direct problem, yet only an approxi-
mate version may be su�cient. In the course of the identi�cation procedure,
boundary conditions as well as constitutive parameters, {p}, are to be iden-
ti�ed, using the very same procedure, namely, with sensitivity �elds that
characterize the changes in displacement �eld induced by a Dirichlet bound-
ary degree of freedom [65].

5.2. Unknown geometry

In some cases, the geometry of the observed medium is not entirely
known. In particular, it is a usual problem for propagating cracks say in
fatigue problems where the tip position may not be known precisely. In this
case, parameters describing the geometry may be added to the list of con-
stitutive parameters, {p}, and treated similarly. Namely, sensitivity �elds
accounting for the change in displacement �eld due to a small variation of
the geometrical parameters can be computed to complement the library of
�elds over which the displacement is to be projected [66].

5.3. Fusion of information

More than often, load information is measured and this measurement
comes with some uncertainty, in contrast to the previous section where ap-
plied forces where assumed to be known exactly. In such a case, not only
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should one match the displacement �eld in the identi�cation process but
also the applied forces should be compared to computed ones. It has been
shown above that the appropriate distance between displacement �eld was
the Mahalanobis distance to be used in Tu, (see Equation (19)). Similarly,
the distance between the temporal series of external forces and the computed
ones should be the Mahalanobis distance. In most cases, white noise may
be fully justi�ed and hence this will reduce to the Euclidian norm of force
di�erences TF = ‖F comput − Fmeas‖2.

These two functionals are to be minimized together, and hence, they are
to be alloyed into a single one. The appropriate weight to be given to each
of these two terms may not be obvious at �rst glance. In fact, the colog-
likelihood argument shows that these two functional are to be summed with
the same weight if the covariance matrix of each measurement is used in
both T functionals [36]. The same result is straightforwardly obtained by
gathering all measurements (be they kinematic or static) into a global vector,
and writing the covariance matrix of this full vector. Hence, no choice is to
be exerted here if one aims at the optimal solution. Let us stress however
that, here as before when using any norm [N ], it is not wrong to give other
weights than unity, but it results in a larger uncertainty for the result as
compared to the optimal one.

5.4. Nonlinear constitutive laws

The above discussion about identi�cation was restricted to linear elastic
problems. Let us however note that heterogeneous elastic media are natu-
rally included in the previous analysis. Identi�cation of the elastic parame-
ters can be restricted to speci�c sub-domains, and potentially, the geometry
of sub-domains can also be included in the list of unknowns as previously
mentioned [28, 35].

For nonlinear constitutive laws, it is to be emphasized that the local
tangent stress/strain relationship can be written as

σ = C : ε+ τ (44)

where the di�erence with an elastic law is gathered in the so-called �stress
polarization tensor� τ (equivalently a stress-free strain could have been in-
troduced). However, the polarization stress as well as the tangent tensor C
depend on the current strain ε tensor and possibly on one or several internal
variables. When accounted for in the �nite element formalism, the polariza-
tion will be included in the nodal force vector, {F }. The previous remark
is also relevant herein. The very existence of a constitutive law implies that
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the nodal force vector is constrained (in fact determined) by the constitutive
law, and hence iterative methods should drive the system to a �xed point
where constitutive law and balance equations are both satis�ed. In the �nal
steps of this iterative procedure, the tangent problem is expected to remain
essentially stationary and hence the mathematical complexity is not much
di�erent than the previously discussed elastic problem.

The speci�c issue to get a rough description of the constitutive law, su�-
ciently robust to provide a reliable tangent law is not discussed herein. When
this is achieved, the identi�cation problem takes precisely the same form as
previously. Although a nonlinear constitutive law is an additional di�culty,
the availability of robust numerical methods and softwares renders sensitivity
�elds accessible from mere �nite di�erences. Usually, several loading levels
(say N) are considered, so that the displacement �elds are actually a stack
of N �elds indexed by the load at which images were captured. Similarly,
sensitivity �elds will also be a stack of N elementary sensitivity �elds, one
per load level. However once computed these sensitivities are transformed
into a very long vector, and hence the multiplicity of load levels does not
change the mathematical nature of the problem as compared to a single level.
The very nature of the problem remains actually quite close. The current
determination of the constitutive parameters, at iteration n, {pn}, and the
known boundary conditions are su�cient to compute the displacement �eld
at all nodes and measurement times, {vn}. Similarly sensitivities may be
computed from sni = ∂vn/∂pi, so that within a small neighborhood of {pn},
the displacement �eld may be written as {v} = {vn} +

∑
i{sni }(pi − pni ).

This computed displacement �eld is now to be compared with the measured
one um and the squared Mahalanobis distance

Tu = ‖{vn}+
∑
i

{sni }(pi − pni )− {um}‖2 (45)

minimized with respect to (pi − pni ). Each update from {pn} to {pn+1}
theoretically implies that all displacements and sensitivities should be re-
computed at each iteration.

One limitation to be mentioned, is the possible existence of a high sen-
sitivity to some parameters (e.g., close to instabilities) that may induce a
deviation from the Gaussian statistics for the uncertainty. For those cases,
a closer inspection may lead to the disquali�cation of some nodes at some
time steps, but this may not hamper identi�cation.

As a �nal comment, let us note that this optimal procedure was already
followed quite a few times in the past although without necessarily claiming
to be optimal [32, 33, 35].
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6. Conclusions

A uni�ed framework was proposed to recast many of the identi�cation
procedures used nowadays. The main di�erence is the metric used to mea-
sure the distance between measured and computed displacement �elds. Let
us stress that, for some methods, no reference is usually made to a com-
puted �eld. In the proposed uni�ed framework, the computed displacement
�eld may belong to the kernel of the operator [N ] restricted to non-Dirichlet
degrees of freedom making the underlying method strictly equivalent mathe-
matically in spite of an unusual presentation. Moreover, the spectral sensitiv-
ity of all these identi�cation methods was assessed. It allows the sensitivity
of all these methods to measurement uncertainties to be compared.

The optimality of the identi�cation being de�ned as its least sensitivity
to measurement noise, it was shown that the metric based on the inverse co-
variance matrix of the measured displacements minimizes the Mahalanobis
distance. It corresponds to weighted �nite element model updating (or equiv-
alently to integrated DIC when the signal to noise ratio remains high).

For the sake of simplicity, the discussion was restricted to a single load-
ing step. The present results may be generalized to time series of images
(and loading steps). Similarly, the boundary conditions were assumed to be
noiseless. This assumption can also be relaxed using similar approaches.

Let us also emphasize that in the entire paper, it was assumed that no
model error was present. Using the same formalism as above presented, it is
sometimes argued that the constitutive law satisfaction could be relaxed to
better account for the measured data [37, 38]. In this way, identi�cation ap-
pears as a compromise between a constitutive law describing a material and
noise corrupting the measurements. When phrased in this way, it appears
clearly that now the metric on measured and computed displacement �eld,
and in particular the optimal one based on Mahalanobis distance, has to be
balanced by a metric in the constitutive law space. The latter is however very
rarely addressed, but even if it were, how to gauge it with the measurement
metric appears as a di�cult, not to say impossible, epistemological question.
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